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Abstract. A new particle-based reduced-complexity model to simulate sediment transport and channel mor-
phology in steep streams in presented. The model CAST (Cellular Automaton Sediment Transport) contains
phenomenological parameterizations, deterministic or stochastic, of sediment supply, bed load transport, and
particle entrainment and deposition in a cellular-automaton space with uniform grain size. The model reproduces
a realistic bed morphology and typical fluctuations in transport rates observed in steep channels. Particle hop dis-
tances, from entrainment to deposition, are well fitted by exponential distributions, in agreement with field data.
The effect of stochasticity in both the entrainment and the input rate is shown. A stochastic parameterization of
the entrainment is essential to create and maintain a realistic channel morphology, while the intermittent trans-
port of grains in CAST shreds the input signal and its stochastic variability. A jamming routine has been added to
CAST to simulate the grain–grain and grain–bed interactions that lead to particle jamming and step formation in
a step-pool stream. The results show that jamming is effective in generating steps in unsteady conditions. Steps
are created during high-flow periods and they survive during low flows only in sediment-starved conditions, in
agreement with the jammed-state hypothesis of Church and Zimmermann (2007). Reduced-complexity models
like CAST give new insights into the dynamics of complex phenomena such as sediment transport and bedform
stability and are a useful complement to fully physically based models to test research hypotheses.

1 Introduction

The morphodynamics of steep gravel-bed rivers is charac-
terized by complex feedbacks between sediment supply and
storage (e.g., Hassan et al., 2008; Hassan and Zimmermann,
2012; Recking, 2012; Recking et al., 2012), bed load trans-
port and flow resistance (e.g., Yager et al., 2007; Reck-
ing et al., 2008) and a rather stable bed morphology with
a variety of bed surface structures (see reviews by Comiti
and Mao, 2012; Rickenmann, 2012; Church and Fergu-
son, 2015). The traditional sediment transport capacity ap-
proach (Wainwright et al., 2015), which has been developed
for low-land streams, performs poorly in steep fluvial sys-
tems. Among other reasons, in steep channels the thresh-
old of motion varies with slope, local bed structures, and
antecedent flood events (e.g., Lamb et al., 2008; Turowski

et al., 2011; Scheingross et al., 2013; Prancevic and Lamb,
2015); a power-law relation between fluid shear stress and
sediment transport yields orders of magnitude differences
between measurements and predictions (e.g., Rickenmann,
2001); and the presence of macro-roughness elements (such
as boulders and log jams), whose size is comparable with the
water depth, makes calculations of flow resistance extremely
complex (Yager et al., 2007; Schneider et al., 2015).

The step-pool morphology is commonly encountered in
mountain catchments at slopes grater than 3% (Montgomery
and Buffington, 1997; Comiti and Mao, 2012), where large
boulders and woody debris create channel-spanning struc-
tures called steps, with pools immediately downstream
formed by the scouring effect of the tumbling water flow (see
reviews by Chin and Wohl, 2005; Church and Zimmermann,
2007). Step-pool channels have been studied extensively in
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order to understand under which conditions they are formed,
remain stable, and are eventually destabilized (e.g., Abra-
hams et al., 1995; Curran, 2007; Zimmermann et al., 2010).
This topic is still an open issue and, despite observations of a
certain degree of regularity in step-pool geometry (e.g., Char-
trand et al., 2011), it has been recognized both in the field
(e.g., Zimmermann and Church, 2001; Molnar et al., 2010)
and with lab experiments (e.g., Curran and Wilcock, 2005;
Zimmermann et al., 2010) that there is no single mechanism
behind step formation and collapse (Curran, 2007). In fact,
we are of the opinion that step formation and stability should
be treated as stochastic processes, which result in largely ran-
dom locations of step-forming boulders usually referred to
as keystones (Church and Zimmermann, 2007; Zimmermann
et al., 2010).

A hypothesis on step stability was proposed by Church and
Zimmermann (2007) and tested experimentally by Zimmer-
mann et al. (2010). The authors suggested a similarity be-
tween step formation and granular phenomena by postulat-
ing that steps are inherently more stable than predicted by the
Shields diagram because they are arranged in a jammed state,
which occurs in granular flows (for a review on the jamming
phenomenon see Liu and Nagel, 2010). They proposed a dia-
gram where the likelihood of finding stable steps in a channel
is dependent on three parameters: (1) the jamming ratio (the
ratio between the channel width W and the d84 of the sur-
face), (2) the transport stage (the ratio between the applied
shear stress τ and the critical shear stress τcr), and (3) the
sediment concentration (the ratio between sediment supply
QS and water discharge Q). So far this theory has been
tested against lab experiments and field data (Zimmermann
et al., 2010), but to our knowledge step formation and col-
lapse have not yet been explicitly modeled. Understanding
the conditions under which step-pool sequences are stable
is of major practical importance because step collapses and
consequent boulder mobilization can severely impact human
infrastructures causing natural hazards (e.g., Badoux et al.,
2014). Moreover, artificial step structures are often built in
alpine rivers as energy dissipators and for erosion control;
therefore, their stability needs to be carefully assessed.

Physically based modeling of flow and sediment trans-
port in steep mountain streams in mobile bed conditions
is impractical because (a) the flow field over the rough
bed is very complex, (b) single-grain mobility is impossi-
ble to solve, and (c) long-term simulations are required to
develop a dynamically changing channel bed. An alterna-
tive to fully physically based modeling is that of reduced-
complexity models. Instead of solving differential equations
of flow and sediment transport, reduced-complexity models
formulate physically meaningful local flow–grain interaction
rules with very few parameters in a cellular automaton space.
The reduced-complexity framework has also been applied
successfully in fluvial geomorphology (Nicholas, 2005) as
a learning tool to gain new insight into the temporal and
spatial dynamics of complex systems in general (Golden-

feld and Kadanoff, 1999; Paola and Leeder, 2011; Rozier
and Narteau, 2014; Tucker et al., 2015). Since the classi-
cal cellular model of Murray and Paola (1994), which effec-
tively captured the main patterns of river braiding, reduced-
complexity models have been used to describe geomorphic
phenomena, such as riverbank failure (Fonstad and Marcus,
2003), bedrock cover (Hodge and Hoey, 2012), river avul-
sion (Jerolmack and Paola, 2007), sand dunes (Narteau et al.,
2009), river deltas (Seybold et al., 2009; Liang et al., 2015),
patterns of erosion-sedimentation (Crave and Davy, 2001;
Chiari and Scheidl, 2015), transport in gravel-bed rivers
(MacVicar et al., 2006), and landscape evolution (Coulthard
and Wiel, 2007; Van De Wiel and Coulthard, 2010).

