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Abstract. Sediment-routing systems continuously transfer information and mass from eroding source areas to
depositional sinks. Understanding how these systems alter environmental signals is critical when it comes to in-
ferring source-area properties from the sedimentary record. We measure cosmogenic 10Be and 26Al along three
large sediment-routing systems (∼ 100 000 km2) in central Australia with the aim of tracking downstream varia-
tions in 10Be–26Al inventories and identifying the factors responsible for these variations. By comparing 56 new
cosmogenic 10Be and 26Al measurements in stream sediments with matching data (n= 55) from source areas, we
show that 10Be–26Al inventories in hillslope bedrock and soils set the benchmark for relative downstream mod-
ifications. Lithology is the primary determinant of erosion-rate variations in source areas and despite sediment
mixing over hundreds of kilometres downstream, a distinct lithological signal is retained. Post-orogenic ranges
yield catchment erosion rates of ∼ 6–11 m Myr−1 and silcrete-dominant areas erode as slow as ∼ 0.2 m Myr−1.
10Be–26Al inventories in stream sediments indicate that cumulative-burial terms increase downstream to mostly
∼ 400–800 kyr and up to∼ 1.1 Myr. The magnitude of the burial signal correlates with increasing sediment cover
downstream and reflects assimilation from storages with long exposure histories, such as alluvial fans, desert
pavements, alluvial plains, and aeolian dunes. We propose that the tendency for large alluvial rivers to mask
their 10Be–26Al source-area signal differs according to geomorphic setting. Signal preservation is favoured by
(i) high sediment supply rates, (ii) high mean runoff, and (iii) a thick sedimentary basin pile. Conversely, sig-
nal masking prevails in landscapes of (i) low sediment supply and (ii) juxtaposition of sediment storages with
notably different exposure histories.

1 Introduction

Landscapes are continuously redistributing mass in response
to tectonic and climatic forcing. A suite of surface processes
achieves this redistribution at rates fast and slow, modify-
ing landscapes while routing particles from erosional source
areas to depositional sinks (Allen, 2008). Rapid, short-term
transport (< 101 years) allows for direct monitoring whereas
indirect methods such as isotopic tracing or mathematical

modelling become necessary beyond historical timescales
(> 102 years) (Allen, 2008; Romans et al., 2016). Longer
timescales are also relevant to the making of the geological
record, which forms the basis of how we understand the nar-
rative of Earth’s history (Allen, 2008). The typical approach
involves a classic inverse problem whereby attributes of the
source area are inferred retrodictively from the geological
record. What is inevitably missed, however, is the range of
surface processes and dynamics that particles undergo be-
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tween source and sink. Considering that particles in tran-
sit carry an environmental signal of their source area (Ro-
mans et al., 2016), this signal is liable to become obscured
en route by the intrusion of “noise”, which we take to mean
“any modification of the primary signal of interest” (Romans
et al., 2016, p. 7). Indeed, the ratio of signal to noise is the
chief limiting factor for accurately inferring source-area in-
formation – in addition to the rudimentary understanding of
how environmental signals are propagated through sediment-
routing systems over > 105 year timescales (Romans et al.,
2016).

Modern sediment-routing systems provide the opportu-
nity to track changes in the source-area signal with dis-
tance downstream. Arid lowland regions, our focus here, of-
fer insights to the propagation of source-area signals in land-
scapes of low geomorphic activity. Shield and platform ter-
rain under aridity sustains some of the slowest known ero-
sion rates (Portenga and Bierman, 2011; Struck et al., 2018).
These low-relief landscapes are characterised by slow sed-
iment production coupled with slow and intermittent sedi-
ment supply to surrounding basins. The typically slow rate
of crustal deformation means limited accommodation space,
resulting in thin and discontinuous sedimentary records (Ar-
mitage et al., 2011). Aridity imposes a strongly episodic
character to the sediment-routing system. Infrequent rainfall
and stream discharge leads to lengthy and irregular intervals
of sediment storage in vast low-gradient river systems. It has
been suggested that long hiatuses in sediment transfer may
increase the potential for diminishing the signal-to-noise ra-
tio, but this notion is yet to be tested comprehensively.

Terrestrial cosmogenic nuclides are produced by sec-
ondary cosmic rays interacting with minerals in the upper
few metres of Earth’s surface (Gosse and Phillips, 2001);
hence they are powerful tools for tracking particle trajec-
tories in the sediment-routing system (Nichols et al., 2002;
Matmon et al., 2003; Heimsath et al., 2005; Jungers et al.,
2009; Anderson, 2015). Radionuclides, such as 10Be and
26Al, are used widely to quantify the erosional dynamics of
landscapes on 103–106 year timescales (Lal, 1991; McKean
et al., 1993; Brown et al., 1995; Granger et al., 1996). How-
ever, the source-area signal of interest is most often limited
to identifying differential erosion rates across a range of spa-
tial scales. For instance, 10Be abundances in bedrock indicate
a point-specific weathering rate and in fluvial sediment 10Be
is used to derive a spatially averaged catchment erosion rate
(Granger et al., 1996). Both approaches entail assumptions
that frame how the source-area signal is viewed. Bedrock
erosion rate calculations assume steady long-term exhuma-
tion (Lal, 1991), and catchment averaging assumes that the
fluvial sediment sample is a representative amalgam of par-
ticles generated across the entire catchment (Brown et al.,
1995; Bierman and Steig, 1996; Granger et al., 1996). Het-
erogeneity in the sample may arise due to particles sourced
disproportionately from (i) faster eroding areas, such as land-
slides, or (ii) landforms that contain notably longer exposure

histories, such as ancient alluvium and aeolian dune fields
– either case introduces noise that can bias erosion rate cal-
culations (Granger et al., 1996; Norton et al., 2010). A fur-
ther key assumption is that samples (including bedrock) have
not experienced long-term burial. However, in this case, the
noise introduced by burial produces some interesting and
exploitable effects. By measuring a nuclide pair with dif-
fering radioactive decay rates (e.g. 10Be–26Al) the cumula-
tive burial history can be explicitly tracked by the gradual
deviation in the initial production ratio of the two nuclides
(Granger and Muzikar, 2001).

Several studies apply this approach to understand how
10Be–26Al source-area signals are modified during transit
through the sediment-routing system and suggest two broad
limit cases: (i) 10Be–26Al source-area signals remain largely
unmodified from source to sink (Clapp et al., 2000, 2001,
2002; Wittmann et al., 2011; Hippe et al., 2012; Wittmann
et al., 2016), or (ii) 10Be–26Al source-area signals become
significantly obscured with distance downstream (Bierman
et al., 2005; Kober et al., 2009; Hidy et al., 2014). Much
remains to be understood about the governing controls on
the alteration or otherwise of the source-area signal. The
heavy emphasis to date has been with studies of sediment-
routing systems conveying a source-area signal specific to
rapidly eroding mountain belts (Fig. 1a). It seems likely that
the transmission of source-area signals will differ across the
much larger proportion of Earth’s terrain that is low-relief,
tectonically passive, and subject to much lower rates of geo-
morphic activity (Fig. 1b).

Here we focus upon the shield and platform landscapes
that characterise much of the arid interior of Australia, as
well as large portions of other Gondwana segments such as
Africa, India, and South America. We measure abundances
of cosmogenic 10Be and 26Al in fluvial sediment within
rivers draining source areas for which we have established
the 10Be–26Al source-area signal from bedrock and hills-
lope systems (Struck et al., 2018), and we supplement those
with four thermoluminescence (TL) ages on floodplain sed-
iments. Tracking the source-area signal through three large
sediment-routing systems via a nested set of samples, we
investigate (1) downstream variations in source-area 10Be–
26Al inventories, (2) the factors that modify the 10Be–26Al
source-area signal, and (3) how changes in 10Be–26Al inven-
tories along the course of these streams affect erosion rate
calculations. We conclude by reflecting upon the implica-
tions of our findings for a source-to-sink understanding of
the tempo of change in arid shield–platform landscapes.

