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Abstract. This paper describes and explores a new continuous-time stochastic cellular automaton model of hill-
slope evolution. The Grain Hill model provides a computational framework with which to study slope forms that
arise from stochastic disturbance and rock weathering events. The model operates on a hexagonal lattice, with
cell states representing fluid, rock, and grain aggregates that are either stationary or in a state of motion in one
of the six cardinal lattice directions. Cells representing near-surface soil material undergo stochastic disturbance
events, in which initially stationary material is put into motion. Net downslope transport emerges from the greater
likelihood for disturbed material to move downhill than to move uphill. Cells representing rock undergo stochas-
tic weathering events in which the rock is converted into regolith. The model can reproduce a range of common
slope forms, from fully soil mantled to rocky or partially mantled, and from convex-upward to planar shapes.
An optional additional state represents large blocks that cannot be displaced upward by disturbance events. With
the addition of this state, the model captures the morphology of hogbacks, scarps, and similar features. In its
simplest form, the model has only three process parameters, which represent disturbance frequency, characteris-
tic disturbance depth, and base-level lowering rate, respectively. Incorporating physical weathering of rock adds
one additional parameter, representing the characteristic rock weathering rate. These parameters are not arbitrary
but rather have a direct link with corresponding parameters in continuum theory. Comparison between observed
and modeled slope forms demonstrates that the model can reproduce both the shape and scale of real hillslope
profiles. Model experiments highlight the importance of regolith cover fraction in governing both the downslope
mass transport rate and the rate of physical weathering. Equilibrium rocky hillslope profiles are possible even
when the rate of base-level lowering exceeds the nominal bare-rock weathering rate, because increases in both
slope gradient and roughness can allow for rock weathering rates that are greater than the flat-surface maximum.
Examples of transient relaxation of steep, rocky slopes predict the formation of a regolith-mantled pediment that
migrates headward through time while maintaining a sharp slope break.

1 Introduction

Hillslopes take on a rich variety of forms. Their profile
shapes may be convex-upward, concave-upward, planar, or
some combination of these. Some slopes are completely
mantled with soil, whereas others are bare rock, and still oth-
ers draped in a discontinuous layer of mobile regolith. The
processes understood to be responsible for shaping them are

equally varied, ranging from disturbance-driven creep to dis-
solution to large-scale mass movement events.

Considerable research has been devoted to understand-
ing the evolution of soil-mantled slopes that are primarily
governed by disturbance-driven creep, such as downslope
soil transport by biotic and abiotic soil-mixing processes.
As a result, the geomorphology community has mathemat-
ical models that account well for observed slope forms and
patterns of regolith thickness (e.g., Roering, 2008). Further-

Published by Copernicus Publications on behalf of the European Geosciences Union.



564 G. E. Tucker et al.: Grain Hill model

more, stochastic-transport theory provides a mechanistic link
between the statistics of particle motion, the resultant average
rates of downslope transport, and the emergence of convex-
upward, soil-mantled slope forms (Culling, 1963; Roering,
2004; Foufoula-Georgiou et al., 2010; Furbish et al., 2009;
Furbish and Haff, 2010; Tucker and Bradley, 2010).

One gap that remains, however, lies in understanding
steep, rocky slopes (Fig. 1). “Rocky” implies slopes that lack
a continuous soil cover (e.g., Howard and Selby, 1994, and
references therein); here, a transport law that assumes the ex-
istence of such a cover no longer applies. “Steep” implies
angles approaching or exceeding the effective angle of re-
pose for loose, granular material, so that ravel may be an
important transport mode (e.g., Gabet, 2003; Roering and
Gerber, 2005; Lamb et al., 2011; Gabet and Mendoza, 2012)
and particles have the potential to fall as soon as they are
released from bedrock. This type of relatively fast, long-
distance transport does not fit comfortably in the framework
of standard diffusion-based models of hillslope soil transport,
which derive from an underlying assumption that the charac-
teristic length scale of motion is short relative to the length
of the slope.

Rocky slopes are rarely completely barren. More com-
monly, they have a patchy cover of loose material, which
may either retard rock weathering by shielding the rock sur-
face from moisture or temperature fluctuations, or enhance
it by trapping water and allowing limited plant growth. A
discontinuous cover does not fit easily within the popular
exponential-decay regolith-production models (e.g., Heim-
sath et al., 2012; Lamb et al., 2013), which assume an es-
sentially continuous soil mantle.

