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Abstract. Shorelines exhibit long-range dependence (LRD) and have been shown in some environments to be
described in the wave number domain by a power-law characteristic of scale independence. Recent evidence
suggests that the geomorphology of barrier islands can, however, exhibit scale dependence as a result of system-
atic variations in the underlying framework geology. The LRD of framework geology, which influences island
geomorphology and its response to storms and sea level rise, has not been previously examined. Electromagnetic
induction (EMI) surveys conducted along Padre Island National Seashore (PAIS), Texas, United States, reveal
that the EMI apparent conductivity (σa) signal and, by inference, the framework geology exhibits LRD at scales
of up to 101 to 102 km. Our study demonstrates the utility of describing EMI σa and lidar spatial series by a frac-
tional autoregressive integrated moving average (ARIMA) process that specifically models LRD. This method
offers a robust and compact way of quantifying the geological variations along a barrier island shoreline using
three statistical parameters (p, d , q). We discuss how ARIMA models that use a single parameter d provide a
quantitative measure for determining free and forced barrier island evolutionary behavior across different scales.
Statistical analyses at regional, intermediate, and local scales suggest that the geologic framework within an area
of paleo-channels exhibits a first-order control on dune height. The exchange of sediment amongst nearshore,
beach, and dune in areas outside this region are scale independent, implying that barrier islands like PAIS exhibit
a combination of free and forced behaviors that affect the response of the island to sea level rise.

1 Introduction

Barrier island transgression in response to storms and sea
level rise depends to varying degrees on preexisting geologic
features. The traditional assumption of uniform sand at depth
and alongshore cannot explain many observations. Models of
barrier island evolution are required to ascertain the degree to
which the island is either free (such as a large sand body) or
forced (i.e., constrained) by the underlying geology. Despite
growing evidence that the underlying geological structure,
otherwise termed framework geology, of barrier islands influ-
ences nearshore, beach, and dune morphology (e.g., Belknap

and Kraft, 1985; Houser, 2012; Lentz and Hapke, 2011; Mc-
Ninch, 2004; Riggs et al., 1995), this variable remains largely
absent from shoreline change models that treat the geology
as being uniform alongshore (e.g., Dai et al., 2015; Plant and
Stockdon, 2012; Wilson et al., 2015). Spatial variation in the
height and position of the dune line impacts the overall trans-
gression of the island with sea level rise (Sallenger, 2000).
Transgression is accomplished largely through the transport
and deposition of beach and dune sediments to the backbar-
rier as washover deposits during storms (Houser, 2012; Mor-
ton and Sallenger, 2003; Stone et al., 2004).
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1.1 Framework geology controls on barrier island
evolution

The dynamic geomorphology of a barrier island system is
the result of a lengthy, complex, and ongoing history that is
characterized by sea level changes and episodes of deposi-
tion and erosion (e.g., Anderson et al., 2015; Belknap and
Kraft, 1985; Rodriguez et al., 2001). Previous studies demon-
strate that the framework geology of barrier islands plays a
considerable role in the evolution of these coastal landscapes
(Belknap and Kraft, 1985; Evans et al., 1985; Kraft et al.,
1982; Riggs et al., 1995). For example, antecedent structures
such as paleo-channels, ravinement surfaces, offshore ridge
and swale bathymetry, and relict transgressive features (e.g.,
overwash deposits) have been suggested to influence barrier
island geomorphology over a wide range of spatial scales
(Hapke et al., 2010, 2016; Houser, 2012; Lentz and Hapke,
2011; McNinch, 2004). In this study, the term framework ge-
ology is specifically defined as the topographic surface of in-
cised valleys, paleo-channels, and/or the depth to ravinement
surface beneath the modern beach.

As noted by Hapke et al. (2013), the framework geol-
ogy at the regional scale (> 30 km) influences the geomor-
phology of an entire island. Of particular importance are
the location and size of glacial, fluvial, tidal, and/or inlet
paleo-valleys and paleo-channels (Belknap and Kraft, 1985;
Colman et al., 1990; Demarest and Leatherman, 1985), and
paleo-deltaic systems offshore or beneath the modern barrier
system (Coleman and Gagliano, 1964; Frazier, 1967; Miselis
et al., 2014; Otvos and Giardino, 2004; Twichell et al., 2013).
At the regional scale, nonlinear hydrodynamic interactions
between incident wave energy and nearshore ridge and swale
bathymetric features can generate periodic alongshore vari-
ations in beach–dune morphology (e.g., Houser, 2012; Mc-
Ninch, 2004) that are superimposed on larger-scale topo-
graphic variations as a result of transport gradients (Tebbens,
et al., 2002). At the intermediate scale (10–30 km), feedbacks
between geologic features and relict sediments of the former
littoral system (e.g., Honeycutt and Krantz, 2003; Riggs et
al., 1995; Rodriguez et al., 2001; Schwab et al., 2000) act
as an important control on dune formation (Houser et al.,
2008) and offshore bathymetric features (e.g., Browder and
McNinch, 2006; Schwab et al., 2013). Framework geology at
the local scale (≤ 10 km) induces mesoscale (∼ 101–102 m)
to microscale (< 1 m) sedimentological changes (e.g., Mur-
ray and Thieler, 2004; Schupp et al., 2006), variations in the
thickness of shoreface sediments (Brown and Macon, 1977;
Miselis and McNinch, 2006), and spatial variations in sedi-
ment transport across the island (Houser and Mathew, 2011;
Houser, 2012; Lentz and Hapke, 2011).

To date, most of what is known regarding barrier island
framework geology is based on studies performed at either
intermediate or local scales (e.g., Hapke et al., 2010; Lentz
and Hapke, 2011; McNinch, 2004), whereas few studies ex-
ist at the regional scale for United States coastlines (Hapke

et al., 2013). The current study focuses on barrier islands
in the United States and we do not consider work on bar-
rier islands in other regions. Assessments of framework ge-
ology at regional and intermediate spatial scales for natural
and anthropogenically modified barrier islands are essential
for improved coastal management strategies and risk evalu-
ation since these require a good understanding of the con-
nections between subsurface geology and surface morphol-
ogy. For example, studies by Lentz and Hapke (2011) and
Lentz et al. (2013) at Fire Island, New York, suggest that the
short-term effectiveness of engineered structures is likely in-
fluenced by the framework geology. Extending their work,
Hapke et al. (2016) identified distinct patterns of shore-
line change that represent different responses alongshore to
oceanographic and geologic forcing. These authors applied
empirical orthogonal function (EOF) analysis to a time series
of shoreline positions to better understand the complex mul-
tiscale relationships between framework geology and con-
temporary morphodynamics. Gutierrez et al. (2015) used a
Bayesian network to predict barrier island geomorphic char-
acteristics and argue that statistical models are useful for re-
fining predictions of locations where particular hazards may
exist. These examples demonstrate the benefit of using sta-
tistical models as quantitative tools for interpreting coastal
processes at multiple spatial and temporal scales (Hapke et
al., 2016).

1.2 Statistical measures of coastline geomorphology

It has long been known that many aspects of landscapes
exhibit similar statistical properties regardless of the length
or timescale over which observations are sampled (Bur-
rough, 1981). An often-cited example is the length L of a
rugged coastline (Mandelbrot, 1967), which increases with-
out bound as the length G of the ruler used to measure it
decreases, in rough accord with the formula L(G)vG1−D ,
whereD ≥ 1 is termed the fractal dimension of the coastline.
Andrle (1996), however, has identified limitations of the self-
similar coastline concept, suggesting that a coastline may
contain irregularities that are concentrated at certain charac-
teristic length scales owing to local processes or structural
controls. Recent evidence from South Padre Island, Texas
(Houser and Mathew, 2011), Fire Island, New York (Hapke
et al., 2010), and Santa Rosa Island, Florida (Houser et al.,
2008), suggests that the geomorphology of barrier islands is
affected to varying degrees by the underlying framework ge-
ology and that this geology varies, often with periodicities,
over multiple length scales. The self-similarity of the frame-
work geology and its impact on the geomorphology of these
barrier islands was not examined explicitly.