2 Sediment-routing and timescales of landscape
evolution in central Australia

Western tributaries of the Eyre Basin: the Finke, Macumba,
and Neales rivers drain > 100 000 km2 of the arid continental
interior (Fig. 2). Low post-orogenic ranges of early Palaeo-
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Figure 1. Two schematic limit cases of sediment-routing systems (modified after Romans et al., 2016) showing down-system trends from
(a) high-relief, tectonically active mountains with a humid climate and (b) a low-relief, post-orogenic setting with an arid climate. Blue script
denotes relative rates of erosion and material transfer and their effects on the cosmogenic nuclide inventory (Qs is sediment flux). Red script
denotes relative burial depths (shallow < 10 m, deep > 10 m) and storage durations. Yellow shading indicates significant sediment storage.

zoic and Proterozoic rocks (Fig. 3a) and Cenozoic silcrete–
duricrust tablelands (Fig. 3b) serve as the major sources of
sediment and runoff for the sediment-routing systems. These
traverse hundreds of kilometres of low-relief stony soil man-
tles (Fig. 3c), alluvial plains, and aeolian dune fields be-
fore reaching the depositional sink, Lake Eyre (Fig. 1b).
The western Eyre Basin experiences mean temperatures of
∼ 20 ◦C and mean rainfall of ∼ 280–130 mm yr−1 with ex-
treme interannual variation. Vegetation is sparse: chenopod
shrublands and tussock grasslands predominate in the south
and mixed open woodland and spinifex predominate in the
north, reflecting the northward transition from winter to sum-
mer rainfall dominance (Australian Bureau of Meteorology:
http://www.bom.gov.au/climate/, last access: 30 September
2017). Significant flow in the western tributaries is generated
mainly by summer rainfall today (Kotwicki, 1986; Costelloe,
2011). Finke River flows have not reached Lake Eyre in his-
torical times (McMahon et al., 2008), but large floods along
the Neales have done so repeatedly in more recent years
(Kotwicki, 1986; Kotwicki and Isdale, 1991). Periodic high-
magnitude flooding in Eyre Basin rivers triggered phases of
deposition and incision recorded in fluvial and lacustrine sed-
iments over the last > 300 kyr (Nanson et al., 1992; Croke
et al., 1999; Nanson et al., 2008; Cohen et al., 2012, 2015).

10Be-derived erosion rates in the Eyre Basin are among
the slowest known (Portenga and Bierman, 2011). Rates are
< 5–10 m Myr−1 for bedrock outcrops (Fujioka, 2007; Heim-
sath et al., 2010; Struck et al., 2018) and 5–20 m Myr−1 at
the catchment scale (Bierman et al., 1998; Heimsath et al.,

2010). The slow evolution of the central Australian landscape
is a function of low relief due to restricted tectonic uplift
(Sandiford, 2002; Sandiford et al., 2009; Jansen et al., 2013)
combined with intensified aridity since the Miocene (Bowler,
1976; McGowran et al., 2004; Martin, 2006; Fujioka and
Chappell, 2010). Ongoing intra-plate tectonic deformation
is driven by far-field compressive stresses (Sandiford et al.,
2004; Hillis et al., 2008; Waclawik et al., 2008; Sandiford
and Quigley, 2009) together with dynamic processes beneath
the lithosphere, which have caused long-wavelength defor-
mation on the order of hundreds of metres in vertical ampli-
tude (Sandiford et al., 2009). Clear evidence of rapid Neo-
gene to modern uplift occurs on the southern fringe of the
Eyre Basin in the Flinders Ranges and at Billa Kalina (Callen
and Benbow, 1995; Sandiford et al., 2009; Quigley et al.,
2010).

In a comprehensive assessment of 10Be–26Al abundances
in bedrock and soil-mantled source areas in the Eyre Basin,
Struck et al. (2018) quantify soil residence times of ∼ 0.2–
2 Myr and possibly longer at the top of the sediment-routing
system. Long residence times and slow hillslope evolu-
tion arise from the lack of fluvial incision associated with
widespread base-level stability and the long-lasting devel-
opment of stony soil mantles, also known as desert pave-
ment (Mabbutt, 1977; Wells et al., 1995; Fujioka et al., 2005;
Matmon et al., 2009). Hillslope dynamics reflect “top-down”
evolution (Montgomery, 2003) with slow rates of authigenic
soil production and downslope transport resulting in low con-
nectivity with stream channels (Egholm et al., 2013). Inputs
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Figure 2. (a) Three study catchments in the western Eyre Basin, showing stream sediment samples (downward-pointing triangles and
squares), bedrock and hillslope samples (upward-pointing white triangles), and thermoluminescence samples (yellow circle). Finke: trunk
stream (light blue) and tributaries (dark blue – this study, white – Heimsath et al., 2010), Macumba (yellow). Neales: Neales subcatchment
(dark red triangles), Peake subcatchment (light red triangles), streams draining the Peake and Denison Ranges (light red squares). Eyre Basin
(inset: 1.1 million km2) boundaries and outer catchment boundaries (bold black), subcatchment boundaries (white); rivers (blue), towns
(black dots), state border (dashed black line). (b, c, d) Schematic sediment-routing networks of the Finke, Macumba, and Neales, subdivided
according to overall terrain type.

of aeolian dust to soils since at least 0.2 Ma and up to 1 Ma or
more lie stabilised beneath stony soil mantles developed over
the past ∼ 650 kyr. Nuclide abundances in these source-area
materials are naturally very high (Fujioka et al., 2005; Fisher
et al., 2014; Struck et al., 2018), but low 26Al / 10Be ratios
also suggest a complex history of either cyclic exposure–

burial and/or non-steady exhumation on these hillslopes over
timescales of 105 to 106 years (Struck et al., 2018).

We set out to test three potential sediment transfer sce-
narios: (1) 10Be–26Al inventories remain unmodified down-
stream due to fast (� 105 years) sediment transfer and negli-
gible external input; (2) nuclide abundances increase down-
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Figure 3. (a) Typical strike ridges of steeply inclined strata of the
MacDonnell Ranges separated by sediment-mantled terrain, Finke
River headwaters (Photo: Geoscience Australia). (b) Flat-topped,
silcrete-capped mesas of the Oodnadatta Tablelands, western head-
waters of the Neales River (note four-wheel-drive vehicle for scale).
(c) Gibber-covered palaeo-alluvial plains in the lower Neales catch-
ment, with distant mesas on the skyline (note persons for scale).
Inset shows desert-varnished surface silcrete pebbles.

stream while 26Al / 10Be ratios remain constant, which in-
dicates long-term (� 105 years) near-surface particle tra-
jectories, or input from nuclide-rich, burial-free sediment
sources; (3) nuclide abundances decrease downstream, sug-
gesting significant radioactive decay during slow sediment
transfer with lengthy burial intervals (Granger et al., 1996;
Granger and Muzikar, 2001; Schaller et al., 2004) or input
from nuclide-poor, long-buried sources.

3 Methods

We used 1 arcsec digital elevation data from the Shuttle
Radar Topography Mission (SRTM) to analyse elevation,
slope, and mean relief of area upstream of each sediment
sample measured for 10Be–26Al (Table 1). Mean catchment
relief was calculated via smoothing with a circular kernel of
2.5 km radius. Precipitation data derive from gridded (5 km)
mean annual precipitation 1911–2000 (Australian Bureau of
Meteorology: http://www.bom.gov.au/climate/, last access:
30 September 2017). Analysis of surface geology is based
on a digital 1 : 1 million surface geology map of Australia
(Raymond et al., 2012) and 1 : 250 000 map sheets for ad-
ditional details. Bedrock and depositional landforms were
sorted into seven different classes: exposed bedrock (no sil-
crete), exposed silcrete, colluvium cover, gibber cover (desert
pavement), aeolian cover, sand plains, and alluvium. Of this
group, the first three classes were assigned to the bedrock–
hillslope domain and the latter four were assigned to the sed-
iment cover domain.

3.1 Cosmogenic nuclide analyses

We collected 29 samples of sandy bed material throughout
the Finke (n= 11), Macumba (n= 6), and Neales (n= 13)
drainage networks (Fig. 2; Table 2) – in addition to 55 10Be
and 26Al measurements from bedrock summits and soil man-
tles in the low-order subcatchments (Struck et al., 2018).
Quartz isolation and Be and Al extraction were conducted
on the 250–500 µm size fraction of sediment and crushed
bedrock samples at the University of Wollongong and at the
Australian Nuclear Science and Technology Organisation us-
ing standard methods of HF/HNO3 (Kohl and Nishiizumi,
1992), hot phosphoric acid (Mifsud et al., 2013), and ion
chromatography (Child et al., 2000). Be and Al isotope ra-
tios were measured on the ANTARES and SIRIUS accel-
erator mass spectrometers (AMSs) (Fink and Smith, 2007;
Wilcken et al., 2017) and normalised to standards KN-5-
2 or KN-5-3 (Be) (Nishiizumi et al., 2007) and KN-4-2
(Al) (Nishiizumi, 2004) (Table 2). Uncertainties for the fi-
nal 10Be and 26Al abundances (Table 2) include AMS mea-
surement uncertainties, 2 % (Be) and 3 % (Al) standard re-
producibility, 1 % uncertainty in the Be spike concentration,
and 4 % uncertainty in the inductively coupled plasma opti-
cal emission spectroscopy (ICP-OES) Al measurements, in
quadrature. Erosion rates and apparent burial ages are calcu-
lated with CosmoCalc 3.0 (Vermeesch, 2007), using time-
independent scaling (Stone, 2000) and production mecha-
nisms based on Granger and Muzikar (2001) to give a sea-
level high-latitude (SLHL) spallation production rate for
10Be of 4.18 atoms g−1 y−1 (Vermeesch, 2007). We assume
a 10Be half-life of 1.387± 0.012 Myr (Chmeleff et al., 2010;
Korschinek et al., 2010), 26Al half-life of 0.705± 0.024 Myr
(Norris et al., 1983), and 26Al / 10Be surface production ra-
tio of 6.75 (Balco et al., 2008). Six samples (UHugh199,
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UHugh299, UHugh399, UHugh499, Be122p, and Be123s;
Table 2) were measured for 10Be at the Australian National
University (ANU) Heavy Ion Accelerator Facility (Fifield
et al., 2010; see Table 2 for details).