An additional issue, which pertains to both rocky and soil-
mantled slopes, is the connection between sediment move-
ment at the scale of individual “motion events,” and the
resulting longer-term average sediment flux, which forms
the basis for continuum models of hillslope evolution. Re-
cent theoretical and experiment work has begun to forge a
mechanistic connection between these scales (Culling, 1963,
1965; Furbish et al., 2009; Furbish and Haff, 2010; Tucker
and Bradley, 2010; Gabet and Mendoza, 2012; Lamb et al.,
2013). However, the community’s resources for computa-
tional analysis of particle-level dynamics remain limited, lag-
ging behind developments in understanding sediment trans-
port in coastal environments (Drake and Calantoni, 2001)
and rivers (McEwan and Heald, 2001; MacVicar et al., 2006;
Furbish and Schmeeckle, 2013; Schmeeckle, 2014).

To further our understanding of how grain-level weather-
ing and transport processes translate into hillslope evolution,
both for hillslopes in general and rocky slopes in particu-
lar, it would be useful to have a computational framework
with which to conduct experiments. Ideally, such a frame-
work should be sophisticated enough to capture the essence
of weathering and granular mechanics, while remaining sim-
ple enough to involve only a small number of parameters and
provide reasonable computational efficiency.

Our aim in this paper is to describe one such compu-
tational framework, test whether it is capable of reproduc-
ing commonly observed hillslope-profile forms, and exam-
ine how its parameters relate to the bulk-behavior parame-
ters used in conventional continuum models of soil creep and
regolith production. The model uses a pairwise, continuous-
time stochastic (CTS) approach to combine a lattice grain
model with rules for stochastic bedrock-to-regolith conver-
sion (“weathering”) and disturbance of surface regolith par-
ticles. One goal of this event-based approach is to study
how bulk behavior, such as the diffusion-like net downs-
lope transport of soil, can emerge from a large ensemble
of stochastic events. In this paper, we present the “Grain
Hill” model and examine its ability to reproduce three com-
mon types of slope profile: (1) convex-upward, soil-mantled
slopes (Fig. 2a, b), (2) quasi-planar rocky slopes (Fig. 2c, d),
and (3) cliff-rampart morphology in layered strata (Fig. 2e,
f).

We begin with a description of the modeling technique.
We then present results that illustrate the macroscopic be-
havior of the model under a variety of boundary conditions,
and define the relationship between the cellular model’s pa-
rameters and the parameters of conventional continuum me-
chanics models for hillslope evolution.

2 Model description

The model combines a cellular automaton representation of
granular mechanics with rules for weathering of rock to re-
golith and for episodic disturbance of regolith. Cellular au-
tomata are widely used in the granular mechanics commu-
nity, because they can represent the essential physics of gran-
ular materials at a reasonably low computational cost. Be-
cause the principles are often similar to those of lattice-gas
automata in fluid dynamics (e.g., Chen and Doolen, 1998),
cellular automata for granular mechanics are sometimes re-
ferred to as lattice grain models (LGrMs) (Gutt and Haff,
1990; Peng and Herrmann, 1994; Alonso and Herrmann,
1996; Károlyi et al., 1998; Károlyi and Kertész, 1999, 1998;
Martinez and Masson, 1998; Désérable, 2002; Cottenceau
and Désérable, 2010; Désérable et al., 2011).

2.1 CTS lattice grain model

Our approach starts with a two-dimensional (2-D) CTS lat-
tice grain cellular automaton. A cellular automaton can be
broadly defined as a computational model that consists of a
lattice of cells, with each cell taking on one of N discrete
states (represented by an integer value). These states evolve
over time according to a set of rules that describe transi-
tions from one state to another as a function of a particular
cell’s immediate neighborhood. A continuous-time stochas-
tic model is one in which the timing of transitions is proba-
bilistic rather than deterministic. Whereas transitions in tra-
ditional cellular automata occur in discrete time steps, in a
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(b)(a)

(c) (d)
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Figure 1. Examples of rocky hillslopes, sometimes referred to as Richter slopes. (a) Chalk Cliffs, Colorado, USA. (b) Canadian Rockies.
(c) Grand Canyon, Arizona, USA. (d) Rocky Mountain National Park, Colorado, USA. (e) Guadeloupe Mountains, Texas, USA. (f) Waterton
Lakes National Park, Canada (photos by Gregory E. Tucker).