In this paper we present a new reduced-complexity
stochastic model for step-pool streams based on grain–grain
and grain–bed interactions: CAST (Cellular Automaton Sed-
iment Transport). CAST simulates a generic fluvial channel
on a cellular-automaton domain, where the bed is formed by
an arrangement of particles like in a sandpile model (e.g.,
Bak et al., 1988; Kadanoff et al., 1989). The basic processes
of bed load transport, particle entrainment, and deposition
are treated at the grain scale, taking advantage of analogies
between bed load transport and granular phenomena (e.g.,
Frey and Church, 2009, 2011; Houssais et al., 2015). There
are two main reasons for the stochastic framework of CAST.
First, the goal of the model is not to predict deterministically
the morphology of a specific river reach but rather to cap-
ture feedbacks related to its dynamics and to test research
hypotheses on step formation and stability. Second, both bed
stability (Zimmermann et al., 2010) and bed load transport
(Einstein, 1937, 1950) have been recognized to be stochastic
processes, and recent approaches to sediment transport have
successfully followed this framework (e.g., Turowski, 2010;
Furbish et al., 2012; Heyman et al., 2013; Ancey and Hey-
mann, 2014; Armanini et al., 2015).

The paper objectives are (a) to present a new reduced-
complexity model that simulates bed load transport and chan-
nel morphology at the grain scale and to test the effect of
different parameters and stochastic forcing on the model out-
comes, and (b) to explore the effect of jamming on sediment
transport and step formation, in comparison with the frame-
work of the jammed-state hypothesis of Church and Zim-
mermann (2007). The paper is organized as follows. First,
the model rationale and parameters are presented. Second,
the effect of different parameter sets on the model outcomes
are explored in steady-state simulations, and the effect of the
stochasticity on different variables is shown. Then, the pro-
cess of jamming is parameterized and its role on step forma-
tion and stability is explored in unsteady simulations. Finally,
the results are discussed and compared to the jammed-state
hypothesis.
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2 Model rationale

CAST operates in 2-D cellular-automaton space, which is a
rectangular grid of constant length (X) and width (Y ) corre-
sponding to a generic river reach (see Fig. 1). The domain
is discretized such that all the dimensional quantities are ex-
pressed as multipliers of particle size d. The model devel-
oped in this paper works with uniform-size particles, so d is
also equal to the dimension of a cell. For example, a simu-
lation domain having X = 300d and Y = 20d represents a
river reach with an average length equal to 300 median di-
ameters and an average width equal to 20 median diameters.

Particles in the model domain can be either on the bed or in
motion, i.e., part of the bed matrix or of the transport matrix
(Fig. 1). The bed matrix Z is composed of particles piled
one above the other like in a sandpile model (e.g., Bak et al.,
1988). The local bed elevation at a generic location (i,j ),
where i[1 :X] is the index for the longitudinal coordinate and
j [1 : Y ] for the transversal coordinate, is given as the total
number of particles Zi,j . Particles can leave the bed matrix
as a result of entrainment and can enter the bed matrix as a
result of deposition. In the case of entrainment and deposition
the local value of elevation, Zi,j is reduced or increased by
one grain unit d, respectively:

Zi,j (t + 1)= Zi,j (t)± d. (1)

Particles in motion are allocated to the transport matrix TR,
which consists of two layers, and they move as bed load – i.e.,
they are in contact with the bed and interact with it. They also
interact with each other by collisions. Particles move with
a constant velocity, one cross section downstream for every
time step. In this way particle velocity vp, particle size d , and
time step 1t are connected:

vp =
d

1t
. (2)

Although1t is a unitless time in simulation, Eq. (2) together
with the grain and domain size gives it a physical meaning
connected to particle velocity.

Particles enter the system with a specified input rate IR,
which is the number of particles entering the system at the
upstream boundary for every time step, and they leave the
system as output rate OR at the downstream boundary. In
analyzing the spatial output of the model we consider only
a reduced part of the domain, which we will hereafter call
the control volume, excluding the first 10 cross sections up-
stream and the last 10 downstream to avoid the influence of
the upstream and downstream boundary conditions (see next
sections).

2.1 Model components

2.1.1 Sediment input

The first parameter of CAST is the particle input rate IR or
the specific input rate iR, defined as the total input rate IR

Figure 1. Diagram of the model. The space is discretized in a longi-
tudinal dimension X and a transversal dimension Y . Bed elevation
is given by the coordinate Z. Particles can be either in the bed ma-
trix or in the transport matrix. They can enter the transport matrix
as sediment input from the upper boundary or by entrainment from
the bed, while they can leave the transport matrix as sediment out-
put or by deposition on the bed. Sediment is input at the upstream
boundary and simulated as sediment yield leaving the downstream
boundary.

divided by the channel width Y ; iR can assume values in the
interval [0 : 1] because no more than one particle can enter
a single cell at the upstream boundary in 1t . The supply of
particles to the system can be treated as constant input by
specifying a value of iR for the entire simulation or as vari-
able random input by specifying a mean value iR with a tem-
porally variable term i′R(t) uniformly distributed around iR.
In CAST, iR represents a generic amount of sediment which
is delivered to the channel from all the possible sources (al-
luvial transport, colluvium activity, bank erosion, etc.) rather
than a specific transport rate in a given cross section. The ac-
tual input to the system can be considered to be the transport
rate measured in the first cross section of the control volume.

2.1.2 Sediment transport

Particles are transported as bed load along the channel with
a constant velocity (see Eq. 2). A particle can join the trans-
port matrix TR when it enters the system as input or once it
has been entrained from the bed. A particle can also leave
the transport matrix TR when it moves beyond the last cross
section, becoming part of the sediment output OR, or when
it deposits on the bed surface. The maximum number of par-
ticles being transported from one cross section to the next is
equal to 2Y , i.e., 2 times the channel width, because the TR
matrix has two layers.

Particles move preferentially directly to the downstream
cell (90% probability), with a small chance for lateral dis-
placements (5% to the left and 5% to the right). This aims
to represent a grain having a transport vector aligned with
the dominant flow direction with limited dispersion. In the
absence of observations, we constrain the probability for lat-
eral movements in a reasonable interval of 10%. The model
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is not sensitive to lateral dispersion, at least in the parameter
space we have tested. Along its path, a particle can collide
with another particle in transport or collide with one of the
two boundaries (left and right banks). In both cases the colli-
sion leads to the loss of momentum and cessation of motion
and the particle deposits on the bed (see Sect. 2.1.4). When
a particle deposits on the bed, it changes the local roughness
but without directly displacing other particles – i.e., CAST
does not account for collective entrainment as described by
Ancey and Heymann (2014).

Sediment flux in the model, qS, is computed at the total
number of particles in TR in the control volume divided by
the domain size, i.e., Y · (X− 20). This specific rate qS(t) is
computed for every time step.

