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Abstract. Bedload sediment transport is one of the main processes that contribute to bedrock incision in a river

and is therefore one of the key control parameters in the evolution of mountainous landscapes. In recent years,

many studies have addressed this issue through experimental setups, direct measurements in the field, or various

analytical models. In this article, we present a new direct numerical approach: using the classical methods of

discrete-element simulations applied to granular materials, we explicitly compute the trajectories of a number

of pebbles entrained by a turbulent water stream over a rough solid surface. This method allows us to extract

quantitatively the amount of energy that successive impacts of pebbles deliver to the bedrock, as a function of

both the amount of sediment available and the Shields number. We show that we reproduce qualitatively the

behaviour observed experimentally by Sklar and Dietrich (2001) and observe both a “tool effect” and a “cover

effect”. Converting the energy delivered to the bedrock into an average long-term incision rate of the river leads

to predictions consistent with observations in the field. Finally, we reformulate the dependency of this incision

rate with Shields number and sediment flux, and predict that the cover term should decay linearly at low sediment

supply and exponentially at high sediment supply.

1 Introduction

The incision of bedrock channels is one of the key pro-

cesses that govern the formation and evolution of moun-

tain ranges (Anderson, 1994; Howard, 1994; Whipple and

Tucker, 1999). Long-term averaged incision rates can take

values from 0.02 to 14 mm yr−1 (see, for instance, the review

by Lague, 2014). It has also been observed that, under rarely

reached conditions, the short-term incision rate can reach

even higher values, up to a few metres per day (Hartshorn

et al., 2002; Lamb and Fonstad, 2010; Cook et al., 2014). In

order to model the long-term evolution of the morphology

of bedrock rivers, and more generally of mountainous land-

scapes, it is often necessary to adopt a simple macroscopic

law to take into account the process of bedrock incision. One

of the most commonly used approaches, the stream-power

incision model, assumes that the incision rate within a river

channel varies as a power law of both its local slope and its

drainage area (which is equivalent to introducing a depen-

dence in the water discharge) (Seidl et al., 1994; Whipple and

Tucker, 1999). The suitability of this model to adequately

reproduce several features of bedrock channels has recently

been reviewed extensively by Lague (2014). One of its main

restrictions is that it does not take into account more detailed

parameters such as the dynamics of the alluvial cover in the

channel.

In a bedrock mountain river, various processes con-

tribute to incision: chemical dissolution, cavitation, abra-

sion (or wear) by both bedload and suspended load, pluck-

ing, and macroabrasion (Whipple et al., 2000; Chatanantavet

and Parker, 2009). Amongst those, abrasion, plucking, and

macroabrasion depend directly on the amount of material that

is removed from the bedrock by rolling, sliding, or impact-

ing particles transported by the flow, which itself depends

mainly on the amount of energy that is transmitted to the

bedrock by moving particles (Foley, 1980). This transfer of

energy from the impacting particle to the bedrock has been
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recently directly measured experimentally by Turowski and

Bloem (2015), as a function of the thickness of the sediment

layer covering the bedrock. As can be expected, the fraction

of the incipient kinetic energy that is effectively transmitted

to the bedrock decreases when the sediment thickness in-

creases. This confirms that, as proposed early on by Gilbert

(1877) or Shepherd (1972), the amount of sediment avail-

able in the river channel should influence the downcutting

rate in two opposite ways: incision should be first enhanced

by an increase in the number of impacts of abrasive tools on

the bedrock (“tool effect”), but if the supply rate becomes

too high, the bedrock should become partially or completely

protected from these impacts (“cover effect”).

The first direct measurement of the effect of sediment

transport on abrasion was performed by Sklar and Dietrich

(2001): by measuring the mass loss of a rock disk eroded

by a bedload layer of saltating grains in a rotating flow,

they confirmed that a maximum abrasion rate is observed

for a critical amount of sediment above the bedrock. Follow-

ing this experimental work, Sklar and Dietrich (2004) devel-

oped a mechanistic approach in order to derive the saltation–

abrasion model. In this model, the incision rate I is written

as the product of three terms: the volume of rock eroded by

each impact, Vi; the number of impacts by unit time and sur-

face, ni; and the probability that a saltating grain impacts an

exposed area of the bedrock, F :

I = Vi× ni×F. (1)

Sklar and Dietrich (2004) derive the frequency of impacts

from a mechanistic description of saltation trajectories, all

pebbles being assumed to have the same dynamics. They

consider that F is the fraction of bedrock not shielded by

immobile particles, and varies linearly with the amount of

available sediment Qs when below the transport capacity of

the stream, and vanishes when the transport capacity Qt is

reached:

F =

{
1−Qs/Qt for Qs <Qt

0 otherwise .
(2)

A further model was developed by Turowski et al. (2007),

where each saltating grain has a given probability to impact

an exposed or covered region of the bedrock, which leads to

an exponential expression for F :

F = exp(−ϕQs/Qt) , (3)

with ϕ a constant. In both models, the bedload layer is de-

scribed as made of two distinct populations: static particles

that cover and protect the bedrock, and moving particles

that all have the same trajectories. Therefore, this analyti-

cal approach does not take into account the fact that, when

the amount of sediment increases, moving pebbles will in-

teract with each other and with static ones, which should

modify their trajectories. An impact is likely to be qualita-

tively different depending on whether it hits a covered or ex-

posed region of the bedrock: a saltating particle impacting

the raw bedrock can bounce and continue its saltating tra-

jectory. Conversely, when it impacts an area already covered

with immobile pebbles, it is likely that more energy will be

dissipated in the collision, and the impacting particle might

not bounce back. The two populations (static and saltating

particles) should therefore be permanently interacting, with

static particles being ejected by an impact and becoming

mobile, while mobile particles can get trapped in asperities

of the static cover (Charru et al., 2004). This implies that

Eq. (1) is somewhat ill-defined, since the number of impacts

ni should also be a function of F .

In this article, we propose a new numerical approach of

abrasion, based on the discrete-element method. This method

allows us to model the individual trajectories of all parti-

cles within the bedload layer and therefore to obtain a physi-

cally based value of the amount of energy transmitted to the

bedrock by impacts. The article in organized as follows. In

Sect. 2 we present our numerical setup and the physical laws

implemented in our simulations. In Sect. 3 we expose the

numerical results regarding the sediment transport rate, the

energy delivered to the bedrock and the influence of bedrock

roughness. Finally, in Sect. 4 we discuss the implications of

our results on the influence of both the Shields number and

the sediment supply on the incision rate. We propose a new

definition for the cover function F , compare our results to

available experimental and analytical models and estimate

the long-term incision rate predicted by our simulations.

2 Description of the numerical model

2.1 Numerical setup

We use the discrete-element method to simulate the indi-

vidual dynamics of pebbles entrained by a turbulent water

flow over a fixed bedrock. The same method would allow for

modelling of non-spherical particles by considering compos-

ite particles made of two or more “glued” spheres, but for

the sake of simplicity and to limit the number of control pa-

rameters, we restrict our study to the dynamics of spherical

particles.

