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I. LIST OF ALL PARAMETERS

par.default = list(

# name of the parameter set
name = "default",

# workspace

workspace.read = TRUE, # if [TRUE] it is tried to load the global data object from a workspace file in CM.ini()
workspace.write = FALSE, # if [TRUE] a workspace with the global data object will be written in CM.writeData()
workspace.replace = FALSE, # if [TRUE] a workspace will be replaced when existing in CM.writeData()
workspace.filename = "user_workspace.RData", # the filename used in CM.ini() and CM.writeData()

# input settings

input.dir = "input", # the directory from which all input files will be read in by CM.ini()
input.sep = "\t", # the column separator sign, e.g. ",", ";", "\t" (tab) passed to read.table (?read.table for more information)
input.col.easting = "POINT_X", # the column name for the x-value

input.col.northing = "POINT_Y", # s.a.

input.col.elevation = "POINT_Z", # s.a.

input.units = "m", # units of input coordinates (will be used for axis labels in plotting functions)
input.col.bank = "Name", # the column name of the side (left/right bank)

bank.code.left = "left", # the string code used for the left bank

bank.code.right = "right", # the string code used for the right bank

bank.reverse.left = FALSE, # reverse bank points of left bank from input data

bank.reverse.right = FALSE, # reverse bank points of right bank from input data

# output settings

output.replace = FALSE, # if [TRUE] the output files are replaced when existing in CM.writeFiles()
output.write.centerline = FALSE, # if [TRUE] the geometry of the centerline will be written in CM.writeFiles()
output.write.metrics = TRUE, # if [TRUE] the calculated channel metrics will be written in CM.writeFiles()
output.write.metrics.d = TRUE, # switch on/off the variable d.r and d.l (distances from centerline to banks)
output.write.metrics.w = TRUE, # switch on/off the variable w (channel width)

output.write.metrics.r = TRUE, # switch on/off the variable r.r and r.1 (direction factor of d.r and d.1l)
output.write.metrics.diff = TRUE, # switch on/off the variable diff.r and diff.l (distances between two banks)
output.write.steps = FALSE, #

output.write.steps.shp = FALSE, # write an ESRI shapefile of steps

output.dir = "output",

output.dir.shp = "output/shp",

output.sep = "\t",

# enable/disable plots
plot.polygoncheck = TRUE, # if [TRUE], a three-column plot is generated showing the entire river and both ends to rouhgly check the polygon consitency
(see also CM.generatePolygon())

plot.planview = TRUE, # create a plan view overview plot

plot.planview.secondary = TRUE, # in the plan view plot, add a secodary data set for comparison (will be displayed in dashed lines)
plot.planview.bankpoints = FALSE, # in the plan view plot, add the bank points of a data set

plot.planview.bankpoints.interpolated = FALSE, # in the plan view plot, add the interpolated bank points of a data set

plot.planview.polygon = TRUE, # in the plan view plot, add the channel borders
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# model parameters
force.calc.voronoi
force.calc.cl
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interpolate.max.dist
reduce
reduce.min.dist
filter2.max.it

centerline.smoothing.width

centerline.local.slope.range
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centerline.bin.length

centerline.use.reference
centerline, if [TRUE] the centerline of centerline.reference will be taken (see CM.processCenterline())
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# in the plan view plot, add voronoi polygons in plan view plot

# in the plan view plot, add the rough centerline (before smoothing)

# in the plan view plot, add the smoothed centerline

# when a centerline is plotted should the points representing the line be emphasized
# in the plan view plot, add a label with the number next to the centerline points

# if [TRUE] and

plot window is determined by cl points (see docu) the cl points are highlighted

# in the plan view plot, add transects (perpendiculars to centerline)

# give the length of transects in the unit of the input coordinates

# in the plan view plot, add transect segments from centerline to the banks (left and right)
# in the plan view plot, add a grid in the background

# the distance of the grid lines in the unit of the input coordinates

# in the plan view plot, add a legend

# keyword to position legend (see ?legend)

# in the plan view plot, add a scalebar (width of one plot.planview.grid.dist)

# if [TRUE] set

# if [TRUE] set

# if [TRUE] the

names will be used for display, otherwise "setl", "set2", etc.

names will be used for display, otherwise "setl", "set2", etc.

plan view plot is zoomed in (see also CM.plotPlanView())

# zoom window extent for the plan view plot in the unit of the input coordinates
# applied zoom window name (see also CM.plotPlanView())
# presets (customizable list) of zoom windows

# applied zoom cl range (see also CM.plotPlanView)
# presets (customizable list) of cl ranges

# determines whether to look for reference centerline [TRUE] or current centerline when centering around cl.range

# if [TRUE] all
# if [TRUE] the
# if [TRUE] the
# numbering for
# directory for

"documentation", # plot file

FALSE,
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FALSE,

"set1”,
TRUE,

# if [TRUE] the
# if [TRUE] the
# if [TRUE] the

plots will be copied to file devices
plot will be saved as pdf

plot will be saved as png

filenames (see also CM.plotPlanView())
saving plots if plot.to.file = TRUE
name

voronoi polygons are always re-calculated and never taken from cache
centerline is always re-calculated and never taken from cache
provided bank points are linearly interpolated to generate a denser polygon (see CM.generatePolygon())

# if bank.interpolate is [TRUE] this is the maximum distance all bank points will have

# if [TRUE] the

provided bank points are reduced by points that are closer to each other than bank.reduce.min.dist

# if bank.reduce is [TRUE] this is the minimum distance all bank point will have

# number of the

maximum iterations for filter 2 to prevent the program to run infinitely

# smoothing window width of mean filter in number of observations (see CM.calculateCenterline())

# span of centerline points used for calculating the transects (see CM.processCenterline())
# for simplifying the centerline give the spacing in the unit of the input coordinates (see CM.reduceCenterline())

# sets method for calculating distance centerline to banks, if [FALSE] (default) each river profile will be compared to its own

# sets the reference data set if centerline.use.reference is [TRUE]

# if [TRUE] all

centerline metrics are calculated (see CM.processCenterline())
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