Earth Surf. Dynam., 5, 347-367, 2017
https://doi.org/10.5194/esurf-5-347-2017

© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Earth Surface
Dynamics

Quantifying uncertainty in high-resolution remotely
sensed topographic surveys for ephemeral gully
channel monitoring

Robert R. Wells!, Henrique G. Momm?, and Carlos Castillo’

I'National Sedimentation Laboratory, Agricultural Research Service, United States Department of Agriculture,
Oxford, Mississippi 38655, USA
2Department of Geosciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
3Department of Rural Engineering, University of Cérdoba, Cérdoba, Spain

Correspondence to: Henrique G. Momm (henrique.momm @mtsu.edu)

Received: 13 January 2017 — Discussion started: 20 January 2017
Revised: 17 May 2017 — Accepted: 26 May 2017 — Published: 6 July 2017

Abstract. Spatio-temporal measurements of landform evolution provide the basis for process-based theory for-
mulation and validation. Over time, field measurements of landforms have increased significantly worldwide,
driven primarily by the availability of new surveying technologies. However, there is no standardized or coor-
dinated effort within the scientific community to collect morphological data in a dependable and reproducible
manner, specifically when performing long-term small-scale process investigation studies. Measurements of the
same site using identical methods and equipment, but performed at different time periods, may lead to incorrect
estimates of landform change as a result of three-dimensional registration errors. This work evaluated measure-
ments of an ephemeral gully channel located on agricultural land using multiple independent survey techniques
for locational accuracy and their applicability in generating information for model development and validation.
Terrestrial and unmanned aerial vehicle photogrammetry platforms were compared to terrestrial lidar, defined
herein as the reference dataset. Given the small scale of the measured landform, the alignment and ensem-
ble equivalence between data sources was addressed through postprocessing. The utilization of ground control
points was a prerequisite to three-dimensional registration between datasets and improved the confidence in the
morphology information generated. None of the methods were without limitation; however, careful attention to
project preplanning and data nature will ultimately guide the temporal efficacy and practicality of management

decisions.

1 Introduction

Spatio-temporal measurements of landform evolution pro-
vide the basis for process-based theory formulation and val-
idation. Field measurements of landforms have increased
significantly worldwide, driven by the availability of new
surveying technologies. Recent improvements include, but
are not limited to, aerial and terrestrial light detection and
ranging (lidar) systems (Kukko et al., 2012; Vinci et al.,
2015; Eitel et al., 2016; Hawdon et al., 2016), integrated
unmanned aerial vehicles (UAVs) utilizing both photogram-
metric and lidar payloads (Bachrach et al., 2012; Bry et al.,

2015; Honkavaara et al., 2016), real-time kinematics (RTK;
Rietdorf et al., 2006), terrestrial photogrammetric systems
(James and Robson, 2014; Gémez-Gutiérrez et al., 2014; Di
Stefano et al., 2016; Marzolff, 2016), and low-cost and/or
freeware coupled structure-from-motion (SfM) and multi-
view stereo (MVS) photogrammetric software (Castillo et al.,
2012, 2015; Smith and Vericat, 2015; Piermattei et al., 2016).
However, the buyer must be aware that these systems can be
prone to misinterpretation (Wheaton et al., 2010), and even
the “high-resolution” equipment can provide misleading in-
formation (e.g., Fig. 13b in Vinci et al., 2015). Research ef-
forts should focus on a standardized and/or coordinated ef-
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fort within the scientific community to collect morphologi-
cal data in a dependable and reproducible manner, specifi-
cally when performing long-term process investigation stud-
ies (Castillo et al., 2016).

Ephemeral gullies are often defined as small channels on
the order of a few centimeters in depth, predominantly in
agricultural fields (Soil Science Society of America, 2008).
The emergence, evolution, and persistence of these concen-
trated flow path erosion features is controlled by the com-
bined effects of flow, slope, soil properties, topography, and
vegetation characteristics (Zevenbergen, 1989; Castillo et al.,
2016). The term ephemeral refers to the fact that agricultural
producers often erase these channels during regular farming
operations (Foster, 2005); flow within these channels is also
often cyclical. The combination of a highly dynamic lifes-
pan with the relatively small-scale channel features requires
high-accuracy measurements with high temporal and spatial
resolution.

Many studies have been conducted to assess the topo-
graphical accuracy of ephemeral or classical gully morpho-
logical measurements using a wide range of systems (e.g.,
Casali, et al., 2006; Gomez-Gutiérrez et al., 2014; Di Stefano
et al., 2016). Among them, lidar data have been used as the
reference for the evaluation of secondary remote sensing sys-
tems and physical contact systems. Traditional airborne lidar
studies have primarily focused on quantifying locational er-
ror from datasets generated by airborne systems, in which
locational variations are the result of coalesced errors gener-
ated by inaccuracies in the global positional system (GPS),
aircraft inertial measurement unit (IMU), and overall timing
of the system (Hodgson and Bresnahan, 2004). Lidar posi-
tional errors can also be the result of an interaction between
the laser pulse and features with sharp relief change or oc-
clusions that result in multiple returns from one laser pulse
(Milenkovi¢ et al., 2015). Evaluations of the accuracy of to-
pographical information using airborne lidar are often com-
pared with discrete sample locations and/or man-made tar-
gets with known coordinates (Hodgson and Bresnahan, 2004;
Csanyi et al., 2005). Despite the large number of studies and
methods developed to quantify positional errors in traditional
airborne lidar surveys, this type of survey does not offer the
temporal and spatial resolution necessary for the quantita-
tive monitoring of small-scale geomorphological characteris-
tics (i.e., ephemeral gullies) in terms of process description;
however, recent developments in UAV lidar systems provide
10 mm of survey-grade accuracy, one million measurements
per second, and a 360° field of view (FoV) in < 1.6kg pay-
loads. These UAV lidar systems can range from USD 100 000
to USD 400 000, depending on the level of accuracy and the
data collection rate (see http://www.rieglusa.com for an ex-
ample).

At a finer scale, investigation of ground-based and ter-
restrial lidar has demonstrated a high locational accuracy
(~2mm) and noted the importance of appropriate spatial
sampling density for ephemeral and classical gully investi-
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gation (Momm et al., 2013a). Topographic representations
of gully channels require datasets with a specific minimum
sampling density, which is dependent on site-specific topo-
graphical characteristics (Castillo et al., 2012; Momm et al.,
2013a). Overlapping the same area with multiple scans in-
creases the overall sampling density and assists in occlusion
and shadow avoidance while normalizing spatial resolution.

Studies involving various surveying techniques of concen-
trated flow paths have revealed a wide range of quality, ac-
curacy, cost, and field campaign effort (Momm et al., 2011,
2013b; Castillo et al., 2012; Wells et al., 2016). Among the
surveying techniques considered, photogrammetry has been
shown to provide simple but robust measurements of small-
scale changes in geomorphologic characteristics within agri-
cultural fields (Castillo et al., 2012; Gesch et al., 2015; Wells
et al., 2016). Further, a wide variety of platforms and tech-
niques have been used to capture images, including kites
(Marzolff et al., 2003), backpacks (Wells et al., 2016) and
UAVs (Ries and Marzolff, 2003; Bachrach et al., 2012; James
and Robson, 2014; Cook, 2017). Erosion monitoring pro-
grams based on photogrammetry have several advantages
compared to other surveying techniques. Photogrammetric
field surveys do not interfere with farming operations, as
they are nonobstructive; field campaigns are also extremely
efficient and often do not require specialized technical skill
sets to implement (James and Robson, 2012). However, pho-
togrammetric results can vary as a function of the controlling
parameters used during data collection and processing (Elt-
ner et al., 2016).

A particular point of interest is the general query posed by
Wheaton et al. (2010) concerning real geomorphic change.
With these evolving technologies, our ability to collect topo-
graphical information is seemingly limitless. At what point
can we agree that the results describe “real” change over
noise? The alignment of temporal topographical elements is
the most critical step when planning small-scale erosion stud-
ies (Smith and Vericat, 2015). Reliance on control points is
the foundation of classical surveying. All surveys must close
with a shot back to the initial occupation point. This is also
the initiation of error propagation. A multitude of solutions
exist for each set of photos and/or lidar points; however, the
unique solution is bounded by the spatial and vertical posi-
tioning of the control points (Micheletti et al., 2015). Pro-
vided that alignment can be controlled, the next operation
typically involves a culling process of some sort as the data
shift into organized units.