The computational domain is a parallelepipedic box of

length L= 2m, width W = 1m, and height H = 2m (see

Fig. 1 and Table 1 for the list of all physical parameters used

in the simulation). Periodic boundary conditions are used in

both horizontal directions x and y: any pebble coming out of

the box on one side is reinjected with the same velocity on the

other side. The bedrock is modelled as a horizontal surface

located at z= 0, over which we simulate a natural roughness

of the bedrock by glueing Nb spheres of radius R = 5cm,

centred at a height z= zr. These protruding spheres have the

same mechanical properties as the pebbles entrained by the

flow but are fixed and considered part of the bedrock. In all

the presented results except in Sect. 3.4, these spheres pro-

trude by a height hb = R+zr = 4cm and their surface density
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Figure 1. Snapshot of the numerical simulation. The colour scale

codes the horizontal velocity of each pebble. The grey plane and

(immobile) grey spheres constitute the rough bedrock.

is given by

χ =Nb×
πR2

W L
= 0.36. (4)

Considering that we only model spherical particles, the pres-

ence of this roughness on the bedrock is necessary to allow

for the existence of patches of immobile pebbles (particles

roll towards asperities and can get trapped) and also to en-

hance vertical motion, that is, saltation of mobile pebbles

(without any roughness and within a purely horizontal flow,

particles tend to simply roll along the smooth surface). The

aim of the simulation is to compute the amount of energy

that is transmitted to the bedrock when it is hit by saltating

pebbles, and to evaluate the erosion of the bedrock induced

by these impacts. However, let us note that we simulate the

bedload dynamics over a timescale of the order of 1 min,

whereas significant abrasion of the bedrock only happens

over at least the duration of a flood, that is, a few days, and

in many cases over years. Therefore, we can admit that the

bedrock (both the horizontal surface and the fixed spheres)

remains unchanged and immobile within the timescale of the

simulation (in particular, its altitude remains z= 0 through-

out the whole duration of the simulation). This can be seen

as an advantage compared to experimental studies such as

conducted by Johnson and Whipple (2010), where incision

affects preferential areas of the bedrock, which rapidly leads

to the formation of a narrow inner channel, thus making both

shear stress and alluvial highly non-uniform within the whole

channel.

The bedload consists of N pebbles that are modelled as

spheres of radius R = 5cm and density ρs = 2500kg m−3.

Even if repeated impacts might lead to a slow comminution

of the pebbles, their size is considered constant over the du-

ration of the simulation. The number of pebbles that can be

disposed in a single layer over the bedrock is of the order of

WL/(πR2). Therefore, we quantify the sediment supply by

defining the dimensionless surface density σ as the surface

of bedrock covered by pebbles, divided by the total available

surface:

σ =N ×
πR2

W L
. (5)

Table 1. List of the physical parameters used in the model.

L length of the box (m)

W width of the box (m)

H height of the box (m)

N number of mobile pebbles

R radius of pebbles (m)

ρs pebble density (kg m−3)

g gravitational acceleration (m s−2)

k elastic constant of collisions (kg s−2)

0 effective viscosity of collisions (Pa s)

e coefficient of restitution of collisions

δ overlap between two pebbles (m)

µ local friction coefficient

σ normalized sediment supply

σ0 movable sediment supply at a given Shields number

σm sediment supply for maximal incision rate

φ solid volume fraction

τ shear stress (Pa)

U∗ shear velocity (m s−1)

κ von Kármán constant

ρw density of water (kg m−3)

ηw dynamic viscosity of water (Pa s)

2 Shields number

2c critical Shields number for transport of sediment

2′ =2−2c dimensionless excess shear stress

2i critical Shields number for incision of the bedrock

Nb number of spheres glued on the bedrock

hb height of the bedrock roughness (m)

χ surface density of bedrock roughness

Tcoll typical duration of a contact between 2 pebbles (s)

1t time step in the simulations (s)

q(t) instantaneous sediment flux (kg m−1 s−1)

Qs average sediment flux (kg m−1 s−1)

8E flux of energy (W m−2)

I incision rate (m s−1)

kv dimensionless rock resistance coefficient

Y Young’s modulus of rock (Pa)

εv energy required to erode a unit volume of rock (J m−3)

σT tensile strength of rock (Pa)

A horizontal turbulent water flow in the x direction puts

the pebbles into motion (see Sect. 2.3). Their trajectories

are then driven by their immersed weight (W ), fluid friction

(drag force F and torque M), and contact forces exerted by

other pebbles (N , T ). The evolution with time of the position

r and rotational velocity � of a pebble is given by Newton’s

equations of motion:
m

d2r

dt2
= W +F +N +T

J
d�

dt
= R×T +M,

(6)

with m=
4π

3
ρsR

3 the mass and J =
8π

15
ρsR

5 the angular

momentum of a pebble. The immersed weight of a pebble is

W = (ρs − ρw)
4πR3

3
g, (7)

with g =−g ez the gravitational acceleration

(g = 9.8ms−2).
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2.2 Contacts between pebbles

When two pebbles are in contact, the exact deformation of

each solid particle is not explicitly computed but spheres are

instead allowed to overlap slightly (see, for instance, Pöschel

and Schwager, 2005). We assume that two pebbles i and j

are in collision if the distance between their centres is lower

than the sum of their radii, that is, if δ = 2R− |r i− rj |> 0

(see Fig. 2). When two pebbles make contact, they experi-

ence an inelastic rebound that can be modelled by the sum

of an elastic and a viscous force (Cundall and Strack, 1979).

The elastic force is linear in the overlap δ. The viscous dissi-

pation is proportional to the temporal variation in this over-

lap: the normal force experienced by a pebble i in contact

with a pebble j is then

N ij =−

(
k δ−0

dδ

dt

)
nij , (8)

where k is the elastic constant, 0 is the effective viscosity,

and nij =
rj − r i

|rj − r i|
is the unit normal vector of the collision.

The value of the elastic constant is related to the material’s

Young’s modulus and the pebble size: we adopt the value

k = 2× 108 N m−1, which corresponds to an elastic modu-

lus Y ∼ k/R = 4GPa. This value is quite low for rocks, but

increasing the elastic modulus would imply reducing the nu-

merical time step too much. Let us note, however, that the

pebbles that we model are nevertheless very rigid: the defor-

mation of a pebble under its own weight is only 60nm. The

effective viscosity is a numerical parameter that is responsi-

ble for the inelasticity of the collision but does not have a

direct physical equivalent. When a pebble impacts another

one in water, energy is dissipated in plastic deformations or

micro-fractures within the rock (which are responsible for

wear), as well as in the viscous interstitial flow. Within our

model, the effective inelasticity of the collision can be quan-

tified by the coefficient of restitution e, which compares the

velocity of the pebble before and after a collision: e = 1 cor-

responds to an elastic collision and e = 0 to total dissipation.

If the force is given by Eq. (8), e is expressed as

e = exp

(
−
Tcoll0

2m

)
with Tcoll = π

√
m/k√

1−02/(4mk)
,

(9)

the typical duration of a collision. We choose the value

0 = 2× 104 kg s−1 for the effective viscosity, which leads to

collisions of duration Tcoll = 10−4 s and a coefficient of resti-

tution e = 0.3, which means that a pebble loses 1−e2
= 90%

of its incident kinetic energy during an impact. This value of

e lies in the lower range of the experimental observations of

Schmeeckle et al. (2001) for natural sediment at high Stokes

number, and below the prediction of Davis et al. (1986) for

elastic spheres (e = 0.65). However, let us note that, in our

Figure 2. Two pebbles in contact, located respectively at r i and rj ,

with an overlap δ = 2R− |r i− rj |. vij and �ij are, respectively,

the translational and angular relative velocities of pebble j with re-

spect to pebble i. Normal N ij and tangential T ij forces apply at the

contact.

simulation, the energy loss is due to not only the viscous dis-

sipation in the film of water that appears between the two par-

ticles in elastic collision but also the dissipation induced by

the mechanical damage that both particles experience upon

impact. In the following (see Eq. 19), we will assume that all

the energy lost during an impact with the bedrock contributes

to its abrasion.