3.2 Thermoluminescence dating

With the aim of gauging the burial age of floodplain sedi-
ments flanking some of our study channels, we collected four
samples for TL dating in the upper reaches of the Macumba
catchment (Fig. 2a): one from a borrow pit at 125 cm depth
(TL2-125); the other three (TL1-40, TL1-100, TL1-160) in
a depth profile (40, 100, 160 cm depth) from a similar pit
close by (Table S1 in the Supplement). All samples were
analysed at the University of Wollongong following Shep-
herd and Price (1990).

4 Results

All catchments display low slope gradients overall (≤ 1–3◦),
although steeper slopes are rather more common in the Finke
(Table 1). Many catchments exhibit a substantial proportion
(> 50 %) of bedrock outcrop, especially in the northern Finke
strike-ridge country, in the silcrete tablelands in the western
Macumba and Neales, and in the Peake and Denison Ranges
in the lower Neales catchment. Elsewhere the landscape is
draped with a largely continuous cover of stony soil mantles,
alluvial plains, and aeolian deposits in varying proportions
(Table 1). We use “fraction of bedrock and colluvium” in
scatter plots to represent the proportion of source-area ter-
rain upstream of our stream samples (Figs. 4 and 5) – in
other words, the area producing the source-area signal that
we track downstream through the sediment-routing system.

4.1 10Be abundances in sediment

10Be abundances in stream sediment span 0.3 to
4.3× 106 atoms g−1 and vary widely among subcatch-
ments (Table 2). Large drainage areas and down-system
samples consistently yield 10Be levels at the low end of the
range, whereas smaller headwater streams are more variable
and tend to span the full range (Fig. 4a). Similarly, relatively
low 10Be levels generally follow areas with > 100 m mean
relief (almost exclusively within the Finke catchment)
and areas of lower relief yield a wide range (Fig. 4b). No
relationship exists between 10Be and fraction of bedrock
and colluvium in the Finke and Macumba, but high 10Be
among the five rocky headwaters of the Peake subcatchment
decreases downstream as sediment cover expands (Fig. 4c).
These small streams draining the silcrete mesas of the Peake
(Fig. 2) yield the highest 10Be levels in stream sediment
(Fig. 4). Conversely, the lower Peake receives sediment
from the locally steep Peake and Denison Ranges whose
small headwater streams yield some of the lowest 10Be in
our dataset (Figs. 2 and 4). The effect of such inputs is seen

www.earth-surf-dynam.net/6/329/2018/ Earth Surf. Dynam., 6, 329–349, 2018

http://www.bom.gov.au/climate/


336 M. Struck et al.: Tracking the 10Be–26Al source-area signal

Table
2.C

osm
ogenic

nuclide
data.

Sam
ple

A
M

S
L

atitude a
L

ongitude a
M

aterial
M

ean
Production

Sam
ple

10B
e
/

9B
e

9B
e

10B
e

26A
l/

27A
l

27A
l

26A
l

26A
l/

10B
e

ID
ID

elevation
scaling

m
ass

ratio d
,d
,e

carrier
conc. a

ratio e,g
,h
,i

IC
P

conc.
conc. a

ratio a

factor b
m

ass f

(B
e
/

A
l)

(
◦

S)
(
◦

E
)

(m
)

(g
qtz)

(10
−

15)
(m

g)
(10 3

atg
−

1)
(10
−

15)
(ppm

in
qtz)

(10 3
atg
−

1)

FIN
K

E
catchm

ent

U
H

ugh199
147

−
23.811033

133.184993
Fan

surface
sedi.

789
1.20

33.677
5091
±

196 ‡
,3

0.459 9
4605
±

185
–

–
–

–
U

H
ugh299

148
−

23.811033
133.184993

Fan
(0.9

m
depth)

789
1.20

28.226
2201
±

108 ‡
,3

0.374 9
1915
±

99
–

–
–

–
U

H
ugh499

150
−

23.809683
133.192100

Fan
surface

sedi.
764

1.17
34.694

3515
±

217 ‡
,3

0.370 9
2479
±

157
–

–
–

–
U

H
ugh399

149
−

23.809683
133.192100

Fan
(2

m
depth)

