
Supplement of Earth Surf. Dynam., 5, 557–570, 2017
https://doi.org/10.5194/esurf-5-557-2017-supplement
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Supplement of

Deriving principal channel metrics from bank and
long-profile geometry with the R package cmgo
Antonius Golly and Jens M. Turowski

Correspondence to: Antonius Golly (antonius.golly@gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Supplementary Material 1

I. LIST OF ALL PARAMETERS 2

par.default = list(3
 4
 # name of the parameter set 5
 name = "default", 6
 7
 # workspace 8
 workspace.read = TRUE, # if [TRUE] it is tried to load the global data object from a workspace file in CM.ini() 9
 workspace.write = FALSE, # if [TRUE] a workspace with the global data object will be written in CM.writeData() 10
 workspace.replace = FALSE, # if [TRUE] a workspace will be replaced when existing in CM.writeData() 11
 workspace.filename = "user_workspace.RData", # the filename used in CM.ini() and CM.writeData() 12
 13
 # input settings 14
 input.dir = "input", # the directory from which all input files will be read in by CM.ini() 15
 input.sep = "\t", # the column separator sign, e.g. ",", ";", "\t" (tab) passed to read.table (?read.table for more information) 16
 input.col.easting = "POINT_X", # the column name for the x-value 17
 input.col.northing = "POINT_Y", # s.a. 18
 input.col.elevation = "POINT_Z", # s.a. 19
 input.units = "m", # units of input coordinates (will be used for axis labels in plotting functions) 20
 input.col.bank = "Name", # the column name of the side (left/right bank) 21
 bank.code.left = "left", # the string code used for the left bank 22
 bank.code.right = "right", # the string code used for the right bank 23
 bank.reverse.left = FALSE, # reverse bank points of left bank from input data 24
 bank.reverse.right = FALSE, # reverse bank points of right bank from input data 25
 26
 # output settings 27
 output.replace = FALSE, # if [TRUE] the output files are replaced when existing in CM.writeFiles() 28
 output.write.centerline = FALSE, # if [TRUE] the geometry of the centerline will be written in CM.writeFiles() 29
 output.write.metrics = TRUE, # if [TRUE] the calculated channel metrics will be written in CM.writeFiles() 30
 output.write.metrics.d = TRUE, # switch on/off the variable d.r and d.l (distances from centerline to banks) 31
 output.write.metrics.w = TRUE, # switch on/off the variable w (channel width) 32
 output.write.metrics.r = TRUE, # switch on/off the variable r.r and r.l (direction factor of d.r and d.l) 33
 output.write.metrics.diff = TRUE, # switch on/off the variable diff.r and diff.l (distances between two banks) 34
 output.write.steps = FALSE, # 35
 output.write.steps.shp = FALSE, # write an ESRI shapefile of steps 36
 37
 output.dir = "output", 38
 output.dir.shp = "output/shp", 39
 output.sep = "\t", 40
 41
 # enable/disable plots 42
 plot.polygoncheck = TRUE, # if [TRUE], a three-column plot is generated showing the entire river and both ends to rouhgly check the polygon consitency 43
(see also CM.generatePolygon()) 44
 45
 plot.planview = TRUE, # create a plan view overview plot 46
 plot.planview.secondary = TRUE, # in the plan view plot, add a secodary data set for comparison (will be displayed in dashed lines) 47
 plot.planview.bankpoints = FALSE, # in the plan view plot, add the bank points of a data set 48
 plot.planview.bankpoints.interpolated = FALSE, # in the plan view plot, add the interpolated bank points of a data set 49
 plot.planview.polygon = TRUE, # in the plan view plot, add the channel borders 50