Many lines of evidence suggest that geological formations
in general are inherently rough (i.e., heterogeneous) and con-
tain multiscale structure (Bailey and Smith, 2005; Everett
and Weiss, 2002; Radliński et al., 1999; Schlager, 2004).
Some of the underlying geological factors that lead to self-
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similar terrain variations are reviewed by Xu et al. (1993).
In essence, competing and complex morphodynamic pro-
cesses, influenced by the underlying geological structure, op-
erate over different spatiotemporal scales, such that the ac-
tual terrain is the result of a complex superposition of the
various effects of these processes (see Lazarus et al., 2011).
Although no landscape is strictly self-similar on all scales,
Xu et al. (1993) show that the fractal dimension, as a global
morphometric measure, captures multiscale aspects of sur-
face roughness that are not evident in conventional local mor-
phometric measures such as slope gradient and profile curva-
ture.

With respect to coastal landscapes, it has been suggested
that barrier shorelines are scale independent, such that the
wave number spectrum of shoreline variation can be approx-
imated by a power law at alongshore scales from tens of me-
ters to several kilometers (Lazarus et al., 2011; Tebbens et
al., 2002). However, recent findings by Houser et al. (2015)
suggest that the beach–dune morphology of barrier islands
in Florida and Texas is scale dependent and that morphody-
namic processes operating at swash (0–50 m) and surf-zone
(< 1000 m) scales are different than the processes operating at
larger scales. In this context, scale dependence implies that a
certain number of different processes are simultaneously op-
erative, each process acting at its own scale of influence, and
it is the superposition of the effects of these multiple pro-
cesses that shapes the overall behavior and shoreline mor-
phology. This means that shorelines may have different pat-
terns of irregularity alongshore with respect to barrier island
geomorphology, which has important implications for ana-
lyzing long-term shoreline retreat and island transgression.
Lazarus et al. (2011) point out that deviations from power-
law scaling at larger spatial scales (tens of kilometers) em-
phasizes the need for more studies that investigate large-scale
shoreline change. While coastal terrains might not satisfy the
strict definition of self-similarity, it is reasonable to expect
them to exhibit long-range dependence (LRD). LRD pertains
to signals in which the correlation among observations de-
cays like a power law with separation, i.e., much slower than
one would expect from independent observations or those
that can be explained by a short-memory process, such as
an autoregressive moving average (ARMA) with small (p,q)
(Beran, 1994; Doukhan et al., 2003).

1.3 Research objectives

This study performed at Padre Island National Seashore
(PAIS), Texas, United States, utilizes electromagnetic induc-
tion (EMI) apparent conductivity σa responses to provide in-
sight into the relation between spatial variations in frame-
work geology and surface morphology. Two alongshore EMI
surveys at different spatial scales (100 and 10 km) were con-
ducted to test the hypothesis that, like barrier island morphol-
ogy, subsurface framework geology exhibits the LRD char-
acteristic of scale independence. The σa responses, which

are sensitive to parameters such as porosity and mineral
content, are regarded herein as a rough proxy for subsur-
face framework geology (Weymer et al., 2015a). This as-
sumes, of course, that alongshore variations in salinity and
water saturation, and other factors that shape the σa re-
sponse, can be neglected to first order. A corroborating 800 m
ground-penetrating radar (GPR) survey, providing an impor-
tant check on the variability observed within the EMI sig-
nal, confirms the location of a previously identified paleo-
channel (Fisk, 1959) at ∼ 5–10 m of depth. The overall geo-
physical survey design allows for a detailed evaluation of
the long-range-dependent structure of the framework geol-
ogy over a range of length scales spanning several orders
of magnitude. We explore the applicability of autoregres-
sive integrated moving-average (ARIMA) processes as mod-
els that describe the statistical connections between EMI and
light detection and ranging (lidar) spatial data series. This pa-
per utilizes a generalized fractional ARIMA (0,d,0) process
(Hosking, 1981) that is specifically designed to model LRD
for a given data series using a single differencing non-integer
parameter d . The parameter d can be used in the present con-
text to discriminate between forced, scale-dependent controls
by the framework geology, i.e., stronger LRD (d→ 0.5), and
free behavior that is scale independent, i.e., weaker LRD
(0← d). In other words, it is the particular statistical char-
acteristics of the framework geology LRD at PAIS that we
are trying to ascertain from the EMI σa signal, with the sug-
gestion that σa measurements can be used similarly at other
sites to reveal the hidden LRD characteristics of the frame-
work geology.

2 Background and regional setting

2.1 Utility of electromagnetic methods in coastal
environments

Methods to ascertain the alongshore variability in framework
geology, and to test long-range dependence, are difficult to
implement and can be costly. Cores provide detailed point-
wise geologic data; however, they do not provide laterally
continuous subsurface information (Jol et al., 1996). Alter-
natively, geophysical techniques including seismic and GPR
provide spatially continuous stratigraphic information (e.g.,
Buynevich et al., 2004; Neal, 2004; Nummedal and Swift,
1987; Tamura, 2012), but they are not ideally suited for LRD
testing because the data combine depth and lateral informa-
tion at a single acquisition point. Moreover, GPR signals at-
tenuate rapidly in saltwater environments whereas seismic
methods are labor-intensive and cumbersome. Conversely,
terrain conductivity profiling is an easy-to-use alternative
that has been used in coastal environments to investigate fun-
damental questions involving instrument performance char-
acteristics (Delefortrie et al., 2014; Weymer et al., 2016),
groundwater dynamics (Stewart, 1982; Fitterman and Stew-
art, 1986; Nobes, 1996; Swarzenski and Izbicki, 2009), and

www.earth-surf-dynam.net/6/431/2018/ Earth Surf. Dynam., 6, 431–450, 2018



434 B. A. Weymer et al.: Long-range-dependent structure of barrier island framework geology

framework geology (Seijmonsbergen et al., 2004; Weymer et
al., 2015a). Previous studies combining EMI with either GPR
(Evans and Lizarralde, 2011) or coring (Seijmonsbergen et
al., 2004) demonstrate the validity of EMI measurements as
a means to quantify alongshore variations in the framework
geology of coastlines.

In the alongshore direction, Seijmonsbergen et al. (2004)
used a Geonics EM34™ terrain conductivity meter crossing
a former outlet of the Rhine River, Netherlands, to evalu-
ate alongshore variations in subsurface lithology. The survey
was conducted in an area that was previously characterized
by drilling and these data were used to calibrate the σa mea-
surements. The results from the study suggest that coastal
sediments can be classified according to σa signature and that
high σa values occur in areas where the underlying conduc-
tive layer is thick and close to the surface. Although Seij-
monsbergen et al. (2004) propose that EMI surveys are a
rapid, inexpensive method to investigate subsurface lithol-
ogy, they also acknowledge that variations in salinity as a re-
sult of changing hydrologic conditions, storm activity, and/or
tidal influence confound the geological interpretation and
should be investigated in further detail (see Weymer et al.,
2016).

The challenge on many barrier islands and protected na-
tional seashores is obtaining permission for extracting drill
cores to validate geophysical surveys. At PAIS, numerous
areas along the island are protected nesting sites for the en-
dangered Kemp’s ridley sea turtle and migratory birds while
other areas comprise historic archeological sites with re-
stricted access. Thus, coring is not allowed and only non-
invasive techniques, such as EMI–GPR, are permitted.

2.2 Regional setting

North Padre Island is part of a large arcuate barrier island sys-
tem located along the Texas Gulf of Mexico coastline. The
island is one of 10 national seashores in the United States
and is protected and managed by the National Park Service,
a bureau of the Department of the Interior. PAIS is 129 km
in length, and is an ideal setting for performing EMI sur-
veys because there is minimal cultural noise to interfere with
the σa signal, which as stated earlier we regard as a proxy
for alongshore variations in framework geology (Fig. 1). Ad-
ditionally, there are high-resolution elevation data available
from a 2009 aerial lidar survey. The island is not dissected by
inlets or navigation channels (excluding Mansfield Channel
separating the North and South Padre islands) or modified by
engineered structures (e.g., groynes, jetties) that often inter-
fere with natural morphodynamic processes (see Talley et al.,
2003). The above characteristics make the study area an ex-
ceptional location for investigating the relationships between
large-scale framework geology and surface morphology.