CTS model, they are both stochastic and asynchronous. A
CTS model can be viewed as a type of Boolean delay equa-
tion (Ghil et al., 2008), though the number of possible states
is not necessarily limited to just two.

The method we present here, which we will refer to as the
Grain Hill model, is implemented in the Landlab modeling
framework (Hobley et al., 2017). The lattice grain compo-
nent, on which Grain Hill builds, is described in detail by
Tucker et al. (2016). Here, we present only a brief overview
of the lattice grain model’s rules and behavior. The frame-
work is based on the pairwise (“doublet”) method devel-
oped by Narteau and colleagues (Rozier and Narteau, 2014),
which has been applied to problems as diverse as eolian dune
dynamics (Narteau et al., 2009; Zhang et al., 2010, 2012) and
the core-mantle interface (Narteau et al., 2001).

In the basic CTS lattice grain model, the domain consists
of a lattice of hexagonal cells. Each cell is assigned one of
eight states (Table 1, states 0–7). These states represent the

nature and motion status of the material: state 0 represents
fluid (an “empty” cell into which a solid particle can move),
states 1–6 represent a grain moving in one of the six lattice
directions, and state 7 indicates a stationary grain (or aggre-
gate of grains, as discussed below). For purposes of modeling
hillslope evolution, we add an additional state (8) to repre-
sent rock, which is immobile until converted to granular ma-
terial, representing regolith. An optional additional state (9)
is used to model large blocks, as described below. Figure 3
shows several of these states in the form of a time sequence
of transition events. Note that the timing of transition events
is purely stochastic; there are no time steps in the usual sense.

Like other lattice grain models, the CTS lattice grain
model is designed to represent, in a simple way, the mo-
tion and interaction of an ensemble of grains in a gravita-
tional field. The physics of the material are represented by
a set of transition rules, in which a given adjacent pair of
states is assigned a certain probability per unit of time of un-
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(a) Soil-mantled, convex-upward slope (b)

(c) Quasi-planar, rocky slope (d)

(e) Cliff-rampart slope (f)

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

Figure 2. Examples of three characteristic types of hillslope profile. Red line in map view depicts hillslope profile location. (a, b) Soil-
mantled, convex-upward slope (Gabilan Mesa, California, USA). (c, d) Quasi-planar, thinly mantled slope (Yucaipa Ridge, California, USA).
(e, f) Cliff formed in resistant Tertiary laccolithic intrusive rocks overlying Jurassic sedimentary rocks (Cedar Mountain, Utah, USA).

Fluid

Moving particle
(arrow = direction) 

Resting particle

Rock

(b) Weathering (c) Disturbance (d) Motion

(e) Gravity (f) Gravity (g) Motion (h) Collision

(a) Initial

Figure 3. Hypothetical time sequence of transition events (a–h), illustrating several of the states and transitions in the Grain Hill model.
Note that although this example shows a single particle in motion, it is possible for multiple cells to exist in a state of motion at any given
time.
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Table 1. States in the Grain Hill model.

State Description

0 Fluid
1 Grain moving upward
2 Grain moving up and right
3 Grain moving down and right
4 Grain moving down
5 Grain moving down and left
6 Grain moving up and left
7 Resting grain
8 Rock
(9) Block (optional)

dergoing a transition to a different pair. For example, con-
sider a vertically aligned pair of cells in which the top cell
has state 4 (moving downward) and the bottom cell state 0
(empty/fluid) (Fig. 3f). Downward motion (falling) is repre-
sented by a transition in which the two states switch places
(Fig. 3g).

The stochastic pairwise transitions in the CTS lattice grain
model are treated as Poisson processes. The probability den-
sity function for the waiting time, t , to the next transition
event at a particular pair is given by an exponential func-
tion with a rate parameter r , which has dimensions of inverse
time:

p(t)= re−rt . (1)

Each transition type is associated with a rate parameter
that represents the speed of whichever process the transi-
tion is designed to represent. To implement these transitions,
the CTS lattice grain model steps from one transition to the
next, rather than iterating through time steps of fixed dura-
tion. Whenever the state of one or both cells in a particular
pair changes, if the new pair is subject to a transition, the
time at which the transition is scheduled to occur is added to
a queue of pending events. The soonest among all pending
events is chosen for processing, and the process repeats un-
til either the desired run time has completed or there are no
further events in the queue. Further details on the implemen-
tation and algorithms are provided in Tucker et al. (2016).