The conversion of irregularly sampled point clouds into
regular grids, referred to as digital elevation models (DEMs),
is extremely common as most flow routing algorithms and
soil erosion modeling technologies based on a geographic
information system (GIS) are designed to work using these
digital representations. As a result, a large number of stud-
ies have been conducted to evaluate DEM representation
as affected by sampling intervals, interpolation algorithms
(Aguilar et al., 2005; Ziadat, 2007; Bater and Coops, 2009;

www.earth-surf-dynam.net/5/347/2017/


http://www.rieglusa.com

R. R. Wells et al.: EG topographic survey uncertainty

349

Table 1. Datasets generated by three distinct surveying methods for the purpose of quantifying locational uncertainty in gully studies.

Dataset identification = Dataset description

Ground_2A Channel left and right photo pair

Ground_2B Upstream and downstream photo pair

Ground_4A Channel left and right with corner left and right photo pair

Ground_4B Upstream and downstream with corner left and right photo pair
Ground_4C Upstream and downstream with channel left and right photo pair
Ground_6A Upstream, downstream, channel left and right with corner left and right photo pair
Ground_8A Upstream, downstream, channel left and right with both corner photo pairs
Quad_20m Quadrotor flight at 20 m above ground surface

Quad_35m Quadrotor flight at 35 m above ground surface

Fixed_61m Fixed-wing flight at 61 m above ground surface

Fixed_122m Fixed-wing flight at 122 m above ground surface

Lidar Terrestrial lidar survey (reference)

* Dashed lines represent the delineation between survey modes.

James and Robson, 2012, 2014), and DEM spatial resolution
(Zhang and Montgomery, 1994; Kienzle, 2004; Momm et al.,
2013a).

The majority of previous studies have focused on accuracy
evaluation of a specific photogrammetric survey method at a
single time period. Varying sensors, platforms, and process-
ing methods can yield different results (variations in sam-
pling densities, gaps, and noise). Furthermore, measurements
of the same site using identical methods and equipment, but
performed at different time periods, can also lead to three-
dimensional registration errors. Therefore, the scope of this
work was to evaluate multiple survey techniques and pro-
vide a framework for temporal studies of ephemeral gully
channels. Three surveying platforms with varying parameters
were independently evaluated for locational accuracy and ap-
plicability in generating information for model development
and validation. The objectives of this study are twofold: to
quantify the overall accuracy of the different survey configu-
rations and to develop practical guidelines for the design and
implementation of future ephemeral gully monitoring stud-
ies.

2 Methods

2.1 Study site

The study site was located in the northwest corner of Web-
ster County, Iowa, USA (Fig. 1). Farming is the dominant
enterprise in Webster County. The crop rotation was a corn—
soybean rotation. Total annual precipitation is about 873 mm,
70 % of which usually falls between April and September.
The area of interest (AOI) within the field survey was a
small reach (1.9 x 1.3 m; 2.47 m?) of a 150 m long ephemeral
gully oriented south to northwest with eroding Clarion loam
(fine-loamy, mixed, superactive, mesic Typic Hapludolls) at
the upper (south) extent, Terril loam (fine-loamy, mixed, su-
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Figure 1. Study site location used in the evaluation of close-range
photogrammetric surveys of ephemeral gully channels.

peractive, mesic Cumulic Hapludolls) on the intermediate
slopes, and Webster clay loam (fine-loamy, mixed, superac-
tive, mesic Typic Endoquolls) within the lower relief section
of the field (Fig. 2). Within the AOI, the soil was Clarion
loam (Fig. 2b).

2.2 Field survey

Field surveys were conducted using three independent
modes: ground-based and terrestrial lidar, ground-based and
terrestrial photogrammetry, and airborne photogrammetry.
The surveys yielded 12 datasets (Table 1; dashed lines rep-
resent the delineation between survey modes). The terrestrial
lidar was considered the reference dataset due to perceived
superior accuracy. All surveys were run independently of
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Figure 2. (a) Study site with field ground control points (GCPs; circles) and a state monument (cross) on the bridge in the upper right corner.
(b) Selected AOI with channel GCPs (squares) for detailed surveys and comprehensive evaluation.

each other and completed on the same day. Each dataset was
represented using the NAD83 UTM 15N coordinate system.
In this study, the terrestrial lidar point cloud was gen-
erated using Topcon ScanMaster software (https://www.
topconpositioning.com/software/mass-data-collection/
scanmaster), all terrestrial photogrammetric point clouds
were generated using PhotoModeler Scanner software
(www.photomodeler.com/products/scanner/default.html),

and all airborne photogrammetric  point clouds
were generated using Pix4Dmapper Pro software
(https://pix4d.com/pix4dmapper-pro/). It is acknowl-

edged that the selection of input parameters influences the
sampling intensity and local elevation variance; however,
the quantification of the influence of input parameters on the
output is beyond the scope of this study. Here, similar survey
methods used the same input parameters to generate point
clouds.

2.2.1 Differential global positioning system (DGPS) for
ground control points (GCPs)

Site preparation began by locating a state monument point
(Fig. 2a) and laying out 406 x 406 mm quad-triangle, white-
on-black sheet GCPs and considering the long and short axes
of the field as well as the high and low elevations within the
field boundary, herein considered to be the field GCPs (10 to-
tal). One additional set of GCPs with RAD coded targets
was arranged along the gully channel (four pins at the lo-
cation; Wells et al., 2016), herein considered to be the chan-
nel GCPs (four total). All GCPs were surveyed using Topcon
GR-3 DGPS survey equipment (Topcon Corporation, Tokyo,
Japan; 10 mm of horizontal and 15 mm of vertical kinematic
accuracy) to obtain relative position in reference to the state
monument point. A static occupation (6 h; 3 mm of horizon-
tal and 5 mm of vertical accuracy) was initiated with the base
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station, then all GCPs (field, channel, and state monument)
were surveyed with the rover (20 s collection interval). All
survey data were corrected using an OPUS (National Geode-
tic Survey) solution for the base station location, processed
with reference to the state monument point (6 mm of overall
vertical accuracy). Both (field and channel) GCP positions
were used to adjust point clouds from the lidar and pho-
togrammetric surveys of the site.

2.2.2 Terrestrial lidar survey

The terrestrial lidar survey was conducted using a Top-
con GLS 1500 (Topcon Corporation, Tokyo, Japan; 4 mm of
single point and 2 mm of surface accuracy with a spot size
< 6mm). The system operates in a similar fashion to stan-
dard total stations. For each laser pulse, the system records
x, y, and z coordinate values with respect to the position of
the scanner sensor (local coordinate system), the intensity
of the returned signal (reflectance), and spectral information
from an integrated digital camera within the instrument. Lo-
cal coordinates are transformed into global coordinates dur-
ing postprocessing by entering the external geometry coor-
dinates (i.e., absolute position determined from a postpro-
cessed kinematic survey) of the GCPs. The AOI (demarked
by channel GCPs; 2.47 m?; Fig. 2b) within the field bound-
aries covering the gully channel was surveyed with one scan
resulting in a total of 5 613 334 scan points.

Given the level of user control over the input parameters
and the high locational accuracy of terrestrial lidar systems,
this survey method was selected as the reference to which
all other survey methods were compared. However, it is im-
portant to acknowledge that this survey method does have
limitations.

