Supplementary material
Michael Dietze
April 11, 2017

The article “Validity, precision and limitations of seismic-based rockfall monitoring” by Michael Dietze,
Solmaz Mohadjer, Jens M. Turowski, Todd Ehlers and Niels Hovius, submitted to Earth Surface Dynamics,
uses records of terrestrial laser scanning and broadband seismometers to investigate rockfall activity in a
part of the Lauterbrunnen Valley, Bernese Oberland, Switzerland. This supplementary material provides the
seismic signals of ten rockfall events, co-detected by both methods.

The documentation explaines the general work that is needed to reproduce the main results discussed in the
manuscript. However, there may be some changes in the parameter settings that cannot be fully implemented,
here. One example is the setup of the STA/LTA picking routine, which needed adjustments simply due to
the short lengths of the clipped seismic signals.

Content of the supplementary material

e Readme.pdf - the information document you are reading by now

o ASCII files labelled event n.txt - seismic data of ten rockfall events
e seismic_ stations.txt - summary of the seismic stations

lidar.txt - lidar-detected rockfall information

Software requirements

As far as possible, all data preparation, analysis and visualisation steps were made using free and open
software. To work with the seismic signals the following software needs to be or is recommended to be
installed:

« R
¢ RStudio

Furthermore, the following R-packages need to be installed. Please consider that this documentation cannot
guide you through the sometimes rocky paths to successful installations of R-packages. The internet is indeed
a very good ressource to solve issues during installation.

o raster (install.packages(pkgs = "raster"))

o sp (install.packages(pkgs = "sp"))

o devtools (install.packages(pkgs = "devtools"))

o eseis (devtools::install_github(repo = "coffeemuggler/eseis"))

The package eseis is the central tool for working with seismic data in R. It is hosted on GitHub. All other
packages are hosted on CRAN.

Loading the rockfall data sets

The content of the zip-archive rockfalls.zip needs to be extracted. The following code will import the
data set of the first event to R. Note that "~/Downloads/" is the path to the extracted files and may need
adjustments.

https://www.r-project.org/
https://www.rstudio.com/
https://github.com/coffeemuggler/eseis/tree/0.3.0

load event 1

event_1 <- read.table(file = "~/Downloads/event_1.txt",
header = TRUE,
sep = ||,||’

stringsAsFactors = FALSE)

show structure of the imported data set
str(event_1)

'data.frame': 12199 obs. of 5 variables:

¢ Time : chr "2014-10-12 22:45:20.005" "2014-10-12 22:45:20.009" "2014-10-12 22:45:20.015"
$ LAUO2: int 61436 61467 61449 61432 61445 61451 61458 61444 61448 61451 ...

¢ LAUO3: int 59069 59070 59062 59060 59059 59060 59066 59061 59062 59080 ...

¢ LAUO4: int 63202 63174 63162 63163 63145 63157 63168 63154 63161 63143 ...

¢ LAUO5: int 63488 63489 63492 63512 63510 63527 63541 63508 63455 63445 ...

The data set is a data frame with 12199 samples. The first element (column) is the time stamp as POSIXct-
string. The subsequent four elements contain the raw seismic signals of the vertical component from four
stations: LAUO2 to LAUO5.

To set these data into context, the seismic station summary file is needed, as well. It can be loaded in a
similar way:
load station summary file
stations <- read.table(file = "~/Downloads/seismic_stations.txt",
header = TRUE,
stringsAsFactors = FALSE)

show content of the imported data set
print(stations)

ID name X y z sensor_type logger_type
1 LAUO2 Gate of China 415766.2 5157910 1524 TC120s Cube3ext
2 LAUO3 Blatters Herbs 415398.0 5156814 1595 TC120s Cube3ext
3 LAUO4 Mosquito Fabric 416236.0 5158777 832 TC120s Cube3ext
4 LAUOS Funny Rain 416035.2 5157843 888 TC120s Cube3ext

Each seismic station has an ID (corrsponding to the names of the seismic signals of each event), a station
name, location information in UTM coordinates, the elevation of deployment and information about the
sensor and logger type.

Finally, to load the lidar-based rockfall events, the following code is needed. The volumes are given in m"3,
the coordinates in the UTM system. IDs correspond to those of the event files.

load event 1

lidar <- read.table(file = "~/Downloads/lidar.txt",
header = TRUE,
sep = n’n

stringsAsFactors = FALSE)

show content of the imported data set
print(lidar)

#i# ID volume..m.3. volume_error..m.3. x..UTM. y..UTM.