The tangential force T ij generated at a contact between

two pebbles is described by the regularized Coulomb’s law

of solid friction, as in Cundall and Strack (1979). This force

opposes the tangential motion and is expressed as

T ij =−min(G |vs
|;µ |N ij |)

vs

|vs|
, (10)

where vs is the sliding velocity at the contact, which is a func-

tion of the two pebbles’ translational and angular velocities,

µ= 0.6 is the local friction coefficient, and G= 5kg s−1 is

the slope of the regularization of the Coulomb’s law. This

regularization prevents the indetermination of the friction

force when the two particles in contact have a zero sliding

velocity.

Finally, each collision between a pebble and the horizontal

surface of altitude z= 0 is treated as a collision with a pebble

of infinite size, and same mechanical properties.

2.3 Turbulent water flow

A stationary turbulent flow over a rough bedrock follows the

average velocity profile:

V (z)= Vf (z)ex with Vf (z)=
U∗

κ
ln

(
z

z0

)
(11)
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where x is the direction of the flow and κ = 0.41 is the von

Kármán constant. z0 is the bedrock roughness and depends

on pebble size: a bedrock made of pebbles of radius R has a

roughness z0 = R/15 (Nikuradse, 1933; Valance, 2005). U∗

is the shear velocity, whose expression is given by the rela-

tionship between turbulent shear stress and velocity gradient:

U∗ =

√
τ

ρw

with τ = ρwκ
2z2

(
∂Vf

∂z

)2

, (12)

where ρw = 1000kg m−3 is the density of water. The abil-

ity of the stream to put pebbles into motion is described by

the Shields number. This dimensionless quantity is propor-

tional to the ratio between the drag force on a pebble and its

immersed weight:

2=
τ × (2R)2

(ρs − ρw)g× (2R)3
=

ρw(U∗)2

2(ρs − ρw)× gR
. (13)

Pebbles are put into motion by the flow if 2 exceeds a

threshold value 2c: measurements of this threshold, both

in the field and in experiments, give values in the range

0.01<2c < 0.2 (Buffington and Montgomery, 1997; Lamb

et al., 2008). In abrasion experiments conducted in a flume

setup by Attal and Lavé (2009) the maximum fluid veloc-

ity is 4m s−1 for a water height H = 60cm and pebbles of

size 10 to 80mm. As reported in data reviewed by Ricken-

mann and Recking (2011), flow velocity in mountain streams

varies typically between 0.3 and 4m s−1, for a water height

between 0.1 and 3m. In order to be consistent with these ob-

servations, in our simulations we adopted mean water veloc-

ities up to 5.0m s−1, which corresponds to 2 varying from 0

to 0.11.

If the bedrock is covered with a layer of mobile pebbles, as

in our simulations, the turbulent velocity profile is modified.

Recently, Duran et al. (2012) developed a quasi-2-D mecha-

nistic approach that takes into account the retroaction of the

pebbles on the water flow by assuming the conservation of to-

tal horizontal momentum in horizontal slices. They showed

that the fluid velocity vanishes where the local solid fraction

is high enough (that is, at a depth of one or two grain diam-

eters within the bedload layer), and tends towards a logarith-

mic profile in the “clear water” region. The “intermediate”

region where the velocity goes from zero to the logarithmic

profile is very thin (usually of the order of one grain diame-

ter). Therefore, we simplified the treatment of this retroaction

by modelling only two different regions in the flow: at each

time step, we compute the average solid fraction φ in hori-

zontal slices. If φ < φb = 0.5, the velocity profile is logarith-

mic and not affected by the presence of pebbles. If φ>φb, the

velocity of water vanishes: Vf = 0 (see the resulting velocity

profile in Fig. 5). This approximation would be too simplistic

if we were to study the exact flux of grains at the surface of a

thick layer, but remains relevant enough in our simulations,

where in most cases the bedload layer remains relatively thin.

A more detailed description in our geometry would require

taking into account not only the average retroaction of grains

on the fluid flow but also the horizontal variations in pebble

density.

2.4 Interactions between pebbles and the flow

The turbulent flow exerts on each mobile pebble a drag force

given by

F = ρw

πR2

2
CD |U |U , (14)

where U = V (z)−
dr

dt
is the relative velocity between the lo-

cal flow and the pebble. The drag coefficient CD of a sphere

can be expressed semi-empirically as a function of the parti-

cle Reynolds number (Clift et al., 1978). In the present study,

we use the following approximation:

CD =
24

Rep

+ 0.4, (15)

where Rep =
2ρwUR

ηw

, with ηw = 10−3 Pa s the dynamic vis-

cosity of water, is the particle Reynolds number. This ap-

proximation is equivalent to the Stokes formula for the drag

force at low Rep. When a sphere is rotating in a viscous fluid

such as water, its angular velocity induces a diffusion of mo-

mentum in a boundary layer. This results in a viscous torque

applied to the pebble (Liu and Prosperetti, 2010), which op-

poses its rotation:

M =−8πηwR
3 �. (16)

2.5 Computational methods

Pebbles are initially disposed on a regular lattice at a height

z= 8cm and released with no initial velocity at t = 0. At the

same time, the fluid is set into motion and pebbles start to

move, driven by both gravity and the drag force. We use the

classical numerical methods of molecular dynamics to com-

pute the positions (r) and rotational velocities (�) of the peb-

bles as a function of time: at each time step, all forces acting

on each pebble are computed, and Newton’s equations of mo-

tion (both translational and rotational) are integrated simulta-

neously for all pebbles by the Verlet method, of fourth order

(Cundall and Strack, 1979; Pöschel and Schwager, 2005).

The time step used in the simulation is 1t = 10−6 s=

Tcoll/100, which ensures that the trajectories during a col-

lision are computed with sufficient accuracy. The “instanta-

neous” sediment flux qs(t) is computed over temporal win-

dows of duration δt = 100ms:

qs(t)=
1

δt
×

1

WL
×

t+δt∫
t

(
N∑
i=1

mvx
i(t ′)

)
dt ′. (17)
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Within the alluvial cover, some pebbles are almost immo-

bile, either because they got trapped by the bedrock rough-

ness or because they belong to bottom layers of the cover

and are therefore not entrained by the water flow. These peb-

bles constitute a static cover that contributes to protecting the

bedrock from rapid impacts by saltating pebbles. We quan-

tify the cover fraction in the following way: the bedrock sur-

face is divided into square cells of side 2R. At each time step,

we compute the velocity distribution of pebbles. If a pebble

centred in a given cell has a velocity lower than 1/10th of

the maximum velocity, this cell is considered “covered” by

an immobile pebble. If n cells are covered at a time t , the

time-averaged static cover fraction is then defined as

C = 〈n(t)〉×
4R2

WL
. (18)

With this definition, C = 1 when one layer of immobile par-

ticles is completely shielding the bedrock.