In surveys with a high sampling intensity, it is common
for the same location on the ground to be hit by multiple
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laser pulses. This yields datasets with a high sampling in-
tensity but a range of elevation values for the same location
(i.e., fluff) given the vertical accuracy of the system. In this
study, this elevation variability is estimated to be approxi-
mately £2 mm. The sensor operates in the near-infrared por-
tion of the electromagnetic spectrum (1535 nm) and in this
spectral range; electromagnetic energy is absorbed by water
(Aronoft, 2005). In locations with water features, the sensor
emits laser pulses, but no laser pulse is reflected back to the
sensor; this prevents the range calculation for that particu-
lar pulse. During data collection for this survey, a shallow
film of water was present in the gully channel (Fig. 3a). As
a result, no points were recorded in the water-covered region
(Fig. 3b; e.g., Gomez-Gutiérrez et al., 2014). Sampling gaps
in lidar surveys can also be attributed to vertical features that
limit the sensor line-of-sight, which is referred to as shad-
owing (Fig. 3c). The basic principle of lidar technology is
to measure the time needed for an individual laser pulse to
travel from the transmitter to the target and back to the re-
ceiver, allowing the range distance to be calculated (Wehr
and Lohr, 1999). However, in certain situations, as the scan-
ner moves along the scan arc, the laser footprint hits an area
just past the edge of a surface where the next return appears
to be from a distance greater than expected (i.e., occlusion).
In this case, the gap is linearly filled by equally spaced points
(Fig. 3c, highlight). A shadow of the obstruction appears in
the dataset. These artificial points may be filtered by inten-
sity, and multiple scan positions may be used to discriminate
the features. Here, the AOI was slightly decreased in areal
size to omit GCP occlusions from the dataset.

2.2.3 Terrestrial photogrammetric survey

Terrestrial photogrammetry was conducted using a
Nikon D7000 16.2 MP camera (Nikon Inc., Melville, NY)
with a calibrated 20mm lens (Gesch et al., 2015; Wells
et al., 2016). The camera was mounted to a backpack
frame connected to an iPad mini (Apple, Cupertino,
CA) through a WiFi CamRanger hub (Camranger LLC;
http://www.camranger.com) (Wells et al., 2016). Multiple
images were collected around the channel GCPs, including
views from each corner and all sides. Still images captured
by the camera were transformed into point clouds using
PhotoModeler Scanner photogrammetric software. Initial
data processing included aerial triangulation and bundle
adjustment, camera position, and orientation. Following
initial processing, the channel GCP positions (i.e., global
external geometry) were included to optimize point cloud
accuracy.

2.2.4 UAV-based photogrammetric survey

Two UAV platforms were used to collect airborne pho-
tography (https://www.sensefly.com/home.html): fixed wing
(eBee) and quadrotor (albris). The fixed-wing platform had
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a 12 MP nadir camera (i.e., belly mount; Canon S110 RGB)
and was deployed (eMotion2 v2.4.10) to capture the entire
field boundary (Fig. 2a) by throwing the craft in the air; the
craft flies, captures images, and then lands itself. The de-
ployment software parameters were altitude (117 m, 58 m),
resolution (41 mm, 20 mm), latitude overlap (80 %, 50 %),
longitude overlap (80 %, 50 %), image collection (356, 569),
and image format (CR2 RAW) for the two respective flights.
The quadrotor platform had a 38 MP camera mounted within
a 180° vertical range head and was deployed (eMotionX
v1.3.0) to capture both the extent of the gully within the
field and specific points of interest (i.e., AOI; Gesch et
al., 2015; Wells et al., 2016). The quadrotor was deployed
through mission planning software. The craft takes off, flies
and captures images, and then lands itself. The deployment
software parameters were altitude (35 m, 20 m), resolution
(7mm, 5 mm), latitude overlap (75 %, 75 %), longitude over-
lap (80 %, 80 %), image collection (96, 146), and image for-
mat (DNG RAW) for the two respective flights. During the
flights, winds from the southeast ranged from 7 to 10ms~!
and skies were clear.

Still images captured by the UAVs were transformed into
point clouds using Pix4DMapper Pro photogrammetric soft-
ware. Initial data processing included camera calibration,
aerial triangulation and bundle adjustment, camera position,
and orientation. Following initial processing, field GCP po-
sitions (i.e., global external geometry) were included to opti-
mize point cloud accuracy.

Both fixed-wing and quadrotor UAV systems were de-
ployed with a fixed path and common photograph overlap
percentage. All missions and deployments were preplanned
using flight planning and control software provided by the
manufacturer. A mission block and a specific area or point
of interest were selected, including preferred ground reso-
lution, camera head angle (quadrotor only), and flight alti-
tude. Flight lines for aerial coverage, circular paths with a
horizontal plane around objects of interest (quadrotor only),
image capture points, and waypoints were then generated
prior to deployment. Key flight parameters were displayed in
real time, along with the battery level and image acquisition
progress, while the autopilot continuously analyzed onboard
control data to optimize the flight.

2.3 Dataset alignment

To ensure the highest three-dimensional alignment among all
point clouds and consistent spatial coverage by all methods, a
three-step preprocessing approach was developed. First, the
set of four channel GCPs (white square targets in Fig. 2b)
were used to generate a rectangular polygon to subset the
point clouds in all surveys and ensure that all surveys cover
exactly the same ground position. Second, a smaller polygon
subset was created by generating a polygon with a 50 mm
reduction on all sides. This was performed to exclude ar-
eas close to the channel GCPs and ensure the elimination
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Figure 3. Limitations of the terrestrial lidar survey used herein as a reference dataset. (a) Photograph of AOI showing water in the channel,
which limits laser pulse return to the sensor, causing sampling gaps in the point cloud (b). The presence of high relief features (GCPs) in the
DEM (c¢) with sharp edges that cause the generation of multiple laser pulse returns due to the split footprint effect.

of shadowing and occlusion created by the slightly elevated
channel GCPs. Third, the sampling void within the lidar
dataset, created by the presence of a thin film of water within
the channel (Fig. 3a), was manually digitized into another
polygon and used to remove points from all photogrammet-
rically generated datasets to ensure uniformity among all
datasets. Essentially, instead of using interpolated data within
this void in the reference dataset, we simply placed a void in
all datasets; therefore, we do not introduce bias into the cal-
culations with regard to the water film void within the lidar
data (e.g., Gémez-Gutiérrez et al., 2014).

Subsequently, since each surveying method was per-
formed using the same set of field and channel GCPs, a man-
ual inspection of measured points located coincident with
channel GCPs (white square targets in Fig. 2b) was used to
generate planes (10 total), one for each dataset with the ex-
ception of the Fixed_61m and Fixed_122m datasets, in which
no points were located on top of the channel GCPs. The four
GPS-surveyed coordinates of the center location of the chan-
nel GCPs were used to fit a reference plane to be matched
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by all surveys (black squares in Fig. 4). Three-dimensional
locational differences between the reference plane generated
using the GPS survey (black squares in Fig. 4) and the planes
of each surveyed dataset (lidar and photogrammetry) were
calculated using the iterative closest point (ICP) algorithm
(Besl and Mckey, 1994; James and Robson, 2012; Micheletti
et al., 2015) implemented in Matlab (MathWorks Inc., Nat-
ick, Massachusetts). Since no scale issues were observed, no
scaling factor was implemented in the ICP. The ICP algo-
rithm minimizes the locational differences between two sets
of three-dimensional point clouds and outputs a 3 x 3 rota-
tion angle matrix, R, and a 1 x 3 translation vector, T (Eq. 1).
These matrices were used to three-dimensionally transform,
through rotation and translation, the measured point clouds
to best match the reference plane:

X X
Y| =T+Rpype | ¥ ) (1)
Z VA

ref meas
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Figure 4. Determination of affine transformation matrices using iterative closest point (ICP) methodology.

2.4 Error metrics

One of the problems in looking at the data in the original
point cloud format was the large difference between the total
number of points within datasets (i.e., hundreds to millions),
which tends to bias the results; therefore, in the sections that
follow, the investigation of point cloud data is complemented
by an analysis of gridded data. In the point cloud analysis,
each point within the photogrammetry surveys was compared
to that within the lidar survey. The analysis is carried out in
two ways: point normal to the plane (each photogrammetry
point was projected normal to a fitted plane of lidar points at
the nearby position) and spot elevation to triangular irregu-
lar network (TIN; each photogrammetry point was projected
up or down to intersect the TIN surface of the lidar points).
In the gridded data analysis, a volume difference and cross-
sectional assessment are performed. This type of data struc-
ture (i.e., raster grid) is a common format used to estimate
soil loss volumes and generate cross sections for modeling
exercises (Dabney et al., 2014). The gridded data introduce a
common means of discussing differences between the survey
methods.

