Supplement of Earth Surf. Dynam., 5, 557-570, 2017
https:/doi.org/10.5194/esurf-5-557-2017-supplement Earth Surface
© Author(s) 2017. This work is distributed under i

the Creative Commons Attribution 3.0 License. DynamICS

Supplement of

Deriving principal channel metrics from bank and
long-profile geometry with the R package cmgo

Antonius Golly and Jens M. Turowski

Correspondence to: Antonius Golly (antonius.golly @ gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

iy

N

Supplementary Material

I. LIST OF ALL PARAMETERS

par.default = list(

name of the parameter set
name = "default",

workspace

workspace.read = TRUE, # if [TRUE] it is tried to load the global data object from a workspace file in CM.ini()
workspace.write = FALSE, # if [TRUE] a workspace with the global data object will be written in CM.writeData()
workspace.replace = FALSE, # if [TRUE] a workspace will be replaced when existing in CM.writeData()
workspace.filename = "user_workspace.RData", # the filename used in CM.ini() and CM.writeData()

input settings

input.dir = "input", # the directory from which all input files will be read in by CM.ini()
input.sep = "\t", # the column separator sign, e.g. ",", ";", "\t" (tab) passed to read.table (?read.table for more information)
input.col.easting = "POINT_X", # the column name for the x-value

input.col.northing = "POINT_Y", # s.a.

input.col.elevation = "POINT_Z", # s.a.

input.units = "m", # units of input coordinates (will be used for axis labels in plotting functions)
input.col.bank = "Name", # the column name of the side (left/right bank)

bank.code.left = "left", # the string code used for the left bank

bank.code.right = "right", # the string code used for the right bank

bank.reverse.left = FALSE, # reverse bank points of left bank from input data

bank.reverse.right = FALSE, # reverse bank points of right bank from input data

output settings

output.replace = FALSE, # if [TRUE] the output files are replaced when existing in CM.writeFiles()
output.write.centerline = FALSE, # if [TRUE] the geometry of the centerline will be written in CM.writeFiles()
output.write.metrics = TRUE, # if [TRUE] the calculated channel metrics will be written in CM.writeFiles()
output.write.metrics.d = TRUE, # switch on/off the variable d.r and d.l (distances from centerline to banks)
output.write.metrics.w = TRUE, # switch on/off the variable w (channel width)

output.write.metrics.r = TRUE, # switch on/off the variable r.r and r.1 (direction factor of d.r and d.1l)
output.write.metrics.diff = TRUE, # switch on/off the variable diff.r and diff.l (distances between two banks)
output.write.steps = FALSE, #

output.write.steps.shp = FALSE, # write an ESRI shapefile of steps

output.dir = "output",

output.dir.shp = "output/shp",

output.sep = "\t",

enable/disable plots
plot.polygoncheck = TRUE, # if [TRUE], a three-column plot is generated showing the entire river and both ends to rouhgly check the polygon consitency
(see also CM.generatePolygon())

plot.planview = TRUE, # create a plan view overview plot

plot.planview.secondary = TRUE, # in the plan view plot, add a secodary data set for comparison (will be displayed in dashed lines)
plot.planview.bankpoints = FALSE, # in the plan view plot, add the bank points of a data set

plot.planview.bankpoints.interpolated = FALSE, # in the plan view plot, add the interpolated bank points of a data set

plot.planview.polygon = TRUE, # in the plan view plot, add the channel borders

plot.
plot.
plot.
plot.
plot.
plot.
plot.
plot.
plot.
plot.
plot.
plot.
plot.
plot.
plot.

plot.

planview.voronoi
planview.cl.original
planview.cl.smoothed
planview.cl.points
planview.cl.tx
planview.cl.selection
planview.transects
planview.transects.len
planview.dist2banks
planview.grid
planview.grid.dist
planview.legend
planview.legend.pos
planview.scalebar
planview.use.names

metrics.use.names

plot options

plot.
plot.
plot.
plot.
el
e2
e3
)
plot.
plot.