764
1.17

29.819
802
±

43 ‡
,3

0.457 9
781
±

47
–

–
–

–
B

122p
122P

−
23.809683

133.192100
Fan

(2.7
m

depth)
764

1.17
27.519

579
±

44 ‡
,2

0.296 9
379
±

32
–

–
–

–
PIO

B
6221/a446

−
23.676543

132.714092
Stream

sedim
ent

777
1.32

40.191
897
±

19 †
,1

0.294 8
495
±

15
1282
±

37 11
97

2786
±

140
5.62
±

0.33
FIN

1
B

6222/–
−

23.678980
132.671712

Stream
sedim

ent
802

1.34
30.262

607
±

17 †
,1

0.297 8
450
±

16
–

4211
–

5.46
±

0.33
–/a466

20.240
–

0.295 8
–

1858
±

53 12
59

2454
±

122
FIN

2
B

6223/a447
−

23.951370
132.774172

Stream
sedim

ent
761

1.30
40.916

935
±

18 †
,1

0.296 8
510
±

15
1407
±

35 11
77

2412
±

116
4.73
±

0.27
B

123s
123S

−
23.810240

133.190935
Stream

sedim
ent

845
1.39

21.486
438
±

41 ‡
,2

0.268 9
322
±

35
–

–
–

–
E

L
L

B
6227/a454

−
24.087429

132.839025
Stream

sedim
ent

710
1.26

40.460
833
±

25 †
,1

0.297 8
461
±

17
1317
±

34 11
80

2358
±

114
5.11
±

0.31
FIN

3
B

6224/a451
−

24.552860
133.238430

Stream
sedim

ent
691

1.24
40.369

987
±

20 †
,1

0.297 8
548
±

16
1407
±

36 11
87

2744
±

132
5.01
±

0.28
PA

L
B

6228/a455
−

24.750439
133.186722

Stream
sedim

ent
638

1.20
35.035

945
±

16 †
,1

0.298 8
606
±

17
1543
±

39 11
91

3149
±

151
5.20
±

0.29
FIN

4
B

6225/a452
−

24.929894
133.640178

Stream
sedim

ent
617

1.18
40.230

1061
±

19 †
,1

0.297 8
590
±

17
1451
±

36 11
87

2813
±

135
4.77
±

0.27
H

U
G

B
6229/a456

−
24.677768

134.059998
Stream

sedim
ent

573
1.14

40.163
1073
±

20 †
,1

0.297 8
598
±

17
1381
±

35 11
86

2656
±

128
4.44
±

0.25
FIN

5
B

6226/a453
−

25.217346
134.241625

Stream
sedim

ent
576

1.15
40.245

1045
±

17 †
,1

0.298 8
582
±

16
1281
±

35 11
88

2531
±

124
4.34
±

0.25
S05/04

–
−

25.679883
134.854368

Stream
sedim

ent
539

1.12
–

–
–

541
±

16
–

–
2763
±

187
5.10
±

0.38

M
A

C
U

M
B

A
catchm

ent

C
O

O
B

5947/A
2680

−
27.162479

134.375555
Stream

sedim
ent

270
0.97

40.128
2944
±

32 †
,4

0.317 10
1695
±

42
5259
±

258
∗
,13

59
6868
±

481
4.05
±

0.30
A

L
B

3
B

6041/A
2782

−
27.129882

134.389281
Stream

sedim
ent

268
0.97

41.829
2596
±

36 †
,5

0.305 8
1427
±

38
4971
±

121
∗
,14

57
6348
±

353
4.45
±

0.27
A

L
B

2
B

6040/A
2781

−
27.130915

134.434604
Stream

sedim
ent

289
0.99

40.291
2463
±

24 †
,5

0.305 8
1404
±

34
4147
±

112
∗
,14

62
5697
±

324
4.06
±

0.25
O

L
A

j
B

6038/A
2779

−
27.164221

134.621190
Stream

sedim
ent

268
0.97

40.504
7470
±

28 †
,5

0.302 8
4200
±

95
1099
±

55 14
252

6183
±

439
1.47
±

0.11
A

L
B

1
B

6039/A
2780

−
27.153811

134.753684
Stream

sedim
ent

418
1.08

40.322
2343
±

17 †
,5

0.305 8
1335
±

31
2613
±

122
∗
,14

96
5584
±

383
4.18
±

0.30
M

A
C

B
5708/A

2588
−

27.197277
135.716094

Stream
sedim

ent
322

1.00
40.354

2774
±

23 †
,6

0.322 10
1612
±

38
2279
±

188
∗
,15

95
4838
±

467
3.00
±

0.30

N
E

A
L

E
S

catchm
ent

PE
A
−

B
R

2
B

6026/A
2734

−
27.960354

134.199993
B

edrock
252

0.97
13.099

358
±

7 †
,7

0.295 8
609
±

18
1327
±

65 12
126

3745
±

262
6.15
±

0.47
PE

A
−

B
R

3 j
B

6028/A
2736

−
27.945442

134.392228
B

edrock
255

0.98
16.723

9898
±

34 †
,7

0.294 8
13126

±
296

3932
±

123 12
93

8128
±

479
0.62
±

0.04
PE

A
−

B
R

4
B

6027/A
2735

−
28.199020

134.775937
B

edrock
219

0.95
17.326

1302
±

12 †
,7

0.294 8
1670
±

40
6623
±

239 12
67

9977
±

615
5.97
±

0.40
PE

A
1

B
5703/A

2583
−

27.348124
133.969076

Stream
sedim

ent
355

1.04
40.155

5386
±

34 †
,6

0.318 10
3105
±

72
7618
±

306
∗
,15

66
11292

±
724

3.64
±

0.25
PE

A
2

B
5704/A

2584
−

27.943413
134.153153

Stream
sedim

ent
281

1.00
40.201

7236
±

85 †
,6

0.318 10
4172
±

105
9782
±

330
∗
,15

73
15885

±
958

3.81
±

0.25
PE

A
4

B
6034/A

2775
−

28.210212
134.481050

Stream
sedim

ent
259

0.99
41.209

7665
±

39 †
,5

0.303 8
4250
±

98
9098
±

181
∗
,14

71
14471

±
779

3.41
±

0.20

Earth Surf. Dynam., 6, 329–349, 2018 www.earth-surf-dynam.net/6/329/2018/



M. Struck et al.: Tracking the 10Be–26Al source-area signal 337
Ta

bl
e

2.
C

on
tin

ue
d.

Sa
m

pl
e

A
M

S
L

at
itu

de
a

L
on

gi
tu

de
a

M
at

er
ia

l
M

ea
n

Pr
od

uc
tio

n
Sa

m
pl

e
10

B
e
/

9 B
e

9 B
e

10
B

e
26

A
l/

27
A

l
27

A
l

26
A

l
26

A
l/

10
B

e
ID

ID
el

ev
at

io
n

sc
al

in
g

m
as

s
ra

tio
d,

d,
e

ca
rr

ie
r

co
nc

.a
ra

tio
e,

g,
h,

i
IC

P
co

nc
.

co
nc

.a
ra

tio
a

fa
ct

or
b

m
as

sf

(B
e
/

A
l)

(◦
S)

(◦
E

)
(m

)
(g

qt
z)

(1
0−

15
)

(m
g)

(1
03

at
g−

1 )
(1

0−
15

)
(p

pm
in

qt
z)

(1
03

at
g−

1 )

N
E

A
L

E
S

ca
tc

hm
en

t(
co

nt
in

ue
d)

PE
A

5
B

57
05

/A
25

85
−

28
.2

03
67

9
13

4.
66

55
91

St
re

am
se

di
m

en
t

24
8

0.
97

40
.3

76
56

56
±

44
†,

6
0.

32
010

32
61
±

77
70

80
±

34
8∗
,1

5
70

11
00

6
±

77
2

3.
38
±

0.
25

N
E

A
1

B
59

48
/A

26
81

−
27

.3
93

26
3

13
5.

26
35

33
St

re
am

se
di

m
en

t
20

7
0.

93
40

.1
35

19
78
±

33
†,

4
0.

31
010

11
11
±

31
30

99
±

23
5∗
,1

3
64

44
60
±

40
5

4.
02
±

0.
38

PE
A

6
B

60
35

/A
27

76
−

28
.3

13
13

4
13

4.
94

60
48

St
re

am
se

di
m

en
t

22
6

0.
96

40
.1

17
54

60
±

22
†,

5
0.

30
58

31
34
±

71
61

74
±

23
2∗
,1

4
75

10
28

7
±

64
3

3.
28
±

0.
22

N
E

A
2

B
60

36
/A

27
77

−
27

.8
67

06
2

13
5.

12
34

88
St

re
am

se
di

m
en

t
18

7
0.

92
40

.0
93

12
20
±

13
†,

5
0.

30
58

70
0
±

17
12

39
±

74
∗
,1

4
11

9
32

96
±

25
8

47
1
±

0.
39

N
IL

B
57

09
/–

−
28

.4
82

96
8

13
5.

99
98

87
St

re
am

se
di

m
en

t
36

8
1.

08
40

.1
87

84
8
±

27
†,

6
0.

32
210

49
6
±

19
−

13
5

−
6.

06
±

0.
38

–/
a4

64
17

.6
09

−
0.

29
58

–
95

5
±

27
12

14
1

30
05
±

14
9

PE
A

7
B

60
32

/A
27

40
−

28
.1

15
50

13
5.

08
27

09
St

re
am

se
di

m
en

t
24

5
0.

97
40

.5
31

27
89
±

27
†,

7
0.

29
48

15
23
±

37
40

83
±

11
8∗
,1

4
62

56
62
±

32
7

3.
72
±

0.
23

N
E

A
3

B
60

37
/A

27
78

−
27

.6
20

24
1

13
5.

42
72

62
St

re
am

se
di

m
en

t
19

9
0.

93
40

.2
74

21
88
±

14
†,

5
0.

30
48

12
46
±

29
27

33
±

90
∗
,1

4
71

43
07
±

25
8

3.
46
±

0.
22

N
E

A
4

B
60

31
/–

−
27

.9
00

86
1

13
5.

80
28

84
St

re
am

se
di

m
en

t
83

0.
85

40
.4

88
51

6
±

6†,
7

0.
29

38
28

2
±

7
–

12
4

–
8.

86
±

0.
34

–/
a4

67
20

.0
75

–
0.

30
18

–
59

7
±

20
∗
,1

2
12

4
16

50
±

87
PE

A
8

B
57

06
/–

−
28

.0
35

82
8

13
5.

79
70

00
St

re
am

se
di

m
en

t
17

7
0.

92
40

.3
65

13
83
±

17
†,

6
0.

32
010

79
9
±

20
–

98
–

4.
60
±

0.
25

–/
a4

62
16

.5
04

–
0.

29
98

–
17

15
±

46
12

96
36

71
±

17
9

N
E

A
5

B
57

07
/–

−
28

.1
14

00
7

13
6.

30
00

39
St

re
am

se
di

m
en

t
16

6
0.

91
40

.2
31

13
29
±

16
†,

6
0.

32
210

77
4
±

20
–

11
2

–
4.

39
±

0.
24

–/
a4

63
20

.0
75

–
0.