2.4.1  Sampling intensity, local variance, and spatial
pattern

Sampling intensity is defined as the number of points per
unit of area. Investigation of the sampling intensity spatial
variation can reveal oversampled or undersampled locations.
Undersampled locations may be potential sources of error
in quantifying geomorphologic change (i.e., cross-sectional
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areas or volumes), especially in surfaces with high relief.
Sampling intensity was evaluated using the quadrant method
(Dodd, 2011), in which a virtual regular grid of 1cm was
imposed on each dataset and the number of lidar and pho-
togrammetry points falling within each grid was counted and
recorded. Similarly, the local elevation variance was evalu-
ated by calculating the elevation range (difference between
the maximum and minimum) within each grid. The local el-
evation variance is a function of the terrain characteristics,
sampling intensity, survey method, and postprocessing pa-
rameters.

Two metrics were used to quantify the spatial pattern dis-
tribution: distances between events and between events and
random points not in the pattern (void space). The G func-
tion, G(r), defined as the cumulative frequency distribu-
tion of nearest-neighbor distances (Lloyd, 2010), provides
the conditional probability that the distance between points
(event—event) is less than the point distance threshold (7).
The empirical distribution is obtained for each distance r by
counting the number of points at distances less than or equal
to r from each point within the AOI. The theoretical distri-
bution is obtained by assuming a completely random pattern
with density A (estimated by the ratio of the total number of
points divided by the area of the AOI), modeled as a Poisson
process. Empirical values closer to the theoretical values in-
dicate a random distribution, empirical values above the the-
oretical values indicate clustering, and empirical values be-
low the theoretical values indicate a more regular distribution
(Bivand et al., 2008). The F function, F (r), defined as the
cumulative frequency distribution of the distance to the near-
est point in the AOI from random locations not represented
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Figure 5. Schematic representation of the positional accuracy analysis. Black dots represent the reference dataset (lidar) and the green
circle represents the point being evaluated from photogrammetry. (a) Red circles represent the normal projection of the green point onto the
tangential plane fitted to the reference dataset and (b) the vertical projection of the green point into the three-dimensional reference triangular

irregular network (TIN).

within the AOI (Lloyd, 2010), provides the probability of ob-
serving at least one point (event) closer than r to an arbitrary
point within the AOI (“empty space” or “void” distances).
Estimated and theoretical distributions are obtained in a way
similar to the G function. The interpretation of the graphed
observed versus the theoretical values indicates a regular pat-
tern when the observed is above the theoretical values and
clustering when it is below (Bivant et al., 2008). These point
pattern analyses were performed using the spatstat package
in the R software package (Baddeley and Turner, 2005; Bi-
vand et al., 2008).

Furthermore, points with the same x, y, and z to the fifth
decimal place were removed from the lidar dataset, as they
indicate the collection of redundant information.

2.4.2 \Vertical and horizontal displacement using point
tangential projection to plane

The vertical and horizontal displacement between the li-
dar and photogrammetry measurements in each dataset was
quantified using the normal projection of each photogram-
metry point into a plane fitted to the nearest lidar points
(Fig. 5a). For each photogrammetry point (green circle in
Fig. 5a), the nearest (within a 25 mm sphere) lidar points
were selected (black dots in Fig. 5a), a plane was fitted to the
selected lidar point cloud points, the photogrammetry point
was normally projected onto the plane, the coordinates of the
intersection point (red circle in Fig. 5a) were recorded, and
statistics were generated. This analysis was performed for all
datasets using an in-house-developed Python script, where

D, = ( Zglane . Z)}zhoto)
. plane photo
y = (Zy - Zy )

D, = (Zglane . Zghoto) ' )

O
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2.4.3 \Vertical displacement using spot elevation

The three-dimensional point cloud representing the reference
dataset (lidar) was converted into a TIN (Fig. 5b). Each point
in the photogrammetry dataset (green circle in Fig. 5b) was
compared to the lidar TIN by fixing the photogrammetry x
and y coordinates while varying the z coordinate up or down
until the point intersected the TIN (red circle in Fig. 5b). The
z coordinate at intersection was recorded. This analysis was
performed using ArcGIS (ESRI, 2011):

D, = (71N - Z2"°). (3)

The vertical displacement at a location is calculated by sub-
tracting the photogrammetry elevation from the lidar eleva-
tion of the TIN. Descriptive elevation statistics were gener-
ated based on all raster grid cells.

2.4.4 Gridded surface assessment

All point clouds were converted into 5 x 5 mm regular raster
grids using linear interpolation. The two upstream channel
GCPs served as the base of the rectangular grid; the rough-
ness of individual datasets was highly dependent on the
sampling intensity. Volume difference calculations were per-
formed between the lidar raster grid and the photogrammetry
raster grid. Two metrics were calculated, volume difference
and absolute volume difference (Egs. 4 and 5):

n
Vdiff = Z [(Z}idar _ ZlPhOtO) . Ca] i (4)
i=1

n

i hot

Viee = . [| 20100 — ™
i=1

ca] , 5)

where Z'92" jg the reference elevation, ZP'® is photogram-
metry elevation, ca is the raster grid cell area (0.000025 m2),
and n is the total number of raster grid cells.
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Table 2. Metrics used in the ranking analysis of the photogrammetric measurements.

355

Metric  Analysis Description
M1 Volume calculations from gridded data  Absolute volume difference between photogrammetric and lidar-
generated raster grids.
M2 Volume calculations from gridded data  Iterative accumulation of individual raster grid cell
elevation differences using absolute values.
M3 Cross-sectional comparisons Averaged coefficient of correlation between photogrammetric and lidar
cross-sectional elevation values derived from raster grid analysis.
M4 Cross-sectional comparisons Averaged standard error between photogrammetric and lidar
cross-sectional elevation values derived from raster grid analysis.
M5 Cross-sectional comparisons Averaged area percent difference between photogrammetric and lidar
cross-sectional elevation values derived from raster grid analysis.
M6 Spot elevation Range of elevation difference between lidar three-dimensional
irregular mesh and gridded photogrammetry.
M7 Spot elevation Variance of elevation difference between lidar and photogrammetry
elevation values.
M8 Spot elevation Mean elevation difference between lidar and photogrammetry elevation values.
M9 Spot elevation Coefficient of correlation between lidar and photogrammetry elevation values.
M10 Spot elevation Standard error of linear regression between lidar and photogrammetry
elevation values.
Ml11 Normal to plane Range of elevation difference between fitted plane to nearest-
neighbor lidar points and gridded photogrammetry.
Mi12 Normal to plane Variance of elevation difference between lidar and photogrammetry
elevation values.
M13 Normal to plane Mean elevation difference between lidar and
photogrammetry elevation values.
M14 Normal to plane Coefficient of correlation between lidar and photogrammetry elevation values.
M15 Normal to plane Standard error of linear regression between lidar and photogrammetry

elevation values.

2.4.5 Gridded cross-sectional assessment

Gully modeling technologies often use cross sections as ba-
sic modeling units. With the objective of assessing the error
introduced by each survey to a cross-sectional analysis, the
raster grid surfaces were used to generate nine cross sections.
For each cross section, various assessments were conducted,
including minimum elevation, maximum elevation, mean el-
evation, variance, linear modeling (R2, p, SEM), and area
calculations. The area above the curve was selected as one of
the metrics to quantify cross-sectional accuracy, given as

Ac="1(353.00— Z) - Adgisl, 6)

i=1

where A is the area for cross section ¢ in square meters, Z;
is the elevation at point i in the cross section, and Agig iS
the distance between points in the cross section (0.005 m).
An elevation constant (353.00) was used to adjust all cross-
sectional elevations due to local elevation relation to mean
sea level, thereby truncating the area values. The deviation
of the area estimates from the lidar were calculated using

Aobs — Aes
Adev = (—"b“ ‘“‘“) - 100. (7)

obs
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2.5 Dataset scoring

Since there is no true standard of judging the performance of
the measurements provided herein, a system of scoring was
developed to grade the photogrammetry data with regard to
the lidar data (Table 2). Scores between 1 and 11 were as-
signed to each evaluation category using both point cloud
and gridded data. For example, the difference in absolute
volume was assigned decreasing scores (1 — 11) for increas-
ing volume difference, and correlation coefficients were as-
signed decreasing scores (1 — 11) for decreasing correlation.
Put simply, if a variable had a positive impact, it received a
higher score and all variables were equally weighted. Each
score is defined in Table 2.

