



*Supplement of*

**Short communication: Massive erosion in monsoonal central India  
linked to late Holocene land cover degradation**

**Liviu Giosan et al.**

*Correspondence to:* Liviu Giosan (lgiosan@whoi.edu)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

1      Supplementary Materials

2  
3      The detrital fraction provenance was assessed using Nd isotopic ratios (Supplementary  
4      Table 1). Nd chemistry was done with conventional ion chromatography following the  
5      method of Bayon et al. (2002). Nd analyses were performed on the NEPTUNE multi-  
6      collector ICP-MS at WHOI with the internal precision of 5-10 ppm (2 sigma). The  
7      external precision, after correction to value for LaJolla standard ( $^{143}\text{Nd}/^{144}\text{Nd}=511847$ ) is  
8      approximately 15 ppm (2 sigma).  $^{143}\text{Nd}/^{144}\text{Nd}$  isotopic composition is expressed here as  
9       $\varepsilon\text{Nd}$  (DePaolo and Wasserburg, 1976) units relative to  $(^{143}\text{Nd}/^{144}\text{Nd})\text{CHUR}= 0.512638$   
10     (Hamilton et al., 1983). Very low  $\varepsilon\text{Nd}$  values are generally found in continental crusts,  
11     whereas higher (more positive)  $\varepsilon\text{Nd}$  values are commonly found in mantle-derived melts  
12     (DePaolo, 1988), such as those of large igneous provinces.

13     The average  $\varepsilon\text{Nd}$  for the Deccan basalts is  $+1 \pm 5$  and for the Indian craton is  $-35 \pm 8$   
14     (GEOROC Database, Geochemistry of Rocks of the Oceans and Continents, Max Plank  
15     Institute for Chemistry, Mainz, Germany, <http://georoc.mpch-mainz.gwdg.de/>). The  
16     measured  $\varepsilon\text{Nd}$  value of a sample was expressed as a simple mixture of sediment derived  
17     from the two end-members:

$$\varepsilon\text{Nd}_{\text{Sample}} = f \cdot \varepsilon\text{Nd}_{\text{Deccan}} + (1-f) \cdot \varepsilon\text{Nd}_{\text{Craton}}$$

19     Where ( $f$ ) is the fraction of Deccan derived sediments,  $(1-f)$  the fraction of Craton  
20     derived sediments in the mixture, and  $f$  is a number between 0 and 1.

21     Sediment fluxes (Supplementary Table 2) were constructed as mass accumulation rates  
22     assuming negligible carbonate inputs (Johnson et al., 2014) using measured dry bulk  
23     densities on the samples used for foram radiocarbon dating and sedimentation rates from  
24     the age model of Ponton et al. (2012).

25     The high resolution series of bulk TOC  $^{14}\text{C}$  content was measured at the Geological  
26     Institute and the Laboratory of Ion Beam Physics, ETH Zürich (Supplementary Table 3).  
27     The bulk TOC  $^{14}\text{C}$  measurements made at ETHZ are detailed in McIntyre et al. (2016).  
28     Duplicates of 70-90 mg of freeze-dried sediment samples were weighed in pre-  
29     combusted silver boats (Elementar) and fumigated with HCl to remove carbonate  
30     (Komada et al., 2008). The samples were subsequently neutralized and dried over solid  
31     NaOH pellets to remove residual acid. The samples were then wrapped in a second tinfoil  
32     boats (Elementar9 and pressed prior to analysis.

33     Samples were graphitized by the automated graphitization equipment (AGE) and  
34     analysed for  $^{14}\text{C}$  using the MICADAS system (Ionplus) and an ampoule cracker system  
35     following the procedure outlined in Wacker et al. (2013). The other batch was then run as  
36     gas on the coupled EA-IRMS-AMS system at ETHZ. The data for the TOC  $^{14}\text{C}$  content

37 showed that samples analysed using graphite and CO<sub>2</sub> are within 2 $\sigma$  of each other  
38 (McIntyre et al., 2016).

