

Supplement of

Tracking the $^{10}{\rm Be-}^{26}{\rm Al}$ source-area signal in sediment-routing systems of arid central Australia

Martin Struck et al.

Correspondence to: Martin Struck (ms646@uowmail.edu.au)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Figure S1. ¹⁰Be depth profiles of a fan in the Upper Hugh catchment from A) upper fan deposits (samples UHugh199, UHugh299) and B) lower fan deposits (samples UHugh499, UHugh399, Be122p); all uncertainties are $\pm 2\sigma$. A1) Depth-variation in ¹⁰Be abundance (diamonds), with model-generated exponential curves (grey) and the lowest chi-squared fit (black dashes). A2) Age versus chi-squared plot for ¹⁰Be, with minimum chi-squared age (dashed line). A3), A4), and A5) Smoothed chi-squared (black) and Bayesian probability density (red) functions for depositional age, erosion rate, and ¹⁰Be inheritance, respectively. All calculations follow Hidy et al. (2010, version 1.2), with full model parameters given in Table S2.

Sample	Lati-	Longi-	Eleva-	Plateau	Analysis	Palaeo-	K	Rb	Moisture	Specific	Cosmic	Annual	ц
ID	tude	tude	tion	region	tempera-	dose	content	content	content	activity	contribution	radiation	age
					ture			(assumed)			(assumed)	dose	
	[S°]	[°E]	[m a.s.l.]	[°C]	[°C]	[Grays]	[% by AES]	[mqq]	[weight %]	[Bq/kg U+Th]	[µGy/yr]	[µGy/yr]	[k.y.]
MACUMB	A catchment												
TL1-40	-27.1729	134.3548	225	300-500	375	110 ± 9	0.865 ± 0.05	100 ± 25	5.7 ± 3	68.8 ± 1.7	150 ± 25	2354 ± 60	46.6 ± 4.2
TL1-100	-27.1729	134.3548	225	300-500	375	263 ± 18	0.865 ± 0.05	100 ± 25	4.0 ± 3	58.3 ± 1.5	150 ± 25	2194 ± 61	120 ± 9
TL1-160	-27.1729	134.3548	225	300-500	375	$>191\pm16$	0.730 ± 0.05	100 ± 25	6.2 ± 3	58.4 ± 1.5	140 ± 25	1997 ± 59	$>95.5\pm8.6$
TL2-125	-27.1683	134.3703	223	300-500	375	64.7 ± 4.6	0.945 ± 0.05	100 ± 25	3.8 ± 3	84.9 ± 2.7	150 ± 25	2805 ± 68	23.1 ± 1.7
Specific ac	tivity was me	asured by me	ans of calibra	ated thick sou	urce alpha cou	inting over a 42	2 mm scintillation	screen. Values	shown assume	secular equilibrium	for both U and T	'h decay chains.	Uncertainties
are express	ied at 1-σ lev	el.											

e deposition age results.	
rmoluminescen	
Table S1: The	

Table S2: Parameters used for Monte Carlo modelling of fan deposition ages (Fig. S1).

Site-specific information	Upper fan deposit	Lower fan deposit
Latitude [°S]	-23.8110	-23.8097
Longitude [°E]	133.1850	133.1921
Elevation [m a.s.l.]	789	765
Shielding		
Topographic shielding	1	1
Cover	1	1
¹⁰ Be and ²⁶ Al production rate		
Spallation production rate [atoms g ⁻¹ yr ⁻¹]	5.37	5.27
Muonic production		
Depth of muon fit [m]	5	5
Slow muon surface production [%]	0.135	0.134
Fast muon surface production [%]	0.101	0.100
Bulk material density		
Minimum density [g cm ⁻³]	1.5	1.5
Maximum density [g cm ⁻³]	1.9	1.9
Monte Carlo parameters ^(a)		
Chi ² value	2 ^(b)	16 ^(b)
Number of profiles	100000	100000
Min age [yr]	750000	500000
Max age [yr]	2250000	900000
Min erosion rate [cm/k.y.]	0	0
Max erosion rate [cm/k.y.]	1	1
Min total erosion threshold [cm]	0	0
Max total erosion threshold [cm]	50	50
Min inheritance [atoms/g]	0	0
Max inheritance [atoms/g]	1300000	450000
Neutrons (mean value)	160	160
Neutrons (standard deviation)	5	5

a) For detailed explanation of parameters see Hidy et al. (2010).

b) No solutions were found for lower chi² values.