2.1.3 Particle entrainment

The key process in CAST is the particle entrainment which is
considered to be dependent on the local bed topography and
on the flow conditions. The degree of exposure of particles
on the bed has been shown to strongly influence sediment
entrainment and transport especially in steep streams (e.g.,
Kirchner et al., 1990; Malmaeus and Hassan, 2002; Yager
et al., 2012; Prancevic and Lamb, 2015). Moreover, many
feedbacks exist between bed roughness, flow resistance, and
particle mobility and transport (e.g., Recking et al., 2008;
Wilcox et al., 2011), which makes it reasonable to consider
particle entrainment a stochastic process.

The effect of local topography on entrainment is accounted
for by calculating the local relative exposure R of a particle
on the bed. For a generic cell (i,j ) in the domain, the relative
exposure Ri,j is given by the difference between the eleva-
tion of the cell Zi,j and the average elevation of the neigh-
boring cells along the flow direction (the 2 in the same cross
section and the 3 downstream):

Ri,j = Zi,j −
Zi,j−1+Zi,j+1+Zi+1,j−1+Zi+1,j +Zi+1,j+1

5
. (3)

In the case of a cell located close to one of the banks (i.e.,
when j = 1 or j = Y ), Ri,j is evaluated considering the cell
in the same cross section and the two cells downstream.

Entrainment is based on R exceeding a threshold R∗. The
probability of entrainment pE is then defined as pE = Pr[R ≥

R∗]. CAST can model the entrainment process as determin-
istic or stochastic (see Fig. 2). In the deterministic case, the
threshold is a constantR∗ = E and the probability of entrain-
ment is

pE = Pr[R ≥ E] =

{
0 R < E

1 R ≥ E.
(4)

In the stochastic case, the threshold R∗ is modeled as a
random variable with a logistic probability density function

R*
E

f(
R

* )

Threshold R*

Deterministic model Stochastic model (S=E/10) Stochastic model (S=E/4)

R
E

p E

0

0.5

1
Entrainment probability p

E

(b)(a)

Figure 2. Deterministic and stochastic parameterization of entrain-
ment in CAST. (a) The probability density function of the threshold
R∗. (b) Entrainment probability as a function of relative exposure
R.

f (R∗) and a cumulative distribution function F (R∗):

f (R∗)=
e−

R∗−E
S

S
[
1+ e−

R∗−E
S

]2

F (R∗)=
1

1+ e−
R∗−E
S

.

(5)

The distribution has a mean µR∗ = E and a variance σ 2
R∗ =

π2S2

3 . In this way the entrainment probability pE of a cell
with relative exposure R depends on two parameters: the
mean value of the threshold distribution E and the variability
in the threshold R∗ proportional to S:

pE = Pr[R ≥ R
∗
] = F (R)=

1

1+ e−
R−E
S

. (6)

Figure 2 shows the deterministic and stochastic parameter-
izations of entrainment.

Conceptually, the value of E is inversely related to the
magnitude of the flow. Large E means low probability of
entrainment, typical of low-flow conditions and low shear
stress, while small E means high pE for the same relative ex-
posure values and thus high-flow conditions and high shear
stress.

2.1.4 Particle deposition

Particles in transport (i.e., belonging to the TR matrix) can
be deposited in three cases: (a) when they collide with an-
other particle in motion – in this case both particles involved
in the collision events are deposited, each one in its present
location; (b) when they collide with one of the two channel
banks; and (c) because of their interaction with the bed sur-
face.

The relation between particle deposition and bed surface
is modeled using the relative exposure matrix R: particles in
motion deposit in areas of local depressions, i.e., cells with
R < 0. The deposition process is treated as deterministic,

Earth Surf. Dynam., 4, 549–566, 2016 www.earth-surf-dynam.net/4/549/2016/



M. Saletti et al.: Reduced-complexity model for step pools 553

with a threshold function having a fixed value of D =−0.5
below which the probability of deposition pdep = 1, on the
one hand, to avoid redundant parameters poorly connected
to physical processes and, on the other hand, to shift the
variability in sediment transport to the entrainment process
which has a more straightforward relation with hydraulics
and local channel bed topography. Cases (a) and (b) are much
less common than (c) since they both require lateral move-
ment and the presence of an obstacle (i.e., another particle or
the channel banks).

2.1.5 Boundary and initial conditions

CAST needs one boundary condition for the lateral banks
and one for the downstream boundary at the channel outlet.
The boundary condition for the banks is deposition when a
moving particle in the TR layer collides with one of the two
lateral boundaries. The boundary condition for the last cross
section at the downstream boundary is given by fixing its el-
evation Z(X,j )= 0. This is equivalent to a control section
with a fixed elevation (e.g., a check dam or a weir) some-
where downstream. To minimize the effect of this boundary
condition on the model outcomes, all spatial variables are
computed only over the control volume, which is a reduced
portion of the entire channel (see Fig. 1).

In order to avoid long simulation times required to fill the
channel with particles, we start every simulation from an ini-
tial slope, slightly less than the equilibrium slope, with ran-
dom noise. The model in not sensitive to this initial condi-
tion – i.e., the final equilibrium slope is only a function of
the chosen set of parameters (mainly the input rate iR and the
entrainment parameter E). Different initial conditions deter-
mine how long the system needs to reach this equilibrium
state.

2.2 Rough bed and jamming in CAST

CAST operates in two modes, with and without dy-
namic jamming. The rough-bed model without jamming
(CASTRBM) simulates a generic rough-bed channel where
processes of transport, entrainment and deposition are con-
sidered regardless of any additional granular effect (except
for particle collisions and deposition after collisions with
the channel banks). The jamming model (CASTJM) simu-
lates explicitly the process of jamming (blocking) when the
density of particles transported in the same cross section ex-
ceeds a threshold. In this case particle interactions lead to
deposition of all grains in that cross section on the bed. This
blocking process is considered permanent – i.e., the jammed
particles are locked into channel-width-spanning structures
which cannot be entrained anymore. In the same cross sec-
tion, entrainment and deposition of other particles is still pos-
sible, except for those grains that have been subjected to jam-
ming. This parameterization aims to represent in a simpli-
fied way the additional force chains that keep grains together

around keystones, as shown in the jammed-state hypothesis
of Church and Zimmermann (2007). Intuitively and similarly
to other phenomena where jamming is common (e.g., in hop-
pers), we set up the jamming threshold equal to the channel
width Y . In a one-grain-size model like CAST this implies
that jamming is happening when the transport layer is full
of particles (one entire cross section full of transported parti-
cles).