Grain motion through fluid is represented by a transition
involving a moving grain and an adjacent fluid cell in the di-
rection of the grain’s motion: the two cells exchange states,
representing the motion of the grain into the fluid-filled cell,
and the replacement of the grain’s former location with fluid
(Fig. 3c, d and f, g). During this transition, the grain’s mo-
tion direction remains unchanged (Fig. 4, top left). Note that
the lattice itself never moves; rather, material motion is rep-
resented simply by an exchange of grain and fluid states be-
tween an adjacent pair of cells.

Gravity is represented by transitions in which a rising
grain decelerates to become stationary, a stationary grain ac-
celerates downward to become a falling particle, and a grain

moving upward at an angle accelerates downward to move
downward at an angle (Fig. 5). An additional rule allows for
acceleration of a particle resting on a slope: a stationary par-
ticle adjacent to a fluid cell below it and to one side may
transition to a moving particle (Fig. 5, bottom row). Impor-
tantly for our purposes, this latter rule effectively imposes an
angle of repose at 30◦.

For gravitational transitions, the rate parameter, rg, is de-
termined by considering the time it would take for an initially
stationary object to fall a distance of one cell width under
gravitational acceleration without fluid drag. This works out
to be

rg =
√

2δ/g, (2)

where δ is cell width and g is gravitational acceleration. This
rate parameter is used for all of the gravitational transitions
illustrated in Fig. 5.

Because of the stochastic treatment of all transitions – in-
cluding gravitational ones – it is possible for grains in the
model to hover in mid-air for a brief period of time be-
fore plunging downward (e.g., Coyote, 1949). For purposes
of modeling hillslope evolution, this is fine; what matters
most is that there is a distinct timescale gap between “fast”
(large rate constant) processes associated with grain mo-
tion and “slow” (small rate constant) processes associated
with weathering and disturbance, which are described be-
low. First, however, we must consider frictional interactions
among moving particles.

We assume that biophysical disturbance events such as the
growth of roots and burrowing by animals, and the settling
motions that follow, tend to impart low kinetic energy, with
“low” defined as ballistic displacement lengths that are short
relative to hillslope length and comparable to or less than the
characteristic disturbance-zone thickness. We consider such
motions to be dominated by frictional dissipation rather than
by transfer of kinetic energy by elastic impacts. This view
is similar to the reasoning of Furbish et al. (2009) that the
mean free path of mobile grains will typically be short rel-
ative to hillslope length, scaling with the grain radius and
particle concentration. For this reason, unlike the original lat-
tice grain model of Tucker et al. (2016), the present formula-
tion includes only inelastic collisions (Fig. 4). These inelas-
tic (frictional) collisions are represented by a set of rules in
which one or both colliding particles become stationary, rep-
resenting loss of momentum and kinetic energy as a result of
the collision. The particular choices for frictional interaction
are motivated simply by the geometry of the problem. They
are non-unique in the sense that one could imagine reason-
able alternatives to the rules illustrated in Fig. 4; however,
the details of frictional interactions have little influence on
the outcomes of the Grain Hill model. In the general lattice
grain CTS model, the rate parameter for frictional transitions
is set equal to the product of the gravitational parameter and
a dimensionless friction factor, f ∈ [0,1] (there is also a cor-
responding elastic factor equal to 1− f ). In the Grain Hill
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Figure 4. Rules for motion and frictional (inelastic) collisions, illustrated here for one of the six lattice directions.

(Any) (Any)

(Any) (Any) (Any) (Any)

(Any) (Any) (Any) (Any)

Figure 5. Illustration of gravitational rules. The bottom row shows
the “falling on a slope” rule, which effectively imposes a 30◦ angle
of repose. Modified from Tucker et al. (2016).

implementation explored in this paper, f = 1, such that par-
ticle collisions are purely frictional.

One limitation of the CTS lattice grain model is that falling
grains do not accelerate through time; instead, they have a
fixed transition probability that implies a statistically uni-
form downward fall velocity. This treatment is obviously un-
realistic for particles falling in a vacuum, though it is con-
sistent with a terminal settling velocity for grains immersed
in fluid. Consistent with the above reasoning, the relatively
short ballistic displacement lengths asserted for the modeled
hillslopes also reduce the importance of this assumption, as a
particle would typically have little time to accelerate before
impacting another particle.