29
68

–
13

63
±

35
12

11
2

34
00
±

16
4

a
C

oo
rd

in
at

es
in

di
ca

te
th

e
lo

ca
tio

n
of

th
e

ca
tc

hm
en

to
ut

le
to

n
th

e
30

m
SR

T
M

D
E

M
;v

al
ue

s
re

fe
re

nc
ed

to
W

G
S8

4
da

tu
m

.b
C

om
bi

ne
d

at
m

os
ph

er
ic

pr
es

su
re

–l
at

itu
de

sc
al

in
g

fa
ct

or
fo

llo
w

in
g

th
e

tim
e-

in
de

pe
nd

en
ts

ca
lin

g
sc

he
m

e
of

St
on

e
(2

00
0)

.c
10

B
e
/

9 B
e

ra
tio

s
w

er
e

no
rm

al
is

ed
to

st
an

da
rd

s.
†

SR
M

K
N

-5
-2

(n
om

in
al

ra
tio

of
85

58
×

10
−

15
;2

%
re

pr
od

uc
ib

ili
ty

er
ro

r)
(N

is
hi

iz
um

ie
ta

l.,
20

07
),

an
d

‡
N

IS
T

43
25

(n
om

in
al

ra
tio

27
90

0
×

10
−

15
;3

%
re

pr
od

uc
ib

ili
ty

er
ro

r)
.d

C
or

re
ct

ed
fo

rb
at

ch
pr

oc
ed

ur
al

bl
an

ks
of

1
1.

69
±

0.
92
×

10
−

15
,2

51
.2

8
±

7.
99
×

10
−

15
,

3
39

.2
6
±

12
.4

7
×

10
−

15
,4

7.
83
±

2.
10
×

10
−

15
,5

5.
50
±

0.
70
×

10
−

15
,6

2.
94
±

0.
74
×

10
−

15
,a

nd
7

6.
24
±

0.
95
×

10
−

15
.e

U
nc

er
ta

in
tie

s
ex

pr
es

se
d

at
1σ

le
ve

l.
f

C
on

ce
nt

ra
tio

ns
of

9 B
e

ca
rr

ie
rs

ol
ut

io
ns

ar
e

8
10

90
±

15
pp

m
,9

un
kn

ow
n,

10
11

28
±

22
pp

m
.g

26
A

l/
27

A
lr

at
io

s
m

ar
ke

d
w

ith
∗

w
er

e
bl

an
k-

co
rr

ec
te

d
us

in
g

th
e

re
sp

ec
tiv

e
bl

an
k’

s
26

A
lc

ou
nt

ra
te

.h
26

A
l/

27
A

lr
at

io
s

w
er

e
no

rm
al

is
ed

to
SR

M
K

N
-4

-2
w

ith
a

no
m

in
al

ra
tio

of
30

,9
60
×

10
−

15
(N

is
hi

iz
um

i,
20

04
).

i
C

or
re

ct
ed

fo
rb

at
ch

pr
oc

ed
ur

al
bl

an
ks

of
:11

4.
33
±

1.
53
×

10
−

15
,12

13
.5

7
±

2.
36
×

10
−

15
,

13
10

.3
6
±

3.
76
×

10
−

15
,14

22
.0

6
±

5.
35
×

10
−

15
,a

nd
15

32
1.

34
±

25
.4

4
×

10
−

15
.j

Sa
m

pl
es

w
er

e
ex

cl
ud

ed
fr

om
fu

rt
he

ra
na

ly
se

s
si

nc
e

10
B

e
ab

un
da

nc
es

ar
e

un
na

tu
ra

lly
hi

gh
.

in the low 10Be from the lower Neales samples PEA8 and
NEA5 (Figs. 2 and 5h).

4.2 Modelled denudation rates and apparent burial ages
in sediment

Overall 26Al / 10Be ratios in sediment span 1.5–6.1, with
the majority ∼ 3–5 (20 samples) (Table 2). The Finke dis-
plays generally higher 26Al / 10Be ratios (4.7–5.2, interquar-
tile range) relative to the Macumba and Neales (3.5–4.4).
Deviation from the steady-state erosion island is typically at-
tributed to one or more episodes of burial–exposure, yet it has
been long understood that particle burial cannot be differen-
tiated from non-steady exhumation based on the 26Al / 10Be
ratio (Gosse and Phillips, 2001). Hence, we emphasise that
our modelled apparent burial ages (Table 3) serve primarily
as a measure of deviation from the steady-state erosion curve
(Fig. 6). For most of our samples (n= 21) deviations cluster
between ∼ 400 and 800 kyr and range up to ∼ 1.1 Myr (Ta-
ble 3). Low deviations < 400 kyr are exclusively observed in
small headwater streams (PIO, FIN1, NEA4, NIL, PEA2),
although deviations close to the erosion island are difficult to
discriminate due to the spread of uncertainties – the erosion
island itself does not accommodate uncertainties in produc-
tion rate.

Assuming that sediment samples have been continuously
exposed at the surface, without decay of nuclides due to
burial, the 10Be abundances yield slow catchment-scale de-
nudation rates between 0.3 and 11.0 m Myr−1 (Table 3).
When corrected for the “apparent burial age”, as calculated
above, denudation rates lower slightly to 0.2–8.1 m Myr−1

(Table 3).

5 Down-system variation in 10Be–26Al in the
western Eyre Basin

5.1 Lithology and the 10Be–26Al source-area signal

10Be levels measured in source-area bedrock and hillslope
soil vary widely among our three catchments, but broadly
concur within each catchment as reported by Struck et al.
(2018) and shown for comparison with samples from the
stream network in Fig. 5. Lithology is primarily responsible
for the wide variation in erosion rates measured on bedrock
surfaces in the western Eyre Basin in the order (from slow-
est to fastest) silcrete, quartzite, sandstone, and conglomer-
ate (see Fig. 13 in Struck et al., 2018). Compiling bedrock
erosion-rate data (n= 26) from Fujioka (2007); Heimsath
et al. (2010), and Struck et al. (2018) yields interquar-
tile ranges of 0.2–4.4 m Myr−1 (n= 4) on silcrete mesas
in the Oodnadatta Tablelands, 1.6–4.8 m Myr−1 (n= 15) on
quartzite–sandstone ridges in the MacDonnell Ranges, 1.8–
7.3 m Myr−1 (n= 2) on quartzite–sandstone in the Peake and
Denison Ranges, and 6.7–6.8 m Myr−1 (n= 5) on conglom-
erate in the MacDonnell Ranges. These differences in source-
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Table 3. Basin-wide erosion rates and apparent burial ages.

Sample Surface erosion Apparent burial Surface erosion rate
ID ratea,b signalc,d accounted for burialc,d

(m Myr−1) (kyr) (m Myr−1)

FINKE catchment

PIO 7.46± 0.25 266+152
−88 6.45+0.80

−0.60
FIN1 8.41± 0.32 340+100

−113 7.02+1.33
−0.53

FIN2 7.14± 0.23 607+152
−91 5.12+0.60

−0.50
B123s 10.96± 1.19 – –
ELL 7.69± 0.31 465+154

−103 5.97+0.91
−0.65

FIN3 6.31± 0.21 475+152
−94 4.85+0.58

−0.47
PAL 5.47± 0.17 399+139

−96 4.37+0.54
−0.37

FIN4 5.54± 0.18 566+135
−95 4.03+0.51

−0.39
HUG 5.27± 0.17 685+149

−94 3.59+0.45
−0.34

FIN5 5.45± 0.17 743+139
−89 3.59+0.40

−0.32
S05/04 5.52± 0.18 505+200

−126 4.18+0.64
−0.48

MACUMBA catchment

COO 1.28± 0.04 568+170
−101 0.87+0.13

−0.11
ALB3 1.59± 0.05 471+153

−101 1.17+0.18
−0.12

ALB2 1.66± 0.05 638+140
−86 1.10+0.14

−0.11
ALB1 1.95± 0.06 625+185

−107 1.32+0.18
−0.15

MAC 1.42± 0.04 1115+242
−126 0.66+0.13

−0.11

NEALES catchment

PEA-BR2 4.41± 0.15 28+115
−14 4.34+0.20

−0.37
PEA-BR4 1.23± 0.04 0+69

−0 1.22+0.05
−0.07

PEA1 0.60± 0.02 532+144
−85 0.38+0.06

−0.05
PEA2 0.33± 0.02 295+117

−82 0.24+0.05
−0.04

PEA4 0.31± 0.01 454+116
−76 0.18+0.04

−0.03
PEA5 0.50± 0.02 592+150

−84 0.28+0.05
−0.05

NEA1 2.07± 0.07 719+240
−137 1.32+0.24

−0.19
PEA6 0.52± 0.02 650+143

−80 0.28+0.05
−0.04

NEA2 3.55± 0.10 526+203
−127 2.61+0.40

−0.31
NIL 6.11± 0.26 30+5

−10 6.16+0.31
−0.21

PEA7 1.46± 0.05 758+159
−94 0.88+0.12

−0.10
NEA3 1.79± 0.05 934+161

−89 0.98+0.12
−0.11

NEA4 9.07± 0.25 188+123
−63 8.13+0.82

−0.62
PEA8 3.04± 0.09 542+137

−89 2.20+0.26
−0.20

NEA5 3.11± 0.09 633+134
−87 2.13+0.24

−0.19

a Calculated from 10Be concentrations with the single-nuclide-erosion tool of CosmoCalc 3.0
(Vermeesch, 2007), using the time-independent scaling scheme of Stone (2000) and production
mechanisms based on Granger and Muzikar (2001). b Uncertainties expressed at 1σ level.
c Calculated using the CosmoCalc 3.0 (Vermeesch, 2007) burial–erosion tool. The calculation
assumes a simple burial scenario, namely, one episode of erosion followed by one episode of burial.
The calculation does not account for post-burial re-exposure. d Uncertainties expressed at 1
standard deviation (i.e. 68th percentile).
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area erosion rates are also reflected in the 10Be levels mea-
sured in stream sediments downstream (Fig. 4a), which trans-
late to catchment erosion rates (interquartile ranges) of 4.1–
5.8 m Myr−1 in the Finke, 0.9–1.2 m Myr−1 in the Macumba,
and 0.3–2.2 m Myr−1 in the Neales. The western headwa-
ters of the Peake yield 0.2–0.4 m Myr−1, which is among
the slowest catchment-scale erosion rates ever measured (Ta-
ble 3).