For every time step, the computation sequence is as fol-
lows. (1) Sediment input enters the system in the first cross
section. (2) Particles in transport move one cell downstream
(straight, left, or right) – if they collide with other particles
or with one of the banks, then they deposit; otherwise, they
remain in transport. In the case of CASTJM the jamming con-
dition is checked for every cross section. When the number
of particles traveling in the same cross section exceeds the
jamming threshold all grains are deposited on the bed and
frozen. (3) For every particle in motion the condition for de-
position is checked: if it is satisfied the particle leaves the
transport matrix and is deposited on the bed. (4) For every
particle in the bed matrix (except for those jammed in stage
2 and deposited in stage 3) the condition for entrainment is
checked: if it is satisfied the particle leaves the bed matrix
and joins the transport matrix. (5) The boundary condition at
the channel outlet is applied.

3 Model setup: steady-state simulations

To set up the model, we have run a set of simulations us-
ing CASTRBM with (a) stochastic entrainment with constant
E and S parameters, and (b) constant specific input rate iR.
The domain is Y = 20d and X = 300d. The domain size
has been chosen not to represent or scale any specific river
channel but rather to observe the features and test the hy-
potheses we are interested in, at a reasonable computational
cost. Simulations with a much larger scale (up to 2 orders
of magnitude) have also been performed, and we observed
no significant scale effect on the final outcome (see the Sup-
plement). The simulations were run until a steady state was
reached. This condition is achieved when for a given combi-
nation of iR andE the channel slope does not change, i.e., the
point at which the particle count (stored sediment volume) in
the channel reaches a steady state and the sediment output
is on average equal to the input. We explored the effect of
different input rates iR and the entrainment parameters E on
the final bed structure. Moreover, since CAST is a stochastic
model, we perform 20 realizations for every set of parame-
ters to quantify stochastic variability. The set of parameters
used in these steady-state simulations is shown in Table 1.

We analyzed the results in terms of the following:

– Storage volume V : the total number of particles in the
bed matrix. The time series of this variable indicates
whether the channel is in a phase of aggradation (V in-
creasing in time), degradation (V decreasing in time), or
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Table 1. Values of the parameters used in the steady-state simula-
tions.

Parameter Name Value(s)

Channel length X 300 d
Channel width Y 20 d
Simulation duration T 40 000
Deposition parameter D −0.5
Shape parameter S E

5
Entrainment parameter E 1÷ 2
Specific input rate iR 0.2÷ 0.7

equilibrium (V constant in time on the average). It also
indicates extreme sediment evacuation events.

– Specific sediment flux qS: the number of particles in
motion per unit length and width in the control volume.

– Mean relative exposure 〈R〉: the spatially averaged
value of R of all the cells in the control volume do-
main evaluated with Eq. (3) and standard deviation of
the relative exposure σR.

– Particle hop distance HD: the step length of a single par-
ticle from the point it is entrained (or enters the channel)
to the point it is deposited or exits the channel.

3.1 Storage volume, sediment transport, bed
morphology, and hop distances

The main outputs of CASTRBM in a steady-state simulation
(E = 1.5; iR = 0.5) at equilibrium are shown in Fig. 3. First,
the storage volume (Fig. 3a) exhibits a dynamical equilib-
rium: the volume oscillates, alternating phases of aggradation
and degradation, because the stochastic parameterization of
particle entrainment leads to a continuous exchange between
the bed and the transport layer. Second, the times series of
sediment transport (Fig. 3b) show that, even with a constant
input rate, sediment transport fluctuates as observed in the
field and in the lab (e.g., Recking et al., 2009; Saletti et al.,
2015). Moreover, CASTRBM produces a realistic rough-bed
morphology (Fig. 3c), with the mean R and standard devi-
ation σR being a function of the input rate iR and the en-
trainment parameter E. The input rate and the entrainment
parameter also determine the final slope of the channel.

One of the advantages of reduced-complexity models like
CAST is that it is possible to track the movement of every
single particle in the system and thus to compute all particle
step lengths (measured from entrainment to deposition). This
is an important quantity which, since Einstein’s probabilistic
theory on bed load transport (Einstein, 1937, 1950), needs to
be reproduced by any reliable particle-based transport model.
For the sake of clarity, following Furbish et al. (2012) we will
use “particle hop distance” to refer to the distance traveled by
a single particle from entrainment to deposition. For every

simulation we computed values of HD for all the particles
and we find they follow an exponential distribution (Fig. 3d).
In Fig. 4 we show for four different combinations of iR and
E the probability density functions of HD and the exponen-
tial fit. The good fit given by this distribution is in agreement
with previous studies dealing with particle travel distances
(e.g., Hill et al., 2010; Hassan et al., 2013; Schneider et al.,
2014). Since no HD distribution is specified a priori in the
model, the agreement shows that the phenomenological rules
of particle entrainment, transport, and deposition of CAST
are realistic. The values of HD obtained in our simulations
are always much smaller than the channel length X (e.g., the
maximum observed HD is less than X/2); therefore, the sys-
tem scale is not influencing our results. The relation between
HD and the model parameters is explored in the next section.

3.2 Role of input rate and entrainment probability

With the steady-state simulations we explored the effect of
changing input rate and entrainment parameter on the model
outcomes. These two parameters are important because they
can be linked to the jammed-state diagram parameters of
Church and Zimmermann (2007). The input rate IR is related
to the sediment concentration QS

Q
, which quantifies the effect

of sediment supply on step stability. The entrainment param-
eter E determines the entrainment probability and is directly
related to the transport stage τ

τcr
, which quantifies the effect

of the hydraulic forces on step stability.
Some of the simulations, characterized by low input rate

and high entrainment probability (E = 1, iR < 0.4), yield
what we call “washed-out” case – i.e., the bed matrix remains
empty. This represents a limiting case where hydraulic forces
are too high and sediment supply is too low to be able to sus-
tain a fluvial channel. This constrained our parameter space
to 27 simulations in which a channel was formed and main-
tained around an equilibrium point.

The stochastic simulation of 20 realizations of each of the
27 parameter sets showed that the mean storage volume V
and the mean relative exposure 〈R〉 converged to the same
values. Also, the mean hop distances 〈HD〉 and the standard
deviations of the relative exposure σR did not change signif-
icantly.

The values of four key variables for the 27 simulations (pa-
rameter combinations), averaged over the 20 realizations, are
shown in Fig. 5. The mean relative exposure (〈R〉 in Fig. 5a)
is obtained by a spatial average of all the values of R for a
given time step and then temporally averaged over the last
20 000 time steps in the equilibrium phase. 〈R〉 is directly re-
lated to the slope of the channel and the storage volume. It
increases with increasing input rate and increasing entrain-
ment parameter: channels with large sediment supply and
low entrainment probability are those with larger 〈R〉 and
larger storage volumes. The same trend can be inferred by
looking at the mean standard deviation of R (σR Fig. 5b),
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Figure 3. CASTRBM steady-state results of simulation with E = 1.5 and iR = 0.5. (a) Time series of storage volume: adjustment phases of
aggradation and degradation around the equilibrium condition. In the inset a closeup of the last 1000 time steps is shown. (b) Time series
of sediment transport: even with a constant input rate (green line) the sediment flux fluctuates. Fluctuations are large if measured in a single
cross section at the downstream end (blue line) but become smaller if averaged over the entire control volume of the channel (red line).
(c) Bed elevation in the final configuration: the model produces a rough bed with particles having different exposures R. (d) Probability
density function of particle hop distances with an exponential distribution estimated over more than 2 million simulated particle paths.
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Figure 4. Probability density functions of simulated particles hop
distances (red dots) fitted with an exponential distribution (blue
line) for four different parameter sets.

