



## Supplement of

## On the Holocene evolution of the Ayeyawady megadelta

Liviu Giosan et al.

Correspondence to: Liviu Giosan (lgiosan@whoi.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

## 28 Supplementary Materials

- Fig. S1. Trench and drill sites location and other locales mentioned in text.
- 30



- 32 Fig. S2. Representative OSL decay curves for sample 177204 (cyan) and for standard Risø calibration quartz (black), which is known to be
- dominated by the fast component (Hansen, V., Murray, A.S., Buylaert, J.-P., Yeo, E.Y., Thomsen, K.J., 2015. A new irradiated quartz for beta source
- calibration. Radiation Measurements 81, 123-127.). Data were normalised to the initial signal intensity (first 0-0.16s).



39 Table S1. Radionuclide activities obtained from high resolution gamma spectrometry. These values were used to derive total dose rates to

40 quartz and K-feldspar grains presented in Table 2 using the conversion factors from Guérin et al. (2011). For K-feldspar the internal beta dose

41 rate was estimated using an internal K content of 12.5±0.5% (Huntley and Baril, 1997). A cosmic ray dose rate component was also

42 incorporated (Presscott and Hutton, 1994)

43

| Sample code | <b>U-238</b> | Ra-226           | Pb-210          | Th-232             | K-40         |  |
|-------------|--------------|------------------|-----------------|--------------------|--------------|--|
|             | (Bq/kg)      | (Bq/kg)          | (Bq/kg)         | (Bq/kg)            | (Bq/kg)      |  |
| 17 72 01    | $16 \pm 15$  | $27.2 \pm 1.2$   | n.a. $\pm$ n.a. | $48.0 \pm 1.3$     | $450 \pm 22$ |  |
| 17 72 02    | $36 \pm 5$   | $32.4 \pm 0.9$   | $39 \pm 6$      | $52.3 \pm 0.9$     | $513 \pm 14$ |  |
| 17 72 03    | $17 \pm 4$   | $18.6 \pm 0.8$   | $17 \pm 5$      | $32.2 \pm 0.7$     | $518 \pm 13$ |  |
| 17 72 04    | $25 \pm 3$   | $26.6~\pm~0.5$   | $27 \pm 4$      | $45.8~\pm~0.6$     | $493~\pm~10$ |  |
| 17 72 05    | $23 \pm 3$   | $23.2 \pm 0.6$   | $25 \pm 4$      | $43.9 \ \pm \ 0.6$ | $476~\pm~10$ |  |
| 17 72 06    | $8 \pm 4$    | $13.7 ~\pm~ 0.6$ | $15 \pm 5$      | $28.0~\pm~0.7$     | $562 \pm 14$ |  |
| 17 72 07    | $24 \pm 4$   | $16.3 \pm 0.8$   | $14 \pm 5$      | $36.3 \pm 0.7$     | $555 \pm 14$ |  |

## **References:**

Huntley, D. J., Baril, M. R., 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15: 11–13. Guérin G, Mercier N, Adamiec G. 2011. Dose-rate conversion factors: update. Ancient TL 29: 5–8.

Prescott JR, Hutton JT. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23: 497–500

44 45

46

| 48 | Table S2. | Radiogenic | isotope | data for | the Ave | vawady and | l nearby | rivers | sediments. |
|----|-----------|------------|---------|----------|---------|------------|----------|--------|------------|
|    |           |            |         |          |         | / /        |          |        |            |

| 49 |                                                                                             |                                                                          |                                                                   | -                                                                | -                                                                |                  |                                      |                                  |                                       |                                                                                      |
|----|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------|--------------------------------------|----------------------------------|---------------------------------------|--------------------------------------------------------------------------------------|
|    | Site                                                                                        | Preparation                                                              | Setting                                                           | Latitude                                                         | Longitude                                                        | Depth, cm        | 87Sr/86Sr                            | 43Nd/144Nd                       | εNd                                   | Source                                                                               |
|    | Ayeyawady (l8)<br>Ayeyawady (l12)<br>Ayeyawady (l12)<br>Ayeyawady<br>Ayeyawady<br>Ayeyawady | bulk sample<br>bulk sample<br>decarbonated<br>bulk sample<br>bulk sample | fluvial levee<br>beach ridge<br>beach ridge<br>fluvial<br>fluvial | 17°38'36.82"N<br>15°50'10.50"N<br>15°50'10.50"N<br>18°49'43.30"N | 95°18'33.64"E<br>95°29'51.00"E<br>95°29'51.00"E<br>95°12'19.70"E | 95<br>100<br>100 | 0.7120<br>0.7118<br>0.7119<br>0.7135 | 0.512263<br>0.512285<br>0.512287 | -7.3<br>-6.9<br>-6.8<br>-8.3<br>-10.7 | this study<br>this study<br>this study<br>Allen et al. (2008)<br>Colin et al. (1999) |
|    | Yangon River                                                                                | bulk sample                                                              | fluvial                                                           |                                                                  |                                                                  |                  | 0.7080                               |                                  | -12.2                                 | Damodararao et al. (2016)                                                            |
|    | Sittaung                                                                                    | bulk sample                                                              | fluvial levee                                                     | 17°27'9.78"N                                                     | 96°51'0.12"E                                                     | 100              | 0.7168                               | 0.512105                         | -10.4                                 | this study                                                                           |
|    | Thanlwin                                                                                    | bulk sample                                                              | fluvial                                                           |                                                                  |                                                                  |                  | 0.7314 ÷ 0.7318                      |                                  | -14.7 ÷ -15.4                         | Damodararao et al. (2016)                                                            |