As are collisions between mobile particles, each impact

of a pebble on the bedrock is inelastic: the impacting peb-

ble loses a fraction of its incipient kinetic energy during the

collision (due to the dissipative term in Eq. 8). This energy

loss can result in the erosion of a small volume of bedrock

(see Sect. 4.4). We can evaluate the energy lost during an im-

pact by computing the work of the repulsive force during the

collision, that is

1E =

∫
collision

N
(
t ′
)
·

dδ

dt
(t ′)ndt ′. (19)

If we consider all impacts on bedrock occurring over a dura-

tion T , the total energy delivered to the bedrock by unit time

and surface can then be expressed as

8E =
1

WL
×

1

T
×

∑
impacts

1E. (20)

3 Results

3.1 Sediment transport

Let us first investigate the structure and dynamics of the bed-

load layer. Figure 3 shows the evolution of the flux of sed-

iment qs with time when the Shields number is beyond the

threshold of motion. After the pebbles are released in the

flow, the bedload flux increases regularly during a transient

phase. The duration of this transient phase depends on the

Shields number but is always of the order of a few seconds.

The bedload flux then reaches a relatively steady value: from

this moment we consider that the system is in the perma-

nent regime. Let us note that we still observe relatively large

fluctuations of the bedload flux, consistent with what has

been observed experimentally (see, for instance, Böhm et al.,

2004, and Ancey et al., 2006), and which motivated stochas-

tic approaches to bedload transport on top of a sediment layer

δ

vi j

R

ri

r j

j

i

Ti j

Ni j

Ωi j

Figure 2. Two pebbles in contact, located respectively at ri and rj , with an overlap δ = 2R− |ri − rj |. vij

and Ωij are, respectively, the translational and angular relative velocities of pebble j with respect to pebble i.

Normal Nij and tangential Tij forces apply at the contact.
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Figure 3. Flux of sediment qs as a function of time, for a Shields

number2= 0.083 and a sediment supply σ = 0.6. A transient state

is observed for a few seconds before the steady state is reached.

(Roseberry et al., 2012; Ancey and Heyman, 2014; Fan et al.,

2014). However, we will not investigate these fluctuations in

further detail and in the rest of the discussion all results are

computed in the permanent regime and only concern the av-

erage values of the sediment and energy fluxes.

Transport of sediment only occurs if the fluid drag force on

a pebble is large enough to overcome solid friction, that is, if

the Shields number exceeds a critical value 2c. In Fig. 4 we

plot the flux of sediment, averaged over time (in the perma-

nent regime)Qs = 〈qs(t)〉 as a function of2. We observe that

the threshold of motion corresponds to a critical value of the

Shields number2c = 0.012. Below this threshold, the aver-

age sediment flux vanishes after a short transient. The exact

value of the threshold is somewhat difficult to assess, since

some transport can occur with intermittency even below 2c.

Within the margin of error of this definition, the threshold

2c depends only very slightly on the sediment supply σ and

we shall assume in the following that 2c is a constant. The

value found in our simulations is relatively low compared to

many experimental observations (see, for example, the data

compiled in the Fig. 1 of Lamb et al., 2008). However, let

us note that our particles are perfectly spherical and there-

fore easy to put into motion, plus most observations of the

transport threshold concern the incipient motion of particles

over a thick sediment layer, where isolated moving particles

are more likely to get trapped and stop their motion at low

Shields number.

In Fig. 5, we plot the flow velocity, the mean velocity of

pebbles and the solid volume fraction as a function of height

and for a relatively large sediment supply (σ = 1.6). The lo-

cal volume fraction is computed in horizontal slices of height

R/3.5. Its profile presents two local maxima and vanishes for

z∼ 2R, which shows that the bedload is structured (in this

example) into two rather compact layers. As evidenced by

the water velocity profile, the flow only penetrates the upper

layer of pebbles (which in this case is incomplete). Most of

the pebbles lying in the bottom layer are therefore completely
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Figure 4. Average flux of sediment Qs = 〈qs〉 as a function of the

Shields number 2 and for different values of the sediment supply

σ .Qs becomes significantly larger than 0 when the Shields number

exceeds 2c ≈ 0.012.
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Figure 5. Solid volume fraction and velocity of the fluid and the

pebbles as a function of height for a Shields number2= 0.061 and

a sediment supply σ = 1.6. Two distinct layers of pebbles can be

observed. The velocity of the flow and of pebbles vanishes in the

bottom layer.

immobile or only slightly entrained by the upper mobile par-

ticles. The average velocity of pebbles exposed to the flow

increases with their vertical position in the bedload, but re-

mains lower than the velocity of water.

Let us now investigate the transport law by varying the

Shields number 2. In Fig. 6, we plot the variation in the av-

erage flux of sediment Qs with the reduced Shields number

(2−2c)/2c, and for different values of the sediment supply.

The classically used Meyer-Peter–Müller law (Meyer-Peter

and Müller, 1948; Métivier and Meunier, 2003)

Qsat = 8ρ

√
ρ− ρw

ρw

g (2R)3
× (2− 0.047)3/2 (21)

is plotted for comparison. By analogy with most sediment

transport laws, which give the flux of sediment at saturation,

we fit the evolution of Qs with (2−2c) by a power law,
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Figure 6. Flux of sediment as a function of the relative excess shear

stress (2−2c)/2c for different values of the sediment supply, in

a log–log scale. The critical Shields number is 2c = 0.012. Plain

lines are best fits by a power law (see Eq. 22). The bold line repre-

sents the Meyer-Peter–Müller transport law. Inset: exponent of the

best fit by a power law, and its standard deviation, as a function of

the sediment supply σ . The dotted line represents n= 1.5.

whose prefactor depends on the amount of sediment avail-

able, that is, on the sediment density σ :

Qs (σ,2)= f (σ ) (2−2c)n(σ ). (22)

It has to be noted, though, that we only explore a limited

range of Shields number, considering that the sediment sup-

ply σ is the main control parameter in this study, which does

not guarantee a high precision in the determination of the

index n. The index of the best fit roughly increases with

the sediment supply, and we have n(σ )< 1 for σ < 1 and

n(σ )> 1 otherwise. If the sediment supply is low, the sed-

iment flux increases slowly with 2: pebbles can be trans-

ported at a higher speed when the flow accelerates, but the

amount of available pebbles remains below the transport ca-

pacity. If the sediment supply is high enough, a rapid flow is

able to put more pebbles into motion, which leads to a rapid

variation in Qs with 2.

Let us now focus on the effect of the sediment supply

on the bedload flux. In Fig. 7a, we plot the flux of sedi-

ment as a function of the sediment supply for a few val-

ues of the Shields number. For a given stream velocity, the

amount of available pebbles and therefore the sediment flux

both increase with σ . However, if the total number of peb-

bles is too high, the transport capacity of the flow is reached

and the flux of sediment saturates. We remark that, in most

cases, a local minimum in the bedload flux is reached around

σ = 1, which can be seen both as a geometrical effect (mo-

bile pebbles can then form a compact layer, consolidated by

the bedrock roughness, and become hard to dislodge) and as

an artificial effect of our fluid model: if the volume fraction in

the only bottom layer is low, the fluid velocity is larger than

zero; it vanishes as soon as the first layer is dense enough.
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Figure 7. a) Flux of sediment as a function of the sediment supply for different values of the Shields number.