Figure 5. Selected CASTRBM variables as a function of input rate
and entrainment: (a) mean relative exposure 〈R〉, (b) standard de-
viation of relative exposure σR, (c) Hurst exponent of the specific
sediment flux HqS , and (d) mean particle hop distance 〈HD〉.

also obtained as a spatial average over the equilibrium phase
for every time step.

Specific sediment flux qS(t) is on average equal to the in-
put rate iR at equilibrium, but fluctuating around its mean
value, as shown in Fig. 3b. The degree of memory of these
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fluctuations is captured by the Hurst exponent Hqs , whose
mean value for the steady-state simulations is shown in
Fig. 5c. The values of HqS obtained in all the realizations
of all the simulations are consistent with those obtained from
flume experiments by Saletti et al. (2015), being in the inter-
val [0.5 : 1]. This identifies a long-memory regime which is
stronger in the model (H → 1) when the entrainment prob-
ability is high (low E) and the input rate is low. HqS shows
large variability in different realizations, although its mean
value shows a clear trend with both iR and E (Fig. 5c).

The mean particle hop distances (〈HD〉 in Fig. 5d) dis-
play two contrasting trends. For values of E ≤ 1.5 (high en-
trainment probability) 〈HD〉 is decreasing consistently for
increasing input rates iR as a consequence of large particle
activity (collisions between particles become very frequent).
For larger values ofE (low entrainment probability) the max-
imum of 〈HD〉 is for average values of iR (around 0.4). For
iR < 0.4 there is a stronger interaction with the bed (which
has larger 〈R〉 and σR for larger E, as shown in Fig. 5a, b)
and thus more likelihood of particle deposition, whereas, for
large iR, collisions again dominate hop distances because of
large particle activity. In both cases this leads to a reduction
of 〈HD〉.

3.3 CASTJM: particle jamming

The analysis above showed that CASTRBM is able to re-
produce fluvial channels with a spatially variable rough bed
and to capture basic and important phenomena, such as the
variability in sediment flux and the exponential distribution
of particle hop distances. However, to simulate the forma-
tion and test the stability of steps, we need to take into ac-
count the effect of particle jamming. This is a well-studied
phenomenon in granular physics that has been advocated
to be essential in the step stability process and considered
through the jamming ratio (the ratio between the channel
width and d84 of the surface) in the diagram proposed by
Church and Zimmermann (2007). In our reduced-complexity
model CASTJM we account for the jamming effect by block-
ing particles when local sediment concentration exceeds the
jamming threshold and depositing them in permanent struc-
tures on the bed.

Jamming simulations were run with the same parameter
sets of the steady-state rough-bed model case. Three different
situations occur:

1. When particle activity is too low (low sediment trans-
port) the jamming threshold is rarely (often never) ex-
ceeded.

2. When particle activity is too high (high sediment trans-
port) jamming is occurring too often in time and space,
and the storage volume of the system keeps increasing
because of the large amount of particles depositing up-
stream of the step structures. As a result an equilibrium
channel is never reached.

3. When particle activity is in between the two previous
situations, jamming is occurring at a rate which allows
the formation of steps and maintains an approximately
equilibrium channel.

The first situation represents the rough-bed case discussed
previously. The second one represents a case which is very
unlikely to happen in river systems where fluvial sediment
transport is rarely going to exceed the jamming threshold and
certainly not for very long periods of time (e.g., only during
large flood events). For the purpose of this study we focus
on the last situation where jamming is effectively creating
steps. When particles are jammed and instantly deposited,
they trigger a deposition process which is propagating up-
stream, since the values of relative exposure R will be im-
mediately reduced. This represents what happens in natural
step-pool systems, where steps are created, among other fac-
tors, by deposition and clustering of sediment around large
boulders called keystones, and deposition between steps con-
tinuously changes the channel (e.g., Molnar et al., 2010).

We show the effect of adding jamming to the model
by comparing simulations having the same parameter sets
and same initial conditions (iR = 0.5 and E = 1.25) in
CASTRBM and CASTJM runs. The cumulative number of
jammed cross sections shows that jamming is a rather inter-
mittent phenomenon with many long periods of no jamming
(Fig. 6a). At the end of this simulation 29 cross sections were
jammed (around 10% of the total). The longitudinal profiles
of bed elevation (Fig. 6b) show how CASTJM is able to create
step structures and this increases the total slope of the chan-
nel and its storage, even if the slope between steps is the same
as in the case without jamming (CASTRBM). The box plots of
the instantaneous (i.e., calculated for every time step) values
of R, both the mean 〈R〉 (Fig. 6c) and the standard devia-
tion σR (Fig. 6d), show that the model with jamming yields a
rougher and more variable bed. Instantaneous values of spe-
cific sediment flux qs (Fig. 6e) show that jamming slightly
increases the variability in qS and prevents the formation of
an equilibrium slope (which would imply qS ' iR = 0.5) be-
cause the system is still aggrading and increasing its storage.
Finally, the values of the Hurst exponent of sediment flux
HqS (Fig. 6f) for the 20 realizations clearly plot separately
in the case with and without jamming, with the latter hav-
ing much greater values. This longer-term memory is likely
due to a combination of sediment pulses created by step col-
lapses and the weak but present trend towards aggradation in
the CASTJM simulations.

4 The effect of stochasticity

In the simulations presented in the previous sections we used
a stochastic parameterization for particle entrainment and a
constant sediment supply. To explore the effect of stochastic-
ity on the model results, in the next two sections we quantify
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Figure 6. Comparison between simulations without jamming (RBM) and with jamming (JM) for iR = 0.5 and E = 1.25. (a) Cumulative
number of jammed cross sections. (b) Longitudinal profiles at the end of the simulations. (c) Box plots of the instantaneous values of mean
relative exposure. (d) Box plots of the instantaneous values of standard deviation of relative exposure. (e) Box plots of the instantaneous
values of specific sediment flux. (f) Box plots of the values of Hurst exponent of specific sediment flux computed from the 20 realizations.

the effect of stochasticity in entrainment and sediment supply
explicitly.