39 For microscale ( $\leq 20$   $\mu\text{g}$  C) AMS  $^{14}\text{C}$  analysis, comprehensive procedural blank  
40 assessment is critical in order to constrain analytical uncertainty (Drenzek, 2007; Santos  
41 et al., 2010; Tao et al., 2015). An evaluation of the complete procedure used here  
42 (chemical extraction, derivatization, PCGC isolation, final clean-up and combustion  
43 steps) yielded a procedural blank of  $1.2 \pm 0.4$   $\mu\text{g}$  C per 30 PCGC injections, with an  $\Delta^{14}\text{C}$   
44 of  $-382 \pm 126\text{\textperthousand}$  (Tao et al., 2015). Separate assessment of modern and fossil C blanks  
45 yielded  $0.8 \pm 0.2$   $\mu\text{g}$  of modern C contamination (i.e.,  $\Delta^{14}\text{C} = 0\text{\textperthousand}$ ) and  $0.5 \pm 0.1$   $\mu\text{g}$  of dead  
46 C contamination (i.e.,  $\Delta^{14}\text{C} = -1000\text{\textperthousand}$ ), with a combined procedural blank of  $1.3 \pm 0.2$   $\mu\text{g}$   
47 C per PCGC 30 injections with a  $\Delta^{14}\text{C}$  value of  $-325 \pm 129\text{\textperthousand}$ . From this assessment as  
48 well as a previous assessment (Drenzek, 2007), we estimate that the analytical  
49 uncertainty for  $^{14}\text{C}$  analysis of FAs ranges from 6 to 40% (ave., 12%).

50 The raw and calibrated radiocarbon age models used to estimate depositional ages are  
51 from Ponton et al. (2012). The age of the bulk TOC at the time of their deposition was  
52 estimated by taking the offsets between their radiocarbon content and the interpolated  
53 reservoir-corrected foraminifera-based radiocarbon age (Supplementary Table 3). The  
54 reservoir correction used was 400 years. Taking a conservative approach we calculated  
55 the propagated error for the radiocarbon age offsets (Supplementary Table 3) as:

56 
$$\text{err. offset} = ((\text{err. TOC } ^{14}\text{C measurement})^2 + (\text{max. err. foram } ^{14}\text{C measurement})^2)^{1/2}$$

57 where the maximum error for the foraminifera  $^{14}\text{C}$  measurements used in the age model  
58 was 55  $^{14}\text{C}$  years (Ponton et al., 2012). The resulting errors for the offset range between  
59 63 and 80 years.

60

61 **Supplementary Table 1.** Downcore measurements of  $^{143}\text{Nd}/^{144}\text{Nd}$  composition with  
62 corresponding  $\varepsilon\text{Nd}$  for the Holocene section of NGHP-01-16A in front of Godavari delta.

| Depth<br>(mbsf) | Age<br>(yr) | <b>143Nd/144Nd</b> | <b><math>\varepsilon\text{Nd}</math></b> |
|-----------------|-------------|--------------------|------------------------------------------|
| 0.00            | 59          | 0.511999           | -12.46                                   |
| 0.16            | 159         | 0.511973           | -12.97                                   |
| 0.32            | 256         | 0.512035           | -11.76                                   |
| 0.80            | 542         | 0.511946           | -13.50                                   |
| 1.70            | 1085        | 0.512018           | -12.09                                   |
| 2.50            | 1627        | 0.511945           | -13.52                                   |
| 3.00            | 2019        | 0.511888           | -14.63                                   |
| 3.60            | 2567        | 0.511888           | -14.63                                   |
| 4.00            | 2990        | 0.511830           | -15.76                                   |
| 4.80            | 4002        | 0.511780           | -16.74                                   |
| 5.40            | 4936        | 0.511809           | -16.17                                   |
| 6.00            | 6043        | 0.511847           | -15.43                                   |
| 6.50            | 7116        | 0.511856           | -15.25                                   |
| 6.90            | 8082        | 0.511832           | -15.72                                   |
| 7.20            | 8873        | 0.511801           | -16.33                                   |
| 7.60            | 10024       | 0.511822           | -15.92                                   |

63

64

65 **Supplementary Table 2.** Downcore estimates of sediment fluxes for the Holocene  
66 section of NGHP-01-16A in front of Godavari delta based on calibrated foraminifera  $^{14}\text{C}$   
67 depositional ages.

| Depth<br>(mbsf) | Age<br>(yr) | Sediment<br>Flux<br>(g/cm <sup>2</sup> /kyr) |
|-----------------|-------------|----------------------------------------------|
| 0.075           | 0           | 87.0                                         |
| 1.475           | 1104        | 151.2                                        |
| 2.975           | 1852        | 70.7                                         |
| 4.045           | 2895        | 47.8                                         |
| 4.775           | 4046        | 41.8                                         |
| 5.355           | 5331        | 49.2                                         |
| 6.015           | 5996        | 31.0                                         |
| 6.435           | 6198        | 31.0                                         |
| 7.215           | 9056        | 23.7                                         |
| 7.655           | 10314       | 23.7                                         |
| 7.885           | 10619       | 25.8                                         |