Sample	AMS	Latitude ^(a)	Longitude ^(a)	Elevation ^(a,b)	Depth below	Topographic	Sample	$10\mathrm{Be}/^9\mathrm{Be}^{(\mathrm{c},\mathrm{d},\mathrm{e})}$	⁹ Be carrier	¹⁰ Be	26 AI/27 AI (e,g,h,i)	²⁷ AI	²⁶ AI	$^{26}\mathrm{A}\mathrm{J}^{10}\mathrm{Be}$
Ð	Ð				surface	shielding	mass		mass ^(f)	conc. ^(e)		ICP conc.	conc. ^(e)	ratio ^(e)
	(Be / Al)	[S°]	[3°]	[m a.s.l.]	[cm]		[g qtz]	[10 ⁻¹⁵]	[mg]	$[10^3 { m at. g}^{-1}]$	[10 ⁻¹⁵]	[udd]	$[10^3 { m at. g}^{-1}]$	
Finke catchment	t - Bedrock													
PIO-BR ^(j)	B6062/A2788	-23.712295	132.787099	715	0	0.9995	42.327	$1163 \pm 13^{(2,\mathrm{C})}$	$0.301^{(G)}$	623 ± 16	$658\pm32^{*(\mathrm{H})}$	232	3406 ± 239	5.47 ± 0.4
$MD-100^{(k)}$		-23.574000	132.587000	1320	0		,		,	2025 ± 150		,	,	,
$MD-101^{(k)}$		-23.581000	132.574000	1240	0		ı	,	·	3400 ± 246		ı	ı	ı
$MD-102^{(k)}$		-23.579000	132.568000	1180	0		ı	,	,	2317 ± 388		ı	ı	ı
$MD-103^{(k)}$		-23.577000	132.564000	1125	0	,	ı	,	ı	2993 ± 355		ı	ı	ı
$MD-104^{(k)}$		-23.576000	132.555000	1030	0		ı	,	,	1321 ± 155		ı	ı	ı
$MD-105^{(k)}$	ı	-23.573000	132.537000	945	0		,	,	,	6500 ± 369		,	,	,
MD-106 ^(k)		-23.571000	132.534000	940	0		·		,	2768 ± 179		ı	,	
$MD-107^{(k)}$		-23.567000	132.528000	910	0		·		,	1439 ± 106		ı	,	
$MD-114^{(k)}$		-23.699221	132.354850	810	35		,			572 ± 66	,	,		
$MD-115^{(k)}$		-23.699221	132.354850	801	30		·			262 ± 45		·		
MD-116 ^(k)		-23.699221	132.354850	804	25		·		,	195 ± 15		ı	,	,
$MD-117^{(k)}$		-23.699221	132.354850	799	28		·			333 ± 56		,		
MD-118 ^(k)		-23.699221	132.354850	822	30		·		,	451 ± 73		ı	,	
MD-129 ^(k)		-23.724000	132.776000	900	0		,			1260 ± 169	,	,		
$MD-130^{(k)}$		-23.722000	132.772000	006	0		·		,	2077 ± 284		ı	,	
$MD-131^{(k)}$		-23.722000	132.772000	890	0		,			266 ± 69	,	,		
$MD-132^{(k)}$		-23.721000	132.773000	838	0					759 ± 125				
$MD-133^{(k)}$		-23.719000	132.773000	765	0		,			317 ± 43		,		
MD-136 ^(k)		-23.718000	132.774000	715	0					802 ± 154				
Finke catchment	t - Hillslope soil													
PIO-TS5 ^(j)	B6183/a436	-23.711949	132.786910	707	0	1.0000	40.293	$1425 \pm 14^{(1,D)}$	$0.301^{(F)}$	802 ± 19	$1641\pm47^{(\mathrm{H})}$	136	4974 ± 247	6.21 ± 0.3