4.1 Stochasticity in the entrainment

The entrainment probability in CAST can be parameter-
ized as a deterministic or stochastic process (Sect. 2.1.3). A
stochastic parameterization allows a degree of variability in
the entrainment threshold and can be controlled by two pa-
rameters (E and S), while the deterministic parameterization
has a unique entrainment threshold E (Fig. 2).

The comparison for a simulation with iR = 0.5,E = 1, and
S = E/5 is shown in Fig. 7. When the entrainment process is
treated as stochastic, the variability of sediment flux is much
larger both in the case with and without jamming (Fig. 7a).
This is due to the fact that when the channel has reached
equilibrium in the deterministic case the interaction between
the bed and the transport is very low. All particles below
the threshold stay on the bed and those above the thresh-
old are entrained. The reduced particle activity can also be
inferred by looking at the distribution of particle hop dis-
tances (Fig. 7b). In the deterministic case the distributions
are shifted towards larger values because particles interact
much less with the bed and travel further downstream. The
effect of modeling the entrainment as a deterministic pro-
cess on the bed morphology itself is that the final configu-
ration of the channel in the threshold case is much steeper

(cumulative distribution functions of R plot towards larger
values in the T case) since no entrainment is possible be-
low the threshold: the channel can bear steeper slopes and
store more sediment (Fig. 7c). However, this does not trans-
late into a rougher surface; σR shows that channels where
the entrainment is modeled with a threshold function have
very low variability around 〈R〉: they tend to look more like
steep and uniform ramps than like realistic fluvial channels
(Fig. 7d).

This analysis support our choice of modeling the entrain-
ment as a stochastic process. This is not only more physi-
cally reasonable because the process of particle displacement
is random per se, but it is not possible to obtain a realistic
rough-bed morphology in a reduced-complexity model like
CAST without a stochastic parameterization of particle en-
trainment.

4.2 Stochasticity in the input rate

The effect of stochasticity in the input rate iR is shown
on simulations with E = 1.5 and constant iR = 0.5, or ran-
dom input rate uniformly distributed around the mean value
〈iR〉 = 0.5.

The effect of stochasticity in the input rate is much smaller
than that of entrainment. The distributions of sediment flux
(Fig. 8a) almost overlap both in the case with and without
jamming. Like in the entrainment case, jamming causes a
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Figure 7. Comparison between stochastic entrainment (S case without jamming and S case+ J with jamming) and deterministic threshold
entrainment (T case without jamming and T case+ J with jamming). (a) Box plots of the instantaneous values of specific sediment flux
qS. (b) Empirical cumulative distribution function of particle hop distances HD. (c) Empirical cumulative distribution function of relative
exposure R computed on the entire control volume at the end of the simulation. (d) Box plots of the instantaneous values of the spatial
standard deviation of relative exposure σR.

constant increase in sediment storage (and so the median
transport rate is slightly below the equilibrium value of 0.5).
An overlap of the four simulations is also observed when
looking at the distributions of particle hop distances and final
R (Fig. 8b and c). The simulations with and without jam-
ming plot separately only in the case of σR (Fig. 8d). The
larger values of σR in the case of variable iR and jamming
are due to the fact the variability in the input facilitates the
jamming process and increases the relative exposure.

These results highlight that the variability and the fluctua-
tions observed in the sediment output variables of the model
do not depend on the variability of the sediment input but
are instead a function of the internal dynamics of the system
given by the local grain–grain and grain–bed interactions. In
other words, CAST acts as a shredding filter of the input forc-
ing (Jerolmack and Paola, 2010; Van De Wiel and Coulthard,
2010).

5 Unsteady simulations

Although jamming is effective in generating a step-like mor-
phology under certain steady-state sediment input and en-
trainment conditions, we recognize that step formation is
an intermittent process in which flow variability in time
is important. Typically step-pool sequences are partially or
totally destroyed during large flood events and then re-
worked and stabilized during the following low-flow periods

(e.g., Lenzi, 2001; Turowski et al., 2009; Molnar et al.,
2010). We show the effects of changing flow conditions
by simulating four consecutive floods of equal magnitude
(Fig. 9a). In CAST the hydraulic conditions are represented
by the entrainment parameter E. Therefore, to simulate a
change in the flow, we modify the value of E to represent
two extreme cases (Fig. 9b): low flow with E = 2 (low en-
trainment probability) and high flow with E = 1 (high en-
trainment probability). Moreover, we explore two different
situations: (1) we keep the input rate iR constant, incorpo-
rating all the effects of the unsteadiness in the entrainment
parameter E (Case I in Fig. 9c), and (2) we change also the
input rate iR in response to changes in the flow conditions
(Case II in Fig. 9d). To facilitate the comparison, the total
sediment input over the entire simulation is the same in Case
I and II. To mimic the rising and falling limb of an hydro-
graph, both E and iR were increased and decreased gradu-
ally. The relevant parameters of these unsteady simulations
are summarized in Table 2. Runs were performed both with
and without jamming (i.e., with CASTRBM and CASTJM) to
check if and when steps are formed and how many of them
remain stable.
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Figure 9. Unsteady simulations with four consecutive floods.
(a) Generic hydrograph the model is simulating. (b) Variation in
the entrainment parameter E to simulate the changing flow condi-
tions. (c) Case I: simulations with varying E and constant input rate
iR. (d) Case II: simulations with varying E and varying input rate
iR.

5.1 Sediment storage and sediment transport

The temporal pattern of storage volume and sediment flux
in the unsteady simulations is shown in Fig. 10. The vol-
ume for the rough-bed case (in blue) clearly displays phases

Table 2. Values of the parameters used in the unsteady simulations.

Parameter Name Case I Case II

Channel length X 300 d 300 d
Channel width Y 20 d 20 d
Simulation duration T 550 000 550 000
Low-flow duration Tlow 70 000 70 000
High-flow duration Thigh 70 000 70 000
Rising-limb duration Tris 2000 2000
Falling-limb duration Tfal 8000 8000
Entrainment parameter (low flow) Elow 2 2
Entrainment parameter (high flow) Ehigh 1 1
Specific input rate (low flow) iR, low 0.4 0.3
Specific input rate (high flow) iR, high 0.4 0.6

of degradation during high flow and aggradation during low
flow. Without jamming, the channel tends to erode during
high flows when the entrainment probability is high and to
gain sediment again during low flow when the entrainment
probability decreases. This turnover is more evident when the
input rate is constant (Fig. 10a). With the effect of jamming
the picture changes. During high flows the mobile grains are
trapped in the channel in steps, while during low flows the
channel increases its storage because of grain deposition be-
tween steps and channel infilling. With a variable input (Case
II), jamming creates more steps and increases the storage
volume, which then remains constant during the following
low-flow phases because of the reduced input rate and low
entrainment probability (Fig. 10b).
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Figure 10. Unsteady simulations with four consecutive floods. (a) Time series of storage volume for the constant input case. (b) Time series
of storage volume for the variable input case. (c) Time series of specific sediment flux for the constant input case. (d) Time series of specific
sediment flux for the variable input case.

