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Abstract. The rate at which low-lying sandy areas in temperate regions, such as the Campine Plateau (NE Bel-
gium), have been eroding during the Quaternary is a matter of debate. Current knowledge on the average pace
of landscape evolution in the Campine area is largely based on geological inferences and modern analogies.
We performed a Bayesian inversion of an in situ-produced 10Be concentration depth profile to infer the average
long-term erosion rate together with two other parameters: the surface exposure age and the inherited 10Be con-
centration. Compared to the latest advances in probabilistic inversion of cosmogenic radionuclide (CRN) data,
our approach has the following two innovative components: it (1) uses Markov chain Monte Carlo (MCMC) sam-
pling and (2) accounts (under certain assumptions) for the contribution of model errors to posterior uncertainty.
To investigate to what extent our approach differs from the state of the art in practice, a comparison against the
Bayesian inversion method implemented in the CRONUScalc program is made. Both approaches identify similar
maximum a posteriori (MAP) parameter values, but posterior parameter and predictive uncertainty derived using
the method taken in CRONUScalc is moderately underestimated. A simple way for producing more consistent
uncertainty estimates with the CRONUScalc-like method in the presence of model errors is therefore suggested.
Our inferred erosion rate of 39± 8.9 mm kyr−1 (1σ ) is relatively large in comparison with landforms that erode
under comparable (paleo-)climates elsewhere in the world. We evaluate this value in the light of the erodibility
of the substrate and sudden base level lowering during the Middle Pleistocene. A denser sampling scheme of
a two-nuclide concentration depth profile would allow for better inferred erosion rate resolution, and including
more uncertain parameters in the MCMC inversion.

1 Introduction

The Campine area is a sandy region which covers part of
northeastern Belgium and the southern Netherlands (Fig. 1).
It is part of the European sand belt and is drained by rivers
that belong to the Scheldt Basin. The Campine area roughly
coincides with the geological Campine Basin, the southeast-
ern part of the North Sea basin. From a geodynamic point

of view, the Campine Basin is located in an intermediate po-
sition in between the rapidly subsiding Roer Valley graben
in the north, and the uplifting Brabant and Ardennes massifs
in the south (Fig. 2). The Campine Basin has a long Ceno-
zoic burial history. Post-Rupelian marine and estuarine de-
position during the last 30 Myr almost exclusively consists
of (glauconite-rich) sand, up to 300 m thick (Vandenberghe
et al., 2004). From the Early to Middle Pleistocene onwards,
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Fig. 2

Figure 1. Location of the Campine region within Europe and the
European sand belt.

terrestrial conditions became dominant with deposition of a
thick series of fluvial sand and gravel from the Meuse and
Rhine rivers (Figs. 2 and 3). In contrast to what the basi-
nal setting of the Campine region would suggest, distinctive
topographic features are preserved in the landscape. An il-
lustrative example is the Campine Plateau, which shows a
topographic relief of ca. 50 m relative to the surrounding ar-
eas (Fig. 3). To date, quantitative data on the amount and
rate of Quaternary erosion of the Campine landscape and the
Scheldt Basin in general are missing. This stands in contrast
to the availability of long-term erosion data from, for exam-
ple, in situ-produced cosmogenic nuclides for the Meuse and
Rhine basins (e.g., Schaller et al., 2001; Dehnert et al., 2011;
Rixhon et al., 2011). Such data on catchment-wide erosion
rates at multi-millennial timescales are crucial for determin-
ing background geological erosion rates to evaluate anthro-
pogenic morphodynamics (Vanacker et al., 2007a), to pro-
vide calibration data for landscape evolution models (Bo-
gaart and van Balen, 2000; Foster et al., 2015; Campforts et
al., 2016) and to assess the overall stability of the landscape
in the framework of long-term management of radioactive
waste (Van Geet et al., 2012).

Cosmogenic radionuclides (CRNs) have proven useful
for quantifying geomorphological processes over time spans
covering the last 2 Myr (Schaller et al., 2001). Geomorpho-
logical surfaces can be dated by measuring the concentra-
tion of in situ-produced cosmogenic nuclides (e.g., 10Be and
26Al) that accumulated at the Earth’s surface (Dunai, 2010;
Hancock et al., 1999). As the observed cosmogenic nuclide
concentration of a given outcrop is a function of its exposure
age and denudation rate, stable (i.e., non-eroding) landforms
provide optimal sampling locations for exposure dating (see,
e.g., Rixhon et al., 2011). Most landforms are subject to
erosion during exposure, resulting in a decrease in the cos-

Fig. 3

Figure 2. Structural map of northwestern Europe showing the
Roer Valley graben faults and the Brabant and Rhenohercy-
nian (Ardennes) massifs superimposed on a digital terrain model
(DTM; GTOPO30; data available from the U.S. Geological
Survey), with indication of large rivers (http://www.eea.europa.
eu/data-and-maps/data/wise-large-rivers-and-large-lakes) and lo-
cation of the Scheldt Basin, (dashed line), the Nete catchment (dot-
ted line) and the Flemish Valley (solid line). The general paleohy-
drography of the Meuse and Rhine between 0.5 and 1.0 Ma is shown
in colored lines. Headward erosion as an explanation for the devel-
opment of the Nete catchment is indicated with a yellow arrow.

Fig. 4a

Figure 3. DTM of the Campine Plateau (Digitaal Hoogtemodel
Vlaanderen II, DTM, raster, 1 m) and the extent of Rhine deposits
in the study area (shading based on Beerten, 2005, and Deckers et
al., 2014).

mogenic nuclide concentrations with an increasing surface
denudation rate (e.g., Dehnert et al., 2011). Braucher et al.
(2009) showed that the exposure age (and post-depositional
denudation rate) of eroding landforms can be constrained
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based on a deep (> 1.5 m) depth profile of a single cosmo-
genic nuclide that is sampled at regular intervals.