PIO-TS7 ^(j)	B6063/A2789	-23.711771	132.786813	705	0	1.0000	40.795	$1372 \pm 13^{(2,C)}$	$0.302^{(G)}$	766 ± 19	$1141\pm59^{*(\mathrm{H})}$	197	5031 ± 361	6.56 ± 0.5
PIO-TS9 ^(j)	B6180/a433	-23.711548	132.786719	704	0	1.0000	40.525	$2409 \pm 72^{(1,D)}$	$0.299^{(F)}$	1338 ± 50	$2451\pm73^{\rm (H)}$	148	8111 ± 410	6.06 ± 0.3
PIO-TS11/DP0 ^(I)) B6064/A2790	-23.711174	132.786723	703	0	0.9996	41.336	$2714 \pm 20^{(2,C)}$	$0.303^{(G)}$	1497 ± 35	$2498 \pm 109^{*(\mathrm{H})}$	154	8585 ± 569	5.73 ± 0.4
PIO-TS13 ^(j)	B6181/a434	-23.710823	132.786700	702	0	1.0000	40.621	$3298\pm59^{(1,D)}$	$0.298^{(F)}$	1821 ± 52	$3119 \pm 72^{(H)}$	149	10379 ± 486	5.70 ± 0.3
PIO-TS17 ^(j)	B6065/A2791	-23.710096	132.786775	700	0	1.0000	40.534	$3411\pm24^{(2,\mathrm{C})}$	$0.303^{(G)}$	1922 ± 45	$3854\pm94^{*(\mathrm{H})}$	126	10798 ± 601	5.62 ± 0.3
PIO-TS18 ^(j)	B6184/a441	-23.709762	132.786800	669	0	1.0000	40.517	$3950 \pm 52^{(1,D)}$	$0.301^{(F)}$	2213 ± 58	$4370 \pm 100^{(\mathrm{H})}$	130	12664 ± 592	5.72 ± 0.3
PIO-DP30 ^(j)	B6182/a435	-23.711174	132.786723	703	30	0.9996	40.413	$2018 \pm 19^{(1,D)}$	$0.299^{(F)}$	1126 ± 27	$2164\pm 65^{(\mathrm{H})}$	131	6251 ± 322	5.64 ± 0.3
PIO-DP60 ^(j)	B6186/a442	-23.711174	132.786723	703	60	0.9996	40.169	$1646 \pm 13^{(1,D)}$	$0.301^{(F)}$	930 ± 22	$2038\pm 61^{(\mathrm{H})}$	104	4714 ± 239	5.07 ± 0.2
PIO-DP100 ^(j)	B6066/A2792	-23.711174	132.786723	703	100	0.9996	40.401	$1577 \pm 15^{(2,C)}$	$0.303^{(G)}$	892 ± 22	$1690\pm80^{*(\mathrm{H})}$	131	4945 ± 340	5.54 ± 0.4
PIO-DP150 ^(j)	B6187/a443	-23.711174	132.786723	703	150	0.9996	40.497	$1239 \pm 12^{(1,D)}$	$0.301^{(F)}$	694 ± 17	$1101\pm36^{(\mathrm{H})}$	130	3203 ± 167	4.61 ± 0.2
PIO-DP200 ^(j)	B6188/a444	-23.711174	132.786723	703	200	0.9996	40.343	$961 \pm 28^{(1,D)}$	$0.301^{(F)}$	541 ± 20	$872\pm27^{(\mathrm{H})}$	148	2885 ± 147	5.33 ± 0.34
PIO-DP250 ^(j)	B6189/a445	-23.711174	132.786723	703	250	0.9996	40.185	$913 \pm 13^{(1,D)}$	$0.301^{(F)}$	515 ± 14	$731\pm25^{\mathrm{(H)}}$	146	2385 ± 128	4.63 ± 0.28
PIO-DP285 ^(j)	B6190/A2827	-23.711174	132.786723	703	285	0.9996	40.326	$924 \pm 14^{(1,D)}$	$0.302^{(F)}$	521 ± 14	$715\pm37^{*(\mathrm{H})}$	156	2489 ± 180	4.78 ± 0.37
MD 125(k)														