Tests of the CTS lattice grain model show that it repro-
duces several basic aspects of granular behavior (Tucker
et al., 2016). For example, when gravity and friction are de-
activated, the model conserves kinetic energy. When grav-
ity and friction are active, the model reproduces some of the
common behaviors observed with granular materials. For ex-

ample, Fig. 6 illustrates a simulation of the emptying of a
silo to form an angle-of-repose grain pile. For our purposes,
what matters most is simply that the model captures, in a rea-
sonable way, the response of particles on a slope to episodic
disturbance events.

2.2 Weathering and soil creep

Weathering of rock to form mobile regolith is modeled with
a transition rule: when a rock cell lies adjacent to a fluid cell
(which here is assumed to be air), there is a specified prob-
ability per unit of time, w (1/T ), of transition to a grain–air
pair (Figs. 3a–b, and 7, top). In other words, w is the Poisson
rate constant for the weathering transition process. This treat-
ment means that the effective maximum expected weathering
rate, in terms of the propagation of a weathering front, is cell
diameter, δ, multiplied byw. An indirect consequence of this
approach is that the weathering rate declines with increasing
regolith thickness. As average regolith thickness increases,
the fraction of the surface where rock is in contact with air
diminishes, and consequently so does the average transition
rate. A limitation of the approach is that when the rock is
completely mantled, no further weathering can take place.
We explore the consequences of this rule below, and com-
pare it with the behavior of continuum regolith-production
models.

Soil creep is modeled by a transition rule that mimics the
process of episodic disturbance of the mobile regolith (which
we use here as a generic term that includes various forms
of unconsolidated granular material, such as soil, colluvium,
and scree). For each resting grain that is adjacent to an air
cell, there is a specified probability per unit of time, d (1/T ),
that the regolith and air will exchange places, representing
movement (Fig. 3b, c). The regolith cell is also converted
from a stationary state to a state of motion (Fig. 7b). An ad-
vantage of this approach is that it mimics, in a general way,
the effectively stochastic disturbance processes that are un-
derstood to drive soil creep.

Our definition of d is closely related to the activation rate,
Na, in the probabilistic theory for soil creep developed by
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Time = 40 Time = 1000Time = 500

Figure 6. Lattice grain simulation of emptying of a silo. Light-shaded grains are stationary; darker-shaded ones are in motion. Black cells
are walls (rock). Time units are indicated in seconds. From Tucker et al. (2016).

(a) Weathering

(b) Disturbance

Figure 7. Transitions representing rock-to-regolith transformation
by weathering (a) and regolith disturbance (b), in which a stationary
particle becomes mobile and switches position with a air cell. The
illustration represents one of the six possible orientations.

Furbish et al. (2009). When combined with the lattice grain
gravitational rules, the resulting cellular model captures both
the scattering (disturbance) and settling (gravitational) be-
havior articulated by Furbish et al. (2009). In the Grain Hill
cellular model, as in their theory, downslope regolith flux
arises because, on average, scattering occurs perpendicular
to the local surface while setting is vertical. The Grain Hill
model includes an additional element not present in the Fur-
bish et al. (2009) theory: an increase in (downward) scat-
tering distance for particles on slopes steeper than 30◦. This
behavior, as illustrated below, promotes a non-linear relation-
ship between gradient and flux, and leads to the possibility of
threshold slopes.

Note that the weathering and disturbance rate constants
(w and d , respectively) are understood to be considerably
smaller than the gravitational rate constant, rg. As noted
above, a key concept here is that there are two distinct
timescales: a short timescale associated with grain motion,
and a much longer scale associated with weathering and dis-
turbance frequency.

2.3 Cells as grain aggregates

Natural regolith disturbance events usually impact many
grains at once. Raindrop impacts on bare sediment typically
dislodge several grains at once (Furbish et al., 2007). Exca-
vation of an animal burrow disturbs a volume of grains equal
to the volume of the burrow, and the fall of a tree mobilizes a

volume of regolith similar to the volume of the tree’s root
mound. Observations of such processes suggest that there
may be a characteristic volume of disturbance that in some
cases may be much larger than the volume of a single grain.
For this reason, we envision regolith cells as being grain ag-
gregates, with a length scale (width of a cell) δ and a volume
scale δ3.