Our bedrock samples overall have experienced a history
of continuous surface exposure or deviate slightly from the
steady-state condition (Fig. 6a, c). As proposed by Struck
et al. (2018), the minor deviation from the steady-state ero-
sion curve (Fig. 6a) may be the result of non-steady exhuma-
tion – termed “two-speed exhumation”. Considering the very
low erosion rates (< 1 m Myr−1) we report for the western
Eyre Basin, 26Al / 10Be ratios will decrease (< 6.75) through-
out the rock column owing to the faster decay of 26Al relative
to 10Be. Under these conditions a sudden pulse of erosion due
to recent soil-stripping, for instance, will cause surface sam-
ple 26Al / 10Be ratios to deviate from the steady-state erosion
curve (Fig. 6). Two-speed exhumation provides a viable al-
ternative to cyclic exposure–burial that is usually invoked to
account for low 26Al / 10Be ratios (Struck et al., 2018).

5.2 10Be–26Al in the Finke sediment-routing system

The prominent strike ridges and hillslope soil mantles of the
MacDonnell Ranges (Fig. 3a) contain a wide range of abun-
dances of 10Be ∼ 0.2–6.5× 106 atoms g−1 (Fig. 5a), which
appears to be driven by bedrock lithology (see Fig. 13 in
Struck et al., 2018). In some cases, small alluvial fans form
intermediate storages of sediment prior to it entering the
stream network, but more commonly bedrock ridges feed
sediment directly to low-order headwater streams (Fig. 5b).
High 10Be (1–5× 106 atoms g−1) occurs in streams draining
resistant quartzite ridges, whereas streams from sandstone–

siltstone ridges and low conglomerate hills yield ∼ 0.3–
0.6× 106 atoms g−1. From the headwaters, 10Be increases
slightly over ∼ 300 km downstream (Fig. 5b) to where the
channel and floodplain system broadens to unconfined allu-
vial plains and dune fields (at FIN4, Fig. 2) and from here
remains constant downstream. This slight rise in 10Be down-
stream coincides with the shrinking fraction of bedrock and
colluvium (Fig. 5c) and rise in the extent of sediment cover.

The bedrock and soil samples contain a minor burial sig-
nal (< 0.3 Myr) (Fig. 7a), which is transmitted to sediments of
the headwater streams (Fig. 7b). Similar to the down-system
trends in 10Be, the burial signal increases downstream over
∼ 450 km then remains constant (or decreases slightly) to the
most downstream sample (Fig. 7b); the apparent burial sig-
nal also shows a convincing negative correlation (R2 = 0.68)
with the fraction of bedrock and colluvium (Fig. 7c).

5.3 10Be–26Al in the Macumba–Neales
sediment-routing system

The Macumba and Neales river catchments both drain the
silcrete-mesa country of the Oodnadatta Tablelands, which
means that their sediment-routing systems share key physio-
graphic and lithological controls. We plot their stream sed-
iment data separately in Figs. 5 and 7, but the bedrock and
soil data (Figs. 5d, g and 7d, g) are treated as regionally rep-
resentative of the Oodnadatta Tablelands.

Silcrete duricrust forms a cap rock that is exceptionally
resistant to weathering (Struck et al., 2018) and hence the
mesa surfaces tend to accumulate very high 10Be abun-
dances. Based on their work in the Negev, Boroda et al.
(2014) propose that the erosion rate of cap rock and mesas
scales with their size and extent. Parallel slope retreat, with
negligible vertical erosion, predominates on wide tableland
plateaus and with ongoing mesa reduction the rate of verti-
cal and horizontal erosion increases to a maximum at the tor
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Figure 5. 10Be abundances of bedrock and stream sediment from the Finke (a, b, c) showing trunk streams (light-blue triangles) and
tributaries (dark-blue and white triangles), and the Macumba (d, e, f) and Neales (g, h, i) rivers. The Neales data are further subdivided into
the subcatchments of Peake (light-red triangles), Neales (dark-red triangles), and Peake and Denison Ranges (light-red squares). Panels (a),
(d), and (g) show 10Be abundances in bedrock and hillslope soil as median (open circles) and full range (black squares for MacDonnell
Ranges and silcrete, and light-red squares for Peake and Denison Ranges). Panels (b), (e), and (h) show 10Be abundances in stream sediment
relative to the distance along-stream from most downstream samples – note that we have reversed the x axes in all panels to illustrate our
data from source to sink, left to right. Arrows indicate stream trajectories (sample labels corresponding to Tables: F1-5 are FIN1-5, N1-5 are
NEA1-5, and P1-8 are PEA1-8; H denotes samples from Heimsath et al., 2010). Panels (c), (f), and (i), show the fraction of exposed bedrock
and colluvium cover. Note that previously published data are included in (a) (Struck et al., 2018; Heimsath et al., 2010) and (d) and (g)
(Struck et al., 2018; Fujioka et al., 2005) (see Table S3). All nuclide data are normalised to sea-level high latitude.

stage. Our four samples from silcrete mesas in the Neales
and Macumba catchments are intended to represent the full
range of bedrock erosion rates (10Be abundances) – starting

with a slowly eroding broad plateau (TD-BR, see Struck et al.
(2018) for details; ∼ 5.2–7.7× 106 atoms g−1) to a dissected
mesa (PEA-BR4 ∼ 1.7× 106 atoms g−1) and finally a tor
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tios (normalised to sea-level high latitude) in bedrock (white el-
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land indicate a history of post-exhumation burial(s) and/or non-
steady exhumation.

(PEA-BR2 ∼ 0.6× 106 atoms g−1). The western headwaters
of the Neales and Peake subcatchments dissect the eastern
edge of a continuous silcrete cap rock plateau (Fig. 2). Given
that the degree of mesa dissection increases in the down-
system direction (west to east), according to Boroda et al.
(2014), we can predict that 10Be supply to the stream network
decreases downstream – and this is essentially what we find.
Extremely high to rather low 10Be content of mesa bedrock
overlaps with data from hillslope soil mantles (Fig. 5g),
and the high 10Be accumulated on the flat, un-dissected sil-
crete plateau is transmitted into the westernmost headwa-
ter streams of the Peake subcatchment (Fig. 5h). In con-
trast, the far more dissected areas drained by the Neales
and Macumba headwater streams yield relatively low 10Be
(Fig. 5e, h). From the headwaters of the Peake 10Be decreases
sharply over ∼ 200–250 km to levels matching the Neales
and Macumba streams (Fig. 5h), which both show limited
variation over ∼ 200 km downstream (Fig. 5e, h). These
downstream trends are broadly accompanied by the reduc-
tion in bedrock and expansion of sediment cover (Fig. 5h).
The Peake and Denison Ranges in the southeast corner of the
Neales catchment (Fig. 2) exerts an important effect on the
sediment-routing system. Samples from quartzite–sandstone
bedrock together with soil (Fig. 5g) demonstrate that the high
relief and weaker lithology is driving erosion rates that are
much faster relative to the Oodnadatta Tablelands to the west.
Stream sediments from these ranges enter the lower reaches
of the Peake and Neales rivers where they notably depress
10Be abundances (Fig. 5h).