The specific sediment flux when the input is constant
(Fig. 10c) shows a large variability for the rough-bed case
responding to changes inE during low- and high-flow condi-
tions. In the jamming case, the response to the change in flow
conditions is also present but the jamming process modulates
the sediment flux towards the equilibrium conditions rapidly.
When the input varies with flow conditions (Fig. 10d), the
rough-bed model yields the same pattern as the case with
constant input with the difference that here the equilibrium
condition is changing during low and high flow (0.3 and 0.6,
respectively). In the jamming model instead, the sediment
flux is almost instantly in equilibrium with the input rate
during low flows, while during high flows the large input
rate, together with the high entrainment probability, causes
many jamming events that inhibit the system from reaching
an equilibrium state and the channel keeps increasing its stor-
age. We show the statistical distributions of specific sediment
flux for the 4 cases in Fig. 11. It can be seen that the distribu-
tions are centered around the equilibrium point of 0.4 (espe-
cially the jamming case in red for Case I), with the rough-bed
model having a more spread function due to the more intense
phases of aggradation and degradation. The distributions of
Case II (dashed lines) are clearly bimodal because of the two
equilibrium sediment input rates (0.3 and 0.6).

5.2 Step formation and stability

The unsteady flow also has impacts on bed roughness in
CAST. The time series of the standard deviation σR, which

represent the degree of roughness of the bed, is shown in
Fig. 12 for the unsteady simulation with constant and vari-
able input rate. In both cases jamming produces a rougher
surface during high flow which is an indication that step
structures, causing a larger departure from the mean R, are
being formed. When the input is constant (Fig. 12a), σR goes
back to value of low flow for all the four floods, because steps
that were formed are being buried by sediment. When in-
stead the input rate is reduced during low flow to simulate
sediment-starved conditions (Fig. 12b), σR decreases but not
to its pre-flood value because many of the steps created dur-
ing high flow can survive and do not get buried in between
floods.

The same can be inferred from the longitudinal profiles
of bed elevation of the simulations with jamming (Fig. 13).
At the end of every high-flow period, the longitudinal profile
shows a stepped morphology due to jamming. In the follow-
ing low-flow periods the steps were buried in Case I (having
input rate iR = 0.4), while in Case II (having a lower input
rate during low flow: iR = 0.3) some of them survived be-
cause of the sediment-starved conditions.

To quantify this effect directly on step formation, we intro-
duce step density dS, defined as the ratio between the num-
ber of cross sections with steps and the total number of cross
sections of the channel. The variable dS can vary between
0 when no steps are present in the channel and 1 when all
the channel morphology is made by steps. The definition of
a step is not straightforward, even in the field and in the lab-
oratory, where many different identification algorithms have
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Figure 12. Unsteady simulations with four consecutive floods.
Time series of the standard deviation of relative exposure σR for
(a) Case I and (b) Case II, both for the rough-bed case (in blue) and
the jamming case (in red).

been proposed (e.g., Milzow et al., 2006; Zimmermann et al.,
2008). Since our goal here is not to identify and count the
number of steps or to test which step identification algo-
rithm works best, we simply define a step in terms of local
departure from the equilibrium channel slope, similarly to
the method of Milzow et al. (2006). The steady-state simu-
lations give us the value of the final slope at equilibrium for
a given set of parameters (E and iR). We define that a cross
section in CAST has a step if its local slope is greater than
the equilibrium slope by a factor β. The time series of step
density evaluated in this way is shown for different values
of β in Fig. 14. The temporal pattern of step density varia-
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Figure 13. Unsteady simulations with four consecutive floods.
Longitudinal profiles of bed elevation computed at the end of every
high-flow period (left column: a, c, e, g) and at the end of each of
the following low-flow period (right column: b, d, f, h) for a typical
simulation.

tions is largely independent of β. The time evolution of step
density as a function of flow and sediment supply conditions
allows us to draw two conclusions. First, there is a clear dif-
ference between simulations with and without jamming in
that jamming is responsible for step formation, and without it
there are practically no steps formed in the channel (blue and
green lines in Fig. 14). Second, after steps are generated dur-
ing high-flow periods due to jamming, they only survive dur-
ing low flow if the sediment supply decreases (yellow lines
in Fig. 14) in sediment-starved conditions. This matches the
temporal dynamics of step counts as observed in the field
(e.g., Molnar et al., 2010) and in flume experiments (e.g.,
Curran and Wilcock, 2005).

6 Discussion

6.1 Bed load: a stochastic, granular, and shredding
phenomenon

The CAST model without jamming, CASTRBM, simulates
bed load transport over a rough bed at the grain scale, consid-
ering particle entrainment as a stochastic process driven by
a local exposure. Our model describes bed load from a grain
perspective because local granular effects in particle mobility
and transport are key for developing a bed morphology, es-
pecially in steep and well-structured streams. Kirchner et al.
(1990) pointed out the role of granular interactions between
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Figure 14. Unsteady simulations with four consecutive floods.
Time series of step density with (a) β = 3, (b) β = 4, and (c) β = 5.

gravel particles on a river bed and showed how the erodi-
bility of a grain is controlled by its protrusion and friction
angle. Given the associated high variability, they also sug-
gested that, instead of using one single value for the shear
stress, a probabilistic approach should be applied. The role
played by particle interlocking and partial burial in increas-
ing measured friction angles in steep channels has also been
shown recently by Prancevic and Lamb (2015). Many lab-
oratory studies have increased our knowledge of bed load
transport exactly by looking at the granular scale (e.g., La-
jeneusse et al., 2010; Houssais et al., 2015), suggesting that
we might be more successful in describing this phenomenon
when borrowing concepts from the granular physics commu-
nity (e.g., Church and Zimmermann, 2007; Frey and Church,
2011).

CAST assumes a stochastic description of sediment trans-
port, following and corroborating recent research (Furbish
et al., 2012; Roseberry et al., 2012; Heyman et al., 2014;
Ancey and Heymann, 2014). Our model produces fluctua-
tions in transport rates by the interaction with the bed through
entrainment and deposition of individual particles and these
fluctuations are observed in our simulations even with a con-
stant input forcing. What in our model is defined as specific
sediment flux qS is equivalent to the particle activity as de-
fined in Furbish et al. (2012). In a companion paper Rose-
berry et al. (2012) found that changes in transport rates are
dominated by changes in the number of particles in motion

rather than velocity: this justifies the choice of assuming con-
stant particle velocity but varying entrainment threshold in
our simulations.