The flux of sediment increases linearly for low sediment supplies, but tends to a saturated value when transport

capacity is reached. Plain lines are best fits by the equation Qs (Θ,σ) = Qt (Θ)×(1−e−σ/σ0). b) The function

f (σ) (as defined by equation (22)) is shown to be roughly independent of the excess shear stress Θ′ = Θ−Θc.

c) Evolution of the critical sediment supply σ0 with Θ−Θc. The dashed line is the best linear fit.

0.5 1 5
(Θ−Θ

c
)/Θ

c

1

10

100

tr
an

sp
or

t c
ap

ac
ity

  Q
t (

kg
 m

-1
 s

-1
)

slope 1.2

slope 1.5

Figure 8. Saturated value of the sediment transport rate Qt as a function of (Θ−Θc)/Θc. The plain line is the

best fit by a power law; the dashed line is the fit by a power law of index n = 1.5.

28

Figure 7. (a) Flux of sediment as a function of the sediment supply for different values of the Shields number. The flux of sediment increases

linearly for low sediment supplies, but tends to a saturated value when transport capacity is reached. Solid lines are best fits by the equation

Qs (2,σ )=Qt (2)× (1− e−σ/σ0 ). (b) The function f (σ ) (as defined by Eq. 22) is shown to be roughly independent of the excess shear

stress 2′ =2−2c. (c) Evolution of the critical sediment supply σ0 with 2−2c. The dashed line is the best linear fit.

If the sediment supply slightly increases, some pebbles will

pop up above the first layer and be easily entrained by the

flow. Similar but less pronounced local minima can also be

observed around σ = 2 and σ = 3.

Figure 7b confirms that the function f (σ )=
Qs

(2−2c)n(σ )
, though not monotonous, is indeed inde-

pendent of 2. The variation in Qs with σ shows that the

sediment flux first increases linearly before saturating be-

yond a critical sediment supply σ0. For the sake of simplicity

and in order to evaluate this critical value, we dismiss the

local minima reached at σ = 1,2, and 3 and fit the curve

Qs(σ ) by a simple exponential function:

Qs (2,σ )=Qt (2)
(
1− e−σ/σ0

)
. (23)

Given this model, the surface density 3σ0 corresponds to the

maximum quantity of sediment that can be transported by a

flow of given Shields number. The variation in σ0 with 2 is

plotted in Fig. 7c: it can be well fitted by the affine function

σ0 = 20(2−2c) . (24)

This finding is once again consistent with most transport

models (see, for instance, the review by Lajeunesse et al.,

2010) in the limit of high sediment supply: if the amount of

sediment is large enough, the number of particles put into

motion increases linearly with 2, whereas their velocity is

proportional to the shear velocity, that is, to 20.5. Finally in

Fig. 8 we plot the maximum sediment transport rate Qt(2),

reached for large values of the sediment supply σ � σ0. The

best fit by a power law suggests Qt ∼ (2−2c)1.2. How-

ever, let us note that we do not have many data points,

and that modelling spherical particles is likely to enhance

transport close to the threshold. As shown in the same fig-
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Figure 8. Saturated value Qt of the sediment transport rate as a

function of (2−2c)/2c. The plain line is the best fit by a power

law; the dashed line is the fit by a power law of index n= 1.5.

ure, our data could also be consistent with the power law

Qt ∼ (2−2c)1.5.

3.2 Static cover

In Fig. 9, we plot the evolution of the static cover fraction C

as a function of σ for different values of the Shields num-

ber. As expected, below the threshold of motion, the static

cover fraction first increases linearly with the sediment sup-

ply. Because of the roughness of the bedrock, it departs from

the function C = σ beyond σ ' 0.5: this is due to the fact

that the distribution of pebbles on the surface is not strictly

homogeneous. A fraction of the bedrock is then covered by

two layers of immobile pebbles, while other areas are bare.

If 2 exceeds the threshold of motion, the immobile cover

fraction is very low for σ < 1 (and strictly zero when the

Shields number is high enough, all particles being entrained
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Figure 9. Static cover fraction as a function of the sediment supply,

for different values of the Shields number. The dashed line repre-

sents the function C = σ .

by the flow), where mobile pebbles have the freedom to roll

along the bedrock. If the sediment supply increases, an in-

complete static layer develops over the bedrock. In all cases

the bedrock becomes entirely covered by a static layer if the

sediment supply exceeds σ ' 3. Local maxima in the static

cover fraction are, once again, due to the intrinsic discontinu-

ity of our fluid model: when the bottom volume fraction ex-

ceeds φb = 0.5, the fluid velocity suddenly decreases within

the bottom layer.

3.3 Incision process

The flux of energy that is delivered to the bedrock by the im-

pacts is given by the work of the dissipative normal force dur-

ing each collision between a mobile pebble and the bedrock

(whether it is the flat surface or one of the glued spheres). In

Fig. 10, we plot the variation in this flux of energy 8E with

2 for different values of the sediment supply. As can be ex-

pected, 8E becomes larger when the velocity of the stream

increases: if pebbles move at a higher speed in the bedload

layer, their incoming velocity at the impact on the bedrock

increases, as does the energy dissipated during the impact.

As illustrated in Fig. 10a, the variation in 8E with 2 can be

fitted by a power law whose index varies with the sediment

supply:

8E(2,σ )=81 (σ ) (2−2c)m(σ ). (25)

As shown in Fig. 10b, the exponent m (σ ) increases roughly

linearly with σ , with m(0)' 1, and more generally with 1≤

m(σ )≤ 4.

Let us now investigate more precisely the effect of the

sediment supply on the energy transfer, which is plotted in

Fig. 11 for a few values of the Shields number. The shape of

the curve is similar in all cases:8E first increases with σ un-

til it reaches a maximum value, and then decays to zero for

large sediment supplies. The estimate of the incision rate cor-

responding to a given flux of energy delivered to the bedrock

is obtained though the procedure described in Sect. 4.4.

Figure 10. (a) Flux of energy received by the bedrock as a function

of the relative excess shear stress, in a log–log scale. Plain lines are

best fits of 8E with power laws (see Eq. 25). (b) Exponent m(σ ) of

the power law as a function of the dimensionless sediment supply

σ . Data points are fitted by a linear function.

The inset in Fig. 11 shows the variation in the maximum

flux of energy with the Shields number. This variation can be

well fitted by an affine relationship. This demonstrates that

the process of incision only happens if the Shields number

exceeds an incision threshold 2i ' 0.025>2c. Therefore,

sediment transport can occur on a bedrock while not con-

tributing to river incision if 2c <2<2i: in this regime,

pebbles are rolling along the bedrock without impacting, and

therefore do not contribute significantly to its erosion.

3.4 Influence of bedrock roughness

The roughness of the bedrock can be modified by varying

two parameters: the surface density χ of fixed spheres on the

bedrock and the protruding height of those pebbles over the

horizontal bedrock (roughness height hb = R+zr). Figure 12

illustrates the aspect of the bedrock, viewed from above, for

two different values of χ .