2.4 Initial and boundary conditions

The 2-D model domain represents the cross section of
a hypothetical hillslope, on which particles move within
the cross-sectional plane. Any regolith cells that reach the
model’s side or top boundaries disappear. This treatment is
meant to represent the presence of a stream channel at the
base of each side of the model hillslope; particles reaching
these channels are assumed to be eroded. Progressive lower-
ing of the base level at the two model boundaries is treated by
moving the interior cells upward away from the lower bound-
ary, and adding a new row of rock or regolith cells along the
bottom row. A new row of cells is added at time intervals of
τ .

Cells around the lattice perimeter retain their initial states.
If, for example, a transition occurs in which a grain “moves”
into a fluid cell on the lattice perimeter, its former location
will correctly transition to a fluid cell, but the perimeter cell
itself will retain its status as a fluid cell. Effectively, this treat-
ment means that grains or blocks reaching either of the two
vertical boundaries are instantly eroded.

The initial condition for most runs presented here has the
bottom two rows filled with regolith grains. The lower left
and lower right cells are assigned to be rock, which repre-
sents the base-level (and incidentally helps keep a consistent
color scheme among different model configurations, because
the rock state is always present). The rest of the domain is
initialized as air cells.

www.earth-surf-dynam.net/6/563/2018/ Earth Surf. Dynam., 6, 563–582, 2018
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2.5 Scaling and non-dimensionalization

The basic model has four parameters: the disturbance rate,
d (cells / T ), weathering rate, w (cells / T ), base-level low-
ering interval, τ (T ), and width of domain, λ (cells). The
base-level lowering timescale τ represents the time interval
between episodes of relative uplift in which the interior do-
main is lifted by one cell relative to its side boundaries. The
domain width might properly be considered a boundary con-
dition rather than a parameter, but we include it here with
an eye toward examining how slope width impacts hillslope
properties such as mean height. Once we define the width of
a cell, δ (L), we can define versions of these four parameters
that explicitly incorporate this length scale:

D = dδ, (3)
W = wδ, (4)
U = δ/τ, (5)
L= λδ. (6)

Consider the case of dynamic equilibrium, in which the
rate of base-level lowering is balanced by the hillslope’s rate
of erosion. The mean height of this steady state hillslope, H ,
is a function of the above four parameters plus the character-
istic length scale δ, such that we end up with a total of six
variables:

H = f (D,W,U,L,δ). (7)

Buckingham’s Pi theorem dictates that these six variables,
which collectively include dimensions of length and time,
may be grouped into four dimensionless quantities:

H

δ
= f

(
D

U
,
W

U
,
L

δ

)
. (8)

The ratio d ′ = dτ =D/U is a dimensionless disturbance
rate. Similarly, w′ = wτ =W/U is a dimensionless weath-
ering rate. Noting the definitions above, Eq. (8) is equivalent
to

h= f
(
d ′,w′,λ

)
, (9)

where h=H/δ is dimensionless hillslope height. Hence, we
have a dimensionless property of the hillslope, h, that de-
pends uniquely on three other non-dimensional variables,
representing disturbance rate, weathering rate, and length.

One can similarly define a dimensionless regolith thick-
ness, r = R/δ, where R is the dimensional equivalent; it too
should depend on the three dimensionless parameters that
represent disturbance rate d ′, weathering rate, w′, and hills-
lope length, λ, respectively. For a hillslope composed entirely
of regolith, r and h depend solely on d ′ and λ. Finally, we de-
fine a fractional regolith cover Fr. In the Grain Hill model, Fr
is calculated as the number of air–regolith cell pairs divided
by the total number of cell pairs that juxtapose air with either
regolith or rock.

2.6 Blocks

The foregoing model is designed to represent regolith as
grain aggregates composed of gravel-sized and finer grains:
material fine enough that it is susceptible to being moved by
processes such as animal burrowing, frost heave, tree throw,
and so on. Some hillslopes, however, are adorned with grains
that are simply too large to be displaced significantly by such
processes. For example, Glade et al. (2017) presented a case
study and model of slopes formed beneath a resistant rock
unit that periodically sheds meter-scale or larger blocks. On
at least some of these types of slope, the distance between
surface blocks and their source unit is considerably greater
than the distance that they could roll during an initial release
event (Duszyński and Migoń, 2015). This observation im-
plies that the blocks are transported downslope by a process
of repeated undermining. Glade et al. (2017) hypothesized
that erosion of soil beneath and immediately downhill can
cause a block to topple and hence move a distance compara-
ble to its own diameter in each such event.