1 1 0.201 0.0046020 415511.2 5156535
2 2 0.063 0.0066810 415522.5 5156542
3 3 0.201 0.0046020 415541.4 5156844

"2014-1

4 4 0.175 0.0113370 415565.5 5156845
5 5 0.053 0.0043365 415591.4 5156934
6 6 0.416 0.0208125 415950.0 5158213
7T 7 0.891 0.0384285 415952.1 5157829
8 8 0.258 0.0138285 416005.0 5157897
9 9 0.192 0.0100230 416116.3 5158797
10 10 2.338 0.0854475 416037.4 5158649

Further requirements

Due to copyright reasons it was not possible to also deliver the digital elevation model (DEM) used to run the
localisation routines. You may need to provide such a DEM by your own. The DEM used by the authores
was provided by swissALTI3D. If you wish or need to use your own DEM make sure it is in metric units
(e.g., the UTM refrence system). You can basically import all common file formats to R using the package
‘raster’, such as GeoTiff, Erdas IMagine img, ESRI grids and many more that are or can be converted into
matrix-like objects. Usually, search engines like ‘Startpage’ are very generous in providing useful help for
importing geodata to R.

General workflows

Again, this documentation cannot give detailed into the R-package eseis. Please see the documentation of this
package, e,g, by typing 7eseis in the R console. Most of the following text uses event 7 as example, because
it corresponds to figure 7 of the accompanying manuscript. There are a few preparation steps needed:

load package
library("eseis"

load event 7

data <- read.table(file = "~/Downloads/event 7.txt",
header = TRUE,
sep = n’u

stringsAsFactors = FALSE)

assign time and signal data
t <- as.PO0SIXct(x = data$Time, tz = "UTC")
s <- as.list(datal[,2:5])

Picking event onsets and durations

The following code snippet filters the raw signals of all stations to the frequency window of interest for
rockfall detection. The result is tapered to remove edge effects. Then, the signal envelope is calculated and
the STA/LTA picking routine is applied to the first trace (i.e., LAU02, “Gate of China”). Note that due to
the short length of the signal trace the STA/LTA setup differs from the values proposed in the manuscript.

filter signal
s_f <- signal_filter(data = s,
dt = 1/200,
f = c(10, 30))

taper signal to remove egde effects
s_f <- signal_taper(data = s_f, n = 1000)

http://www.mont-terri.ch/internet/swisstopo/en/home/products/height/swissALTI3D.html

calculate envelopes
S_e <- signal_envelope(data = s_f)

pick events
events <- signal_stalta(data = s_e[[1]],

time = t,
dt = 1/200,
sta = 100,
1lta = 5000,
freeze = TRUE,
on = 5,
off = 3)

print (events)

ID start duration

1 1 2014-09-25 07:03:14 0.6710000
2 2 2014-09-25 07:03:15 0.5310001

plot signal and event onsets
plot(x = t, y = s_f[[1]], type = "1")

abline(v = events$start, col = "orange")
o
O_
—
o _
Lo
=)
Eﬁ o -
(%]
o
Ln —
|
o
o _|
T

I I I I I I
02:48 03:00 03:12 03:24 03:36 03:48

Deconvolution of signals

Deconvolution is needed to remove the instrument response of the data and to plot it in meaningful units (10
log_10 m?/52, dB).

check that used sensors and loggers are in library
list_sensor() [[1]]

$ID

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[1] "TC120s"
$name
[1] "Trillium Compact 120s"

$manufacturer
[1] "Nanometrics"

$type
[1] "broadband seismometer"

$n_components
(11 3

$comment

[1]

$poles
(1]
[4]
(7]
[10]

3.691e-02+3.702e-021
-3.700e+02+4.670e+021
-8.360e+02-1.522e+031
-6.900e+03+0.000e+001

$zeros

[1] 0+ 0i 0i
$s

[1] 749.1

$k
[1] 4.34493e+17

list_logger () [[1]]

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

$ID
[1] "Cube3ext"
$name

[1] "Cube 3ext"

$manufacturer
[1] "Omnirecs"

$type
(1]

$n_components
(11 3

$comment

[1] nn

$AD
[1] 2.4414e-07

3.691e-02-3.
-3.700e+02-4.
-4.900e+03+4.
-1.500e+04+0.