3 Results

3.1 Sampling intensity and point pattern evaluations

The point clouds evaluated here had a large variability in
sampling intensity (from 1 to >250 points cm~2; Fig. 6). The
difference in point sampling influences micro-topography
and apparent roughness and may lead to bias in volume es-
timation. If the surface is rough, the effect will be greater
(Fig. 7). Point counts are very low for the fixed-wing flights
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Figure 6. Sampling intensity using the quadrat method for each dataset considered. The individual colors represent point sampling count
intervals within a 1 x 1 cm virtual grid. Points located in the channel were removed to match the area covered by the lidar dataset (herein

considered as a reference).

in comparison to the other methods, and the sparse point
count leads to interpolation (filling) during raster gridding
(Fig. 6), while the elevation range is very similar for all meth-
ods with the exception of the fixed-wing datasets (Fig. 7).
Point pattern analysis was examined using the G and F
functions (Fig. 8). Each analysis tests through an assump-
tion of complete spatial randomness (homogeneous Poisson
process), although interpretations for clustering and regu-
larity are in opposition for each test (i.e., the regular point
spacing outcome for the G function is below the gray con-
fidence bounds, and for the F function it is above them).
At first, the confidence bounds (gray envelope bounding the

Earth Surf. Dynam., 5, 347-367, 2017

theoretical values; red dashed line) show that the Fixed_122
has a sparse point count. Looking at the G function results,
the data are clustered at distances of 0.02m (Fixed_122),
0.002 m (Quad_20), and 0.001 m (Ground_8A) and then reg-
ularly distributed. This indicates that small distances oc-
cur less often than expected under the assumption of spa-
tial randomness. The F function results indicate that the
data are randomly distributed to 0.06 m (Fixed_122) and
0.025m (Quad_20), and clustered for Ground_8A (i.e., at
short distances, fewer points are encountered than for a ran-
dom pattern); however, the scale of r should be acknowl-
edged (<3 mm). All 12 datasets yielded observed G func-
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Figure 7. Elevation range (difference between the minimum and maximum elevation) represented as individual colors within a 1 x 1 cm
virtual grid. Points located in the channel were removed to match the area covered by the lidar dataset (herein considered as a reference).

tion values below the theoretical values, indicating a reg-
ular sampling pattern. The terrestrial photogrammetric sur-
veys showed slight clustering at small distances (< 3 mm).
Therefore, based on these metrics, a regular sampling pattern
was observed, indicating that all locations within the study
area were sampled with a similar sampling pattern (no areas
were oversampled or undersampled) for all 12 datasets in this
study.

3.2 \Vertical and horizontal displacement evaluations

Graphical representations of both spot elevation to TIN and
normal to fitted plane for the fixed-wing flight at 122 m

www.earth-surf-dynam.net/5/347/2017/

of altitude (Fixed_122; Fig. 9) and the four-photo pair
(Ground_8A; Fig. 10) are provided for comparative pur-
poses. In the Fixed_122 spot and normal analysis (Fig. 9),
the range was larger for the spot (£0.06 m) than for the nor-
mal (£0.02 m); the residuals suggest a nonlinear response,
potentially attributed to over-smoothing of the surface and
lack of preprocessing (slope of the blue line). Residuals for
the Ground_8A (Fig. 10) have a constant variance and do not
show an x or y axis bias. Clearly, outliers can be identified
(Fig. 10; ~0.01 m) and it seems as though the spot analy-
sis provides a larger variance (i.e., amplified residual signa-
ture) than the normal analysis, which may be attributed to the

Earth Surf. Dynam., 5, 347-367, 2017
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Figure 8. Results of the G function and F function analysis for the Fixed_122m, Quad_20m, and Ground_8A datasets.

2.5 cm sphere used to define the plane in the normal analysis
(i.e., smoothing).

Very similar results were obtained with these two meth-
ods. All datasets had negligible mean displacement in the
x and y directions (Table 3). The standard error of Z
in the normal to plane analysis (Table 3) ranged from
0.3 mm (Ground_8A, Ground_6A, Ground_4B, Ground_4C,
Ground_2B) to 2.9 mm (Fixed_122). The mean displace-
ment for the normal to plane analysis in the z direction (Ta-
ble 3) ranged from 0.2 mm (Quad_35) to 7.4 mm (Fixed_61).
For the vertical spot to TIN analysis (Table 4), the stan-
dard error ranged from 0.4 mm (Ground_8A, Ground_6A,
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Ground_4B, Ground_2B) to 2.1 mm (Fixed_122), and the
mean displacement ranged from 0.1 mm (Ground_8A) to
35mm (Fixed_122). With the spot to TIN analysis, the li-
dar point cloud was evaluated, resulting in a standard error
of 0.3 mm and a mean displacement of 0.1 mm; both results
are similar to Ground_6A and Ground_8A for standard error
and Quad_35 and Ground_4A for mean displacement. The
mean elevation difference between photogrammetry and li-
dar was approximately 5.3 mm; between the quadrotor and
lidar it was 3 mm, and between the fixed wing and lidar it
was 25 mm. Perhaps the 10-fold increase derived from the
fixed-wing flights was simply because they were not prepro-

www.earth-surf-dynam.net/5/347/2017/



R. R. Wells et al.: EG topographic survey uncertainty 359

Fixed_122: spot Fixed_122: normal
352.70 - 352.70,
£ €
S 35266 S 35266
® B
> >
T 352.62¢ et ® o 352.62
z : : 2
£ 352.58 S £ 352.58
£ L = £
s e o
g’ 352.54 ¥t Sl §’ 352.54]
° ./.;‘ <]
< L
& 352,50 : 8 352,50
352,50 352.54 352.58 352.62 352.66 352.70 352.50 352.54 352.58 352.62 352.66 352.70
Vertically projected point elevation, m Normally projected point elevation, m
0.06 0.06
0.04 § | oo04f
£ g 0.02
3 ]
3 3 0.00
4 3 |
4 ¥ -0.02}*
-0.04
-0.06
0 10 000 20000 30000 40000 50000
Point count Point count

Figure 9. At 122 m of flight altitude, fixed-wing spot elevation comparison (left column) and normal to plane comparison (right column)
of photogrammetry and lidar point cloud data with a fitted line through the elevations (blue; spot) and the 1 : 1 line (red; spot); green is the
mean residual and the blue lines are the 25th and 75th percentiles.
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Figure 10. Four-photo pair (Ground_8A) spot elevation comparison (left column) and normal to plane comparison (right column) of pho-
togrammetry and lidar point cloud data with a fitted line through the elevations (blue; spot) and the 1 : 1 line (red; spot); green is the mean
residual and the blue lines are the 25th and 75th percentiles.
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Figure 11. Illustration of three-dimensional point cloud interpolation into raster grids for volume and cross-sectional analysis of gully
monitoring and geomorphologic quantification. Direct comparison of Ground_8A photogrammetry (a) and lidar (b) raster grid data with a
highlight of one specific cross section (c). The cross section can be realized anywhere within the scene.

cessed (affine transformation was not applied); however, this
result shows the importance of common reference points be-
tween surveys.

Most of what is reported here is due to point cloud align-
ment during the preprocessing step discussed earlier (i.e.,
GCP alignment for each, except fixed-wing flights). The
mean elevation difference was approximately 5 mm for all
datasets (Tables 3 and 4). Positive values indicate that the
lidar data was, on average, higher than the photogramme-
try data and negative values indicate that the lidar data was,
on average, lower than the photogrammetry data. Similarly,
when contrasting the photogrammetry elevation with the el-
evation of the normal point through linear regression (Ta-
ble 3), the slope of the fitted line is very close to unity for
all methods except Fixed_122, indicating spatially variable
discrepancies (higher elevation differences at one region than
the rest of the study site).

3.3 Gridded surface evaluations

The conversion of point clouds with irregularly spaced points
and spatially varying sampling intensity point clouds into
regular raster grids affected each dataset differently (Fig. 11).
For example, the lidar dataset contained a high sampling
intensity (>100 points cm™2) with relatively large elevation
variability in the points within a raster grid cell. There-
fore, the interpolation procedure generated a significantly
smoothed surface (e.g., Eitel et al., 2011). Conversely, the
fixed-wing surveys had a low sampling intensity and the
interpolation procedure linearly filled the gaps, potentially
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generating a significantly smoothed surface that differs from
the “natural” surface. The variance shows that roughness
is similar for most of the surveys, with the exception of
Fixed_122 for which the variance is extremely low (0.0005;
Table 5). This result merely points out that the Fixed_122
is extremely smooth in comparison to the other surveys due
to the low sampling density (Fig. 6) and enhanced interpola-
tion between points for the high spatial resolution raster grid
(0.005 m cell size).