The accumulation of in situ-produced cosmogenic nu-
clides in eroding surfaces is a mathematical function with
three parameters that are typically unknown a priori: the
post-depositional denudation rate, E (m Myr−1), the expo-
sure age, t (years), and the inherited concentration or inher-
itance, Ninh, (atoms g−1). Unknown model parameters can
be estimated by inverse modeling of CRN concentration vs.
depth profiles. In this procedure, one iteratively proposes new
parameter values until the model fits the observed data up
to a given precision. This has been done for estimating E
and t by, for example, Siame et al. (2004) and Braucher et
al. (2009). However, model and measurement errors together
with (measurement) data scarcity introduce considerable un-
certainty in the optimized model parameters. The method by
Braucher et al. (2009) accounts to some extent for analyt-
ical measurement errors as it generates several CRN con-
centration profiles consistent with the (analytical) measure-
ment errors, computes for each model parameter set (e.g., a
t −E pair) within a grid search the corresponding data mis-
fits and retains the median misfit as the performance associ-
ated with a given parameter set. This allows one to derive a
robust unique solution, but it does not quantify model param-
eter uncertainty and ignores model errors (that is, the model
is assumed to be perfect). To assess model parameter uncer-
tainty, Hidy et al. (2010) proposed performing plain Monte
Carlo (MC) sampling from the pre-specified prior parame-
ter distributions, ranking the resulting solutions according to
fitting performance and retaining a certain percentage (typ-
ically 5 %) of the best performing solutions to compute pa-
rameter uncertainty estimates.

A more comprehensive quantification of parameter and
prediction uncertainty is provided by the Bayesian frame-
work. This approach uses Bayes’ theorem to represent pa-
rameter uncertainty by a multivariate “posterior” probability
distribution. The latter is given by the (normalized) product
of a “prior” probability distribution, which represents avail-
able prior information, with a “likelihood” function, that en-
codes the deviations of the simulated (CRN) concentration
data from the measured ones. Providing that the assump-
tions underlying the likelihood model are met, the poste-
rior probability density function (PDF) contains all neces-
sary information about the inferred parameters. Marrero et al.
(2016) implemented Bayes’ rule into the CRONUScalc pro-
gram to derive the posterior parameter PDF. The approach
taken by Marrero et al. (2016) is based on a MC variant
where sampling is performed over a regular, 3-D lattice cov-
ering the prior ranges for E, t and Ninh. It therefore requires
a sufficient grid resolution to minimize the risk of missing
E− t−Ninh combinations with substantial posterior density.
More importantly, the formulation by Marrero et al. (2016)
considers solely the CRN measurement error(s) as source
of uncertainty. This is theoretically valid only if the CRN
model can fit the measurement data within the measurement

error(s). In this work, we derive the posterior parameter PDF
using state-of-the-art Markov chain Monte Carlo (MCMC)
simulation (see, e.g., Robert and Casella, 2004), account-
ing not only for measurement errors but also (under cer-
tain assumptions) for model errors. Furthermore, we com-
pare our Bayesian inversion approach with that of Marrero et
al. (2016), illustrate the similarities and differences between
the two approaches and propose a simple fix for making the
uncertainty estimates from Marrero et al. (2016) more con-
sistent in the presence of model errors.

The overall objective of this study is to infer within a
Bayesian framework the potential post-depositional denuda-
tion of the northwestern Campine Plateau. This part of the
Campine Plateau is drained by the Kleine Nete river, which
belongs to the larger Scheldt Basin. It is an interesting test
case because the northwestern edge of the Campine Plateau
is covered by coarse gravelly unconsolidated sand from the
Early–Middle Pleistocene Rhine and thus constitutes a flu-
vial terrace for which the depositional age nor the exposure
age is well constrained (Beerten et al., 2017).

2 Geomorphological evolution of the Campine area

The post-marine hydrographical evolution of the Campine
area started with the final retreat of the sea during the Neo-
gene, as a result of systematic sea level lowering and over-
all uplift of the bordering areas around the southern North
Sea (Miller et al., 2005; Cloething et al., 2007). During
the Early Pleistocene, the Meuse followed an eastern course
from Liège to the region north of Aachen where it merged
with the Rhine (Fig. 2). Tectonic movements along Roer Val-
ley graben faults, and uplift of the northern margins of the
Ardennes–Eifel massif caused the Meuse to breach its north-
ern interfluve and to follow a completely different course. At
the same time, the Rhine shifted its course as well, flowing
into the northern part of the Campine area where it merged
with the Meuse (Fig. 2). Age control is limited, but this event
probably took place around 1 Ma at the earliest, since the
confluence area of both rivers was situated in the southeast-
ern part of the Roer Valley graben prior to 1 Ma, and the area
that covers the Campine Plateau today was drained by local
“Belgian” rivers until that time (Westerhoff et al., 2008). It
appears that both rivers shifted their course towards a more
eastern position by 0.5 Ma at the latest, given the absence
of Rhine deposits younger than 0.5 Ma in the depocenter of
the Roer Valley graben (Schokker et al., 2005). The deposits
that cover the Campine Plateau are often correlated with the
upstream main terraces of the Meuse and high terraces of
the Rhine (Paulissen, 1973). Westaway (2001) provides a
time window for deposition of Rhine sediments west of the
Ville Ridge (high terraces HT2 and HT3) between 0.5 and
1 Ma. The Rhine sediments on top of the Campine Plateau
have been attributed to the Sterksel Formation, which was
deposited between ca. 0.6 and 1.1 Ma according to van Balen
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et al. (2000), and between ca. 0.75 and 1 Ma (post-Jaramillo
Early Pleistocene) according to Gullentops et al. (2001). Re-
cently, deposits from the high terraces of the Rhine between
Bonn (Germany) and Venlo (the Netherlands) have been
dated to 750± 250 and 740± 210 ka using in situ-produced
cosmogenic radionuclides (Dehnert et al., 2011). Similarly,
Meuse terrace deposits in the Liège area (Romont, Belgium)
that are generally assumed to correspond with the series of
main terrace deposits, have been dated to 725±120 ka using
the same technique (Rixhon et al., 2011).

