Supplement of Earth Surf. Dynam., 5, 557–570, 2017 https://doi.org/10.5194/esurf-5-557-2017-supplement © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

Supplement of

Deriving principal channel metrics from bank and long-profile geometry with the R package cmgo

Antonius Golly and Jens M. Turowski

Correspondence to: Antonius Golly (antonius.golly@gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Supplementary Material

2 I. LIST OF ALL PARAMETERS

```
par.default = list(
 5
          # name of the parameter set
                                      = "default",
 8
          # workspace
 9
          workspace.read
                                                     # if [TRUE] it is tried to load the global data object from a workspace file in CM.ini()
                                      = TRUE.
10
                                                     # if [TRUE] a workspace with the global data object will be written in CM.writeData()
          workspace.write
                                      = FALSE,
11
          workspace.replace
                                      = FALSE,
                                                     # if [TRUE] a workspace will be replaced when existing in CM.writeData()
12
          workspace.filename
                                      = "user workspace.RData", # the filename used in CM.ini() and CM.writeData()
13
14
          # input settings
15
          input.dir
                                                     # the directory from which all input files will be read in by CM.ini()
                                      = "input",
16
          input.sep
                                      = "\t",
                                                     # the column separator sign, e.g. ",", ";", "\t" (tab) passed to read.table (?read.table for more information)
17
          input.col.easting
                                      = "POINT_X",
                                                     # the column name for the x-value
18
          input.col.northing
                                      = "POINT_Y",
                                                     # s.a.
19
          input.col.elevation
                                      = "POINT Z",
                                                    # s.a.
20
          input.units
                                                     # units of input coordinates (will be used for axis labels in plotting functions)
                                      = "m",
21
          input.col.bank
                                      = "Name",
                                                     # the column name of the side (left/right bank)
22
                                                     # the string code used for the left bank
          bank.code.left
                                      = "left",
23
                                                     # the string code used for the right bank
          bank.code.right
                                      = "right",
                                                     # reverse bank points of left bank from input data
24
          bank.reverse.left
                                      = FALSE,
25
          bank.reverse.right
                                                     # reverse bank points of right bank from input data
                                      = FALSE,
26
27
          # output settings
28
          output.replace
                                      = FALSE,
                                                     # if [TRUE] the output files are replaced when existing in CM.writeFiles()
29
          output.write.centerline
                                      = FALSE,
                                                     # if [TRUE] the geometry of the centerline will be written in CM.writeFiles()
30
                                                     # if [TRUE] the calculated channel metrics will be written in CM.writeFiles()
          output.write.metrics
                                      = TRUE,
31
                                                     # switch on/off the variable d.r and d.l (distances from centerline to banks)
          output.write.metrics.d
                                      = TRUE,
32
                                                     # switch on/off the variable w (channel width)
          output.write.metrics.w
                                      = TRUE,
33
                                      = TRUE,
                                                     # switch on/off the variable r.r and r.l (direction factor of d.r and d.l)
          output.write.metrics.r
34
          output.write.metrics.diff = TRUE,
                                                     # switch on/off the variable diff.r and diff.l (distances between two banks)
35
                                      = FALSE.
          output.write.steps
36
          output.write.steps.shp
                                      = FALSE,
                                                     # write an ESRI shapefile of steps
37
38
          output.dir
                                      = "output",
39
          output.dir.shp
                                      = "output/shp",
40
                                      = "\t",
          output.sep
41
42
          # enable/disable plots
43
          plot.polygoncheck
                                                     # if [TRUE], a three-column plot is generated showing the entire river and both ends to roungly check the polygon consitency
                                      = TRUE,
44
      (see also CM.generatePolygon())
45
46
          plot.planview
                                      = TRUE,
                                                     # create a plan view overview plot
47
          plot.planview.secondary
                                      = TRUE,
                                                     # in the plan view plot, add a secodary data set for comparison (will be displayed in dashed lines)