One of the most important measurements for gully
monitoring is the volume difference between surfaces
(Table 6). Given the small scale of this type of erosional
feature (on the order of a few centimeters), it is vital to
have a good understanding of the expected error for each
method. Among similar collection methods (terrestrial
photogrammetry), the absolute volume difference (Table 6)
ranged from 1 to 52% in comparison to Ground_8A,
although these differences were extremely small in reality
(i.e., a range of 0.0062 to 0.0105m3). The performance
ranking, in terms of absolute volume difference, was
Quad_35, Ground_8A, Ground_4A, Ground_6A, Quad_20,
Ground_4C, Ground_4B, Ground_2B, Ground_2A,
Fixed_61, and Fixed_122 (10 to 164 % absolute vol-
ume difference for Ground_8A and Fixed_122, respectively,
in comparison to Quad_35; Table 6). The variances in
elevation difference between the lidar and photogrammetry
data were all quite similar (Table 5), with the exception of
the fixed-winged flights (effect of interpolation). In terms
of the elevation range of the data (Table 5), the terrestrial
photogrammetry and quadrotor flights were within 1.15 % of
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Table 3. Statistics comparing photogrammetry and terrestrial lidar using the point normal projected into the fitted plane analysis. Residual
values were calculated based on the coordinate difference of all raster grid cells.

Fitting linear model between photogrammetry
and lidar in z axis

Dataset Minimum Maximum Variance Mean Slope Intercept r value p value Standard
Z axis Z axis Z axis Z axis error
difference  difference  difference (m)

(m) (m) (m)
Fixed_122 —0.0227 0.0231 0.0001 —0.0038 0.8564 50.6434  0.9332  0.0000 0.0029
Fixed_61 —0.0229 0.0229 0.0001 —0.0074  0.9284 25.2422  0.9793  0.0000 0.0010
Quad_35 —0.0205 0.0216 0.0000 0.0002  0.9935 2.2965 0.9959  0.0000 0.0004
Quad_20 —0.0148 0.0193 0.0000 0.0053  1.0315 —11.1177  0.9970  0.0000 0.0004
Ground_2A —0.0226 0.0225 0.0000 0.0059  1.0239 —8.4214 0.9937  0.0000 0.0005
Ground_2B —0.0192 0.0216 0.0000 0.0061  1.0258 —9.0910 0.9985  0.0000 0.0003
Ground_4A —0.0219 0.0229 0.0000 0.0007  1.0027 —0.9458 0.9949  0.0000 0.0005
Ground_4B —-0.0212 0.0228 0.0000 0.0059  1.0203 —7.1574  0.9984  0.0000 0.0003
Ground_4C —0.0218 0.0223 0.0000 0.0055 1.0178 —6.2732 0.9976  0.0000 0.0003
Ground_6A —0.0204 0.0215 0.0000 0.0052  1.0219 —7.7293  0.9984  0.0000 0.0003
Ground_8A —0.0197 0.0219 0.0000 0.0040 1.0177 —6.2473  0.9982  0.0000 0.0003

Fitting linear model between photogrammetry
and lidar in y axis

Dataset Minimum  Maximum Variance Mean Slope Intercept r value p value Standard
y axis y axis y axis y axis error
difference  difference  difference (m)

(m) (m) (m)
Fixed_122 —0.0169 0.0164 0.0000 0.0004 1.0001 —511.3216  1.0000  0.0000 0.0001
Fixed_61 —0.0180 0.0165 0.0000 0.0002  0.9974 12467.67  1.0000  0.0000 0.0000
Quad_35 —0.0138 0.0158 0.0000 0.0004  0.9998 917.4185 1.0000  0.0000 0.0000
Quad_20 —0.0112 0.0153 0.0000 0.0004 1.0016 —7635.98 1.0000  0.0000 0.0000
Ground_2A —0.0161 0.0164 0.0000 0.0002  1.0020 —9613.20 1.0000  0.0000 0.0000
Ground_2B —0.0166 0.0162 0.0000 0.0003 1.0025 —11557.52 1.0000  0.0000 0.0000
Ground_4A —0.0165 0.0157 0.0000 0.0003  1.0004 —1749.80  1.0000  0.0000 0.0000
Ground_4B —0.0165 0.0154 0.0000 0.0003 1.0023 —10955.43 1.0000  0.0000 0.0000
Ground_4C —0.0165 0.0134 0.0000 0.0002  1.0021 —9880.48  1.0000  0.0000 0.0000
Ground_6A —0.0163 0.0155 0.0000 0.0003  1.0021 —9835.37  1.0000  0.0000 0.0000
Ground_8A —0.0172 0.0143 0.0000 0.0003  1.0016 —7588.89  1.0000  0.0000 0.0000

Fitting linear model between photogrammetry
and lidar in x axis

Dataset Minimum Maximum Variance Mean Slope Intercept r value p value Standard
X axis X axis X axis X axis error
difference difference difference (m)

(m) (m) (m)
Fixed_122 —0.0111 0.0098 0.0000 0.0000  1.0002 —88.1715  1.0000  0.0000 0.0001
Fixed_61 —0.0126 0.0094 0.0000 —0.0001 1.0005 —176.6591 1.0000  0.0000 0.0000
Quad_35 —0.0079 0.0042 0.0000 —0.0001  0.9999 21.3139  1.0000  0.0000 0.0000
Quad_20 —0.0055 0.0055 0.0000 —0.0001  0.9998 90.0612  1.0000  0.0000 0.0000
Ground_2A —0.0113 0.0065 0.0000 —0.0001  0.9999 49.4894  1.0000  0.0000 0.0000
Ground_2B —-0.0114 0.0048 0.0000 0.0000  0.9999 28.8352  1.0000  0.0000 0.0000
Ground_4A —0.0110 0.0061 0.0000 0.0000  1.0000 —7.5965 1.0000  0.0000 0.0000
Ground_4B —0.0123 0.0047 0.0000 0.0000  0.9999 354773  1.0000  0.0000 0.0000
Ground_4C —0.0111 0.0052 0.0000 0.0000  0.9999 41.1742  1.0000  0.0000 0.0000
Ground_6A —0.0111 0.0037 0.0000 0.0000  0.9999 21.1864  1.0000  0.0000 0.0000
Ground_8A —0.0118 0.0031 0.0000 0.0000  1.0000 13.6678  1.0000  0.0000 0.0000
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Table 4. Statistics comparing photogrammetry and terrestrial lidar using the point vertical spot to TIN approach (z direction). Residual values

were calculated based on the elevation difference of all raster grid cells.

Fitting linear model between
photogrammetry and lidar

Dataset Minimum Maximum Variance Mean Slope Intercept r value p value Standard
elevation elevation elevation elevation error

difference (m) difference (m) difference (m) difference (m) (m)

Fixed_122 —0.1388 0.0784 0.0019 —0.0346 0.236  269.429 0.449 <.0001  0.00212
Fixed_61 —0.0910 0.0506 0.0003 —0.0144 0.849 53.133 0.939 <.0001 0.00141
Quad_35 —0.0401 0.0538 0.0000 0.0001  0.987 4.589 0.992 <.0001  0.00057
Quad_20 —0.0275 0.0438 0.0000 0.0058 1.029 —10.133 0.994 <.0001  0.00051
Ground_2A —0.0906 0.0659 0.0001 0.0066 1.023 —8.144 0.985 <.0001 0.00080
Ground_2B —0.0534 0.0535 0.0000 0.0070  1.024 —8.505 0.996 <.0001  0.00040
Ground_4A —0.0765 0.0723 0.0001 0.0001  0.985 5.428 0986 <.0001  0.00074
Ground_4B —0.0520 0.0509 0.0000 0.0066 1.019 —6.531 0.996 <.0001 0.00040
Ground_4C —0.0541 0.0517 0.0000 0.0061 1.014 —4.810 0.994 <.0001  0.00049
Ground_6A —0.0582 0.0506 0.0000 0.0059 1.020 —17.193 0.996 <.0001  0.00040
Ground_8A —0.0566 0.0486 0.0000 0.0045 1.016 —5.689 0.996 <.0001 0.00039
Lidar —0.0420 0.0394 0.0000 —0.0001  1.001 —-0.257 0.998 <.0001 0.00029

Table 5. Simple statistics of comparative cross-sectional elevations
generated using different surveying methods. Values were calcu-
lated for nine cross sections individually and then averaged.