During the Middle Pleistocene, the hydrography of north-
ern Belgium drastically changed due to the “opening” of
the English Channel (Vandenberghe and De Smedt, 1979;
Fig. 2). Various studies (Gibbard, 2007; Gupta et al., 2007;
Toucanne et al., 2009) link the opening of the English Chan-
nel to the catastrophic drainage of a large proglacial lake dur-
ing marine isotope stage 12 (MIS 12), approximately 450 ka
ago (Elsterian). The 450 ka event triggered the formation of
a buried paleo-channel system known as the Flemish Valley,
with extensions towards the south and the east (Tavernier and
De Moor, 1974). The Nete catchment is generally considered
to be the eastern extension of the Flemish Valley. At present,
the Campine Plateau is a landform that markedly stands out
with respect to its surroundings. It is a fluvial terrace covered
by coarse gravelly Meuse deposits in the south and south-
east and sandy Rhine deposits in the north (Fig. 3). The sedi-
ments have proven to feature a periglacial paleoenvironment
and were deposited by braided rivers (Paulissen, 1973 and
1983). The Campine Plateau can be considered a classical
case of relief inversion, given its prominent position in the
landscape (Paulissen, 1983; Fig. 4). Undoubtedly, the area
west of the Campine Plateau experienced prolonged phases
of erosion and denudation after the Rhine had left the region,
around 0.5 Ma at the latest (Fig. 4b; Beerten et al., 2017).

3 Material and methods

3.1 Cosmogenic radionuclide profiling

Cosmogenic radionuclides (CRN) allow us to quantify ge-
omorphological processes over time spans covering the last
2 Myr. In this study, we use the concentration vs. depth pro-
file of a single in situ-produced CRN (10Be) to constrain the
post-depositional denudation rate,E (m Myr−1) of the fluvial
terrace. The accumulation of CRN, Ntotal(z, t) (atoms g−1),
in an eroding surface can be described by a mathematical
function composed of two terms that represent the inherited
CRN concentration of the fluvial sediment, Ninh(atoms g−1),
and the post-depositional production of CRN, Nexp(z):

Ntotal (z, t)=Ninh+
∑
i
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Figure 4. (a) Detailed DTM of the study area (Digitaal Hoogte-
model Vlaanderen II, DTM, raster, 1 m), with indication of the sam-
pling location (white arrow). Note the regularly shaped sand quar-
ries south of profile line A-A’ which appear as depressions on the
DTM. (b) Topographic cross section according to the profile line
(A-A’) shown in (a). The sampling location is schematically shown
as a gray rectangle.

where E is expressed in cm yr−1 (m Myr−1
× 10−4), t

(years) is the exposure age, λ (1 yr−1) the decay constant
(λ= ln 2/t1/2), z0 the initial shielding depth (z0 = E× t),
ρ (g cm−3) the density of the overlying material and 3i
(g cm−3) the attenuation length. The production rate of CRN,
Pi(z) (atoms g−1 yr−1), is a function of the depth, z (cm), be-
low the surface:

Pi (z)= Pi(0)e−
zρ
3i
∗ (2)

The subscript “i” indicates the different production pathways
of in situ-produced 10Be via spallation, muon capture and
fast muons following Dunai (2010). In this study, the rela-
tive spallogenic and muogenic production rates are based on
the empirical muogenic-to-spallogenic production ratios es-
tablished by Braucher et al. (2011), using a fast muon rela-
tive production rate at SLHL of 0.87 % and slow muon rel-
ative production rate at SLHL of 0.27 %. The effective at-
tenuation length is here equal to the apparent attenuation
length as the depth profile was taken on a horizontal sur-
face. The effective attenuation length for the sampling po-
sition was obtained using Table 4 in Marrero et al. (2016),
and equals 152 g cm−2. For fast and stopped muons, the at-
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Table 1. Analytical results from the in situ-produced 10Be analysis. The depth profile is located at 50.95◦ N and 5.63◦W at an altitude of
45 m. A sea-level, high-latitude (SLHL) production rate of 4.25± 0.18 atoms g−1 yr−1 was used, which represents the regionally averaged
SLHL production for Europe (Martin et al., 2017). Refer to the main text for more information on the methodology used.

Sample label Sample field code Relative depth Absolute depth Quartz Be carrier 10Be/9Be 10Be conc
(cm)* (cm) (g) (mg) (× 10−12) (× 105atoms g−1 qtz)

TB1204 BE-MHR-II-00 0 45 34.406 0.208 0.388± 0.016 1.537± 0,065
TB1205 BE-MHR-II-01 30 75 33.535 0.207 0.329± 0.016 1.328± 0.070
TB1206 BE-MHR-II-02 50 95 33.370 0.207 0.252± 0.016 1.015± 0.070
TB1207 BE-MHR-II-03 70 115 34.467 0.207 0.318± 0.016 1.245± 0.065
TB1940 BE-MHR-II-04 110 155 23.478 0.164 0.521± 0.019 2.397± 0.095
TB1208 BE-MHR-II-05 150 195 34.620 0.207 0.231± 0.015 0.898± 0.061
TB1944 BE-MHR-II-06 190 235 23.486 0.164 0.709± 0.043 3.272± 0.204
TB1209 BE-MHR-II-07 230 275 34.186 0.207 0.251± 0.014 0.987± 0.060
TB1210 BE-MHR-II-09 310 355 33.663 0,207 0.229± 0.014 0.909± 0.060
TB1211 BE-BLANK-01 n/a n/a 0.000 0.207 0.0011± 0.0006
TB1941 BE-BLANK-02 n/a n/a 0.000 0.164 0.0041± 0.0009

∗ The relative depth is given as depth below the uppermost sample. n/a: not applicable.

tenuation length was set at resp. 1500 and 4320 g cm−2 fol-
lowing Braucher et al. (2011). Production rates were scaled
following Stone (2000) with a sea level high-latitude produc-
tion rate of 4.25± 0.18 atoms g−1 yr−1 (Martin et al., 2017).
The latter represents the regionally averaged SLHL produc-
tion rate for Europe. The bulk density, ρ, of the studied flu-
vial sediment was set to 1.7 g cm−3, which is consistent with
the average value of upper Neogene and Quaternary sedi-
ments in the region (Beerten et al., 2010). A half-life of
1.387± 0.012× 106yr was used for 10Be following Cmeleff
et al. (2010). The CosmoCalc add-in for Excel was used to
calculate the scaling factors. Given the flat topography of the
Campine Plateau, topographic shielding was negligible and
therefore not corrected for (Norton and Vanacker, 2009).