The burial signal measured in bedrock and hillslope soil
mantles (< 0.6 Myr) is transmitted into headwater streams
with fairly similar (or slightly increased) apparent burial ages
(Fig. 7d, g). A potential source of low 26Al / 10Be material
is generated by fluvial gully heads that undermine the cap
rock, yielding deeply shielded (> 3 m) material from beneath
the silcrete. The Macumba undergoes a notable increase in
burial signal over ∼ 140 km downstream (Fig. 7e), whereas
the Neales and Peake subcatchments show a slight increase
in burial over ∼ 200 km until this trend is disrupted by in-
puts from the Peake and Denison Ranges (Fig. 7h). Both
the Macumba and Neales networks show a broad increase
in burial signal relative to the fraction of sediment cover
(Fig. 7f, i).

6 Factors that modify the 10Be–26Al source-area
signal

Cosmogenic nuclide inventories in sediment can be modi-
fied in the sediment-routing system via (i) inputs from faster
eroding areas or (ii) particles with notably longer exposure
histories, including particles buried in transit. We have ev-
idence of the first case in which sediment yield from the
faster-eroding Peake and Denison Ranges (Fig. 2) dilutes the
high 10Be and depresses the burial signal emanating from the
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Peake and Neales subcatchments (Figs. 5 and 7). However,
the main modification to the 10Be–26Al source-area inven-
tory appears to be the downstream increase in the burial sig-
nal (Fig. 7). This modification indicates that samples down-
stream incorporate a growing fraction of particles derived
from temporary storage. Such particles are likely to be a mix
of those that have acquired additional nuclides during near-
surface (< 1–2 m) exposure to secondary cosmic rays plus

those more deeply buried (i.e. > 2–3 m). Only burial can slow
down nuclide production, but deep burial is not essential for
lowering 26Al / 10Be – even shallow burial can cause devia-
tion from the steady-state erosion curve over timescales on
the same order as the 26Al half-life of ∼ 0.7 Myr (see Fig. 14
in Struck et al., 2018). The correlation shown between burial
signal and increasing sediment cover (Figs. 7 and 8) is pre-
sumably the result of samples assimilating input from stor-
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ages with long exposure histories that include some (possi-
bly deep) burial. We identify four key sources for such ma-
terial: (i) alluvial fans, (ii) desert pavements, (iii) floodplains
and palaeo-alluvial plains, and (iv) aeolian dunes. Together
these landforms span > 50 % of the total catchment area in
the lower stream reaches (Figs. 4 and 7; Table 1).

Alluvial fans are intermediate storages at the transition
from hillslopes to the fluvial network; hence they may pro-
vide the first opportunity for alteration of the source-area sig-
nal. Cosmogenic nuclide depth profiles measured in two typ-
ical fans of the upper Finke yield depositional ages of 188–
289 ka (Struck et al., 2018) and ∼ 438 to 1474 ka (Fig. S1
in the Supplement). If this is representative of alluvial fans
in the region, then we can suggest that alluvial fans play
an important role in burial signal development for particles
entering headwater streams. Sometimes observed mantling
older fans, desert pavement (gibber) occurs throughout the
sediment-routing system and nuclide-derived residence times
of 105–106 years demonstrate its extreme longevity (Fujioka
et al., 2005; Fisher et al., 2014; Struck et al., 2018). Gib-
bers break off and disperse directly from bedrock outcrop, or
they form at the bedrock–soil interface and rise to the surface
over time – a process that imparts very low 26Al / 10Be ra-
tios (Struck et al., 2018). Such gibbers released into streams,
together with the underlying aeolian soils held in long-term
shallow burial, are likely to impact the 10Be–26Al inventory
wherever they impinge on channel networks.

The dynamics of sediment transport, temporary storage,
and burial are not easy to gauge through fluvial systems that
are many hundreds of kilometres long and, in places, tens of
kilometres wide (Fig. 2). A few studies link the introduction
of a burial signal in modern stream sediment to the reworking
of alluvial sediment storages. Kober et al. (2009) suggest that
in Rio Lluta, northern Chile, a downstream-increasing burial
signal is potentially the result of reworked fluvial terraces (or
slope and mass-wasting deposits) up to 105 years old. Simi-
larly, Hidy et al. (2014) find that burial signals in streams on
the coastal plain of Texas stem from reworked pre- to mid-
Pleistocene deposits. Bierman et al. (2005) identify that re-
working long-buried (300–500 kyr) floodplain material pro-
duces a burial signal in sediments of Rio Puerco on the Col-
orado Plateau. Wittmann et al. (2011) detect Amazon flood-
plain burial signals in coarse (> 500 µm) trunk-stream sedi-
ments sourced from reworked storages up to ∼ 1.2 Myr old.
In central Australia, some useful guidance to minimum burial
duration can be drawn from luminescence ages measured
on shallow-buried fluvial sediments. Unlike 10Be–26Al data,
which can yield a cumulative burial signal, luminescence
burial ages are reset by exposure to sunlight. Previously pub-
lished TL ages from channel alluvium indicate minimum
storage terms of > 200 kyr in the lower Neales (Croke et al.,
1996) and > 93 kyr in the lower Finke (Nanson et al., 1995).
Our three TL ages (Table S1) from the Macumba River flood-
plain depth profile increase in age with depth, although the
lowermost sample (160 cm) is saturated and therefore may

be significantly older than the 120± 9 ka from 100 cm depth.
Vertical accretion rates at these two floodplain sites span
roughly ∼ 8–54 mm kyr−1 and are compatible with the ac-
cretion rate of 64± 33 mm kyr−1 (mean ±1σ ) reported from
Cooper Ck floodplain in the eastern Eyre Basin (Jansen et al.,
2013). Of the 278 luminescence ages measured in Eyre Basin
river sediments, mostly on Cooper Ck, one-third fall between
60 and 120 ka (the oldest being 740± 55 ka). Given the cli-
matic and physiographic similarities between the eastern and
western Eyre Basin, it seems reasonable to assume that min-
imum burial durations of > 105 years are representative of
the Finke, Macumba, and Neales rivers. If a single storage
interval may span ∼ 105 years, then it is feasible that the cu-
mulative effect of many intervals of shallow burial will cause
the 26Al / 10Be ratio to deviate.

A similar argument applies to aeolian dune fields, which
are major sediment storages spanning ∼ 3 million km2 and
up to 40 % of the continent (Wasson et al., 1988; Hesse,
2010). All three catchments of the western Eyre Basin con-
tain dunes in their lower reaches, but the Finke and Macumba
have the strongest interaction in their lower reaches fringing
the Simpson Desert (Fig. 2). 26Al / 10Be burial ages suggest
that dune accumulation probably began up to 1 Myr ago (Fu-
jioka et al., 2009) and, as with alluvial sediments, we infer
minimum burial durations from luminescence dating. Based
on a recent compilation listing 95 luminescence ages from
the Simpson Desert (Hesse, 2016), minimum burial dura-
tions of > 105 years are widespread – the oldest dune sam-
ple yields a minimum age of 587 ka (Fujioka et al., 2009). In
the hyper-arid Namib Desert, Bierman and Caffee (2001) and
Vermeesch et al. (2010) suggest that input of aeolian and/or
reworked alluvium are responsible for decreased 26Al / 10Be
ratios in modern sediments. Similar conclusions are drawn
by Davis et al. (2012) for the Nile.

7 The 10Be–26Al source-area signal in
sediment-routing systems – a synthesis

7.1 Lithology drives heterogeneities in the source-area
signal

Our comparison of 10Be measured in bedrock outcrops and
hillslope soil, with 10Be in headwater streams reiterating
the well-known fact that source areas deliver highly diverse
10Be–26Al inventories into stream networks, although the
drivers of this diversity are less well understood. In rapidly
eroding mountain belts, the wide disparity in source-area ero-
sion rate (102–103 m Myr−1) is typically attributed to the ef-
fects of tectonism, such as seismicity and landsliding (Ar-
mitage et al., 2011). However, in central Australian streams,
a comparable order-of-magnitude spread in source-area ero-
sion rates (10−1–101 m Myr−1) is chiefly due to lithology.
Our data show that while 10Be–26Al source-area signals are
modified downstream (Fig. 7), disparities in source-area ero-
sion rates remain highly resilient. Despite hundreds of kilo-
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metres (∼ 200–600 km) of sediment mixing from source to
sink, 10Be–26Al inventories in western Eyre Basin streams
(> 1 km2) retain a distinct signal of their source-area lithol-
ogy (interquartile ranges): 0.2–0.4 m Myr−1 in the upper
Peake (silcrete), 0.9–1.2 m Myr−1 in the Macumba (silcrete
and granites), and 4.1–5.8 m Myr−1 in the Finke (quartzite–
sandstone conglomerate) (Fig. 4a; Table 3). This is consistent
with the fundamental role that lithology plays in differenti-
ating the tempo of erosion in all landscapes irrespective of
their tectonic or climatic setting (Scharf et al., 2013).