In order to study the variation in energy transfer with the

bedrock roughness, we plot the flux of energy delivered to

the bedrock with respect to the sediment supply (σ ) for a

single value of 2−2c = 0.071, and for different roughness

configurations. Figure 13a shows the same plot for increasing
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Figure 11. Flux of energy delivered to the bedrock as a function of

the dimensionless sediment supply. The energy transfer increases

when the sediment supply increases in the range 0< σ < 0.5 (“tool

effect”). It then decays for larger sediment supplies (“cover effect”)

and vanishes when the sediment supply reaches σ ≈ 3. The maxi-

mum flux is reached for a critical value σm of the sediment supply,

that depends only slightly on the Shields number. Plain lines are the

best empirical fits by Eq. (27). The equivalent incision rate (right-

side axis) is computed using Eq. (34) (see Sect. 4.4). The inset plots

the maximum value of the energy flux as a function of2−2c. The

dotted line is the best affine fine, which reveals the existence of an

incision threshold 2i >2c.

values of χ , and a roughness height hb = 4cm. The aspect of

the erosion curve is the same whatever the roughness density.

However, a higher density of protruding spheres systemati-

cally leads to a decay of the energy received by the bedrock

at high sediment supplies: the cover effect is more efficient if

the bed possesses a dense roughness. In Fig. 13b, we plot the

same evolution for a given roughness density χ = 0.36 but

for spheres protruding more or less within the flow. At high

sediment supply, the energy received by the bedrock appears

to be higher if the bedrock is smooth.

4 Discussion

4.1 Sediment transport rate

Although the model that we adopt for the interaction between

the water flow and the pebbles is rather simple, the dynamics

of the bedload layer appears to be consistent with experimen-

tal observations: as shown by Fig. 6, the order of magnitude

of the sediment transport rate is comparable to the one pre-

dicted by the Meyer-Peter–Müller law. When the transport

rate is fitted by a power law, the exponent that we obtain

depends on the dimensionless sediment supply σ and is in

general smaller than 1.5. At low Shields number, the sedi-

ment flux is higher for low supplies: indeed, it is easier for

pebbles to roll along a flat bedrock than on the rough sur-

face of a sediment layer. When 2 is increased, the bedload

flux increases faster for large sediment supply. For low sup-

plies, once all pebbles have been put into motion, only their

velocity can increase with 2. If more pebbles are available,

an increase in 2 leads to both more pebbles moving and an

increase in their velocity, which implies n(σ )> 1. The main

discrepancy between our results and experimental observa-

tions is the value of the motion threshold, which is much

lower (2c ' 0.012) in our simulations than in most reported

measurements (Lamb et al., 2008). This is likely due to the

fact that we model pebbles as spheres, which can easily roll

along the bedrock. Let us note that Duran et al. (2012), who

also used spheres but modelled more sophisticated fluid–

grain interactions, obtained a critical Shields number of 0.12.

However, like in most experimental studies, they were inter-

ested in the threshold of motion for grains rolling along the

surface of a thick sediment layer, rather than on a relatively

smooth surface, as is the case in our simulations. It would

be necessary to consider more irregular pebbles (for instance

by considering cohesive clusters of several spherical parti-

cles) in order to perform more realistic simulations. Once

rescaled by the value of the threshold (2c = 0.012), the sed-

iment flux that we obtain is, however, quantitatively consis-

tent with common measurements (Meyer-Peter and Müller,

1948).

4.2 The role of sediment supply, Shields number, and

bed roughness on incision

As shown in Fig. 11, the results of our simulations are qual-

itatively consistent with experimental observations by Sklar

and Dietrich (2001): for a given Shields number 2, energy

dissipated in the bedrock first increases with the sediment

supply and reaches a maximum for σm ' 0.5 before decay-

ing, and vanishing at high sediment supply. This can be un-

derstood as the result of a competition between a “tool ef-

fect” and a “cover effect”: as long as the bedrock is still

exposed to impacts, the more pebbles are put into motion,

the more energy they provide to the bedrock. When the sedi-

ment supply increases, immobile (or slowly rolling) pebbles

start to accumulate on the bedrock, thus partially protecting

it from direct impacts by saltating pebbles. The total energy

transferred to the bedrock vanishes entirely beyond σ ' 3: at

this point the bedrock is completely protected by the bedload

layer. In Fig. 14, we compare more quantitatively our numer-

ical results to the experiments by Sklar and Dietrich (2001)

and the predictions of the linear (Sklar and Dietrich, 2004)

and exponential (Turowski et al., 2007) cover models. Since

these results were originally expressed in terms of the mass

ms of gravel of diameter d, within a cylindrical container of

diameter D, we derive the corresponding dimensionless sed-

iment supply through the expression

σ =N ×
πd2/4

πD2/4
=

6ms

ρsπ dD2
. (26)

The comparison shows that our simulations are able to pre-

dict the right tendency for the flux of energy delivered to the
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Figure 12. Two different cases of bedrock roughness: the positions of the glued spheres are plotted as seen from above. Left: χ = 0.08.

Right: χ = 0.52. The flow is in the x direction, from left to right.

Figure 13. Flux of energy delivered to the bedrock as a function of

the sediment supply for2−2c = 0.071: (a) for increasing values of

the roughness density χ and (b) for different values of the roughness

height.

bedrock, that is, for the incision rate. However, let us note

that because of the cylindrical geometry of the experiment

by Sklar and Dietrich (2001), the fluid shear stress and the

cover fraction are not uniform in their setup: immobile parti-

cles tend to accumulate in the centre of the disk, while saltat-

ing grains can still impact the bedrock around this protected

area. This discrepancy might explain why the value of σ cor-

responding to maximum incision differs slightly between our

simulations and the experiments. The quantitative descrip-

tion of the cover effect will be discussed further in Sect. 4.3.

0 1 2 3
Dimensionless sediment supply (σ)

0

10

20

30

N
or

m
al

iz
ed

 e
ro

si
on

 r
at

e 
(g

 h
 M

Pa
 )

–  1
–  2

0

10

20

30

40

Φ
E
 (

W
 m

–  2
)

Θ−Θ
c
 = 0.049 (this study)

Mudstone (Sklar & Dietrich, 2001)
Limestone (Sklar & Dietrich, 2001)
Andesite (Sklar & Dietrich, 2001)
Linear cover model (Sklar & Dietrich, 2004)
Exponential cover model (Turowski et al., 2007)

Figure 14. We plot on the same graph our numerical prediction for

the flux of energy delivered to the bedrock (full circles), erosion

rates measured experimentally by Sklar and Dietrich (2001) (empty

symbols), and the best fit for these experimental values by the linear

cover model of Sklar and Dietrich (2004) and the exponential cover

model of Turowski et al. (2007) (plain line). The sediment mass

used in the experiments is converted into a dimensionless sediment

supply using Eq. (26). The scale for 8E has been chosen so that its

maximum coincides with the experimental maximum erosion rate.

We also quantified the influence of the Shields number on

the abrasion process and showed a power-law dependency of

8E on the excess shear stress 2−2c. In particular, our fits

(see Fig. 10b) show that the exponent m is always greater

than the index n of the transport law. This implies that if

Qs and σ are kept constant, the incision rate increases with

the Shields number. This result contradicts the prediction of

the saltation–abrasion model, where the incision rate scales

like (2−2c)−0.5 (Sklar and Dietrich, 2004), and findings by

Chatanantavet and Parker (2009) and Johnson and Whipple

(2010), where there is no explicit dependency of8E in2 (for

given values of Qs and σ ). However, it is consistent with the

prediction of the shear stress and stream-power incision mod-

els (Whipple and Tucker, 1999). The variation in 8E with 2

is nonlinear, with an exponent m> 1, which means that for

a given sediment load, the effect of large hydraulic events in

the long term will be amplified. However, let us remark that

such events can also result in a sudden increase in the sedi-
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scale.

ment load, which could result in total inhibition of erosion,

as evidenced by Lague (2010).