-392+

0i

"Data taken from data base of Arnaud Burtin"

702e-021
670e+021i
700e+031
000e+001

-1960+

"The greatest data logger in the world"

-3.430e+02+0.000e+001
-8.360e+02+1.522e+031
-4.900e+03-4.700e+031

0i -1490+1740i -1490-1740i

deconvolve signal

s_d <- signal_deconvolve(data = s,
dt = 1/200,
sensor = "TC120s",
logger = "Cube3ext")

Plotting the waveforms of seismic data

filter (and taper) deconvolved signals
s_f_plot <- signal_filter(data = s_d,

dt = 1/200,
f =c(1, 90),
p = 0.01)

prepare plot area
par(mfcol = c(4, 1), mar = c(5, 4, 1, 0))

plot signals
for(i in 1:length(s_f_plot)) {

plot(x = t,
y = s_f_plot[[il],
type = "1",

main = paste("Station", stations$ID[i]),
xlab "Time (min, UTC)",
ylab = "v (m/s)")

Station LAUQ2

w =
€ 5] T
-
> $ T T T T T T
02:48 03:00 03:12 03:24 03:36 03:48
Time (min, UTC)
_ Station LAUQO3
Y -
2 53 J - — Al
- T T T T T T
B 02:48 03:00 03:12 03:24 03:36 03:48
Time (min, UTC)
_ Station LAUO4
n .
E 5 - ey *‘m
-
> $ T T T T T T
02:48 03:00 03:12 03:24 03:36 03:48
Time (min, UTC)
_ Station LAUQS
» -
E 57 ettt Nt osoopnes
> % T T T T T T
02:48 03:00 03:12 03:24 03:36 03:48

Time (min, UTC)

Calculating and plotting power spectral density estimates (PSD)

truncate the signal and time vectors to the actual event
t_lim <- as.POSIXct(c("2014-09-25 07:03:12 UTC",
"2014-09-25 07:03:49 UTC"),

tz = "UTC")

t_cut <- t[t >= t_1im[1] & t <= t_1im[2]]

s_cut <- lapply(X = s_f_plot, FUN = function(x) {

x[t >= t_lim[1] & t <= t_lim[2]]
B

calculate PSD

PSD <- signal_spectrogram(data = s_cut,
time = t_cut,
dt = 1/200,
Welch = TRUE,
window = 1.0,
overlap = 0.9,

window_sub = 0.8,
overlap_sub = 0.9,

multitaper =

plot PSD of station LAUO5

TRUE)

plot_spectrogram(data = PSD[[4]],
legend = "dB",
zlim = c¢(-190, -140),
xlab = "Time (sec, UTC)",
ylab = "f (Hz)",
main = "PSD, station Funny Rain")

PSD, station Funny Rain

o

S -140

S -150
. 3 ~160
T s
T g -170

Q -180

o -190

20 30 40

Time (sec, UTC)

Locating events

Locating events requires a DEM (see above). This DEM is used for the topography correction process. The
workflow requires first to generate distance maps and inter-station distances, which are both required in the
next step: signal migration.

Generate distance maps and inter-station distance matrix
Loading required package: sp
[1] "Processing station distances"

generate distance data sets
D_data <- spatial_distance(stations = stations[,3:4],
dem = dem)

plot distance map for station LAUO2
plot(D_data$maps[[1]1])

show interstation distances
print (D_data$stations)

1 2 3 4
1 0.0000 1479.734 1625.5933 846.7072
2 1479.7343 0.000 3454.8019 3212.6337
3 1625.5933 3454.802 0.0000 998.1759
4 846.7072 3212.634 998.1759 0.0000

Migrate the signals

filter signals to localisation window
s_migrate <- signal_filter(data = s,

dt = 1/200,

f = c(10, 20))

calculate envelopes
s_migrate <- signal_envelope(data = s_migrate)

convert signal list to matrix
s_migrate <- do.call(rbind, s_migrate)

truncate time and signals to event +/- 2 seconds
t_lim <- as.POSIXct(c("2014-09-25 07:03:11 UTC",
"2014-09-25 07:03:21 UTC"),
tz = "UTC")

t_migrate <- t[t >= t_1lim[1] & t <= t_1im[2]]
s_migrate <- s_migrate[,t >= t_lim[1] & t <= t_lim[2]]

migrate the signal of rockfall 7

1000 1500 2000

500

P <- spatial_migrate(data = s_migrate,

d_stations = D_data$stations,
d_map = D_data$maps,

v = 2700,

dt = 1/200,

normalise = TRUE)

[1] "No snr given. Will be calculated from signals"

remove values below likelihood threshold
P_min <- 0.97
P@data@values[P@data@values < quantile(P@data@values,

P _min,
na.rm = TRUE)] <- NA

plot output as hillshade overlay and add lidar points

plot(hs,

col = grey.colors(250),
legend = FALSE,

ann

FALSE,

axes = FALSE)

plot (P,
add
col

points(x

TRUE,

adjustcolor(col = rev(heat.colors(250)),
alpha.f = 0.5))

lidar$x, y = lidar$y)

10

1.96
1.94
1.92
1.90

	Content of the supplementary material
	Software requirements
	Loading the rockfall data sets
	Further requirements
	General workflows
	Picking event onsets and durations
	Deconvolution of signals
	Plotting the waveforms of seismic data
	Calculating and plotting power spectral density estimates (PSD)
	Locating events