The stochastic parameterization of CAST does not assume
a priori any probability distribution for particle hop distances,
and yet they turn out to be well fitted by an exponential dis-
tribution, in agreement with previous theoretical and field
studies (e.g., Hill et al., 2010; Hassan et al., 2013; Schneider
et al., 2014). The fact that, despite its simplicity, the model
can reproduce this important feature in a robust way proves
at least partially that the local grain–grain and grain–bed in-
teraction rules in CAST are appropriate and that the phe-
nomenological descriptions of the simulated processes are
going in the right direction.

Finally, CAST also reproduces the shredding effect some-
times visible in sediment transport (Jerolmack and Paola,
2010). The measured variability of sediment flux and its fluc-
tuations are dictated by the internal dynamics of the system
and the degree of fluctuations in the input forcing does not
always affect the sediment flux in a clear way (see Fig. 8).
Our results then show the reduced-complexity model poten-
tial to capture bed load transport as a stochastic phenomenon
at the grain scale. Interactions between individual particles
can give rise to, or at least strongly impact, the variability ob-
served in natural fluvial systems. Reduced-complexity mod-
els like CAST can serve to model these interactions and their
effects and can be used to gain new insights into the com-
plex dynamics of sediment transport and to test new research
hypotheses.

6.2 Step formation and stability: a granular problem

We showed with CASTJM that dynamic jamming of particles
in motion is effective in forming steps (see Fig. 13). In fact,
only by including the jamming process did we generate step-
pool morphologies in our numerical experiments. Moreover,
once steps are formed, they remain stable if the flow condi-
tions change (i.e., the entrainment probability decreases) and
the supply of sediment is low enough to avoid these steps be-
ing buried by particles (as shown in Fig. 14). These results
are consistent with the main ideas of the jammed state hy-
pothesis of Church and Zimmermann (2007), who theorized
and showed experimentally (Zimmermann et al., 2010) that
step stability needs (a) jamming, expressed as a low width
to diameter ratio so as to enhance granular forces; (b) low-
flow stage, in order to avoid the mobilization of keystones;
and (c) sediment-starved conditions, because a high sedi-
ment concentration would bury the steps. Despite its simpli-
fications, especially uniform sediment and no explicit flow
parametrization, CASTJM can reproduce these observations
and support the jammed state hypothesis for step stability.

We did not observe any specific wavelength of step oc-
currence, as usually predicted by hydraulic-based theories
on step formation (e.g., Whittaker and Jaeggi, 1982). Given
the stochastic nature of CAST, steps due to jamming are not

Earth Surf. Dynam., 4, 549–566, 2016 www.earth-surf-dynam.net/4/549/2016/



M. Saletti et al.: Reduced-complexity model for step pools 563

formed with a regular spacing. Moreover, as has been shown
by more recent experimental (Curran, 2007; Zimmermann
et al., 2010) and field studies (Zimmermann and Church,
2001; Molnar et al., 2010), step occurrence is mainly driven
by the random location of boulders (i.e., keystones) around
which sediment deposits and clusters.

6.3 Outlook

Our modeling approach has by definition some simplifica-
tions and limitations which we think can be improved in fu-
ture research. First, the uniform size of the sediment prevents
us from specifically modeling any grain-size effect that might
indeed be very important in steep-channel dynamics. We par-
tially incorporated these effects in the stochastic parameteri-
zation of entrainment: the fact that, for the same value of rela-
tive exposureR and entrainment parameterE, some particles
are displaced and some are not also accounts for differences
in their dimension and weight. Also the jamming process
may be dependent on grain size, as well as on the particle
velocity. Second, the parameterization of changing flow con-
ditions is done indirectly, summarized entirely in the entrain-
ment parameter E. This is done mainly because we are not
aiming to model discharge, flow, shear stress on the bed but
rather to transfer their effects onto the probability of entrain-
ing grains. However, future improvements of CAST could
include a more direct relation between hydraulic stresses on
the bed and the E and S parameters in our model. Third, the
granular interactions (i.e., collisions) among particles always
lead to deposition, which might not always be realistic, at
least in fluvial systems with particles having different sizes
and shapes. The same can be said about interactions with the
banks of the channel. However, in a uniform-size case this
assumption does not seem to be too strong.

Furthermore, we did not account for the transfer of mo-
mentum that could happen when a particle is deposited and
thus enhances the probability of entrainment of the sur-
rounding grains (i.e., “collective entrainment” as in Ancey
and Heymann, 2014). With a model like CAST the relative
importance of this phenomenon in the entrainment process
could be evaluated. Finally, the choice of representing the
jamming of grains on the bed as a permanent process is a
limitation. In a model having only a single grain size, this
choice has been made to account for the additional granu-
lar forces that are making step structures more stable around
a keystone. In future research, especially in a model which
accounts for different grain fractions, the role of step forma-
tion and stability may be transferred to the coarsest grains to
which the jamming threshold will apply.

In conclusion, in our opinion the strongest limitation of the
current model is the absence of sediment sorting and other
grain-size effects. All these phenomena will be incorporated
in the next version of the model, which will have different
grain-size fractions.

7 Conclusions

We presented a new particle-based reduced-complexity
model, CAST (Cellular Automaton Sediment Transport),
that simulates bed load transport and changes in chan-
nel morphology, including the processes of jamming and
step formation. The model simulates grain–grain and grain–
bed interactions with uniform-size particles and can have
stochastic or deterministic parameterizations for sediment in-
put rate and particle entrainment. With only a few parame-
ters, it is possible to simulate channels with different sedi-
ment supply and flow conditions. At steady state, CAST can
reproduce a realistic bed morphology and typical fluctuations
in transport rates whose memory features are consistent with
previous experimental data. Moreover, particle hop distances
are well fitted by exponential distributions, in agreement with
field observations. One of the main results is the role played
by stochasticity both in the entrainment and in the input rate.
A stochastic input rate does not change the final outcome
of the model compared to a constant input having the same
mean. However, if the entrainment is modeled deterministi-
cally, the resulting channel does not have the typical variable
bed roughness encountered in real fluvial systems.

The dynamic effect of particle jamming was added to test
under which conditions steps are formed and remain stable
in steep channels. The effect of jamming has been tested in
unsteady simulations where the entrainment probability and
the input rate have been changed to simulate a sequence of
high-flow and low-flow periods. CAST generates step struc-
tures during high-flow periods that survive during low flows
in simulations with sediment-starved conditions, in agree-
ment with the jammed-state hypothesis. Our results support
the jammed-state hypothesis as a framework to explain step
formation and stability, and, more generally, they show the
potential of reduced-complexity models at a grain scale with
stochastic parameterizations. We are of the opinion that mod-
els such as CAST can give new insights into the dynamics of
complex phenomena like sediment transport and step forma-
tion and can be useful to test research hypotheses in fluvial
geomorphology.

The Supplement related to this article is available online
at doi:10.5194/esurf-4-549-2016-supplement.
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