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1 U-Th series disequilibria and the determination of time

constant for weathering

The nuclides of the U-series have been recognized since the 1960s as powerful tools to constrain

the time constants of the weathering and erosion processes (e.g. Rosholt et al., 1966; Hansen &

Stout, 1968). Such a potential was convincingly illustrated from the 2000s by case studies, as

well for the determination of time constants of weathering processes, as for time constants of

sedimentary transfers in alluvial plains. The theoretical principle behind these approaches can

be found in Osmond & Ivanovich (1992); Chabaux et al. (2003b,a, 2008); Dosseto & Schaller

(2016) to which we refer the reader for further details. It relies on the property of the ra-

dionuclides (1) to be fractionated during water rock interactions, which create what it is named

radioactive disequilibria among the U-series nuclides, and (2) to have radioactive period of the

same order of magnitude as the time constants of several weathering processes. The study

of the variations of the 238U-234U-230Th-226Ra radioactive disequilibria in soil and weathering

profiles have thus allowed for bringing time constants of weathering processes (e.g. Dequincey

et al., 2002; Chabaux et al., 2003a; Dosseto et al., 2008, 2012; Pelt et al., 2008; Ma et al., 2010,

2013; Ackerer et al., 2016). Similarly the variations of 238U-234U-230Th-226Ra disequilibria in

sediments along the river might be used to constrain the residence time of sediment within the

alluvial plain (Granet et al., 2007, 2010) even if such an approach is still debated (Chabaux

et al., 2012; Bosia et al., 2016, in press). For determining sediment residence and transfer time,

an alternative approach the “comminution” age approach has been developed (DePaolo et al.,

2006, 2012), that we detail in the article.

2 Specific surface area measurements

The specific surface areas S of the samples were measured using N2 adsorption. S was calculated

by determining the amount of adsorbed gas needed to create a monomolecular layer on the

sample’s connected surface. Each sample was placed in a vacuum-sealed vessel (itself placed in

a liquid nitrogen bath). First, a non-adsorbing gas (in this case, He) was introduced in pressure

increments and the injected volume Vna was recorded. After having removed the gas, a second

series of gas injections was run with an adsorbing gas (in this case N2) and the volume Va

recorded. The volume of gas adsorbed on the surface of the sample at each pressure increment

is therefore Va - Vna. Assuming that the surface of the sample interacts with a monomolecular

layer of adsorbed gas (following the BET theory, Brunauer et al. (1938)), the volume of this
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layer, Vm, is derived as a function of Va - Vna, valid for pressures between 0.05 and 0.35 of the

N2 saturated vapour pressure. Specific surface area is calculated as:

S =
Vm.A.Na

m.VSTP
λ230N230 + (1− f 230

α )λ234N234 (1)

where Na is Avogadro’s constant, A is the adsorption cross-sectional area of the adsorbing

gas molecule, m is the mass of the dry sample, and VSTP is the volume of one mole of adsorbed

gas at standard pressure and temperature.

3 Determination of profiles 10Be ages

We show here graphically (Figures 1 and 2) the results of the Monte Carlo optimization of

the profiles ages, erosion rates, and inheritance, following Hidy et al. (2010). Monte Carlo

optimization allow the determination of the best set of values for erosion rates of the surface,

deposition age, and nuclides inheritance, to best explain the profiles of 10Be concentrations. A

priori values for these three paramerters are assigned (see section 2.2.3). This is a probabilistic

approach, so the result is shown in term of probability distribution.

4 Th removal during leaching

Th is poorly soluble, hence after ejection by α recoil, it is most probably readsorbed onto

mineral surfaces. The leaching protocol is supposed to remove it. In order to evaluate whether

the leaching procedure has been efficient at removing exchangeable Th, we test whether the

results are compatible with scenarios where Th is not removed or only partially removed.

To test it, we consider that a total readsorbtion of 230Th after ejection from the mineral is

equivalent to no ejections at all, that is f 230
α = 0. We also test with f 230

α =
1.176× f 234

α

2
(half

of the theoretical value described in section 2.3.1), which correspond to an intermediate case

(partial removal of Th during leachings).

Interestingly the relations between trecycl and kpre238/k
post
238 remain the same. The differences

concern the likelihood of the solutions, and the relation between k234/k238 and k230/k238 (see

Figures 3 and 4). With f 230
α = 0, the fit to the data is poor and unrealistic values of k234/k238

larger than 3 are necessary. When f 230
α is increased, the predicted value of k234/k238 decreases,

but remains larger than 3, the fit to the data becomes better, and the trecycl optimal solution
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remains around 100 kyrs.

Given the fact that the fit to the data is less good and the estimated value of k234/k238

becomes very large as the value of f 230
α is decreased, we conclude that the leaching procedure

is highly efficient at removing exchangeable Th, even if we cannot exclude that a small amount

of exchangeable Th can remain after the leaching protocol. Importantly, the average recycling

time estimated from the inverse procedure remains of the order of 100 kyrs, even with moderate

amounts of Th.
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Figure 1: (Left panel) Distribution of the optimal solutions for age, erosion rate, and inheritance
for the inversion of Deseado 2 profile 10Be data. (Right panel) The optimal model of 10Be versus
depth, resulting from the set of optimal age, erosion rate and inheritance. The probability of
erosion rates and ages is also plotted in a two dimensional diagram. These figures have been
drawn from the matlab code supplied by Hidy et al. (2010).
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Figure 2: Same as Figure 1 for the Telken 5 profile.
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Figure 3: Results of Monte Carlo simulation with f 230
α = 0. This case means that 230Th is not

removed from the mineral grains by α-recoil. Note that for readibility the colorscale has been
changed compared to Figure 6.
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Figure 4: Results of Monte Carlo simulation with f 230
α =

1.176× f 234
α

2
(half of the theoretical

value described in section 2.3.1). The colorscale is the same as in Figure 6.
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Figure 5: Best fit of the Monte Carlo simulation (red curves). The black points are the data.
The X axis originate in the comminution episode, which means that the age assigned to each
sample is the addition of its 10Be exposure age and the recycling time (determined with U-
Th data). Errorbars are the external uncertainties. The black vertical dashed line shows the
recycling time. This corresponds to a recycling time of 180 kyrs, a ratio kpre238/k

post
238 = 2.35,

k234/k238 = 1.4, and k230/k238 = 0.6.
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Figure 6: Pictures of a few cobbles sampled on the field. For each picture, the cobble had been
removed from its place and the imprint is still visible.
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Figure 7: [a] Pictures of the Telken 5 profile. Each white line represent the level on which the
samples have been taken. [b] Picture showing the Moreno 1 moraine above the Fenix outwash.
In the back we see the older moraines at higher elevation. [c] Example of the kind of outcrops
in the moraines, in which the silt sample were taken. Fine silty beds within the moraine, far
from the moraine surface.
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