3.2 Sampling and analytical methods

The depth profile was sampled in a sand pit (SCR-Sibelco
NV) on the northwestern edge of the Campine Plateau
(Fig. 4a and b). The altitude of the sampling spot is ca.
47 m (Tweede Algemene Waterpassing), while the crest of
the plateau further east reaches an altitude of ca. 48 m. The
almost 4 m thick sequence is composed of medium-grained
quartz-rich fluvial sands, overlain by a thin layer (35 cm
thick) of fine-grained aeolian sand (Fig. 5). Detailed grain-
size characteristics of the fluvial sand are given in Fig. 6.
Note that sample depth is given with reference to the top of
the fluvial sands. The lowermost unit A consists of medium
sand with mode and median in the range between 250 and
500 µm, while a significant portion of grains coarser than
500 µm is present. Unit B is finer with a median grain size
of ca. 250 µm and virtually no coarse sand (i.e., > 500 µm).
Unit C consists of coarse sand (median grain size more than
500 µm) with a significant amount of fine gravel fragments.
The next unit (E) is the finest unit of the sequence, with mode

Figure 5. Photograph of the sampled profile with indication of sam-
pling points, field codes, lithological units (A–G) and approximate
profile depth.

and median below 250 µm. Sediments from unit F are gener-
ally finer than those of units A and C, but coarser than those
from units B and D. Mode and median are in the range be-
tween 250 and 500 µm. Finally, unit G represents a thin layer
of fine sand, interpreted as Late Pleistocene aeolian deposits.
Note that samples MHR-II-06 and MHR-II-04 are taken in
much finer sand beds compared to the other samples.

From the depth profile, 10 samples were collected for CRN
analysis at depths ranging from 45 to 355 cm below the sur-
face, from which 9 were analyzed. Samples were more or
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Figure 6. 10Be concentration profile and results of the grain size analysis. Note that the elevated 10Be concentrations belong to samples that
were analyzed using a smaller grain size fraction than the other samples (i.e., 250–500 µm instead of 500–1000 µm). These are indicated by
pale gray dots. Depth is given relative to the uppermost sample.

less evenly spread out over the sequence, although the sam-
pling density was higher towards the top (Table 1). Samples
were taken as bulk samples of 1.5 kg, over a depth interval of
10 cm. Samples were sieved, and the 500–1000 µm grain size
fraction was used for sample preparation, except for the fine-
grained sand samples MHR-II-04 and MHR-II-06, where the
250–500 µm fraction had to be used.

Samples were prepared at the University of Louvain Cos-
mogenic Isotope Laboratory (Louvain-la-Neuve). In situ-
produced 10Be was extracted from purified quartz using stan-
dard separation methods described in von Blanckenburg et
al. (1996) and Vanacker et al. (2007b). Two blanks were pro-
cessed with the nine samples. Approximately 200 µg of 9Be
carrier was added to blanks and samples containing 30 to 35 g
pure quartz. The 10Be / 9Be ratios were measured in BeO
targets with accelerator mass spectrometry on the 0.6 MV
Tandy at ETH Zurich (Kubik and Christl, 2010). The ratios
were normalized to the ETH secondary in-house standard
S2007N with a nominal value of 10Be / 9Be of 28.1× 10−12

(Kubik and Christl, 2010), which is in agreement with a
half-life of 1.387 Myr (Chmeleff et al., 2010). Samples are
corrected for the number of 10Be atoms in their associated
blanks. The analytical uncertainties on the 10Be / 9Be ratios
of sample and blank are then propagated into the 1σ analyti-
cal uncertainty for nuclide concentrations.

3.3 Bayesian inference

3.3.1 Inverse problem

To acknowledge that measurements and modeling errors are
inevitable, the inverse problem is commonly represented by
the stochastic relationship given by

d = F (x)+ e, (3)

where d = (1, . . ., N ) ∈ RN , N ≥ 1 is the measurement data,
F is a deterministic forward model with parameters, x, and
the noise term, e, lumps measurement and model errors.

Inversions were performed within a Bayesian framework,
which treats the unknown model parameters x as random
variables with posterior probability density function (PDF),
p (x|d), given by

p (x|d)=
p (d|x)p (x)

p (d)
∝ L (x|d)p (x) , (4)

where p (x) denotes the prior distribution of x and L (x|d) ≡
p (d|x) signifies the likelihood function of x. The normal-
ization factor p (d) =

∫
p (d|x)p (x)dx is obtained from nu-

merical integration over the parameter space so that p (x|d)
scales to unity. The quantity p (d) is not required for pa-
rameter inference. Unless stated otherwise, in the remainder
of this study we will focus on the unnormalized posterior
p (x|d)∝ L (x|d)p (x).

If we assume the residual errors, e, to be normally dis-
tributed, uncorrelated and with unknown constant variance,
σ 2
e , the log-likelihood function can be written as

ei = di −Fi (x) , (5)

L (x|d)=
1

√
2πσe

exp

[
−1
2σ 2
e

N∑
i=1

e2
i

]
. (6)

For numerical stability, it is, however, often preferable to
work with the log-likelihood function, l (x|d), instead of
L (x|d):

l (x|d)= −
N

2
ln(2π )−N ln (σe)−

1
2σ 2
e

N∑
i=1

e2
i . (7)
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The variance of the residual errors, σ 2
e , can be fixed before-

hand or sampled jointly with the other model parameters x.
Note that by fixing σ 2

e to a known measurement error, σ 2
m,

one implicitly assumes that the model is able to describe the
observed system up to the observation errors. This might not
be realistic in environmental modeling, where models are al-
ways fairly simplified descriptions of a more complex real-
ity. In this work, we therefore jointly infer σe with x. This
accounts for both measurement and model errors, under the
assumption that both types of errors obey a zero-mean uncor-
related and homoscedastic normal distribution.