As described in Weymer et al. (2015a; Fig. 3), locations of
several paleo-channels were established by Fisk (1959) based
on 3000 cores and seismic surveys. More than 100 boreholes

Figure 1. Location map and DEM of the study area at Padre Is-
land National Seashore (PAIS), Texas, United States. Elevations for
the DEM are reported as meters above sea level (m a.s.l.). Approx-
imate locations of field images (red dots) from the northern (N),
central (C), and southern (S) regions of the island showing along-
shore differences in beach–dune morphology. Note that views are
facing south for the central and southern locations, and the northern
location view is to the north. Images taken in October 2014.

were drilled to the top of the late Pleistocene surface (tens of
meters of depth) providing sedimentological data for inter-
preting the depth and extent of the various paleo-channels.
These cores were extracted ∼ 60 years ago, but the rem-
nant Pleistocene and Holocene fluvial–deltaic features de-
scribed in Fisk’s study likely have not changed over decadal
timescales.

Geologic interpretations based on the Fisk (1959) data
suggest that the thickness of the modern beach sands is ∼ 2–
3 m, and they are underlain by Holocene shoreface sands and
muds to a depth of ∼ 10–15 m (Brown and Macon, 1977;
Fisk, 1959). The Holocene deposits lie upon a Pleistocene
ravinement surface of fluvial–deltaic sands and muds and
relict transgressive features. A network of buried valleys and
paleo-channels in the central segment of the island, as inter-
preted by Fisk (1959), exhibits a dendritic, tributary pattern.
The depths of the buried valleys inferred from seismic sur-
veys range from ∼ 25 to 40 m (Brown and Macon, 1977).
These channels have been suggested to have incised into
the Pleistocene paleo-surface and became infilled with sands
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from relict Pleistocene dunes and fluvial sediments reworked
by alongshore currents during the Holocene transgression
(Weise and White, 1980). However, the location and cross-
sectional area of each valley and paleo-channel alongshore
is not well constrained. It is also possible that other channels
exist other than those identified by Fisk (1959). As suggested
in Weymer et al. (2015a), minima in the alongshore σa signal
are spatially correlated with the locations of these previously
identified geologic features. This observation provides an im-
petus for using EMI to map the known, and any previously
unidentified, geologic features alongshore.

3 Methods

A combination of geophysical, geomorphological, and statis-
tical methods are used in this study to quantify the relation-
ships between framework geology and surface geomorphol-
ogy at PAIS. A description of the EMI, GPR, geomorphom-
etry and statistical techniques is provided in the following
sections.

3.1 Field EMI and GPR surveys

Profiles of EMI σa responses are typically irregular and each
datum represents a spatial averaging of the bulk subsurface
electrical conductivity σ , which in turn is a function of a
number of physical properties (e.g., porosity, lithology, wa-
ter content, salinity). The “sensor footprint”, or subsurface
volume over which the spatial averaging is performed, is de-
pendent on the separation between the transmitter–receiver
(TX–RX) coils (1.21 m in this study) and the transmitter fre-
quency. The horizontal extent, or radius, of the footprint can
be more or less than the step size between subsequent mea-
surements along the profile. The sensor footprint determines
the volume of ground that contributes to σa at each acquisi-
tion point, and as will be discussed later, the radius of the
footprint has important implications for analyzing LRD. The
footprint radius depends on frequency and ground conduc-
tivity, but is likely to be of the same order as, but slightly
larger than, the intercoil spacing. Two different station spac-
ings were used to examine the correlation structure of σa as a
function of spatial scale. An island-scale alongshore survey
of∼ 100 km length was performed using a 10 m station spac-
ing (station spacing � footprint radius) such that each σa
measurement was recorded over an independently sampled
volume of ground. Additionally, a sequence of σa readings
was collected at 1 m of spacing (station spacing < footprint
radius) over a profile length of 10 km within the Fisk (1959)
paleo-channel region of the island. This survey design allows
for comparison of the long-range-dependent structure of the
framework geology over several orders of magnitude (100–
105 m).

The 100 km long alongshore EMI survey was performed
during a series of three field campaigns, resulting in a to-
tal of 21 (each of length ∼ 4.5 km) segments that were col-

lected during 9–12 October 2014, 15–16 November 2014,
and 28 March 2015. The EMI σa profiles were stitched to-
gether by importing GPS coordinates from each measure-
ment into ArcGIS™ to create a single composite spatial data
series. The positional accuracy recorded by a TDS Recon
PDA equipped with a Holux™ WAAS GPS module was
found to be accurate within ∼ 1.5 m. To reduce the effect
of instrument drift caused by temperature, battery, and other
systematic variations through the acquisition interval, a drift
correction was applied to each segment and the segments
were then stitched together, following which a regional lin-
ear trend removal was applied to the composite dataset. An
additional 10 km survey was performed along a segment of
the same 100 km survey line in one day on 29 March 2015.
This second composite data series consists of eight stitched
segments.

The same multifrequency GSSI Profiler EMP-400™ in-
strument was used for each segment. All transects were lo-
cated in the back-beach environment ∼ 25 m inland from the
mean tide level (MTL). This location was chosen to reduce
the effect of changing groundwater conditions in response
to nonlinear tidal forcing (see Weymer et al., 2016), which
may be significant closer to the shoreline. As will be shown
later, there is not a direct correlation between high tide and
high σa values. Thus, we assume the tidal influence on the
EMI signal can be neglected over the spatial scales of interest
in the present study. Nevertheless, the duration and approx-
imate tidal states of each survey were documented in order
to compare with the EMI signal. Tidal data were accessed
from NOAA’s Tides and Currents database (NOAA, 2015b).
Padre Island is microtidal and the mean tidal range within
the study area is 0.38 m (NOAA, 2015a). A tidal signature
in EMI signals may become more significant at other barrier
islands with larger tidal ranges.

For all surveys, the EMI profiler was used in the same con-
figuration and acquisition settings as described in Weymer et
al. (2016). The transect locations were chosen to avoid the
large topographic variations (see Santos et al., 2009) fronting
the foredune ridge that can reduce the efficiency of data ac-
quisition and influence the EMI signal. Measurements were
made at a constant step size to simplify the data analysis; for
example, ARIMA models require that data are taken at equal
intervals (see Cimino et al., 1999). We choose herein to focus
on data collected at 3 kHz, resulting in a depth of investiga-
tion (DOI) of ∼ 3.5–6.4 m over the range of conductivities
found within the study area (Weymer et al., 2016; Table 1).
Because the depth of the modern beach sands is ∼ 2–3 m or
greater (see Brown and Macon, 1977; p. 56, Fig. 15), varia-
tions in the depth to shoreface sands and muds is assumed to
be within the DOI of the profiler, which may not be captured
at the higher frequencies also recorded by the sensor (i.e., 10
and 15 kHz) .

An 800 m GPR survey was performed on 12 August 2015
across one of the paleo-channels previously identified by
Fisk (1959) located within the 10 km EMI survey for compar-
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ison with the σa measurements. We used a Sensors and Soft-
ware pulseEKKO Pro™ system for this purpose. A survey-
grade GPS with a positional accuracy of 10 cm was used to
match the locations and measurements between the EMI–
GPR surveys. Data were acquired in reflection mode at a
nominal frequency of 100 MHz with a standard antenna sepa-
ration of 1 m and a step size of 0.5 m. The instrument settings
resulted in a DOI of up to 15 m. Minimal processing was ap-
plied to the data and includes a dewow filter and migration
(0.08 m ns−1), followed by automatic gain control (AGC)
gain (see Neal, 2004). The theory and operational principles
of GPR are discussed in many places (e.g., Everett, 2013; Jol,
2008) and will not be reviewed here.

3.2 Geomorphometry

Topographic information was extracted from aerial lidar data
that were collected by the U.S. Army Corps of Engineers
(U.S. ACE) in 2009 as part of the West Texas Aerial Survey
project to assess post-hurricane conditions of the beaches and
barrier islands along the Texas coastline. This dataset is the
most recent publicly available lidar survey of PAIS and it
provides essentially complete coverage of the island. With
the exception of Hurricane Harvey, which made landfall near
Rockport, Texas, as a category 4 storm in late August, 2017,
Padre Island has not been impacted by a hurricane since July
2008, when Hurricane Dolly struck South Padre Island as a
category 1 storm (NOAA, 2015a). The timing of the lidar and
EMI surveys in this study precede the impacts of Hurricane
Harvey, and it is assumed that the surface morphology across
the island at the spatial scales of interest (i.e., 101–102 km)
did not change appreciably between 2009 and 2015.