Our results also show that abrasion only occurs beyond a

given threshold which is higher than the threshold of motion

of pebbles, which can be explained by the fact that rolling

or sliding pebbles do not contribute significantly to the ero-

sion of bedrock. This is inconsistent, however, with obser-

vations by Sklar and Dietrich (2001), who report abrasion

occurring as soon as the flow is able to put sediment into mo-

tion. Let us note, however, that we vary the flow velocity for

a given pebble size, whereas Sklar and Dietrich (2001) vary

the sediment size for a given velocity. The fact that there is

only a small difference between the two values 2c and 2i

could explain that the discrepancy was not observed exper-

imentally. If the existence of an incision threshold 2i >2c

were to be confirmed, it would mean that this value should be

taken into account in models of river incision instead of the

critical Shields number 2c. This is also consistent with the

possible existence of an energy threshold necessary to effec-

tively erode a small volume of material at impact, as observed

by Bitter (1963).

Our simulations indicate that the roughness of the bedrock

does not affect the general evolution of the energy delivered

to the bed with respect to the cover fraction. However, inci-

sion appears to be enhanced if the surface density of asperi-

ties is low and if they are not too high. These two effects can

be related to the geometrical explanation of the cover effect:

if the roughness is denser or higher, mobile pebbles are more

likely to get trapped and immobilized along the bedrock,

therefore protecting it from further impacts by rapid pebbles.

This enhanced cover effect will disappear if the roughness

density χ is too large: indeed, if the bedrock was entirely

covered with glued spheres, it would become equivalent to

a smooth bedrock. Let us note that recently Huda and Small

(2014) modified the saltation–abrasion model in order to take

into account bedrock roughness, and found the opposite re-

sult: the incision rate is considerably increased (by more than

1 order of magnitude) by the presence of long-scale bed to-

pography. However, the roughness that we implement in our

model does not modify the local slope, and has a length scale

comparable to the pebble size.

Finally, let us remark that the influence of the coefficient

of restitution on the results of our simulations should be of

importance and will be the object of further investigation.

Increasing the coefficient of restitution would certainly facil-

itate the saltating motion of pebbles, whereas they only roll

along the bedrock at low e. Increasing e could therefore de-

crease the incision threshold by narrowing the rolling/sliding

regime. In addition, a high coefficient of restitution means

that a lower fraction of the kinetic energy of the projectile

is delivered to the bedrock. However, this implies that the

impactor rebounds with a higher kinetic energy, and is then

more likely to impact again the bedrock at high speed. It is

therefore not trivial to assess in which way the total energy

delivered to the bedrock (that is, the number of impacts mul-

tiplied by the energy given at each impact) will evolve with

the value of e.

4.3 Cover effect

By analogy with both the linear (Sklar and Dietrich, 2004)

and the exponential (Turowski et al., 2007) cover models, we

first isolate in 8E the influence of the sediment supply, and

fit the flux of energy by the empirical function

8E (2,σ )=9 (2)σpe−σ/γ . (27)

The values for p and γ , corresponding to the best fits plot-

ted in Fig. 11, are reported in Table 2. The parameter γ ap-

pears to be roughly independent of the Shields number, and

we consistently find p > 2, whereas p = 1 in the exponen-

tial cover model. The fact that p depends on 2 underlines

that we cannot express the incision rate as a simple product

of a function of 2 and a function of σ . Furthermore, in our

simulations, forcing a fit with p = 1 always leads to underes-

timate the maximum incision rate and overestimate it at high

sediment supply. This is likely due to the fact that, in the

saltation–abrasion model, the number of impacts is propor-

tional to the sediment supply, whereas our simulations show

that the sediment flux does not vary linearly in σ . Therefore,

the incision rate increases faster than linearly at low sediment

supply.

Following the approach for incision rate by Sklar and Di-

etrich (2004) and Turowski et al. (2007) (see Eq. 1) and for

the impulse rate by Turowski and Rickenmann (2009), let us

express the flux of energy delivered to the bedrock, defined

by Eq. (20), as the product of the energy provided by each

impact (Ei), the number of impacts per unit time and surface

(ni), and a cover function (F ):

8E = Ei× ni×F. (28)
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Table 2. Coefficients used in the empirical fit of the flux of energy

as a function of sediment supply (see Eq. 27).

2−2c p γ

0.015 2.11 0.21

0.031 2.77 0.18

0.049 2.70 0.19

0.071 2.00 0.24

In the saltation–abrasion model, ni is proportional to the sed-

iment supply while the cover function F is interpreted as the

probability that an impact hits the bedrock. In the original

model by Sklar and Dietrich (2004), F is simply the fraction

of exposed bedrock and decays linearly with the relative sed-

iment flux Qs/Qt. In the stochastic model of Turowski et al.

(2007), F is expressed as an exponential function of Qs/Qt,

leading to a prediction closer to experimental observations

(see Fig. 14). As noted in the Introduction, this equation im-

plies that the number of impacts and the cover function F are

independent parameters. However, if we take into account the

fact that mobile pebbles are not isolated from one another,

nor from the static cover, they should be interdependent. Let

us now reformulate Eq. (28) in order to take into account only

the Shields number and the sediment flux, which are easier

to compute, or to measure experimentally, than the frequency

of impacts and their energy. Indeed, if a saltating particle hits

a mobile particle shielding the bedrock, a small fraction of

its incipient energy could still be transmitted to the bedrock

(Turowski and Bloem, 2015), though this event would not be

counted as an eroding impact with Eq. (1). From the simu-

lations we can then compute a cover function F (σ,2) that

does not require a geometrical or stochastic description of

the alluvial cover of the bedrock. The energy of an impact Ei

is expected to scale like the typical kinetic energy of mov-

ing pebbles, which is itself proportional to U∗2 (Fan et al.,

2014). Using Eq. (13), and assuming that the impact energy

vanishes for 2<2c, we can therefore write, dimensionally,

Ei ∼ (ρsR
3)×U∗

2
∼ (ρsR

3)× gR (2−2c). (29)

As proposed by Foley (1980), the number of impacts per unit

time and surface is expected to be proportional to the sedi-

ment transport rate Qs, which can be written dimensionally

as

ni ∼
Qs

ρsR4
. (30)

Therefore, the flux of energy should read

8E =K × g×Qs(σ,2)× (2−2c)×F (σ,2), (31)

with K a dimensionless constant, which depends neither on

2 nor on σ . This allows us to redefine the cover function as

F (σ,2)=
8E

gQs (2−2c)
. (32)

Table 3. Cover factor ϕ extracted from the exponential tail of the

cover function F (see Eq. 33).