3.3.2 Markov chain Monte Carlo sampling

The inference seeks to estimate the posterior parameter dis-
tribution of the model parameters, p (x|d). As an exact an-
alytical solution for p (x|d) is not available, we resort to
Markov chain Monte Carlo (MCMC) simulation to generate
samples from this distribution. The basis of this technique
is a Markov chain that generates a random walk through
the search space and iteratively finds parameter sets with
stable frequencies stemming from the posterior PDF of the
model parameters (see, e.g., Robert and Casella, 2004, for
a comprehensive overview of MCMC simulation). In prac-
tice, the MCMC sampling efficiency strongly depends on
the assumed proposal distribution used to generate transi-
tions in the Markov chain. In this work, the state-of-the-
art DREAM(ZS) (ter Braak and Vrugt, 2008; Vrugt et al.,
2009; Laloy and Vrugt, 2012) algorithm is used to gener-
ate posterior samples. A detailed description of this sam-
pling scheme including convergence proof can be found in
the cited literature and is thus not reproduced here. Note that
the considered CRN data inversion is a fairly simple problem
(the model in Eqs. 1–2 is quick and well-behaved, whereas
both the parameter and measurement data spaces are rather
low-dimensional). The use of DREAM(ZS) will become even
more attractive when considering larger parameter dimen-
sionality.

3.3.3 Prior distribution

The prior PDF is a key element of Bayesian inference. This
distribution encodes the available prior information about the
parameters and balances the effect of the likelihood func-
tion on the posterior PDF (Eq. 4). We assumed the individual
prior parameter PDFs to be independent:

p (x)=
Np∏
i=1
p (xi) , (8)

with Np = 4 the dimension of x.
Based on the current geological knowledge of the re-

gion, we specified a truncated Gaussian prior distribution
for E, with mean of 30 m Myr−1, standard deviation of
30 m Myr−1 and range of [0, 60] m Myr−1. The upper bound

of 60 m Myr−1 is based on (1) geomorphological evidence
presented in Fig. 4b, using the altitude difference between
the Campine Plateau and the adjacent Kleine Nete floodplain,
and (2) the youngest possible age for the Rhine sediments.
The lower bound of 0 m Myr−1 corresponds to the scenario
where the Campine Plateau is a residual relief due to erosion
resistance of the covering sediments. Overall, the resulting
p (E) is sufficiently vague to avoid over-constraining the in-
version while nevertheless discouraging the search to pick
up values close to the boundaries that are considered to be (a
priori) less likely. A uniform prior distribution in the range
[0, 1] Myr was selected for t . This is based on the presumed
burial age of the Rhine sands covering the Campine Plateau
(between 0.5 and 1 Ma) together with geologic evidence on
the evolution of the Scheldt Basin and in particular the Nete
catchment after the opening of the English Channel (0.45 Ma,
see Sect. 2). In addition, we put a uniform prior PDF with
range [1, 35] m on the product E× t . This limits the total
erosion that can possibly be inferred from the measurement
data to 35 m, as we expect that 35 m of total erosion on top of
the Campine Plateau is an absolute maximum. When adding
the thickness of Rhine sediment that covers the top of the
Campine Plateau (i.e., 5 to 10 m) to the maximum total ero-
sion, we obtain a maximum initial thickness of 40 to 50 m,
which corresponds to the thickness of Rhine deposits that
are preserved in the deepest part of the Roer Valley graben
(Beerten, 2006; Deckers et al., 2014). The minimum amount
of total erosion is set to 1 m, given the altitude of the sam-
pling position which is slightly (ca. 1 m) lower than the crest
of the plateau. The prior distribution for the inherited 10Be
concentration, Ninh, was assumed to be uniform. This is be-
cause solutions forN (z, t) in Eq. (1) always converge toNinh
as z tends to infinity, while no Ninh measurements are avail-
able at z larger than 3.5 m. The Ninh parameter was therefore
allowed to vary uniformly between 1× 104 atoms g−1 and
9× 104 atoms g−1. The upper bound of 9× 104 atoms g−1 is
consistent with the highest inherited concentration measured
in the profile (Table 2; the inherited concentration cannot be
higher than this value). The lower bound was somewhat arbi-
trarily set at 1×104 atoms g−1, given the fact that zero inher-
itance is considered to be very unlikely. Lastly, a so-called
Jeffreys (1946) prior of the form p (σe)∝ 1/σe was used for
σe. This classical choice basically means that one wants to
achieve σe values that are both as small as possible and large
enough to be consistent with the data misfit.

3.3.4 Comparison with the Bayesian approach in
CRONUScalc

For comparison, we implemented the approach taken by
Marrero et al. (2016) in CRONUScalc (CR). For brevity, in
the reminder of this paper we will refer to this CRONUS-
calc Bayes method as CRB. Similarly as with our approach,
CRB seeks to estimate p (x|d) using Eq. (4). However, CRB
does not generate a set of samples with frequencies stemming
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Table 2. Posterior linear correlation coefficients between the four
parameters sampled using our approach.