68

69

70 **Supplementary Table 3.** Downcore measurements of bulk TOC measured at ETH and  
 71 offsets to foram  $^{14}\text{C}$  depositional ages for the Holocene section of NGHP-01-16A.

| Depth<br>(mbsf) | Age<br>(kyr) | $^{14}\text{C}$ Depositional Age<br>(kyr) | TOC $^{14}\text{C}$ Age<br>(kyr) | Error TOC $^{14}\text{C}$ Age<br>(kyr) | $^{14}\text{C}$ Age Offset<br>(kyr) | Max. Error $^{14}\text{C}$ Age Offset<br>(kyr) |
|-----------------|--------------|-------------------------------------------|----------------------------------|----------------------------------------|-------------------------------------|------------------------------------------------|
| 0.265           | 223          | 31                                        | 1844                             | 51                                     | 1813                                | 75                                             |
| 0.350           | 274          | 117                                       | 1928                             | 32                                     | 1811                                | 63                                             |
| 0.440           | 328          | 205                                       | 1833                             | 32                                     | 1627                                | 63                                             |
| 0.485           | 355          | 249                                       | 1869                             | 32                                     | 1620                                | 63                                             |
| 0.545           | 391          | 305                                       | 1924                             | 51                                     | 1619                                | 75                                             |
| 0.660           | 459          | 410                                       | 1948                             | 51                                     | 1538                                | 75                                             |
| 0.755           | 516          | 494                                       | 2098                             | 51                                     | 1604                                | 75                                             |
| 0.840           | 566          | 567                                       | 2206                             | 51                                     | 1639                                | 75                                             |
| 0.890           | 595          | 609                                       | 2251                             | 32                                     | 1642                                | 63                                             |
| 0.940           | 625          | 650                                       | 2238                             | 32                                     | 1588                                | 64                                             |
| 1.035           | 681          | 726                                       | 2246                             | 51                                     | 1519                                | 75                                             |
| 1.085           | 711          | 766                                       | 2389                             | 51                                     | 1623                                | 75                                             |
| 1.145           | 746          | 812                                       | 2306                             | 32                                     | 1494                                | 64                                             |
| 1.235           | 800          | 881                                       | 2233                             | 32                                     | 1352                                | 64                                             |
| 1.305           | 842          | 933                                       | 2421                             | 51                                     | 1488                                | 75                                             |
| 1.635           | 1044         | 1166                                      | 2709                             | 33                                     | 1542                                | 64                                             |
| 1.825           | 1164         | 1293                                      | 2712                             | 52                                     | 1419                                | 75                                             |
| 1.865           | 1190         | 1320                                      | 2673                             | 32                                     | 1354                                | 64                                             |
| 2.060           | 1318         | 1446                                      | 2783                             | 32                                     | 1337                                | 64                                             |
| 2.315           | 1493         | 1607                                      | 2850                             | 52                                     | 1243                                | 76                                             |
| 2.365           | 1529         | 1638                                      | 2837                             | 32                                     | 1198                                | 64                                             |
| 2.640           | 1732         | 1811                                      | 3069                             | 52                                     | 1258                                | 76                                             |
| 2.835           | 1884         | 1935                                      | 3033                             | 52                                     | 1098                                | 76                                             |
| 3.090           | 2096         | 2100                                      | 3327                             | 52                                     | 1227                                | 76                                             |
| 3.315           | 2295         | 2253                                      | 3353                             | 32                                     | 1101                                | 64                                             |
| 3.365           | 2341         | 2287                                      | 3364                             | 52                                     | 1077                                | 76                                             |
| 3.560           | 2528         | 2427                                      | 3466                             | 32                                     | 1039                                | 64                                             |
| 3.855           | 2831         | 2652                                      | 3835                             | 33                                     | 1183                                | 64                                             |
| 3.915           | 2896         | 2700                                      | 3842                             | 53                                     | 1142                                | 76                                             |
| 4.085           | 3086         | 2842                                      | 3902                             | 53                                     | 1060                                | 76                                             |
| 4.130           | 3138         | 2881                                      | 3882                             | 52                                     | 1001                                | 76                                             |
| 4.310           | 3354         | 3042                                      | 4086                             | 33                                     | 1044                                | 64                                             |
| 4.575           | 3693         | 3299                                      | 4386                             | 53                                     | 1088                                | 76                                             |
| 4.745           | 3925         | 3476                                      | 4590                             | 54                                     | 1114                                | 77                                             |
| 4.965           | 4243         | 3723                                      | 4871                             | 34                                     | 1148                                | 65                                             |
| 5.140           | 4511         | 3934                                      | 5063                             | 34                                     | 1129                                | 65                                             |
| 5.180           | 4574         | 3984                                      | 5141                             | 33                                     | 1157                                | 64                                             |
| 5.355           | 4860         | 4213                                      | 5085                             | 54                                     | 872                                 | 77                                             |
| 5.655           | 5384         | 4640                                      | 5301                             | 34                                     | 661                                 | 65                                             |
| 5.865           | 5778         | 4969                                      | 5702                             | 34                                     | 733                                 | 65                                             |
| 6.165           | 6382         | 5482                                      | 6063                             | 34                                     | 581                                 | 65                                             |
| 6.200           | 6455         | 5546                                      | 6210                             | 55                                     | 664                                 | 78                                             |
| 6.575           | 7290         | 6278                                      | 6704                             | 56                                     | 427                                 | 78                                             |
| 6.605           | 7360         | 6340                                      | 6810                             | 35                                     | 470                                 | 65                                             |
| 6.825           | 7893         | 6820                                      | 7218                             | 56                                     | 399                                 | 79                                             |
| 6.860           | 7981         | 6899                                      | 7208                             | 35                                     | 308                                 | 65                                             |
| 7.065           | 8510         | 7384                                      | 8276                             | 58                                     | 892                                 | 80                                             |