A 1 m resolution DEM was created from 2009 lidar point
clouds available from NOAA’s Digital Coast (NOAA, 2017).
The raw point cloud tiles were merged to produce a com-
bined point cloud of the island within the park boundaries
of PAIS. The point clouds were processed into a continuous
DEM using the ordinary kriging algorithm in SAGA GIS,
which is a freely available open-source software (http://www.
saga-gis.org, last access: 13 January 2018), and subsequent
terrain analysis was conducted using an automated approach
involving the relative relief (RR) metric (Wernette et al.,
2016). Several morphometrics including beach width, dune
height, and island width were extracted from the DEM by av-
eraging the RR values across window sizes of 21 m× 21 m,
23 m× 23 m, and 25 m× 25 m. The choice of window size is
based on tacit a priori knowledge and observations of the ge-
omorphology in the study area. A detailed description of the
procedure for extracting each metric is provided in Wernette
et al. (2016).

Each DEM series is paired with the σa profile by match-
ing the GPS coordinates (latitude and longitude) recorded in
the field by the EMI sensor. Cross-sectional elevation pro-
files oriented perpendicular to the shoreline were analyzed
every 10 m (y coordinate) along the EMI profile to match the

same 10 m sampling interval of the σa measurements. The
terrain variations along each cross-shore profile are summed
to calculate beach and island volume based on the elevation
thresholds mentioned above. Dune volume is calculated by
summing the pixel elevations starting at the dune toe, travers-
ing the dune crest, and ending at the dune heel. In total, six
DEM morphometrics were extracted as spatial data series to
be paired with the EMI data, each with an identical sam-
ple size (n= 9694), which is sufficiently large for statistical
ARIMA modeling.

3.3 Statistical methods

Although the procedures for generating the EMI and lidar
datasets used in this study are different, the intended goal
is the same: to produce spatial data series that contain sim-
ilar numbers of observations for comparative analysis using
a combination of signal processing and statistical modeling
techniques. The resulting signals comprising each data se-
ries represent the spatial averaging of a geophysical (EMI) or
geomorphological elevation variable that contains informa-
tion about the important processes that form relationships be-
tween subsurface geologic features and island geomorphol-
ogy that can be teased out by means of comparative anal-
ysis (Weymer et al., 2015a). Because we are interested in
evaluating these connections at both small and large spatial
scales, our first approach is to determine the autocorrelation
function and Hurst coefficient (self-similarity parameter) H
and hence verify whether the data series are characterized
by short- and/or long-range memory (Beran, 1992; Taqqu et
al., 1995). LRD occurs when the autocorrelation within a se-
ries, at large lags, tends to zero like a power function, and so
slowly that the sums diverge (Doukhan et al., 2003). LRD is
often observed in natural time series and is closely related to
self-similarity, which is a special type of LRD.

The degree of LRD is related to the scaling exponent H
of a self-similar process, where increasing H in the range
0.5 <H ≤ 1.0 indicates an increasing tendency towards such
an effect (Taqqu, 2003). Large correlations at small lags
can easily be detected by models with short memory (e.g.,
ARMA, Markov processes) (Beran, 1994). Conversely, when
correlations at large lags slowly tend to zero like a power
function, the data contain long-memory effects and either
fractional Gaussian noise (fGn) or ARIMA models may be
suitable (Taqqu et al., 1995). The R/S statistic is the quo-
tient of the range of values in a data series and the standard
deviation (Beran, 1992, 1994; Hurst, 1951; Mandelbrot and
Taqqu, 1979). When plotted on a log/ log plot, the resulting
slope of the best-fit line gives an estimate ofH , which is use-
ful as a diagnostic tool for estimating the degree of LRD (see
Beran, 1994).

It has been suggested that R/S tends to give biased esti-
mates of H , too low for H > 0.72 and too high for H < 0.72
(Bassingthwaigthe and Raymond, 1994), which was later
confirmed by Malamud and Turcotte (1999). Empirical trend
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corrections to the estimates of H can be made by graphi-
cal interpolation, but are not applied here because of how
the regression is performed. The R/S analysis in this study
was performed using signal analysis software AutoSignal™

to identify whether a given signal is distinguishable from a
random, white noise process and, if so, whether the given
signal contains LRD. TheH value is calculated by an inverse
variance-weighted linear least-squares curve fit using the log-
arithms of the R/S and the number of observations, which
provides greater accuracy than other programs that compute
the Hurst coefficient.

Two of the simplest statistical time series models that can
account for LRD are fGn and ARIMA. In the former case,
fGn and its “parent” fractional Brownian motion (fBm) are
used to evaluate stationary and nonstationary fractal signals,
respectively (see Eke et al., 2000; Everett and Weiss, 2002).
Both fGn and fBm are governed by two parameters: vari-
ance σ 2 and the scaling parameter, H (Eke et al., 2000). A
more comprehensive class of time series models that has a
similar capability to detect long-range structure is ARIMA.
Because fGn and fBm models have only two parameters, it
is not possible to model the short-range components. Addi-
tional parameters in ARIMA models are designed to han-
dle the short-range component of the signal, as discussed by
Taqqu et al. (1995) and others. Because the EMI data series
presumably contain both short-range and long-range effects,
we chose to use ARIMA as the analyzing technique.

ARIMA models are used across a wide range of disci-
plines in geoscience and have broad applicability for under-
standing the statistical structure of a given data series as it
is related to some physical phenomenon (see Beran, 1992,
1994; Box and Jenkins, 1970; Cimino et al., 1999; Granger
and Joyeux, 1980; Hosking, 1981; Taqqu et al., 1995). For
example, Cimino et al. (1999) apply R/S analysis, ARIMA,
and neural network analysis to different geological datasets
including tree ring data, Sr isotope data of Phanerozoic sea-
water samples, and El Niño phenomena. The authors show
that their statistical approach enables (1) recognition of qual-
itative changes within a given dataset, (2) evaluation of the
scale (in)dependency of increments, (3) characterization of
random processes that describe the evolution of the data, and
(4) recognition of cycles embedded within the data series.
In the soil sciences, Alemi et al. (1988) use ARIMA and
Kriging to model the spatial variation in clay-cover thick-
ness of a 78 km2 area in northeastern Iran and demonstrate
that ARIMA modeling can adequately describe the nature of
the spatial variations. ARIMA models have also been used to
model periodicity of major extinction events in the geologic
past (Kitchell and Pena, 1984).

In all these studies, the statistical ARIMA model of a given
data series is defined by three terms (p,d,q), where p and
q indicate the order of the autoregressive (AR) and moving
average (MA) components, respectively, and d represents a
differencing or integration term (I ) that is related to LRD.
The AR element, p, represents the effects of adjacent obser-

vations and the MA element, q, represents the effects on the
process of nearby random shocks (Cimino et al., 1999; De
Jong and Penzer, 1998). However, in the present study our
series are reversible spatial series that can be generated, and
are identical, with either forward or backward acquisition,
unlike a time series. Both p and q parameters are restricted
to integer values (e.g., 0, 1, 2), whereas the integration pa-
rameter, d , represents potentially long-range structure in the
data. The differencing term d is normally evaluated before
p and q to identify whether the process is stationary (i.e.,
constant mean and σ 2). If the series is nonstationary, it is dif-
ferenced to remove either linear (d = 1) or quadratic (d = 2)
trends, thereby making the mean of the series stationary and
invertible (Cimino et al., 1999), thus allowing determination
of the ARMA p and q parameters.

Here, we adopt the definitions of an ARMA (p,q),
and ARIMA (p,d,q) process following the work of Be-
ran (1994). Let p and q be integers, where the corresponding
polynomials are defined as

φ (x)= 1−
p∑
j=1

φjx
j ,

ψ (x)= 1+
q∑
j=1

ψjx
j . (1)

It is important to note that all solutions of φ(x0)= 0 and
ψ(x)= 0 are assumed to lie outside the unit circle. Addi-
tionally, let εt (t = 1,2, . . .) be independent, and identically
distributed normal variables with zero variance σ 2

ε such that
an ARMA (p,q) process is defined by the stationary solution
of

φ (B)Xt = ψ(B)εt , (2)

where B is the backward shift operator BXt =

Xt−1,B
2Xt =Xt−1, . . . and, specifically, the differ-

ences can be expressed in terms of B as Xt −Xt−1 =

(1−B)Xt , (Xt −Xt−1)− (Xt−1−Xt−2)= (1−B)2Xt . . .