' area.	
study	
the	
within	
from	
data	
A	
$^{10}Be^{-2}$	
oublished	
>	
Previousl	
S	
Table	

lable 35 continued	from previous po	age.												
Sample	AMS	Latitude ^(a)	Longitude ^(a)	Elevation ^(a,b)	Depth below	Topographic	Sample	$^{10}\mathrm{Be}/^{9}\mathrm{Be}(\mathrm{c,d,e})$	⁹ Be carrier	^{10}Be	26 Al/ 27 Al (e, g, h,i)	27 _A I	^{26}AI	$^{26}\mathrm{Al}/^{10}\mathrm{Be}$
Ð	Ð				surface	shielding	mass		mass ^(f)	conc. ^(e)		ICP conc.	conc. ^(e)	ratio ^(e)
	(Be / Al)	$[\mathbf{S}_{\circ}]$	[•E]	[m a.s.l.]	[cm]		[g qtz]	$[10^{-15}]$	[mg]	$[10^3 \text{ at. g}^{-1}]$	[10 ⁻¹⁵]	[mqq]	$[10^3 \text{ at. g}^{-1}]$	
Finke catchment -	Stream sediment	t												
MD-108S / H8 ^(k)		-23.591873	132.569973	1061			,		·	5185 ± 235				
MD-109S / H9 ^(k)		-23.589848	132.560118	972			,			1202 ± 103				
MD-110S / H10 ^(k)		-23.590801	132.535687	820					·	3701 ± 265				
MD-111S / H11 ^(k)		-23.660723	132.363925	812						588 ± 94				
MD-119S / H19 ^(k)		-23.699221	132.354850	161						461 ± 38				
MD-137 / H37 ^(k)		-23.716000	132.773000	171	ı	ı			ı	502 ± 69				
Macumba catchme	ant - Bedrock													
TD-BR ^(j)	B5949/A2682	-27.179882	134.394553	275	0	1.0000	40.146	$9231\pm75^{(1,A)}$	$0.310^{(F)}$	5189 ± 123	$13050\pm773^{*(\mathrm{I})}$	64	18667 ± 1447	3.60 ± 0.29
$G499^{(1)}$		-27.180967	134.399817	250	0	ı			ı	7669 ± 287				
Macumba catchme	at - Hillslope so	il												
TD-TS1 ^(j)	B5950/A2683	-27.180339	134.391464	270	0	1.0000	40.127	$9578\pm 118^{(1,A)}$	$0.311^{(F)}$	5399 ± 138	$12341 \pm 280^{*(l)}$	60	16420 ± 902	3.04 ± 0.18
TD-TS4 ^(j)	B6230/A2737	-27.174990	134.386994	237	0	1.0000	11.065	$2379 \pm 27^{(1,\mathrm{E})}$	$0.297^{(F)}$	4817 ± 121	$12324\pm 631^{*(H)}$	68	18642 ± 1334	3.87 ± 0.29
TD-TS9 ^(j)	B6030/A2738	-27.166352	134.378727	201	0	1.0000	40.122	$9602\pm52^{(1,B)}$	$0.296^{(F)}$	5331 ± 123	$13120\pm183^{*(H)}$	65	19175 ± 995	3.60 ± 0.20
G199 ⁽¹⁾	-	-27.163533	134.401667	220	0					6133 ± 287				-
Neales catchment -	· Bedrock													
NIL-BR1 ^(j)	B5944/A2677	-28.478932	136.015858	391	0	0.9992	40.136	$2511 \pm 29^{(1,A)}$	$0.317^{(F)}$	1443 ± 36	$4125 \pm 131^{*(l)}$	92	8435 ± 499	5.85 ± 0.38
NIL-BR2 ^(j)	B6058/ -	-28.478985	136.015451	380	0	0.9779	41.973	$770 \pm 14^{(2,C)}$	$0.300^{(G)}$	415 ± 12				
Neales catchment -	· Hillslope soil													
NIL-TS0 ^(j)	B6059/A2785	-28.477696	136.018166	407	0	1.0000	40.214	$2353 \pm 18^{(2,{\rm C})}$	$0.302^{(G)}$	1333 ± 31	$1661\pm85^{\ast(H)}$	179	6622 ± 472	4.97 ± 0.37
NIL-TS4 ^(j)	B6060/a431	-28.478241	136.016897	405	0	1.0000	41.610	$1863 \pm 18^{(2,{ m C})}$	$0.302^{(G)}$	1019 ± 25	$1075 \pm 38^{(H)}$	192	4598 ± 247	4.51 ± 0.27
NIL-TS6 ^(j)	B5945/A2678	-28.478486	136.016399	403	0	1.0000	40.337	$2355 \pm 35^{(1,A)}$	$0.317^{(F)}$	1348 ± 36	$2553 \pm 193^{*(l)}$	126	7190 ± 651	5.33 ± 0.50
NIL-TS8 ^(j)	B6061/a432	-28.478696	136.015943	397	0	1.0000	40.464	$1851 \pm 24^{(2,C)}$	$0.303^{(G)}$	1044 ± 27	$1033 \pm 36^{(H)}$	192	4432 ± 237	4.25 ± 0.25
NIL-TS10 ^(j)	B5946/a465	-28.478856	136.015606	387	0	1.0000	40.096	$1115 \pm 26^{(1,A)}$	$0.317^{(F)}$	643 ± 21	$1716\pm46^{(J)}$	97	3702 ± 181	5.76 ± 0.34
NIL-TOP-0 ^(j)	B5942/A2675	-28.479819	136.017803	406	0	1.0000	40.292	$4888 \pm 37^{(1,A)}$	$0.308^{(F)}$	2722 ± 64	$3675\pm 208^{*(l)}$	132	10796 ± 816	3.97 ± 0.31
NIL-TOP-70 ^(j)	B5943/A2676	-28.479819	136.017803	406	70	1.0000	40.044	$2137\pm 26^{(1,A)}$	$0.317^{(F)}$	1230 ± 31	$1515 \pm 121^{*(l)}$	152	5146 ± 486	4.18 ± 0.41
a) Condinates data	and action bearing	CDS 200 Plot Pr	I aforenad to V	WCC04 Dottom										