48
          plot.planview.bankpoints
                                      = FALSE,
                                                     # in the plan view plot, add the bank points of a data set
49
          plot.planview.bankpoints.interpolated = FALSE,
                                                               # in the plan view plot, add the interpolated bank points of a data set
50
          plot.planview.polygon
                                                     # in the plan view plot, add the channel borders
                                      = TRUE,
```

```
51
           plot.planview.voronoi
                                       = FALSE,
                                                      # in the plan view plot, add voronoi polygons in plan view plot
52
           plot.planview.cl.original
                                      = FALSE,
                                                      # in the plan view plot, add the rough centerline (before smoothing)
53
           plot.planview.cl.smoothed
                                       = TRUE,
                                                      # in the plan view plot, add the smoothed centerline
54
                                                      # when a centerline is plotted should the points representing the line be emphasized
           plot.planview.cl.points
                                       = FALSE,
55
                                                      # in the plan view plot, add a label with the number next to the centerline points
           plot.planview.cl.tx
                                       = FALSE,
56
           plot.planview.cl.selection = TRUE,
                                                      # if [TRUE] and plot window is determined by cl points (see docu) the cl points are highlighted
57
                                                      # in the plan view plot, add transects (perpendiculars to centerline)
           plot.planview.transects
                                       = FALSE.
58
           plot.planview.transects.len = 20,
                                                      # give the length of transects in the unit of the input coordinates
59
           plot.planview.dist2banks
                                                      # in the plan view plot, add transect segments from centerline to the banks (left and right)
                                       = TRUE,
60
           plot.planview.grid
                                       = TRUE,
                                                      # in the plan view plot, add a grid in the background
61
           plot.planview.grid.dist
                                       = 20,
                                                      # the distance of the grid lines in the unit of the input coordinates
62
           plot.planview.legend
                                       = TRUE,
                                                      # in the plan view plot, add a legend
63
                                       = "topleft",
                                                     # keyword to position legend (see ?legend)
           plot.planview.legend.pos
64
                                                      # in the plan view plot, add a scalebar (width of one plot.planview.grid.dist)
           plot.planview.scalebar
                                       = TRUE,
65
           plot.planview.use.names
                                                      # if [TRUE] set names will be used for display, otherwise "set1", "set2", etc.
                                       = TRUE,
66
67
                                                      # if [TRUE] set names will be used for display, otherwise "set1", "set2", etc.
           plot.metrics.use.names
                                       = TRUE,
68
69
          # plot options
70
           plot.zoom
                                       = TRUE,
                                                      # if [TRUE] the plan view plot is zoomed in (see also CM.plotPlanView())
71
           plot.zoom.extent.length
                                                      # zoom window extent for the plan view plot in the unit of the input coordinates
                                       = 140,
72
                                                      # applied zoom window name (see also CM.plotPlanView())
           plot.zoom.extent
                                       = "e1".
73
                                       = list(
                                                      # presets (customizable list) of zoom windows
           plot.zoom.extents
74
            e1 = c(400480, 3103130),
75
            e2 = c(399445, 3096220),
76
             e3 = c(401623, 3105925)
77
          ),
78
           plot.cl.range
                                       = "cl1",
                                                      # applied zoom cl range (see also CM.plotPlanView)
79
                                                      # presets (customizable list) of cl ranges
           plot.cl.ranges
                                       = list(
80
            cl1 = c(1235,
                             1260)
81
          ),
82
           plot.cl.range.use.reference = TRUE,
                                                      # determines whether to look for reference centerline [TRUE] or current centerline when centering around cl.range
83
                                                      # if [TRUE] all plots will be copied to file devices
           plot.to.file
                                       = FALSE,
84
           plot.to.pdf
                                       = TRUE,
                                                      # if [TRUE] the plot will be saved as pdf
85
                                       = TRUE.
                                                      # if [TRUE] the plot will be saved as png
           plot.to.png
86