cl1

)

plot.
plot.
plot.
plot.
plot.
plot.
plot.

zoom
zoom.extent.length
zoom.extent
zoom.extents

= c(400480, 3103130),
= c(399445, 3096220),
= c(401623, 3105925)
cl.range

cl.ranges

= c(1235, 1260)
cl.range.use.reference

to.file
to.pdf
to.png
index
directory
filename

model parameters
force.calc.voronoi
force.calc.cl

bank.
bank.
bank.
bank.
bank.

interpolate
interpolate.max.dist
reduce
reduce.min.dist
filter2.max.it

centerline.smoothing.width

centerline.local.slope.range

transects.span

centerline.bin.length

centerline.use.reference
centerline, if [TRUE] the centerline of centerline.reference will be taken (see CM.processCenterline())

centerline.reference
calculate.metrics

FALSE,
FALSE,
TRUE,
FALSE,
FALSE,
TRUE,
FALSE,

20,

TRUE,
TRUE,

20,

TRUE,
"topleft",
TRUE,
TRUE,

TRUE,

TRUE,

= 140,

he1n,
list(

"el1”,
list(

TRUE,
FALSE,
TRUE,
TRUE,
9,
"plots/",

in the plan view plot, add voronoi polygons in plan view plot

in the plan view plot, add the rough centerline (before smoothing)

in the plan view plot, add the smoothed centerline

when a centerline is plotted should the points representing the line be emphasized
in the plan view plot, add a label with the number next to the centerline points

if [TRUE] and

plot window is determined by cl points (see docu) the cl points are highlighted

in the plan view plot, add transects (perpendiculars to centerline)

give the length of transects in the unit of the input coordinates

in the plan view plot, add transect segments from centerline to the banks (left and right)
in the plan view plot, add a grid in the background

the distance of the grid lines in the unit of the input coordinates

in the plan view plot, add a legend

keyword to position legend (see ?legend)

in the plan view plot, add a scalebar (width of one plot.planview.grid.dist)

if [TRUE] set

if [TRUE] set

if [TRUE] the

names will be used for display, otherwise "setl", "set2", etc.

names will be used for display, otherwise "setl", "set2", etc.

plan view plot is zoomed in (see also CM.plotPlanView())

zoom window extent for the plan view plot in the unit of the input coordinates
applied zoom window name (see also CM.plotPlanView())
presets (customizable list) of zoom windows

applied zoom cl range (see also CM.plotPlanView)
presets (customizable list) of cl ranges

determines whether to look for reference centerline [TRUE] or current centerline when centering around cl.range

if [TRUE] all
if [TRUE] the
if [TRUE] the
numbering for
directory for

"documentation", # plot file

FALSE,

5,
FALSE,

"set1”,
TRUE,

if [TRUE] the
if [TRUE] the
if [TRUE] the

plots will be copied to file devices
plot will be saved as pdf

plot will be saved as png

filenames (see also CM.plotPlanView())
saving plots if plot.to.file = TRUE
name

voronoi polygons are always re-calculated and never taken from cache
centerline is always re-calculated and never taken from cache
provided bank points are linearly interpolated to generate a denser polygon (see CM.generatePolygon())

if bank.interpolate is [TRUE] this is the maximum distance all bank points will have

if [TRUE] the

provided bank points are reduced by points that are closer to each other than bank.reduce.min.dist

if bank.reduce is [TRUE] this is the minimum distance all bank point will have

number of the

maximum iterations for filter 2 to prevent the program to run infinitely

smoothing window width of mean filter in number of observations (see CM.calculateCenterline())

span of centerline points used for calculating the transects (see CM.processCenterline())
for simplifying the centerline give the spacing in the unit of the input coordinates (see CM.reduceCenterline())

sets method for calculating distance centerline to banks, if [FALSE] (default) each river profile will be compared to its own

sets the reference data set if centerline.use.reference is [TRUE]

if [TRUE] all

centerline metrics are calculated (see CM.processCenterline())

2

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