a) Coordinates determined using hand held GPS and referenced to WGS84 Datum.

b) Ridge top elevation determined using hand held GPS and elevation of subsequent points downslope determined using laser rangefinder.

 $c^{10}Be^{0}Be$ ratios were normalised to standards 1) SRM KN-5-2 (nominal ratio 8,558 x 10^{-15}), and 2) KN-5-3 (nominal ratio 6,320 x 10^{-15}) (Nishirizumi et al., 207).

d) Corrected for batch procedural blanks: A) 7.83 \pm 2.10 x 10⁻¹⁵, B) 5.77 \pm 0.56 x 10⁻¹⁵, Cl 4.15 \pm 1.06 x 10⁻¹⁵, D) 3.59 \pm 0.85 x 10⁻¹⁵, E) 1.69 \pm 0.92 x 10⁻¹⁵.

e) Uncertainties expressed at 1- σ level.

f) Concentrations of ^9Be solutions are: F) 1090 $\pm\,$ 15 ppm, and G) 1128 $\pm\,$ 22 ppm.

g) 26 Al/ 27 Al ratios marked with * were blank-corrected using the respective blank's 26 Al count rate.

h) 26 Al/ 27 Al ratios were normalised to SRM KN-4-2 with a nominal ratio of 30,960 x 10⁻¹⁵ (Nishiizumi, 2004).

i) Corrected for batch procedural blanks of: H) $22.06 \pm 5.35 \times 10^{-15}$, I) $10.36 \pm 3.76 \times 10^{-15}$, J) $13.57 \pm 2.36 \times 10^{-15}$.

j) Published in Struck et al. (2018).

(k) Published in Heimsath et al. (2010). ¹⁰Be concentrations were re-normalised to the Nishiizumi 2007 ¹⁰Be AMS standard (Nishiizumi et al., 2007).

I) Published in Fujioka et al. (2005). 10 Be concentrations were re-normalised to the Nishiizumi 2007 10 Be AMS standard (Nishiizumi et al., 2007)

References

10

Fujioka, T., Chappell, J., Honda, M., Yatsevich, I., Fifield, K., and Fabel, D.: Global cooling initiated stony deserts in central Australia 2–4 Ma, dated by cosmogenic 21Ne-10Be, Geology, 33, 993, https://doi.org/10.1130/g21746.1, 2005.

Heimsath, A. M., Chappell, J., and Fifield, K.: Eroding Australia: rates and processes from Bega Valley to Arnhem Land, Geological Society,

- 5 London, Special Publications, 346, 225–241, https://doi.org/10.1144/sp346.12, 2010.
- Hidy, A. J., Gosse, J. C., Pederson, J. L., Mattern, J. P., and Finkel, R. C.: A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: An example from Lees Ferry, Arizona, Geochemistry, Geophysics, Geosystems, 11, https://doi.org/10.1029/2010gc003084, 2010.

Nishiizumi, K.: Preparation of 26Al AMS standards, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 223, 388–392, https://doi.org/10.1016/j.nimb.2004.04.075, 2004.

Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and McAninch, J.: Absolute calibration of 10Be AMS standards, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007.

Struck, M., Jansen, J. D., Fujioka, T., Codilean, A. T., Fink, D., Egholm, D. L., Fülöp, R.-H., Wilcken, K. M., and Kotevski, S.: Soil

15 production and transport on postorogenic desert hillslopes quantified with 10Be and 26Al, Geological Society of America Bulletin, https://doi.org/10.1130/B31767.1, 2018.