2

 plot.planview.voronoi = FALSE, # in the plan view plot, add voronoi polygons in plan view plot 51
 plot.planview.cl.original = FALSE, # in the plan view plot, add the rough centerline (before smoothing) 52
 plot.planview.cl.smoothed = TRUE, # in the plan view plot, add the smoothed centerline 53
 plot.planview.cl.points = FALSE, # when a centerline is plotted should the points representing the line be emphasized 54
 plot.planview.cl.tx = FALSE, # in the plan view plot, add a label with the number next to the centerline points 55
 plot.planview.cl.selection = TRUE, # if [TRUE] and plot window is determined by cl points (see docu) the cl points are highlighted 56
 plot.planview.transects = FALSE, # in the plan view plot, add transects (perpendiculars to centerline) 57
 plot.planview.transects.len = 20, # give the length of transects in the unit of the input coordinates 58
 plot.planview.dist2banks = TRUE, # in the plan view plot, add transect segments from centerline to the banks (left and right) 59
 plot.planview.grid = TRUE, # in the plan view plot, add a grid in the background 60
 plot.planview.grid.dist = 20, # the distance of the grid lines in the unit of the input coordinates 61
 plot.planview.legend = TRUE, # in the plan view plot, add a legend 62
 plot.planview.legend.pos = "topleft", # keyword to position legend (see ?legend) 63
 plot.planview.scalebar = TRUE, # in the plan view plot, add a scalebar (width of one plot.planview.grid.dist) 64
 plot.planview.use.names = TRUE, # if [TRUE] set names will be used for display, otherwise "set1", "set2", etc. 65
 66
 plot.metrics.use.names = TRUE, # if [TRUE] set names will be used for display, otherwise "set1", "set2", etc. 67
 68
 # plot options 69
 plot.zoom = TRUE, # if [TRUE] the plan view plot is zoomed in (see also CM.plotPlanView()) 70
 plot.zoom.extent.length = 140, # zoom window extent for the plan view plot in the unit of the input coordinates 71
 plot.zoom.extent = "e1", # applied zoom window name (see also CM.plotPlanView()) 72
 plot.zoom.extents = list(# presets (customizable list) of zoom windows 73
 e1 = c(400480, 3103130), 74
 e2 = c(399445, 3096220), 75
 e3 = c(401623, 3105925) 76
), 77
 plot.cl.range = "cl1", # applied zoom cl range (see also CM.plotPlanView) 78
 plot.cl.ranges = list(# presets (customizable list) of cl ranges 79
 cl1 = c(1235, 1260) 80
), 81
 plot.cl.range.use.reference = TRUE, # determines whether to look for reference centerline [TRUE] or current centerline when centering around cl.range 82
 plot.to.file = FALSE, # if [TRUE] all plots will be copied to file devices 83
 plot.to.pdf = TRUE, # if [TRUE] the plot will be saved as pdf 84
 plot.to.png = TRUE, # if [TRUE] the plot will be saved as png 85
 plot.index = 0, # numbering for filenames (see also CM.plotPlanView()) 86
 plot.directory = "plots/", # directory for saving plots if plot.to.file = TRUE 87
 plot.filename = "documentation", # plot file name 88
 89
 # model parameters 90
 force.calc.voronoi = FALSE, # if [TRUE] the voronoi polygons are always re-calculated and never taken from cache 91
 force.calc.cl = FALSE, # if [TRUE] the centerline is always re-calculated and never taken from cache 92
 bank.interpolate = TRUE, # if [TRUE] the provided bank points are linearly interpolated to generate a denser polygon (see CM.generatePolygon()) 93
 bank.interpolate.max.dist = 6, # if bank.interpolate is [TRUE] this is the maximum distance all bank points will have 94
 bank.reduce = FALSE, # if [TRUE] the provided bank points are reduced by points that are closer to each other than bank.reduce.min.dist 95
 bank.reduce.min.dist = 0.5, # if bank.reduce is [TRUE] this is the minimum distance all bank point will have 96
 bank.filter2.max.it = 12, # number of the maximum iterations for filter 2 to prevent the program to run infinitely 97
 centerline.smoothing.width = 7, # smoothing window width of mean filter in number of observations (see CM.calculateCenterline()) 98
 centerline.local.slope.range= 15, 99
 transects.span = 3, # span of centerline points used for calculating the transects (see CM.processCenterline()) 100
 centerline.bin.length = 5, # for simplifying the centerline give the spacing in the unit of the input coordinates (see CM.reduceCenterline()) 101
 centerline.use.reference = FALSE, # sets method for calculating distance centerline to banks, if [FALSE] (default) each river profile will be compared to its own 102
centerline, if [TRUE] the centerline of centerline.reference will be taken (see CM.processCenterline()) 103
 centerline.reference = "set1", # sets the reference data set if centerline.use.reference is [TRUE] 104
 calculate.metrics = TRUE, # if [TRUE] all centerline metrics are calculated (see CM.processCenterline()) 105

3

 force.calc.metrics = FALSE, # if [TRUE] the metrics are always re-calculated and never taken from cache 106
 107
 # step identification after Zimmermann et. al 2008 [Zimmermann, A.E., Church, M., and Hassan, M. a., 2008, Identification of steps and pools from stream longitudinal 108
profile data: Geomorphology, v. 102, no. 3–4, p. 395–406, doi: 10.1016/j.geomorph.2008.04.009.)] 109
 steps.identify = TRUE, 110
 steps.verbose = FALSE, # should there be 111
 steps.thalweg.dist = "3d", # chose method of distance calculation "3d" or "2d" 112
 steps.minimum.step.length = 2.25, # as percentage of Wb [%] 113
 steps.maximum.step.length = 200, # as percentage of Wb [%] 114
 steps.minimum.pool.length = 10, # as percentage of Wb [%] 115
 steps.minimum.residual.depth= 0.23, # as percentage of Wb [%] 116
 steps.minimum.drop.height = 3.3, # as percentage of Wb [%] 117
 steps.minimum.step.slope = 10, # average slope + 10 degree [°] 118
 steps.bank.full.width.fix = TRUE, # TRUE: use a fix bank full width for the whole stream, FALSE: calculate from banks 119
 steps.bank.full.width = 3.7, # [m] 120
 steps.average.slope.fix = FALSE, 121
 steps.average.slope = 12.5, #8.34, #12.5, # [°] 122
 123
 # ignore 124
 dummy = TRUE 125
 126
) 127
 128