Sampled parameter E t Ninh σe

E 1
t −0.21 1
Ninh 0.67 −0.56 1
σe −0.13 0.08 −0.23 1

from p (x|d). Instead it samples the prior PDF, p (x), over a
high-resolution 3-D evenly spaced lattice and computes the
(normalized) posterior PDF, p (x|d)= L (x|d)p (x)/p (d),
for each grid point. This requires evaluation of p (d) =∫
L (x|d)p (x)dx, which is done with a trapezoidal integra-

tion scheme.
The need to evaluate p (d) using trapezoidal integra-

tion implies that CRB cannot use l (x|d) but requires using
L (x|d) instead. The L (x|d) formulation taken by CRB is
similar to Eq. (5), except for two aspects. First CRB includes
the more general heteroscedastic case as well. In other words,
the residual errors, e = [e1, . . .,eN ], can have different vari-
ances, σ 2

e1
, . . .,σ 2

eN
. Second and most important, CRB sets

the σei to analytical measurement errors, σmi . Using similar
notations as in Marrero et al. (2016), CRB uses

χ2
=

N∑
i=1

(
ei

σmi

)2

, (9)

L (x|d)=
N∏
i=1

(
1

√
2πσmi

)
exp

[
−
χ2

2

]
, (10)

where χ2 is a weighted sum of squared residuals (WSSR)
also referred to as the chi-square statistic. In this study σm is
assumed to be constant: σm1 , . . ., σmN = σm. Equation (10)
therefore reduces to Eq. (6) but with the standard deviation of
the residual errors, σe, fixed to σm. Thus CRB considers three
parameters: E, t andNinh. With respect to the associated 3-D
prior distribution, p (x), we used the assumptions as for our
approach (see Sect. 3.3.3).

As stated earlier, no matter whether ones uses a constant
σm or a different σmi for each residual, ei , fixing the stan-
dard deviation(s) of the residual errors to the standard devia-
tion(s) of the measurement errors implicitly assumes that the
model can fit the concentration data within the standard devi-
ation(s) of the measurement errors. If this assumption is not
met, then the resulting p (x|d) estimation will be biased to-
wards underestimating uncertainty. For the case of constant
σe and σm in Eqs. (6) and (10), respectively, the solution that
maximizes p (x|d), or maximum a posterior solution (MAP),

should have a root mean square error, RMSE=

√
N−1

N∑
i=1
e2
i ,

that is close to σe (Eq. 10) or σm (Eq. 6). Otherwise, the cho-

sen likelihood model will not be consistent with the actual
data.

3.3.5 Predictive uncertainty intervals

A 95 % uncertainty interval for the simulated CRN concen-
trations can be calculated by drawing parameter sets, x, from
p (x|d) and removing the 2.5 % largest and lowest values
from the associated set of F (x) responses. If all prior as-
sumptions about the residual error distribution are met, then
this 95 % predictive uncertainty interval should encompass
95 % of the measurement data.

4 Results

4.1 CRN measurement data

In general, there is a clear decrease in 10Be concentra-
tion with depth, except for two samples (MHR-II-04 and
MHR-II-06) which contain higher CRN concentrations (Ta-
ble 1 and Fig. 6). It is striking that the CRN concentra-
tions are consistently higher for the two samples where
the finer (250–500 µm) grain size fraction was analyzed.
Grain size-dependent 10Be concentrations can point to dif-
ferences in geomorphological process rates in the regions
of sediment provenance as suggested by Carretier et al.
(2015). Alternatively, the negative relationship between in
situ-produced CRN and grain size might also result from
non-stationary sedimentation rates, where samples from the
fine-grained layers accumulated CRN during the final stage
of the sedimentation cycle prior to a phase of non-deposition
and/or steady state. Apart from samples MHR-II-04 and
MHR-II-06, the CRN concentrations decrease non-linearly
with depth, from (1.5± 0.02)× 105 atoms g−1 at 45 cm to
(9.0± 0.2)×104 atoms g−1 at 355 cm (Table 1 and Fig. 6).
Because they are not compatible with the other profile data,
samples MHR-II-04 and MHR-II-06 were excluded from the
inversion, thereby leading to a measurement data set of seven
concentrations. These measured concentrations are associ-
ated with analytical measurement errors, σm1 , . . ., σm7 , in the
range of 6× 103–7× 103 atoms g−1.

If we consider the end-member where erosion rates of
the Campine Plateau are very low (E ≈ 0 m Myr−1), as one
could assume from its geomorphic setting as an inverted to-
pography, the difference between Ntotal(z) and Ninh gives
the Nexp(z), the concentration of cosmogenic nuclides that
is produced at depth z after deposition of the Rhine sands.
The apparent exposure age of the surface, t , can then be
reconstructed following Eq. (1). By doing so, we obtain an
apparent exposure age of 21.5± 1.5 ka, which strongly con-
tradicts the chronostratigraphical age estimates of the fluvial
deposits that cover the Campine Plateau that range between
0.5 and 1 Ma (see Sects. 2 and 3.3.2). We advocate that post-
depositional erosion has strongly altered the 10Be signature
of the upper layers of the Rhine sediments at the study site.

Earth Surf. Dynam., 5, 331–345, 2017 www.earth-surf-dynam.net/5/331/2017/



E. Laloy et al.: Bayesian inversion of a CRN depth profile 339

Figure 7. Marginal posterior distributions of the four parameters sampled using our approach: (a) erosion rate, (b) exposure age, (c) inherited
10Be concentration and (d) standard deviation of the residual errors. The blue bars denote the posterior PDFs and the red lines signify the
associated prior PDFs.

4.2 Inversion

4.2.1 Posterior distribution derived using the approach
proposed

We ran DREAM(ZS) for a (serial) total of 150× 103 model
evaluations. The marginal posterior distributions of the four
sampled parameters (including the standard deviation of the
residual errors, σe) are depicted in Fig. 7, while bivari-
ate posterior scatter plots together with iso-density contour
lines are presented in Fig. 8. The erosion rate, E, is rela-
tively well resolved with a clear mode around 39 m Myr−1

(Figs. 7a and 8a–b). The posterior E uncertainty remains,
however, large (Figs. 7a and 8a, b), with a standard deviation
(1σ ) of 8 m Myr−1 and a 95 % uncertainty interval of [25.8,
57.5] m Myr−1. Furthermore, posteriorE andNinh values are
positively correlated (Table 2 and Fig. 8b) with a linear corre-
lation coefficient of 0.67. The t posterior distribution shows a
weakly expressed mode between ca. 50 and 200 ka (Figs. 7b,
8a and c). Also, t does not correlate with other sampled pa-
rameters, except for Ninh (Table 2 and Fig. 8c) with which a

linear correlation of −0.38 is observed (Table 2). The t pa-
rameter is therefore left largely unresolved by the inversion.
The Ninh parameter shows a clear mode around 8.4× 104

atoms g−1 (Figs. 7c, 8b and c), which is lower than the lowest
measured value in the profile of about 9.09× 104 atoms g−1