Alternatively, an ARIMA (p,d,q) process Xt is formally
defined as

φ (B) (1−B)dXt = ψ(B)εt , (3)

where Eq. (3) holds for a dth difference (1−B)dXt .
As mentioned previously, a more general form of ARIMA

(p,d,q) is the fractional ARIMA process, or FARIMA,
where the differencing term d is allowed to take on fractional
values. If d is a non-integer value for some −0.5 < d < 0.5
and Xt is a stationary process as indicated by Eq.(3), then
the model by definition is called a FARIMA process where
d values in the range 0 < d < 0.5 are of particular inter-
est herein because geophysically relevant LRD occurs for
0 < d < 0.5, whereas d > 0.5 means that the process is non-
stationary but nonintegrable (Beran, 1994; Hosking, 1981).
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A special case of a FARIMA process explored in the cur-
rent study is ARIMA (0d0), also known as fractionally dif-
ferenced white noise (Hosking, 1981), which is defined by
Beran (1994) and others as

Xt = (1−B)−dεt . (4)

For 0 < d < 0.5, the ARIMA (0d0) process is a stationary
process with long-range structure and is useful for model-
ing LRD. As shown later, different values of the d param-
eter provide further insight into the type of causative phys-
ical processes that generate each data series. When d < 0.5,
the series Xt is stationary, which has an infinite MA repre-
sentation that highlights long-range trends or cycles in the
data. Conversely, when d >−0.5, the series Xt is invertible
and has an infinite AR representation (see Hosking, 1981).
When −0.5 < d < 0, the stationary, and invertible, ARIMA
(0d0) process is dominated by short-range effects and is anti-
persistent. When d = 0, the ARIMA (000) process is white
noise, with zero correlations and a constant spectral density.
Identification of an appropriate model is accomplished by
finding small values of elements p,d,q (usually between 0
and 2) that accurately fit the most significant patterns in the
data series. When a value of an element is 0, that element is
not needed. For example, if d = 0 the series does not contain
a significant long-range component, whereas if p = q = 0,
the model does not exhibit significant short-range effects. If
p,d,q 6= 0, the model contains a combination of both short-
and long-memory effects.

4 Results

4.1 Spatial data series

4.1.1 EMI and GPR surveys

The unprocessed (raw) EMI σa responses show a high de-
gree of variability along the island. High-amplitude re-
sponses within the EMI signal generally exhibit a higher
degree of variability (multiplicative noise) compared to the
low-amplitude responses. Higher σa readings correspond to
a small sensor footprint and have enhanced sensitivity to
small-scale near-surface heterogeneities (see Guillemoteau
and Tronicke, 2015). Low σa readings suggest the sensor is
probing greater depths and averaging over a larger footprint.
In that case, the effect of fine-scale heterogeneities that con-
tribute to signal variability is suppressed.

The 10 km alongshore survey is located within an inferred
paleo-channel region (Fisk, 1959), providing some a priori
geologic constraints for understanding the variability within
the EMI signal (Fig. 2b). Here, the sample size is n= 10176,
permitting a quantitative comparison with the 100 km long
data series since they contain a similar number of observa-
tions. Unlike the 100 km survey, successive footprints of the
sensor at each subsequent measurement point overlap along
the 10 km survey. The overlap enables a fine-scale charac-

terization of the underlying geological structure because the
separation between the TX and RX coils (1.21 m), a good
lower-bound approximation of the footprint, is greater than
the step size (1 m).

The overall trend in σa for the 10 km survey is compara-
ble to that of the 100 km survey, where regions characterized
by high- and low-amplitude signals correspond to regions of
high and low variability, respectively, implying that multi-
plicative noise persists independently of station spacing. The
decrease in σa that persists between ∼ 2.5 and 6 km along
the profile (Fig. 2b) coincides in location with two paleo-
channels, whereas a sharp reduction in σa is observed at
∼ 8.2 km in close proximity to a smaller channel. Most of the
known paleo-channels are located within the 10 km transect
and likely contain resistive infill sands that should generate
lower and relatively consistent σa readings (Weymer et al.,
2015a). The low σa signal caused by the sand indirectly in-
dicates valley incision since it is diagnostic of a thicker sand
section, relatively unaffected by the underlying conductive
layers. Thus, it is reasonable to assume that reduced variabil-
ity in the signal is related to the framework geology within
the paleo-channels, which we now compare with a GPR pro-
file.

To corroborate the capability of the EMI data to respond to
the variable subsurface geology, an 800 m GPR survey con-
firms the location of a previously identified paleo-channel
(Fisk, 1959) at ∼ 5–10 m depth (Fig. 3). A continuous un-
dulating reflector from ∼ 150 to 800 m along the profile is
interpreted to be the surface mapped by Fisk (1959), who
documented a paleo-channel at this location with a depth
of ∼ 8 m. Although the paleo-surface is within the detection
limits of the GPR, it is likely that the DOI of the EMI data
(∼ 3–6 m) is not large enough to probe continuously along
the contact between the more conductive ravinement surface
and the more resistive infill sands. Along the transect at shal-
lower depths highlighted by the red box in the lower radar-
gram (Fig. 3), low EMI σa values correspond to fine stratifi-
cations in the GPR section, which is common for beach sands
with little clay content that are not saline-saturated. The EMI
highs between ∼ 450 and 530 m coincide with parts of the
GPR section that do not have the fine stratification and this
may indicate the presence of clay or saline water. Here, the
high conductivity zone for both the GPR and EMI is located
within a recovering washover channel overlying the paleo-
channel that is evident in the satellite imagery in the upper-
left panel of Fig. 3. The overwash deposits consisting of a
mix of sand and more finely grained backbarrier sediments
likely mask the EMI sensors’ ability to probe greater depths.
Nonetheless, the high-conductivity zone represents a smaller
∼ 100 m segment within the ∼ 500 m wide paleo-channel,
suggesting that variations in the EMI responses outside this
zone are directly related to variations in the framework geol-
ogy imaged by GPR.
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Figure 2. The 100 km (a) and 10 km (b) alongshore EMI surveys showing DEMs of the study area and previously identified paleo-channel
region by Fisk (1959). Channels are highlighted in red and green, where the green region indicates the location of the 10 km survey. The
25 ft (7.6 m) contour intervals are highlighted with depths increasing from yellow to red and the center of the channels are represented by
the black-dotted lines. For each survey, raw σa and zero-mean drift-corrected EMI responses are shown in gray and black, respectively. Tidal
conditions during each EMI acquisition segment are shown below each panel. Low (lt) and falling tides (ft) are indicated by blue and light
blue shades, respectively. High (ht) and rising tides (rt) are highlighted in red and light red, respectively.

4.1.2 Lidar-derived DEM morphometrics

The lidar-derived elevation data series along the 100 km tran-
sect are presented in Fig. 4. Each data series is shown with
respect to the areal DEM of the study area where the ap-
proximate locations of each closely spaced paleo-channel are
highlighted in gray. This visualization allows a qualitative
analysis of the spatial relationships among paleo-channels,
subsurface information encoded in the σa signal, and surface
morphology over the entire length of the barrier island.

The morphology of the beach–dune system, as well as is-
land width, changes substantially from north to south. In the
paleo-channel region, beach width decreases in the central
channel (∼ 37–42 km) and is more variable outside this re-
gion. Beach width generally increases towards the northern

section of the island. The volume of the beach tends to be
lowest in the northern zone, varies considerably in the central
part of the island, then stabilizes and gradually decreases to-
wards the south. These zones correspond to the southern (0–
30 km), central (30–60 km), and northern (60–100 km) sec-
tions of the island. Alongshore dune heights are generally
greater in the south, become slightly more variable in the
paleo-channel region, and decrease in the north except for
the area adjacent to Baffin Bay. Dune volume is lowest in the
northern section, intermittently increases in the central zone,
and slightly decreases towards the south. The island is con-
siderably narrower between Mansfield Channel and Baffin
Bay (see Fig. 2a), increasing in width in the northern zone;
island volume follows a similar trend. Overall, σa values are
lower northward of the paleo-channel region compared to
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Figure 3. Comparison of EMI σa responses from the 100 km survey with 100 MHz GPR data within one of the Fisk (1959) paleo-channels.
The 800 m segment (A–A′) crosses a smaller stream within the network of paleo-channels in the central zone of PAIS. The DOI of the 3 kHz
EMI responses is outlined by the red box on the lower GPR radargram and the interpretation of the channel base (ravinement surface) is
highlighted in yellow.

the southern zone where σa increases substantially. However,
the lowest σa values are located within the region of paleo-
channels inferred by Fisk (1959), supporting previous find-
ings in the study area by Weymer et al. (2015a) and Wer-
nette et al. (2018) that suggest a potential geologic control
on alongshore geomorphic features.