Dataset Minimum  Maximum Mean  Variance
elevation elevation elevation elevation

(m) (m) (m) (m)

Fixed_122 352.551 352.628 352.596 0.0005
Fixed_61 352.492 352.673 352.576 0.0019
Quad_35 352.474 352.659 352.556 0.0025
Quad_20 352.474 352.659 352.556 0.0025
Ground_2A 352.463 352.667 352.555 0.0025
Ground_2B 352.473 352.659 352.554 0.0024
Ground_4A 352.474 352.666 352.561 0.0022
Ground_4B 352.472 352.660 352.555 0.0024
Ground_4C 352.472 352.658 352.555 0.0024
Ground_6A 352.472 352.660  352.555 0.0024
Ground_8A 352.475 352.660 352.557 0.0024
lidar 352.472 352.660 352.555 0.0024

the lidar range and appeared to be very similar (Fig. 6), with
the exceptions of Ground_2A (too rough; 8.2 % roughness
increase) and Fixed_122 (too smooth; 84 % roughness
decrease).

3.4 Gridded cross-sectional evaluations

In the gridded elevation evaluations (min, max, mean; Ta-
ble 5; Fig. 12), the absolute difference from lidar was less
than 0.02 %, and these differences were only seen in the
fixed-wing flights. The variance (i.e., roughness), however,
shows that the absolute differences from lidar were 131 %
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Table 6. Volume difference between photogrammetry and ter-
restrial lidar raster grids generated from three-dimensional point
clouds.

Dataset Volume Cut Fill  Absolute volume
difference  volume volume difference*

m?)  (m?) (m?) (m?)

Fixed_122 —0.0422  0.0078 —0.0499 0.0577
Fixed_61 —0.0175 0.0021 —0.0196 0.0217
Quad_35 0.0002  0.0029 —0.0027 0.0056
Quad_20 0.0072  0.0079 —0.0007 0.0085
Ground_2A 0.0081  0.0093 —0.0012 0.0105
Ground_2B 0.0086  0.0088  —0.0002 0.0090
Ground_4A 0.0003  0.0032 —0.0029 0.0062
Ground_4B 0.0082  0.0084 —0.0002 0.0086
Ground_4C 0.0076  0.0080 —0.0005 0.0085
Ground_6A 0.0073  0.0076  —0.0002 0.0078
Ground_8A 0.0056  0.0059 —0.0003 0.0062

* Iterative accumulation of individual raster grid cell elevation differences using absolute
values.

(Fixed_122), 23 % (Fixed_61), and 9 % (Grround_4A). A
comparison of the elevation information (Table 7; Fig. 12)
between photogrammetric cross sections and lidar cross sec-
tions through linear regression indicates a coefficient of de-
termination larger than 0.98 for all datasets, excluding the
two fixed-wing flights. The standard error for this regression
was less than 10 mm for Quad_20, Quad_35, Ground_2B,
Ground_4B, Ground_4C, Ground_6A, and Ground_8A. Fol-
lowing that, Ground_2A and Ground_4A had a standard er-
ror of approximately 17 mm and the two fixed-wing flights
had a standard error of 25 mm. The average area percent
differences for all cross sections were within 1.5 %, while
the two fixed-wing flights had 3% (Fixed_61) and 8 %
(Fixed_122). It is important to mention that the range of area
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Table 7. Cross-sectional evaluation comparison between photogrammetry and lidar.

Fitting linear model between
photogrammetry and lidar

Dataset Slope Intercept r value p value  Standard Mean area™ Minimum area™ Maximum area*®

error  percent difference  percent difference  percent difference
Fixed_122 0311 242937 0.618 <0.0001 0.025 7.79 % 4.78 % 15.04 %
Fixed_61 0.747 89.336 0.882 <0.0001 0.025 3.18% 1.77 % 4.44 %
Quad_35 1.008 —2.745 0.989  <0.0001 0.009 —0.05% —-0.23% 0.43 %
Quad_20 1.048 —17.059 0.990 <0.0001 0.009 —1.36 % —1.70 % —0.64 %
Ground_2A  0.969 11.030 0.972 <0.0001 0.015 —-1.57% —2.49 % —0.90 %
Ground_2B  1.019 —6.554 0.994 <0.0001 0.007 —-1.63% —1.84% —1.43%
Ground_4A  0.923 27.163 0.958 <0.0001 0.018 —0.03 % —0.74 % 0.69 %
Ground_4B  1.028 —9.963 0.994 <0.0001 0.007 —1.55% —1.71% —1.38%
Ground_4C  1.028 -9.737 0.993 <0.0001 0.008 —1.44% —-1.61% —1.24 %
Ground_6A  1.030 —10.502 0.994 <0.0001 0.007 —1.38% —1.53% —1.08 %
Ground_8A  1.031 —10.823 0.996 <0.0001 0.006 —1.06 % —1.26 % —0.76 %

* Area calculations used a horizontal reference elevation of 353 m.

Table 8. Results from the ranking analysis based on the difference metrics of multiple photogrammetric surveys applied to gully channel

monitoring.
Volume and cross section Spot elevation Normal to plane Combined
(M1-M5) (M6-M10) M11-M15) M1-M15)
Dataset Points Points Dataset Points Dataset Points Dataset
Ground_8A 49 Ground_8A 50 Ground_2B 44 Ground_8A 140
Quad_35 42 Ground_4B 41 Ground_6A 42 Ground_6A 121
Ground_6A 38 Ground_6A 41 Ground_8A 41 Ground_4B 114
Ground_4A 37 Quad_20 37 Ground_4B 41 Quad_35 111
Quad_20 35 Quad_35 36 Quad_20 35 Ground_2B 107
Ground_4B 32 Ground_4C 34 Quad_35 33 Quad_20 107
Ground_4C 32 Ground_2B 33 Ground_4C 31 Ground_4C 97
Ground_2B 30 Ground_4A 25 Ground_4A 26 Ground_4A 88
Ground_2A 20 Ground_2A 16 Ground_2A 15 Ground_2A 51
Fixed_61 9 Fixed_61 12 Fixed_122 13 Fixed_61 30
Fixed_122 6 Fixed_122 5 Fixed_61 9 Fixed_122 24

percent difference is within +2 %, while the fixed-wing sys-
tems had up to 15 % difference. The error is huge, for in-
stance, if this dataset was intended to be used for the devel-
opment, calibration, and validation of a soil erosion model.

3.5 Dataset scoring evaluations

The gridded data performance was led by Ground_8A and
Quad_35. Combined category score points ranged from 49
(Ground_8A) to 6 (Fixed_122), terrestrial photogrammetry
ranged from 49 to 20, quadrotor ranged from 42 to 35,
and the fixed wing ranged from 9 to 6 (Table 8). For the
point cloud analysis, the scoring results were, for the most
part, very similar. The terrestrial photogrammetry surveys all
score very high, with the quadrotor falling in the middle and
the fixed wing at the bottom. Overall, scoring ranged from
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140 to 24 with the terrestrial photogrammetry leading the
group. As the number of photos increased, so did the sam-
ple density; however, the four-photo pair (Ground_8A) was
less dense than the six-photo pair (Ground_6A) or the two-
photo pair (Ground_4B, Ground_4C), which may be associ-
ated with higher accuracy in pixel matching or the addition
of inferior images to the project. However, it is noteworthy
to add that sampling intensity increases as the UAV altitude
decreased, although the Quad_35 outperformed the Quad_20
in a number of categories.
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Figure 12. Selected cross sections generated from interpolating
point clouds into a 5 x 5 mm raster grid file.