(Table 1). As mentioned already, a moderately large depen-
dence on E is observed (Fig. 8b and Table 2). The σe pa-
rameter shows an approximately log-normal marginal poste-
rior with a clear mode around 1× 104 atoms g−1 (Fig. 7d).
This is consistent with the RMSE values achieved between
measured and simulated 10Be. Indeed, the MAP solution in-
duces an RMSE of 9.8×103 atoms g−1. Notice that with val-
ues ranging between 6× 103 and 7× 103 atoms g−1, the an-
alytical measurement errors are 1.4 to 1.7 times smaller than
the RMSE of the MAP solution. This illustrates the effect
of model errors. If the model were perfect, the MAP solu-
tion would have been associated with an RMSE that is within
the measurement error range of 6× 103

− 7× 103 atoms g−1

(Sect. 4.1).
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Figure 8. Selected scatter plots together with iso-density contour lines for the sampled posterior parameter distribution by our approach.
Black dots are posterior parameter sets and the density increases with the line color ranging from red (lower density) to yellow (higher
density).

Figure 9. 95 % predictive uncertainty interval (gray area) and asso-
ciated MAP prediction (black line) derived using our approach. The
red crosses represent the seven measurement data points used in the
inversion. Depth is given in absolute depth.

Figure 9 presents the 95 % uncertainty interval associated
with model predictions. This interval brackets five (71 % of
the data) or six (86 % of the data) out of seven observa-
tions, depending on how the BE-MHR-II-03 measurement
data point, which is located at the limit of the uncertainty
band, is interpreted (Table 1). With only seven data points
it is impossible to further assess the accuracy of the 95 %
uncertainty band displayed in Fig. 9. Overall, it seems rea-
sonably consistent.

4.2.2 Comparison against the approach taken in
CRONUScalc

For CRB we sampled over an evenly spaced 3-D grid with
upper and lower limits defined in Sect. 3.3.3 and 60 grid di-
visions in each dimension. This leads to a total of 216× 103

model evaluations, which is a little bit more than what was
used in our proposed approach (150×103). Moreover, we as-
sumed a constant measurement error: σm1 , . . ., σmN = σm =

7×103 atoms g−1. Using a constant rather than variable mea-
surement error is fully justified here because (1) the ana-
lytical error range is only between 6 and 7× 103 atoms g−1

(Sect. 4.1), and (2) as shown in Sect. 4.2.1 the model can-
not fit the data up to the maximum measurement error of
7× 103 atoms g−1 anyway.
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Figure 10. Marginal posterior distributions of the three sampled parameters using the Bayesian approach taken in the CRONUScalc program:
(a) erosion rate, (b) exposure age, and (c) inherited 10Be concentration. The blue bars denote the posterior PDFs and the red lines signify the
associated prior PDFs.

The marginal posterior distributions of the three sampled
parameters are presented in Fig. 10. The CRB finds similar
modal or MAP values to our approach (compare Fig. 7a–
c with Fig. 10a–c). The t posterior distribution obtained by
CRB is very close to that derived using our approach, ex-
cept for a narrower peak around the MAP. For E and Ninh,
the posterior distribution obtained by CRB is a narrower ver-
sion of that derived using our approach (compare Fig. 7a
with 10a and Fig. 7c with 10c). This is caused by the use of
σm = 7× 103 atoms g−1 in the likelihood function (Eq. 10).
The latter generally induces a more peaky likelihood (and
consequently narrower posterior density) than our approach
for which σe values in the range shown in Fig. (8d) are
sampled. Since, similarly as with our approach, the RMSE
of the MAP solution derived using CRB is approximately
9.8× 103 atoms g−1, the CRB likelihood function is actu-
ally too narrow to be consistent with the achieved data mis-
fit. Here, this leads to a moderate underestimation of uncer-
tainty. This becomes more apparent in the resulting predic-
tive uncertainty intervals (Fig. 11). Indeed the 95 % uncer-

tainty band only brackets four of seven data points, that is,
57 % of the observations.

Lastly, it is worth noting that the fact that the distribu-
tions presented in Fig. 7 are less smooth than those shown in
Fig. 10 is due to the different natures of grid-based sampling
and MCMC. A given bin in Fig. 7 is made of 3000 samples
that are drawn from the posterior PDF by the MCMC, while
each bin in Fig. 10 corresponds to a single (central-bin) point
of the sampled lattice.

4.2.3 Accounting for model errors in CRONUScalc

A simple fix for making the CRB uncertainty estimates more
consistent in the presence of model errors is as follows:

I. Identify the minimum RMSE over the sampled lattice,
plug it as an estimate of σe in Eq. (6) and compute the
posterior density of each lattice point.

II. Check whether the resulting MAP solution has an
RMSE that is close to the fixed σe. These two values
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Figure 11. 95 % predictive uncertainty interval (gray area) and as-
sociated MAP prediction (black line) derived using the Bayesian ap-
proach taken in the CRONUScalc program. The red crosses repre-
sent the seven measurement data points used in the inversion. Depth
is given in absolute depth.

will obviously be equal if uniform priors are used, but
may not necessarily be similar otherwise.

III. If the previous condition (II) is satisfied, then proceed
with the inference. Otherwise, set σe to the RMSE of
the MAP solution, recompute the posterior density of
each lattice point and go back to II.

For the considered case study, this procedure expectedly
leads to fixing σe to about 9.8×103 atoms g−1. This results in
increased posterior parameter and predictive uncertainty that
approach that derived using our approach in Figs. 7 and 9.
However, these uncertainty estimates remain slightly smaller
than those displayed in Figs. 7 and 9. This is because rather
than fixing σe, our approach infers its complete posterior dis-
tribution given the information content of the measurement
data.