7.2 Are cosmogenic nuclide inventories reliable
indicators of source-area erosion rate?

Estimates of catchment-scale erosion rate from cosmogenic
nuclide abundances in sediment assume a high-fidelity re-
lationship with the sediment source area (Bierman and
Nichols, 2004; von Blanckenburg, 2005; Granger and Riebe,
2007; Dunai, 2010). However, as our data show, the down-
system propagation of source-area signals tends to be scale
dependent: the widest spread of 10Be occurs among hills-
lope bedrock outcrops (Fig. 5) from which the buffering ef-
fect of sediment transport downslope and downstream leads
to progressively more stable catchment-averaged signals of
erosion rate or particle burial (Wittmann and von Blancken-
burg, 2016). This raises the question of under what circum-
stances can we expect 10Be–26Al inventories to yield an ac-
curate picture of erosion in the source area. In the western
Eyre Basin, the downstream shift in 26Al / 10Be ratio results
in erosion-rate disparities (i.e. the difference between up-
stream and downstream samples) ranging from 2-fold (Finke
and Macumba catchments) up to 12-fold (Neales catchment)
(Table 3). The validity of the assumption linking 10Be–26Al
inventories to their source area reflects a systematic set of ge-
omorphic conditions that requires consideration for reliable
erosion rates to be obtained.

Source-area 10Be–26Al inventories are largely unmodified
in stream sediments traversing foreland basins fed by tecton-
ically active mountain belts, such as the Andes (Wittmann
et al., 2009, 2011), the Alps (Wittmann et al., 2016), and the
Himalayas (Lupker et al., 2012; although no 26Al data are
available here). Intermediate storage seems to have no ap-
preciable effect on the low-10Be source-area signal conveyed
along these large perennial lowland rivers. Their sediment-
routing systems are characterised by braiding channels lead-
ing on to anabranching and laterally active meandering river
styles – all indicative of high-discharge rivers optimised for
sediment transfer. Frequent channel avulsion and fast lateral-
migration rates bring channels into contact with older flood-
plain materials, but highly efficient reworking ensures a re-
stricted age spread of sediments within the channel belt and
ongoing basin subsidence drives long-term sequestration into
a rapidly thickening sediment pile (Allen, 2008; Armitage
et al., 2011). In some cases, basin inversion may ultimately
lead to recycling of older sediment storages back into the
sediment-routing system, as shown in the upper Yellow River
where reworked Neogene basin fills alter the 26Al / 10Be
source-area ratio downstream (Hu et al., 2011). From these
examples, we can infer some key points favouring preserva-
tion of source-area signals: (i) high sediment supply rates and
therefore a channel–floodplain system configured for high
sediment flux, (ii) high mean runoff from headwaters, and
(iii) a thick sedimentary basin pile without older basin sedi-
ments exposed in the proximal floodplain or terraces.

The alternative limit case, in which the 10Be–26Al source-
area signal is modified downstream, follows distinctly differ-
ent geomorphic conditions, summarised as (i) low sediment
supply, and (ii) juxtaposition of sediment storages with no-
tably different exposure histories. Slow rates of source-area
erosion (< 20 m Myr−1) typical of low-relief post-orogenic
and shield-platform terrain (this study, Bierman et al., 2005;
Hidy et al., 2014) produce down-system basin fills that are
thin and discontinuous. In the absence of subsidence creating
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accommodation space, there are juxtaposed sediment stor-
ages of widely differing age – and a high prospect of their
admixture with the sediment-routing system (Kober et al.,
2009; Davis et al., 2012; Hidy et al., 2014). Especially in dry-
land river systems, atmospheric inputs are typically part of a
long-term history of fluvial–aeolian mass exchange (Bierman
and Caffee, 2001; Bierman et al., 2005; Vermeesch et al.,
2010; Davis et al., 2012). As described above, aeolian dune
fields can host particles with notably longer exposure his-
tories and burial timescales > 1 Myr (Fujioka et al., 2009;
Vermeesch et al., 2010), and there is much observational
evidence of fluvial–aeolian interactions in the western Eyre
Basin.

8 Conclusions

We have tracked downstream variations in 10Be–26Al in-
ventories through three large sediment-routing systems
(∼ 100 000 km2) in central Australia by comparing 56 cos-
mogenic 10Be and 26Al measurements in stream sediments
with matching data (n= 55) from bedrock and soil mantles
in the headwaters (Struck et al., 2018). Our summary conclu-
sions are as follows.

1. Lithology is the primary determinant of erosion rate
variations among bedrock outcrops in the order sil-
crete, quartzite, sandstone, conglomerate (from slow-
est to fastest erosion rate). Our regional compilation of
bedrock erosion-rate data yields interquartile ranges of
0.2–4.4 m Myr−1 on silcrete mesas in the Oodnadatta
Tablelands, 1.6–4.8 m Myr−1 on quartzite–sandstone
ridges in the MacDonnell Ranges, 1.8–7.3 m Myr−1 on
quartzite–sandstone in the Peake and Denison Ranges,
and 6.7–6.8 m Myr−1 on conglomerate in the Mac-
Donnell Ranges. Although 10Be–26Al inventories are
modified by sediment mixing over hundreds of kilo-
metres downstream, they still retain a distinct signal
of source-area lithology. Sediment-derived catchment-
averaged erosion rates (interquartile ranges) are 4.1–
5.8 m Myr−1 for the Finke, 0.9–1.2 m Myr−1 for the
Macumba, and 0.3–2.2 m Myr−1 for the Neales. The
western headwaters of the Peake River (a subcatchment
of the Neales River) yield 0.2–0.4 m Myr−1, which is
among the slowest catchment-scale erosion rates ever
measured (Table 3).

2. 10Be–26Al inventories measured in stream-sediment
samples from the Finke, Macumba, and Neales rivers
all show overall downstream-increasing deviation from
the steady-state erosion curve. These deviations corre-
spond to minimum cumulative burial terms mostly be-
tween ∼ 400 and 800 kyr (and up to ∼ 1.1 Myr). The
magnitude of the burial signal correlates with increas-
ing sediment cover downstream (Figs. 7 and 8) and
presumably results from assimilation of shallow-buried

sediments from storages with long exposure histories,
such as alluvial fans, desert pavements, floodplains and
palaeo-alluvial plains, and aeolian dunes. In the lower
reaches of the Peake and Neales rivers, the downstream-
increasing burial signal is disrupted by inputs from
faster-eroding landscapes in the Peake and Denison
Ranges.

3. Downstream variations in 10Be–26Al inventories
weaken the fidelity of the relationship between source
areas and catchment-averaged erosion-rate estimates
from samples along large alluvial rivers. Based on our
review of case studies that track 10Be–26Al source-area
signals downstream, we detect a set of behavioural
trends under differing geomorphic settings. Preserva-
tion of source-area signals downstream is favoured by
(i) high sediment supply rates, (ii) high mean runoff
from headwaters, and (iii) a thick sedimentary basin
pile without older basin sediments exposed in the prox-
imal floodplain. Conversely, source-area signals are
more likely to be modified downstream in landscapes
with (i) low sediment supply and (ii) juxtaposition
of sediment storages with notably different exposure
histories, such as aeolian dune fields. Such modifi-
cations can have a significant impact on erosion rate
estimates. In desert rivers of the western Eyre Basin,
the downstream shift in 26Al / 10Be ratio results in
erosion-rate disparities ranging from 2-fold in the Finke
and Macumba rivers, and up to 12-fold in the Neales
River (Table 3).

Data availability. All cosmogenic nuclide and ther-
moluminescence data are available in the tables or in
the Supplement. Rainfall data were recorded and pro-
vided by the Australian Bureau of Meteorology (http:
//www.bom.gov.au/jsp/ncc/climate_averages/decadal-rainfall; Aus-
tralian Bureau of Meteorology, 2017). Lithology data are provided
by Geoscience Australia (Raymond et al., 2012; https://data.gov.au/
dataset/surface-geology-of-australia-data-package-2012-edition).
Elevation data were also provided by Geoscience Australia
(https://data.gov.au/dataset/1-second-srtm-derived-hydrological-
digital-elevation-model-dem; Geoscience Australia, 2017). Any
other data presented and discussed in this article are freely available
from Martin Struck (ms646@uowmail.edu.au) or John Jansen
(jdj@geo.au.dk).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esurf-6-329-2018-supplement.
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