4 Discussion

4.1 Method comparison

Two photogrammetric software packages (Pix4DMapper Pro
and PhotoModeler Scanner) were used to generate solutions
for the UAV platform and terrestrial photogrammetry sur-
veys. Pix4DMapper Pro uses a larger number (> 3) of over-
lapping photos, while PhotoModeler Scanner can offer so-
lutions with only two overlapping photos. These software
packages differ in the level of user control options for pro-
cessing and point cloud generation. Point clouds processed
by different software packages and/or users could yield very
different solutions; however, this aspect was not investigated
here.
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An alarming concern in this analysis was the realization
that rotation and translation (Fig. 4) were required to ensure
that all data were properly aligned. The lidar global coor-
dinates were the same as those used for the fixed-wing and
quadrotor flights (i.e., field GCPs). The channel GCPs were
also utilized to optimize the lidar point cloud solution. In all
terrestrial photogrammetry point cloud solutions, the same
set of global coordinates (channel GCPs) were used. One
might expect the solutions to converge without the need to
manipulate the point clouds in postprocessing; however, not
one of the solutions contained the exact positions of the chan-
nel GCPs, including the solutions generated using the same
platform but with varying processing parameters. For ex-
ample, three-dimensional registration discrepancies were de-
tected between lidar solutions and solutions from the quadro-
tor platform at 20 and 35 m, the fixed-wing platform at 61 and
122 m, and the terrestrial photogrammetry surveys. This re-
alization presents extreme difficulty for temporal studies of
ephemeral erosion processes, no matter the choice of resolu-
tion, platform, or processing parameters.

Initially, an attempt was made to analyze all datasets
in their original form; however, two limitations to the ap-
proach were noted: the lack of three-dimensional registration
between the datasets skewed efforts to quantify individual
point accuracy and, more importantly, reduced confidence in
the geomorphology information generated. The difference in
point sampling density, ranging from hundreds (fixed-wing
platform) to millions (lidar), biased the results. Therefore,
the discussion presented herein relates to solutions that have
been altered from the original solutions produced by the re-
spective software packages. A comparison of the measured F
and G functions with the estimated theoretical spatial distri-
butions under the complete spatial randomness assumption
suggested that all datasets did not present any spatial clus-
tering, therefore indicating that the study site was sampled
uniformly (regular spatially distributed data throughout the
study site; Fig. 8). The main difference between datasets was
the scale, at which terrestrial photogrammetry and quadrotor
airborne photogrammetry yielded sub-centimeter distances
as a result of the large number of samples when compared
to the fixed-wing airborne photogrammetry. The results from
the point evaluations suggest that the Fixed_122 data are
clustered below r =20 mm; however, the very same point
cloud was interpreted to a 5 mm raster, so part or all of the
metrics associated with these flights may be biased.

The normal projection and vertical spot analysis place the
mean elevation for quadrotor flights at 2.9 mm below the li-
dar, for terrestrial photogrammetry at 5.0 mm below the li-
dar, and for the fixed-wing flights at 16 mm above the li-
dar. The range of cross-sectional elevation from all terres-
trial photogrammetry was within 14 % of the lidar and, if
we drop the rough sample (Ground_2A), the difference falls
below 0.24 % (e.g., Gémez-Gutiérrez et al., 2014; Di Ste-
fano et al., 2016). This is all seemingly acceptable for ter-
rain mapping and perhaps even process development; how-
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ever, if it is assumed that the bulk density of the soil is
1500 kg m~3, then the soil mass difference for the quadro-
tor flights is 5.6kg (erosion and elevation depletion mass).
For terrestrial photogrammetry it is 9.8 kg (erosion and el-
evation depletion mass), and for the fixed-wing flights it is
44.8 kg (deposition and elevation enhancement mass). Fur-
thermore, if the size of the study area (2.47 m?) is projected
onto a 1ha field, the elevation distortion is anywhere from
23000 to 181 000kg of material, which is substantial. An-
other way to visualize these data would be to look at the
area calculations, from which there is a 1.064 % decrease in
cross-sectional area (Fig. 10) for Ground_8A over that of the
lidar. One percent is a very low difference and amounts to an
impacted area of 0.03 m?. Again, when considering the site
projected onto the 1 ha field, the impacted area is on the order
of 50 times the original measurement area (121.5 m?2). These
findings are reflective of the decision to keep all collected
data and further promote the importance of data uncertainty
analysis (Wheaton et al., 2010).

Another interesting finding was the difference between
solutions from terrestrial photogrammetry (varying number
and/or orientation of photo pairs). The solutions from the
Ground_2A and Ground_2B datasets both used only one
photo pair; however, the results from the analysis indicate
a superior solution generated from the Ground_2B pairing
(i.e., upstream or downstream orientation; Table 1). This
could be potentially attributed to the orientation of the im-
ages in relation to the channel, in which differences in illu-
mination could hamper the photogrammetric process of au-
tomated pixel matching between each photo pair (Marzolff
and Poesen, 2009). Additionally, increasing the number of
photo pairs used in the solution seems to yield improved so-
lutions. Results from the volumetric analysis show that the
Quad_35 was a very close approximation (0.0002 m?) to the
lidar, and Ground_4A (i.e channel left and right with cor-
ner left and right photo pair; Table 1) was within 0.0001 m?
of the Quad_35. Solutions obtained with the “corner left
and right photo pair” tended to improve the estimates. How-
ever, within the overall assessment of data performance,
the Ground_4A data finished eighth, and small differences
between Ground_6A and Ground_8A suggest a potential
threshold in the number of photo pairs to which including ad-
ditional photo pairs adds marginally to the final quality of the
solution. Whether or not the datasets were adjusted spatially
in accordance with the channel GCP positions, the abso-
lute volume differences were similarly ranked between pho-
togrammetry datasets. Point clouds built from higher photo
pairs and flights at lower altitudes produced better results
when compared to terrestrial lidar.

4.2 Monitoring guidelines

The long-term photogrammetric monitoring of ephemeral
gullies should be performed with systems and procedures
that strongly consider the following.
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1. Provide a minimum sampling density to capture the
overall and local terrain characteristics based on the
study objectives (i.e., a temporal headcut migration
process understanding may require data with sub-
centimeter resolution, while a temporal channel mean-
der process understanding may only require decimeter
resolution; James and Robson, 2012; Gémez-Gutiérrez
et al., 2014). The planning phase of the project must
consider the physical characteristics of the process to be
investigated, the study site physical and environmental
variables, and the available hardware and software.

2. Utilize static ground control points visible in compa-
rable photo pairs in all time-step surveys (i.e., fixed
known points within the scene provide checks to ensure
proper three-dimensional registration of temporal data;
e.g., Smith and Vericat, 2015). An organized scheme
for control points must be realized for a detailed multi-
temporal quantitative assessment. Small variations in
alignment within temporal surveys will introduce error
into length, width, cross-sectional area, and volume es-
timates (e.g., Casali et al., 2015). Repeated realizations
of GCP coordinates will always reduce error in survey
solutions.

3. Collect the same number of photo pairs using the same
sensor and with the same orientation in all time-step
surveys (i.e., data collection strategies should not vary
temporally and new sensors must be carefully calibrated
to preexisting datasets). Consistency in photo collec-
tion (i.e., scheduling and number of photo pairs) will
enhance the comparison of temporal solutions (Gémez-
Gutiérrez et al., 2014). Also, consider site visits at a par-
ticular time of day.

4. Process and generate photogrammetric solutions using
the same software package and similar input processing
parameters. A calibrated camera will always yield better
solutions.

5 Conclusions

Comparative evaluations were completed using terrestrial li-
dar and photogrammetry, both terrestrial and aerial (UAV).
None of these methods were without limitation, and the ulti-
mate goal of the data collection effort should guide the plan-
ning phase of the project. One cautionary note: without GCP
there is no reasonable expectation that temporal activities
will be successful. Although GCP may increase the work-
load during data acquisition, this is the only realization that
will ensure global alignment, minimize project error, and en-
hance process theory development. While adherence to con-
ventional ground methods for GCP establishment is essential
for accurate temporal terrain characterization, the results pre-
sented herein are transferrable to larger survey areas with dif-
ferent terrain and surface characteristics. In terms of survey
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choice, all results point to financial and temporal questions.
What is the project goal? What are the data expectations?
A temporal assessment of gully channels and most geomor-
phic process descriptions can be accomplished with a camera
and a few GCPs, whether on the ground or airborne. Each of
the survey methods provided herein performed very well; al-
though the scoring was not spectacular, the Fixed_61 data
would be satisfactory for most static model evaluations. As
expectations rise, so will the planning and technology.
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