Each spatial data series (Fig. 4a–g) represents a different
superposition of effects caused by physical processes op-
erating across a wide range of temporal and length scales
(Weymer et al., 2015a). Short-range fluctuations represent
small-scale heterogeneities, whereas long-range components
capture variations in each metric at broader length scales.
There is a high degree of variability within each signal that
is directly related to the geological and geomorphological
structure along the island. Within and outside the paleo-
channel region, general associations between EMI σa re-
sponses and DEM metrics are visually subtle, motivating the
statistics we now show with ARIMA modeling. To conduct
the ARIMA analysis, we chose to divide the island into three
zones based on the location of the known paleo-channels.
As will be discussed later, the tripartite zonation allows for
a quantitative analysis of LRD at three spatial scales (re-
gional, intermediate, local) within and outside the area con-
taining paleo-channels. It is important to note, however, that
the framework geology is likely to exhibit LRD regardless of
the length-scale over which it is observed.

4.2 Tests for LRD

4.2.1 Tests for LRD in EMI data series

Both EMI spatial data series appear to be nonstationary since
the mean and variance of the data fluctuate along the pro-
file. A closer visual inspection reveals, however, that cyclic-

ity is present at nearly all spatial frequencies (Fig. 6), with
the cycles superimposed in random sequence and added to
a constant variance and mean (see Beran, 1994). This be-
havior is typical for stationary processes with LRD, and is
often observed in various types of geophysical time series
(Beran, 1992), for example records of Nile River stage min-
ima (Hurst, 1951). A common first-order approach for de-
termining whether a data series contains LRD is through in-
spection of the autocorrelation function, which we have com-
puted in AutoSignal™ signal analysis software using a fast
Fourier transform (FFT) algorithm (Fig. 5a, d). Both EMI
signals exhibit large correlations at large lags (at kilometer
and higher scales), suggesting the σa responses contain LRD,
or long-memory effects in time series language. Results from
a rescaled range R/S analysis (Fig. 5b, e) indeed show high
H values of 0.85 (r2

= 0.98) and 0.95 (r2
= 0.99) for the

100 and 10 km surveys, indicating a strong presence of LRD
at both regional and local spatial scales.

The manner in which different spatial frequency (i.e., wave
number) components are superposed to constitute an ob-
served EMI σa signal has been suggested to reveal informa-
tion about the causative multiscale geologic structure (Ev-
erett and Weiss, 2002; Weymer et al., 2015a). For example,
the lowest-wave-number contributions are associated with
spatially coherent geologic features that span the longest
length scales probed. The relative contributions of the various
wave number components can be examined by plotting the σa
signal power spectral density (PSD). A power law of the form
|σa(f )|2 ∼ f β over several decades in spatial wave number is
evident (Fig. 5c, f). The slope β of a power-law-shaped spec-
tral density provides a quantitative measure of the LRD em-
bedded in a data series and characterizes the heterogeneity, or
roughness, of the signal. A value of |β|> 1 indicates a series
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Figure 4. DEM metrics extracted from aerial lidar data. The sampling interval (step size) for each data series is 10 m and the coordinates are
matched with each EMI acquisition point. Each panel corresponds to (a) beach width, (b) beach volume, (c) dune height, (d) dune volume,
(e) island width, (f) island volume, and (g) EMI σa. The island is divided into three zones (red vertical lines) roughly indicating the locations
within and outside the known paleo-channel region. A Savitzky–Golay smoothing filter was applied to all data series (lidar and EMI) using
a moving window of n= 250 to highlight the large-scale patterns in each signal.

that is influenced more by long-range correlations and less
by small-scale fluctuations (Everett and Weiss, 2002). For
comparison, a pure white noise process would have a slope
of exactly β = 0, whereas a slope of β ∼ 0.5 indicates frac-
tional Gaussian noise, i.e., a stationary signal with no signif-
icant long-range correlations (Everett and Weiss, 2002). The

β values for the 100 and 10 km surveys are β =−0.97 and
β =−1.06, respectively. These results suggest that both the
100 and 10 km EMI signals contain long-range correlations.
However, there is a slightly stronger presence of LRD within
the 10 km segment of the paleo-channel region compared to
that within the segment that spans the entire length of the is-
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Figure 5. Autocorrelations of σa for the 100 km (a) and 10 km EMI surveys (d). R/S analysis for the 100 km (b) and 10 km surveys (e).
PSD plots for the 100 km (c) and 10 km surveys (f).

land. This indicates that long-range spatial variations in the
framework geology are more important, albeit marginally so,
at the 10 km scale than at the 100 km scale. It is possible that
the variability within the signal and the degree of long-range
correlation is also a function of the sensor footprint, relative
to station spacing. This is critically examined in Sect. 4.3.

4.2.2 Tests for LRD in surface morphometrics

Following the same procedure as applied to the EMI data, we
performed the R/S analysis for each beach, dune, and island
metric. The calculatedH values for the DEM morphometrics
range between 0.80 and 0.95 with large values of r2

∼ 1, indi-
cating varying but relatively strong tendencies towards LRD.
Beach width and beach volume data series have H values of
0.82 and 0.86, respectively. Dune height and dune volume
H values are 0.83 and 0.80, whereas island width and island

volume have higher H values of 0.95 and 0.92, respectively.
Because each data series shows moderate to strong evidence
of LRD, the relative contributions of short- and long-range
structure contained within each signal can be further investi-
gated by fitting ARIMA models to each dataset.

4.3 ARIMA statistical modeling of EMI

The results of the tests described in Sect. 4.2.1 for estimat-
ing the self-similarity parameter H and the slope of the PSD
function suggest that both EMI data series, and by infer-
ence the underlying framework geology, exhibit LRD. The
goal of our analysis using ARIMA is to estimate the p, d ,
and q terms representing the order, respectively, of AR, in-
tegrated (I ), and MA contributions to the signal (Box and
Jenkins, 1970) to quantify free vs. forced behavior along the
island. For the analysis, the “arfima” and “forecast” statistical
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Figure 6. Examples of the worst-fit (a, c) and best-fit (b, d) ARIMA models for the 100 and 10 km EMI surveys. Model results are shown
for the processed (drift-corrected) σa data. Residuals (RMSE) listed for each model give the standard deviation of the model prediction error.
For each plot, original data are in red and fitted (model) data are in blue.

packages in R were used to fit a family of ARIMA (p,d,q)
models to the EMI σa data and island morphometrics (Hynd-
man, 2015; Hyndman and Khandakar, 2008; Veenstra, 2013).
Results of 10 realizations drawn from a family of ARIMA
(p,d,q) models and their residuals (RMSE) are presented in
Table 1. The worst fit (ARIMA 001) models are shown for
the 100 and 10 km (Fig. 6a, c) surveys. The best fit (ARIMA
0d0) models for both the 100 and 10 km surveys are shown
in Fig. 6b and d, respectively. For this analysis, the tests in-
clude different combinations of p,d, and q that model ei-
ther short-range: ARIMA (100; 001; 101; 202; 303; 404;
505), long-range: ARIMA (010; 0d0), or composite short-
and long-range processes: ARIMA (111). It is important to
note that AR and MA are only appropriate for short-memory
processes since they involve only near-neighbor values to ex-
plain the current value, whereas the integration (the I term
in ARIMA) models long-memory effects because it involves
distant values. Note that ARIMA was developed for one-way
time series, in which the arrow of time advances in only one
direction, but in the current study we are using it for spa-
tial series that are reversible. Different realizations of each
ARIMA (p,d,q) data series were evaluated, enabling physi-
cal interpretations of LRD at regional, intermediate, and local
spatial scales. Determining the best-fitting model is achieved
by comparing the residual score, or RMSE, of each predicted

Table 1. Comparison of residuals (RMSE) of each ARIMA model
for the 100 and 10 km EMI surveys.

EMI EMI
(100 km) (10 km)

ARIMA (100) 18.4 8.14
ARIMA (001) 49.7 41.1
ARIMA (101) 15.6 6.65
ARIMA (202) 40.6 7.31
ARIMA (303) 40.5 7.22
ARIMA (404) 40.3 7.22
ARIMA (505) 40.2 7.29
ARIMA (111) 15.8 5.72
ARIMA (010) 18.5 8.15
ARIMA (0d0) 15.5 5.55

data series relative to the observed data series, where lower
RMSE values indicate a better fit (Table 1).