We wish to capture this form of “too big to disturb” behav-
ior in the Grain Hill model. The CTS approach, at least as it is
defined here, does not lend itself to variations in grain size or
geometry. Instead, we introduce an additional type of parti-
cle that represents the behavior of blocks rather than treating
their difference in size explicitly. In a sense, the approach can
be viewed as treating blocks as having greater density, rather
than greater size, than other grains. A block particle differs
from a normal regolith cell in that it cannot be scattered up-
ward by disturbance. Motion of a block particle can only oc-
cur under two circumstances: when it lies directly above an
air cell (in which case it falls vertically, trading places with
the air cell) and when it lies above and to the side of an air
cell (in which case it falls downslope at a 30◦ angle, with
probability per time d). These rules mimic the undermining
process discussed by Glade et al. (2017).

As in the Glade et al. (2017) model, block particles can
also undergo weathering. Here, weathering is again treated
in a probabilistic fashion: blocks form from weathering of
bedrock, at probability per time w. Once created, a block can
undergo a conversion to normal regolith with probability w
when it sits adjacent to an air cell. This treatment of blocks
captures, in a simple way, the weathering of blocks as they
move downslope. For purposes of this paper, the block com-
ponent is included simply to test whether a cellular automa-
ton treatment produces results that are qualitatively consis-
tent with observations, and also consistent with the hybrid
continuum–discrete model of Glade et al. (2017) and Glade
and Anderson (2017).
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Figure 8. Equilibrium topographic cross sections using only re-
golith particles (no rock) and a variety of disturbance frequen-
cies (d) and time interval between base-level fall events (τ ). Fast
basal incision and/or infrequent disturbance lead to planar thresh-
old hillslopes; slow basal incision and/or frequent disturbance lead
to parabolic hillslopes.

3 Results

3.1 Fully soil-mantled hillslope

We start by considering the case of fully soil-mantled hill-
slopes, in which the supply of mobile regolith is effectively
unlimited (Fig. 2a, b). Under this condition, the Grain Hill
model represents a testable mechanistic hypothesis: that a
transport limited, soil-mantled hillslope behaves essentially
as a granular medium subject to periodic, quasi-random dis-
turbance events. This concept was also the essence of the
acoustic-disturbance experiments by Roering et al. (2001).
To test the hypothesis, we run the Grain Hill model with a
constant rate of material uplift relative to base-level until the
system reaches quasi-steady state, to determine whether its
steady form is smoothly convex upward (when the gradient
is below the failure threshold) to planar (when the gradient
lies at or near the failure threshold). Model runs were per-
formed using a 251-row by 580-column lattice. Disturbance
rates were varied from 0.001 to 0.1 yr−1 and intervals be-
tween relative-uplift events from 100 to 10 000 years.

Results show that the Grain Hill model produces parabolic
to planar hillslope forms, depending on the ratio of distur-
bance to uplift rates, which is encapsulated in the dimension-
less parameter d ′ (Fig. 8). At high d ′ (frequent disturbance
and/or slow base-level fall), hillslope relief is low and the
form is smoothly convex upward (Fig. 8, lower right panels).
At somewhat lower d ′, the lower part of the slope approaches
a threshold angle while the upper part remains smoothly con-
vex (Fig. 8, middle diagonal panels). At low d ′, the form be-
comes predominantly planar and achieves a threshold relief
that is insensitive to further increases in d ′ (Fig. 8, upper left
panels).

Scaling of mean height as a function of d ′ is shown in
Fig. 9. The figure shows results for 125 model runs spanning
2 orders of magnitude in each parameter (d, τ , and λ) in half-
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Figure 9. Dimensionless mean hillslope height, h, as a func-
tion of dimensionless disturbance rate d ′ for a range of
hillslope lengths. Data points include 125 sensitivity analy-
sis runs in which d ∈ [10−3,10−2.5,10−2,10−1.5,10−1

], τ ∈
[102,102.5,103,103.5,104

], and λ as shown in the legend.

decade intervals. The 125 runs represent a 5× 5× 5 grid of
experiments, in which each grid point represents a particular
combination of the three parameters (d , τ , and λ).