72

73

74

75      Supplementary References:

76      Bayon, G., German, C.R., Boella, R.M., Milton, J.A., Taylor, R.N. and Nesbitt, R.W.,  
77      2002. An improved method for extracting marine sediment fractions and its application to  
78      Sr and Nd isotopic analysis. *Chemical Geology*, 187(3), pp.179-199.

79      DePaolo, D.J., 1988. *Neodymium Isotope Geochemistry, An Introduction*. Springer-  
80      Verlag, Berlin, 187 p.

81      DePaolo, D. J. & Wasserburg, G. J. (1976) Nd isotopic variations and petrogenetic  
82      models. *Geophysical Research Letters* 3, 249-252.

83      Drenzek N. J. 2007. The temporal dynamics of terrestrial organic matter transfer to the  
84      oceans: initial assessment and application. Ph. D. thesis, MIT/WHOI Joint Program in  
85      Oceanography/Applied Ocean Science and Engineering.

86      Hamilton, P. J., O'Nions, R. K., Bridgwater, D. and Nutman, A. (1983). Sm-Nd studies of  
87      Archean metasediments and metavolcanics from West Greenland and their implications  
88      for the Earth's early history. *Earth Planet. Sci. Lett.* 62, 263-272.

89      McIntyre, C. P., Wacker, L., Haghipour, N., Blattmann, T. M., Fahrni, S., Usman, M.,  
90      Eglinton, T. I., Synal, H.-A. 2016. Online  $^{13}\text{C}$  and  $^{14}\text{C}$  gas measurement by EA-IRMS-  
91      AMS at ETH Zürich. *Radiocarbon*, 1-11. doi:10.1017/RDC.2016.68

92

93      Santos, G. M., J. R. Southon, N. J. Drenzek, L. A. Ziolkowski, E. Druffel, X. M. Xu, D.  
94      C. Zhang, S. Trumbore, T. I. Eglinton, and K. A. Hughen. 2010. Blank assessment for  
95      ultra-small radiocarbon samples: chemical extraction and separation versus AMS.  
96      *Radiocarbon* 52 (3):1322-1335.

97

98      Tao S., Eglinton T.I., Montlucon D.B., McIntyre C. and Zhao M. (2015) Pre-aged soil  
99      organic carbon as a major component of the Yellow River suspended load: Regional  
100     significance and global relevance. *Earth Planet Sci. Lett.* 414, 77-86.

101

102     Wacker, L., S. M. Fahrni, I. Hajdas, M. Molnar, H. A. Synal, S. Szidat, and Y. L. Zhang  
103     (2013), A versatile gas interface for routine radiocarbon analysis with a gas ion source,  
104     Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with  
105     Materials and Atoms, 294, 315-319, doi:10.1016/j.nimb.2012.02.009.

106