Based on the residuals and visual inspection of each real-
ization (Fig. 6), two observations are apparent: (1) both EMI
data series are most accurately modeled by an ARIMA (0d0)
process with non-integer d , and (2) the mismatch between the
data and their model fit is considerably lower for the 10 km
survey compared to the 100 km survey. The first observation
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Table 2. Comparison of residuals (RMSE) of each ARIMA model for all spatial data series. Note that the residuals for each DEM metric
correspond to the analysis performed at the regional scale (i.e., 100 km).

ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA
(100) (001) (101) (111) (010) (0d0)

Beach width 13.4 14.9 13.0 13.1 14.8 13.0
Beach volume 44.8 50.5 43.1 43.1 49.1 42.7
Dune height 0.7 0.8 0.7 0.7 0.8 0.7
Dune volume 60.6 63.9 59.7 59.2 69.03 58.9
Island width 138.4 253.2 121.3 121.1 140.8 120.9
Island volume 271.3 611.4 244.3 244.1 273.9 243.3

suggests that the data are most appropriately modeled by a
FARIMA process, i.e., a fractional integration that is station-
ary (0 < d < 0.5) and has long-range dependence (see Hosk-
ing, 1981). This implies that spatial variations in framework
geology at the broadest scales dominate the EMI signal and
that small-scale fluctuations in σa caused, for example, by
changing hydrological conditions over brief time intervals
less than the overall data acquisition interval, or fine-scale
lithological variations less than a few station spacings, are
not as statistically significant. Regarding the second observa-
tion, the results suggest that a small station spacing (i.e., 1 m)
is preferred to accurately model both short- and long-range
contributions within the signal because large station spacings
cannot capture short-range information. The model for the
10 km survey fits better because both p (AR) and q (MA)
components increase with a smaller step size since succes-
sive volumes of sampled subsurface overlap. On the contrary,
the sensor footprint is considerably smaller than the station
spacing (10 m) for the 100 km survey. Each σa measurement
in that case records an independent volume of ground, yet the
dataset still exhibits LRD, albeit not to the same degree as in
the 10 km survey.

4.4 ARIMA statistical modeling of island metrics
compared with EMI

A sequence of ARIMA (p,d,q) models was also evaluated
for the elevation morphometrics series to find best fits to the
data. The analysis comprised a total of 36 model tests (Ta-
ble 2). The RMSE values reveal that (1) all data series are
best fit by an ARIMA (0d0) process with fractional d , i.e., a
FARIMA process; (2) the ARIMA models, in general, more
accurately fit the EMI data than the DEM morphometric data
likely because the morphology is controlled by more than the
framework geology alone; and (3) in all cases, the poorest fit
to each series is the ARIMA (001) or MA process. This, in
turn, means that the differencing parameter d is the most sig-
nificant parameter amongst p, d, and q. It is important to
note that different values of d were computed based on the
best fit of each FARIMA model to the real data. A graphical
representation of the FARIMA-modeled data series for each
DEM metric is shown in Fig. 7, allowing a visual inspection

of how well the models fit the observed data. Because each
data series has its own characteristic amplitude and variabil-
ity, it is not possible to compare RMSE among tests without
normalization. The variance within each data series can dif-
fer by several orders of magnitude.

Instead of normalizing the data, a fundamentally different
approach is to compare the EMI σad values with respect to
each metric at regional, intermediate, and local scales (Ta-
ble 3). Higher positive d values indicate a stronger tendency
towards LRD. According to Hosking (1981), {xt } is called an
ARIMA (0d0) process and is of particular interest in mod-
eling LRD as d approaches 0.5 because in such cases the
correlations and partial correlations of {xt } are all positive
and decay slowly towards zero as the lag increases, while the
spectral density of {xt } is concentrated at low frequencies. It
is reasonable to assume that the degree of LRD may change
over smaller intermediate and/or local scales, which implies
a breakdown of self-similarity. For a self-similar signal, d is
a global parameter that does not depend on which segment
of the series is analyzed. In other words, the d values should
be the same at all scales for a self-similar structure.

The results of the FARIMA analysis at the intermedi-
ate scale vary considerably within each zone of the barrier
island (north, central, south) and for each spatial data se-
ries (Table 3). In the southern zone (0–30 km), EMI σa and
beach volume have the strongest LRD (d = 0.44), whereas
the other metrics exhibit weak LRD (ranging from d ∼ 0 to
0.2), which may be characterized approximately as a white
noise process. Within the paleo-channel region (30–60 km),
all of the island metrics show a moderate to strong tendency
towards LRD (0.3≤ d ≤ 4.2); however, the EMI signal does
not (d = 0.11). In the northern zone (60–100 km) all data se-
ries contain moderate to strong LRD with the exception of
beach and island width.

A FARIMA analysis was also conducted at the local scale
by dividing the island into 10 km segments, starting at the
southern zone (0–10 km) and ending at the northern zone of
the island (90–100 km). A total of 70 FARIMA model real-
izations were evaluated and the resulting d values demon-
strate that the EMI data segments show a stronger presence
of LRD (d > 0.4) within the paleo-channels (30–60 km) and
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Figure 7. Example of the best fit ARIMA (0d0) models for each lidar-derived DEM metric: (a) beach width, (b) beach volume, (c) dune
height, (d) dune volume, (e) island width, and (f) island volume.

further to the north (60–80 km) in close proximity to the an-
cestral outlet of Baffin Bay. These findings indicate that there
may be local and/or intermediate geologic controls along dif-
ferent parts of the island, but that the framework geology
dominates island metrics at the regional scale.

5 Discussion

Although it has long been known that processes acting across
multiple temporal and length scales permit the shape of
coastlines to be described by mathematical constructs such
as power-law spectra and fractal dimension (Lazarus et al.,
2011; Mandelbrot, 1967; Tebbens et al., 2002), analogous
studies of the subsurface framework geology of a barrier is-
land have not been carried out. This research supports pre-
vious studies demonstrating that near-surface EMI geophysi-

cal methods are useful for mapping barrier island framework
geology and that FARIMA data series analysis is a com-
pact statistical tool for illuminating the long and/or short-
range spatial correlations between subsurface geology and
geomorphology. The results of the FARIMA analysis and
comparisons of the best-fitting d parameters show that beach
and dune metrics closely match EMI σa responses regionally
along the entire length of PAIS, suggesting that the long-
range dependent structure of these data series is similar at
large spatial scales. However, further evaluation of the d pa-
rameters over smaller data segments reveals that there are
additional localized framework geology controls on island
geomorphology that are not present at the regional scale.

At the intermediate scale, a low EMI d value (d = 0.11)
suggests there is only a weak framework geologic control on
barrier island morphometrics. A possible explanation is that
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Table 3. Summary table showing the computed d parameters that most appropriately model each ARIMA (0d0) iteration (i.e., lowest RMSE).

Alongshore Beach Beach Dune Dune Island Island EMI
distance width volume height volume width volume σa

Regional

0–100 km 0.38 0.42 0.34 0.32 0.13 ∼ 0.00 0.35

Intermediate

0–30 km ∼ 0.00 0.44 0.13 0.20 0.03 0.18 0.44
30–60 km 0.37 0.30 0.36 0.31 0.30 0.42 0.11
60–100 km 0.26 0.41 0.35 0.46 ∼ 0.00 0.50 0.49