5 Discussion of the obtained erosion rate estimate

In Fig. 12, erosion rates for outcrops, as published by
Portenga and Bierman (2011), are shown together with the
mean erosion rate obtained in the present study. The global
erosion data are based on surface samples (thickness rang-
ing between 0.5 and 8 cm) from a variety of bedrock, includ-
ing igneous, metamorphic and sedimentary rocks, and var-
ious climate–tectonic settings. Generally speaking, outcrop
erosion rates from Portenga and Bierman (2011) tend to be
lower than the 39± 8 m Myr−1 determined for the northwest-

Figure 12. Frequency distribution of outcrop erosion rates pub-
lished by Portenga and Bierman (2011), with indication of the mean
value obtained for the northwestern Campine Plateau (this study).

ern part of the Campine Plateau. This may be a reflection
of the fact that the Portenga and Bierman (2011) dataset is
partially based on bedrock samples which are more resistant
to erosion than unconsolidated sediment. Nevertheless, in a
western European context, the erosion rate that we report for
the northwestern Campine Plateau seems to be fairly high for
a fluvial terrace. For comparison, the Meuse younger main
terrace (YMT) near Liège does not show any signs of post-
depositional erosion following Rixhon et al. (2011). Proba-
bly, the coarse-grained and slightly consolidated nature of the
Meuse gravels can be put forward as an explanation. Simi-
larly, Dehnert et al. (2011) reported that the high terraces of
the Rhine in Germany and the Netherlands were eroded by
only 1–3 m, and that the loess cover presumably protected
the Rhine sands from significant erosion soon after deposi-
tion.

An alternative explanation for the relatively high erosion
rate found in the current study may be the proximity of the
North Sea, and low base level during glacial periods. In con-
trast to the Meuse and Rhine, the Scheldt Basin, to which the
northwestern Campine Plateau belongs today, developed in
response to the sudden base level lowering as a result of the
opening of the English Channel, ca. 450 ka (see Sect. 2). An
important feature of the Scheldt Basin is the Flemish Val-
ley, a buried river system. The sudden base level lowering
may have caused a regressive erosion wave penetrating into
the hinterland, shaping the Flemish Valley and its eastern ex-
tension, i.e., the Nete catchment, and cause increased ero-
sion rates in this distal part of the Scheldt Basin. The poste-
rior distribution for t , showing an increasing probability for
t<0.5 Myr, and peaking between 200 and 50 ka supports this
hypothesis. In the case of non-stationary erosion, it remains
unclear to which extent the erosion rate can be used to infer
the total amount of erosion at the site. In this study, we used
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Figure 13. Derived posterior distribution for total erosion (denuda-
tion) at the study site (E× t).

E× t as a joint prior for total erosion for which a lower and
upper limit of 1 and 35 m was set, and our results show an
erosion estimate distribution as given in Fig. 13. The poste-
rior for E× t is poorly resolved, which is mainly caused by
the poorly resolved posterior for t .

Our erosion estimate for the top of the northwestern
Campine Plateau asks for a revision of regional landscape
evolution models. Firstly, our results suggest that the total
amount of Rhine sediment would have been larger than what
can be observed today in the quarries (Fig. 4); this should be
taken into account when correlating Rhine sediment from the
Campine Plateau with that in the Roer Valley graben. Sec-
ondly, they indicate that post-depositional fault movement
along (segments of) the Feldbiss fault as derived from the
stratigraphy of Rhine sands should be considered to be a
minimum (Fig. 3). Thirdly, the amount of post-depositional
erosion west of the plateau (Fig. 2), as can be observed
from present-day altitude differences (northwestern Campine
Plateau vs. Nete Valley; Fig. 4b), should be regarded as a
minimum erosion value.

In future work, we plan to consider more parameters
within the Bayesian inversion when new and more densely
sampled profiles become available. Increasing parameter di-
mensionality is straightforward with our MCMC sampling,
but may quickly become intractable with the pure grid-based
approach taken in the CRONUScalc program (Marrero et al.,
2016). This limitation also holds for plain MC simulation as
done by Hidy et al. (2010). Moreover, in an attempt to ac-
count for differences in geomorphological process rates in
the regions of sediment provenance or non-stationary sedi-
mentation rates, resulting in grain-size-dependent 10Be con-

centrations, our MCMC inversion could be combined with a
distributed numerical forward modeling approach instead of
the currently used analytical solution.

6 Conclusions

We inverted an in situ-produced 10Be concentration depth
profile within a Bayesian framework from the northwestern
Campine Plateau (NE Belgium) to infer the average long-
term erosion rate, surface exposure age and the inherited
10Be concentration in the profile. Compared to the state of
the art in probabilistic inversion of CRN profile data, our in-
version approach has two new ingredients: it (1) uses Markov
chain Monte Carlo (MCMC) sampling, and (2) accounts for
(under certain conditions) the contribution of model errors to
posterior parameter and predictive uncertainty. We compared
our approach to that taken in the CRONUScalc program for
the considered case study. Both approaches are found to pro-
duce similar maximum a posteriori (MAP) values. Never-
theless, the method implemented in CRONUScalc also mod-
erately underestimates uncertainty. A simple fix for making
these uncertainty estimates more consistent in the presence of
model errors is therefore proposed. For the studied fluvial ter-
race of the Rhine which today belongs to the Nete catchment
(Scheldt Basin), the derived MAP post-depositional erosion
rate is ca. 39± 8 m Myr−1 (1σ ). This is fairly high com-
pared to published outcrop erosion rate data in the Meuse
and Rhine catchment, and elsewhere in the world. We believe
that the unconsolidated and gravel-poor nature of the stud-
ied Rhine sediment, the absence of a protecting cover (such
as loess) and possibly also headward erosion in response to
sudden base level lowering around 450 ka are possible expla-
nations. Our future work will try to better resolve the erosion
rate together with several other uncertain parameters from
MCMC inversion of dense two-nuclide concentration depth
profiles.
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