           plot.index
                                       = 0,
                                                      # numbering for filenames (see also CM.plotPlanView())
87
           plot.directory
                                       = "plots/",
                                                     # directory for saving plots if plot.to.file = TRUE
88
           plot.filename
                                       = "documentation", # plot file name
89
90
          # model parameters
91
          force.calc.voronoi
                                                      # if [TRUE] the voronoi polygons are always re-calculated and never taken from cache
                                       = FALSE,
92
           force.calc.cl
                                       = FALSE,
                                                      # if [TRUE] the centerline is always re-calculated and never taken from cache
93
                                       = TRUE.
                                                      # if [TRUE] the provided bank points are linearly interpolated to generate a denser polygon (see CM.generatePolygon())
           bank.interpolate
94
          bank.interpolate.max.dist = 6,
                                                      # if bank.interpolate is [TRUE] this is the maximum distance all bank points will have
95
           bank.reduce
                                                      # if [TRUE] the provided bank points are reduced by points that are closer to each other than bank.reduce.min.dist
                                       = FALSE,
96
           bank.reduce.min.dist
                                       = 0.5,
                                                      # if bank.reduce is [TRUE] this is the minimum distance all bank point will have
97
           bank.filter2.max.it
                                                      # number of the maximum iterations for filter 2 to prevent the program to run infinitely
                                       = 12,
98
          centerline.smoothing.width = 7,
                                                      # smoothing window width of mean filter in number of observations (see CM.calculateCenterline())
99
           centerline.local.slope.range= 15,
100
                                                      # span of centerline points used for calculating the transects (see CM.processCenterline())
          transects.span
                                       = 3,
101
                                                      # for simplifying the centerline give the spacing in the unit of the input coordinates (see CM.reduceCenterline())
           centerline.bin.length
                                       = 5,
102
                                                      # sets method for calculating distance centerline to banks, if [FALSE] (default) each river profile will be compared to its own
           centerline.use.reference
                                      = FALSE,
103
      centerline, if [TRUE] the centerline of centerline.reference will be taken (see CM.processCenterline())
104
           centerline.reference
                                       = "set1",
                                                      # sets the reference data set if centerline.use.reference is [TRUE]
105
           calculate.metrics
                                                      # if [TRUE] all centerline metrics are calculated (see CM.processCenterline())
                                       = TRUE,
```

```
106
          force.calc.metrics
                                      = FALSE,
                                                     # if [TRUE] the metrics are always re-calculated and never taken from cache
107
108
          # step identification after Zimmermann et. al 2008 [Zimmermann, A.E., Church, M., and Hassan, M. a., 2008, Identification of steps and pools from stream longitudinal
109
       profile data: Geomorphology, v. 102, no. 3-4, p. 395-406, doi: 10.1016/j.geomorph.2008.04.009.)]
110
          steps.identify
                                      = TRUE,
111
          steps.verbose
                                      = FALSE,
                                                     # should there be
112
          steps.thalweg.dist
                                      = "3d",
                                                     # chose method of distance calculation "3d" or "2d"
113
          steps.minimum.step.length = 2.25,
                                                     # as percentage of Wb [%]
114
          steps.maximum.step.length
                                      = 200,
                                                     # as percentage of Wb [%]
115
          steps.minimum.pool.length = 10,
                                                     # as percentage of Wb [%]
116
          steps.minimum.residual.depth= 0.23,
                                                     # as percentage of Wb [%]
117
          steps.minimum.drop.height = 3.3,
                                                     # as percentage of Wb [%]
118
          steps.minimum.step.slope
                                                     # average slope + 10 degree [°]
                                      = 10,
119
          steps.bank.full.width.fix = TRUE,
                                                     # TRUE: use a fix bank full width for the whole stream, FALSE: calculate from banks
120
          steps.bank.full.width
                                      = 3.7,
                                                     # [m]
121
          steps.average.slope.fix
                                      = FALSE,
122
          steps.average.slope
                                                     #8.34, #12.5,
                                                                          # [°]
                                      = 12.5,
123
124
          # ignore
125
          dummy = TRUE
126
127
128
```