Local

0–10 km 0.41 0.39 0.20 0.21 0.09 0.18 0.36
10–20 km 0.30 0.42 0.20 0.26 0.37 ∼ 0.00 0.36
20–30 km 0.26 0.40 ∼ 0.00 ∼ 0.00 0.49 ∼ 0.00 ∼ 0.00
30–40 km 0.47 ∼ 0.00 0.41 0.25 0.29 0.28 ∼ 0.00
40–50 km 0.28 0.21 0.21 0.19 0.30 0.02 0.44
50–60 km 0.03 0.31 0.23 0.32 ∼ 0.00 0.33 0.48
60–70 km 0.16 0.37 0.29 0.34 ∼ 0.00 0.30 0.40
70–80 km 0.47 0.34 0.43 0.26 ∼ 0.00 0.42 0.49
80–90 km 0.27 0.19 0.42 0.39 0.01 0.02 ∼ 0.00
90–100 km 0.13 0.13 ∼ 0.00 0.06 0.44 0.47 0.41

the paleo-channels, located within a ∼ 30 km segment of the
island, are not regularly spaced and on average are less than
a few kilometers wide. This implies that the framework ge-
ology controls are localized (i.e., effective in shaping island
geomorphology only at smaller spatial scales). At the local
scale, relationships between the long-range dependence of
EMI and each metric vary considerably, but there is a sig-
nificant geologic control on dune height within the paleo-
channel region (d > 0.4). It is hypothesized that the along-
shore projection of the geometry of each channel is directly
related to a corresponding variation in the EMI signal, such
that large, gradual minima in σa are indicative of large, deep
channel cross sections and small, abrupt minima in σa rep-
resent smaller, shallow channel cross sections. At shallower
depths within the DOI probed by the EMI sensor, variabil-
ity in the σa signal may correspond to changes in sediment
characteristics as imaged by GPR (Fig. 3). Located beneath
a washover channel, a zone of high-conductivity EMI σa re-
sponses between ∼ 450 and 530 m coincides with a segment
of the GPR section where the signal is more attenuated and
lacks the fine stratification that correlates much better with
the lower σa zones. The contrasts in lithology between the
overwash deposits and stratified infilled sands were detected
by both EMI and GPR measurements.

It is argued herein that differences in the d parameter be-
tween EMI σa readings (our assumed proxy for framework
geology) and lidar-derived surface morphometrics provide a
new metric that is useful for quantifying the causative physi-
cal processes that govern island transgression across multiple
spatial scales. All of the calculated d values in this study are

derived from ARIMA (0d0) models that fit the observations,
and lie within the range of 0 < d < 0.5, suggesting that each
data series is stationary but does contain long-range struc-
ture that represents randomly placed cyclicities in the data.
For all models in our study, the d values range between ∼ 0
and 0.50, which enables a geomorphological interpretation
of the degree of LRD and self-similarity at different spatial
scales. In other words, the d parameter not only provides an
indication of the scale dependencies within the data, but also
offers a compact way of analyzing the statistical connections
between forced (stronger d ∼ 0.5) and free (weaker d ∼ 0)
behavior that may be more influenced by morphodynamic
processes operating at smaller spatial scales.

Alongshore variations in beach width and dune height are
not uniform at PAIS (Weymer et al., 2015b) and exhibit dif-
ferent spatial structure within and outside the paleo-channel
region (Fig. 5). These dissimilarities may be forced by the
framework geology within the central zone of the island but
are influenced more by contemporary morphodynamic pro-
cesses outside the paleo-channel region. This effect could be
represented by higher-wave-number components embedded
within the spatial data series. Beach and dune morphology
in areas that are not controlled by framework geology (e.g.,
the northern and southern zones) exhibit more small-scale
fluctuations representing a free system primarily controlled
by contemporary morphodynamics (e.g., wave action, storm
surge, wind).

Because variations in dune height exert an important con-
trol on storm impacts (Sallenger, 2000) and ultimately large-
scale island transgression (Houser, 2012), it is argued here
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that the framework geology (or lack thereof) of PAIS acts
as an important control on island response to storms and
sea level rise. This study supports recent work by Wernette
et al. (2018) suggesting that framework geology can influ-
ence barrier island geomorphology by creating alongshore
variations in either oceanographic forcing and/or sediment
supply and texture that controls smaller-scale processes re-
sponsible for beach–dune interaction at the local scale. The
forced behavior within the paleo-channel region challenges
shoreline change studies that consider only small-scale un-
dulations in the dune line that are caused by natural random-
ness within the system. Rather, we propose that dune growth
is forced by the framework geology, whose depth is related
to the thickness of the modern shoreface sands beneath the
beach. This depth is the primary quantity that is detected by
the EMI sensor. With respect to shoreline change investiga-
tions, improving model performance requires further study
of how the framework geology influences beach–dune mor-
phology through variations in wave energy, texture, and sedi-
ment supply (e.g., Houser, 2012; McNinch, 2004; Schwab et
al., 2013).

Our findings extend previous framework geology stud-
ies from Outer Banks, NC (e.g., Browder and McNinch,
2006; McNinch, 2004; Riggs et al., 1995; Schupp et al.,
2006), Fire Island, NY (e.g., Hapke et al., 2010; Lentz and
Hapke, 2011), and Pensacola, FL (e.g., Houser, 2012), where
feedbacks between geologic features and relict sediments
within the littoral system have been shown to act as an
important control on dune growth and evolution. Nonethe-
less, most of these studies focus on offshore controls on
shoreface and/or beach–dune dynamics at either local or in-
termediate scales because few islands worldwide exist that
are as long and/or continuous as North Padre Island. To our
knowledge, few framework geology studies have specifically
used statistical testing to analyze correlations between sub-
surface geologic features and surface morphology. Two no-
table exceptions include Browder and McNinch (2006), and
Schupp et al. (2006), both of which used chi-squared test-
ing and cross-correlation analysis to quantify the spatial re-
lationships among offshore bars, gravel beds, and/or paleo-
channels at the Outer Banks, NC. Although these techniques
are useful for determining spatial correlations among dif-
ferent datasets, they do not provide information about the
scale (in)dependencies between the framework geology and
surface geomorphology that FARIMA models are better de-
signed to handle. The current study augments the existing
literature in that (1) it outlines a quantitative method for de-
termining free and forced evolution of barrier island geomor-
phology at multiple length scales, and (2) it demonstrates
that there is a first-order control on dune height at the lo-
cal scale within an area of known paleo-channels, suggesting
that framework geology controls are localized within certain
zones of PAIS.

Further study is required to determine how this combina-
tion of free and forced behavior resulting from the variable

and localized framework geology affects island transgres-
sion. Methods of data analysis that would complement the
techniques presented in this paper might include power spec-
tral analysis, wavelet decomposition, and shoreline change
analysis that implicitly includes variable framework geology.
These approaches would provide important information re-
garding (1) coherence and phase relationships between sub-
surface structure and island geomorphology and (2) nonlin-
ear interactions of coastal processes across large and small
spatiotemporal scales. Quantifying and interpreting the sig-
nificance of framework geology as a driver of barrier is-
land formation and evolution and its interaction with con-
temporary morphodynamic processes is essential for design-
ing and sustainably managing resilient coastal communities
and habitats.

6 Conclusions

This study demonstrates the utility of EMI geophysical pro-
filing as a new tool for mapping the length-scale depen-
dence of barrier island framework geology and introduces
the potential of FARIMA analysis to better understand the
geologic controls on large-scale barrier island transgression.
The EMI and morphometric data series exhibit LRD to vary-
ing degrees, and each can be accurately modeled using a
non-integral parameter d . The value of this parameter di-
agnoses the spatial relationship between the framework ge-
ology and surface geomorphology. At the regional scale
(∼ 100 km), small differences in d between the EMI and
morphometrics series suggest that the long-range-dependent
structure of each data series with respect to EMI σa is sta-
tistically similar. At the intermediate scale (∼ 30 km), there
is a greater difference among the d values of the EMI and
island metrics within the known paleo-channel region, sug-
gesting a more localized geologic control with less contri-
butions from broader-scale geological structures. At the lo-
cal scale (10 km), there is a considerable degree of variabil-
ity among the d values of the EMI and each metric. These
results all point toward a forced barrier island evolutionary
behavior within the paleo-channel region transitioning into
a free, or scale-independent, behavior dominated by contem-
porary morphodynamics outside the paleo-channel region. In
a free system, small-scale undulations in the dune line rein-
force natural random processes that occur within the beach–
dune system and are not influenced by the underlying geo-
logic structure. In a forced system, the underlying geologic
structure establishes boundary constraints that control how
the island evolves over time. This means that barrier island
geomorphology at PAIS is forced and scale dependent, unlike
shorelines which have been shown at other barrier islands to
be scale independent (Tebbens et al., 2002; Lazarus et al.,
2011). The exchange of sediment amongst nearshore, beach,
and dune in areas outside the paleo-channel region is scale
independent, meaning that barrier islands like PAIS exhibit
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a combination of free and forced behaviors that will affect
the response of the island to sea level rise and storms. We
propose that our analysis is not limited to PAIS but can be
applied to other barrier islands and potentially in different
geomorphic environments, both coastal and inland.
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