2−2c ϕ

0.015 2.86± 0.03

0.031 4.65± 0.06

0.049 6.32± 0.18

0.071 8.43± 0.26

In Fig. 15 we plot F in a log-linear scale. Let us first observe

that K is indeed independent of 2, since all curves converge

to F = 1 for σ = 0, which implies that K = 1 and validates

our dimensional analysis. On the one hand, as emphasized

in the inset of Fig. 15, the cover function F decays slower

than exponentially, and rather linearly, for σ. 0.75. On the

other hand, F can be well fitted by an exponential decay for

σ&1. This behaviour is similar to the case that Hodge and

Hoey (2012) refer to as “sigmoidal” in their cellular automa-

ton model (though as a function ofQs/Qt and not σ , see their

Fig. 7, and although they only consider static cover), and

to some observations by Chatanantavet and Parker (2008),

where the cover function appears to decay below 1 only for

Qs/Qt & 0.25− 0.75 (see their Fig. 13). Our result therefore

confirms that the “exponential cover model” overestimates

the cover effect at low sediment supplies but fits correctly at

high enough sediment supplies. In the exponential regime,

following the stochastic approach by Turowski et al. (2007),

we can fit the cover function by

F = A exp

(
−ϕ

σ

3σ0

)
, (33)

with 3σ0 an estimate of the normalized sediment mass trans-

port capacity (see Fig. 11) and ϕ the “cover factor” of the

probabilistic approach (Turowski et al., 2007). Our results

show systematically ϕ > 1 (see Table 3), which implies that

it is more probable for a pebble to impact on an uncovered

zone of the bedrock than a covered one. This is consistent

with observations by Chatanantavet and Parker (2008) (in

flume experiments) and Turowski and Rickenmann (2009)

(in the field). In Fig. 15, we also plot the function 1−C(σ ),

where C is the static cover fraction computed in Sect. 3.2. If

the evolution of both functions with σ is similar, the cover

function F is systematically smaller than 1−C: this implies

that the cover effect is due to not only immobile but also

mobile (rolling or saltating) pebbles. The latter can either di-

rectly shield the underlying bedrock (which was referred to

as “dynamic cover effect” by Turowski et al., 2007) or hit

other saltating pebbles and slow them down.

4.4 Estimation of the incision rate

We can estimate the rate of incision induced by the impacts

on the bedrock, based on the flux of energy delivered. Fol-
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lowing Engle (1978) and Sklar and Dietrich (2004), we ex-

press the incision rate as

I =
8E

εv

with εv = kv
σT

2

2Y
, (34)

where εv is the energy required to incise a unit volume of

rock. The value that is used in Sklar and Dietrich (2004)

is derived from the mechanical properties of rocks: σT =

7× 106 Pa is the rock tensile strength, Y = 5.0× 1010 Pa

is the rock elastic modulus, and kv = 106 is a dimension-

less rock resistance parameter. The incision rate obtained is

plotted as a function of the dimensionless sediment supply

and for different values of the Shields number in Fig. 11.

For instance, the incision rate corresponding to the value

8E = 40W m−2 (obtained at 2−2c = 0.049 and σ = 0.6)

is I = 2.6myr−1
= 7mm day−1. Let us note that this value

corresponds to an instantaneous incision rate and not to the

average incision rate over a year: it may be reached for a

high water discharge and for a particular value of the sedi-

ment supply. In a river, these conditions may be verified only

during a few days per year, while the instantaneous incision

rate would be very low the rest of the time, when the dis-

charge is small, and the sediment supply is either very low

or very high. The order of magnitude of the incision rate that

we predict is comparable to values measured in rapidly erod-

ing rivers in Taiwan during storm events (Hartshorn et al.,

2002). As we have predicted the value of the instantaneous

incision rate for a wide range of both Shields number and

sediment supply, it would be possible to compute the long-

term average incision rate for a given stream, provided that

the probability distribution functions of both water discharge

and sediment supply are known.

5 Conclusions

We have presented the results of a new model for incision

of a river bedrock based on the direct simulation of physi-

cally based trajectories of pebbles in a stream. In this model

we solved the equations of motion for a large number of

pebbles entrained by a turbulent water flow, with a simpli-

fied retroaction of the presence of the pebbles on the flow.

This allowed us to explicitly compute the trajectories of peb-

bles transported by the flow, and therefore to quantify the

energy dissipated during collisions between the bedload and

the bedrock, which is directly responsible for the incision of

the bedrock. We found that the sediment transport rate can

be fitted by a power law of the Shields number, similar to

most classical transport laws at saturation. However, we also

evidenced the influence of the sediment supply: the exponent

of the transport law increases with the quantity of available

pebbles. For a given Shields number, we showed that the bed-

load flux increases with the sediment supply until it reaches

its saturated value. This allowed us to compute the sediment

mass that the flow is able to transport. However, extracting a

unique general expression for the flux of sediment as a func-

tion of both the Shields number and the sediment supply re-

mains non-trivial.

The amount of energy that impacts of saltating pebbles de-

liver to the bedrock can be directly computed from the simu-

lation data. This flux of energy, which is expected to be pro-

portional to the incision rate, shows the same qualitative vari-

ations with sediment supply as observed in experiments by

Sklar and Dietrich (2001): it first increases with the amount

of sediment available (as the number of impacts increases)

before decaying when there is too much sediment and the

bedrock becomes shielded. We also showed that the energy

delivered to the bedrock increases as a power law of the

Shields number, and is zero below a given incision threshold,

higher than the motion threshold, which was not observed

in experiments. Finally, by extracting a cover function from

our data, we showed that the classical linear and exponential

models for the cover effect lead to underestimation of the in-

cision rate, at high and low sediment supplies respectively.

The shape of our cover function resembles experimental ob-

servations by Chatanantavet and Parker (2008) and some nu-

merical results by Hodge and Hoey (2012). If defined as in

Eq. (33), the cover function appears instead to decay linearly

at low sediment supply and exponentially at high sediment

supply. This underlines the fact that the amount of sediment

available contributes not only to shield the bedrock but also

to change the dynamics of saltating particles. Finally, we

evaluated the rate of incision predicted by our simulations as

a function of the hydraulic conditions (the Shields number)

and the amount of sediment available (dimensionless sedi-

ment supply). Its order of magnitude appears to be consistent

with long-term observations made in mountain streams.

Though our results are qualitatively consistent with exper-

imental observations (Sklar and Dietrich, 2001) and another

type of model (Sklar and Dietrich, 2004; Turowski et al.,

2007), the quantitative aspect is probably affected by our nu-

merical method: indeed, the fact that we model the flow by a

horizontally averaged and purely horizontal velocity profile

is likely, on the one hand, to have a (negative) impact on the

possibility for pebbles to gather into immobile patches, and

therefore on the efficiency of the cover effect. On the other

hand, taking into account turbulent velocity fluctuations, and

in particular local bursts of vertical velocity, could enhance

saltating motion. A better explicit model of the dynamics of

the alluvial cover would therefore require accounting for a

spatially non-uniform velocity field, and ideally the exact

velocity field around each mobile particle, which would be

much more time-consuming numerically. Such stochastic ef-

fects are probably better accounted for in models such as the

cellular automaton by Hodge and Hoey (2012). The assump-

tion of spherical particles is also likely to have an effect on

our predictions: indeed, angular or irregularly shaped sedi-

ments would probably be less easily put into motion by the

flow (for instance, a flat pebble would be harder to dislodge

from the bedrock; Rust, 1972; Komar and Li, 1986). In con-
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trast, once entrained by the flow they could slide along the

bedrock (instead of simply rolling) and therefore contribute

to its wear via solid friction.

Finally, let us note that in the prediction of the long-term

evolution of a river bed (see, for example, Lague, 2010),

incision of the bedrock is not the only relevant parameter.

Our numerical approach would also be relevant for the study

of the incision of lateral walls (if we add sidewalls to the

computational domain) and the comminution of mobile par-

ticles (since our simulations also give us access to the energy

lost by mobiles pebbles, not only in their impacts with the

bedrock but also in all their contacts with one another).
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