For any given hillslope length, there are three regimes of
behavior. Low d ′ (upper left of graph) leads to threshold hill-
slopes, in which relief depends only on hillslope length. Un-
der moderate d ′, mean height scales inversely with d ′, as
expected from linear diffusion theory. At high d ′, we have
a finite-size regime in which dimensionless hillslope mean
height is comparable to the disturbance scale, δ (cell size in
the model); in other words, the hill is only one or a few cells
high.

The behavior of the Grain Hill model in its simple,
transport-limited configuration can be compared to diffusion
theory, which relates volumetric sediment flux per unit con-
tour length, qs, to topographic gradient:

qs =−Ds
∂η

∂x
, (10)

where η is land-surface height, x is horizontal distance, and
Ds is an effective transport coefficient. The Furbish et al.
(2009) probabilistic theory for transport due to particle scat-
tering and settling formulates Ds as

Ds = krpRaNa

(
1−

c

cm

)2

cos2θ, (11)

where k is a dimensionless coefficient, rp is particle radius,
Ra is active regolith thickness, Na is the activation rate, θ is
slope angle, c is particle concentration, and cm is a maximum
concentration. The over-bar denotes an average over the ac-
tive regolith thickness. For the Grain Hill model, Ra scales
with the characteristic disturbance depth, δ. Further, because
we treat grain aggregates, we may also assume rp ∼ δ. There-
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fore, we have the prediction that

Ds = aδ
2Nacos2θ, (12)

where a is a dimensionless proportionality constant.
The mean expected activation rate, Na, is closely related

to the Grain Hill model’s disturbance frequency parameter,
d . To relate the two quantitatively, one needs to make a
trivial lattice-geometry correction. A straight-as-possible cut
through the hex lattice exposes on average two faces per cell,
both of which are susceptible to a disturbance event. Because
d is the expected disturbance frequency per cell face, and be-
cause independent Poisson events are additive, the resultant
disturbance frequency for each cell exposed along a quasi-
horizontal surface is Na = 2d.

A more important difference is that whereas Na is defined
as activation rate per unit horizontal area, d represents the
rate per unit surface area regardless of orientation. For a
given d, Na will increase with surface roughness (because
there is more exposed area of regolith–air contact), and with
gradient (because the slope length increases).

An additional effect arises from the model’s effective 30◦

angle of repose. On slopes steeper than this, the expected
disturbance rate increases substantially because gravitational
dislodgement becomes activated (Fig. 5, bottom row). Thus,
the Grain Hill model incorporates an additional non-linear
relationship between flux and gradient inasmuch as Na de-
pends on gradient.

We can derive an effective diffusivity, De, from the mod-
eled topography by applying the expected relationship be-
tween mean elevation and diffusivity. Here, De is defined as
that value which, if it were spatially uniform, would yield
the same mean steady-state elevation as that produced by the
particle model. Framing it this way allows us to interrogate
how the effective transport coefficient varies as a function of
mean slope gradient. At steady state, mass balance implies
that

qs = Ex, (13)

where E is the rate of erosion – equal to the rate of material
uplift relative to base level – and x is horizontal distance from
the ridge top. Substituting Eq. (10) and rearranging gives

dη

dx
=−

E

Ds(x)
x ≈−

E

De
x. (14)

Integrating and then averaging over x, we can solve for the
average elevation, η:

η =
E

3De
L2
h, (15)

where Lh = L/2 is the length of the slope from ridge top to
base (in other words, half the total length of the domain). We
can then rearrange this to find De:

De =
E

3η
L2
h. (16)

To examine how De scales, we can define a dimensionless
form, normalizing by the disturbance frequency, d , and the
square of active regolith thickness (equal to particle diame-
ter), δ2:

D′e =
De

dδ2 =
EL2

h

3ηdδ2 . (17)

Noting thatE = δ/τ ,L= 2Lh, andL/δ = λ, this is equiv-
alent to

D′e =
λ2

12hdτ
, (18)

where h is the mean hillslope height in particle diameters.
As expected, D′e increases with hillslope gradient

(Fig. 10). The effective diffusivity approaches an asymptote
at 30◦ (mean gradient≈ 0.6), representing an angle of repose.
The pattern resembles the family of non-linear flux–gradient
curves introduced by Andrews and Bucknam (1987) and ex-
plored further by Howard (1994) and Roering et al. (1999).
At low gradients, D′e approaches a value of about 60. (This
method of estimatingD′e is similar to fitting the standard the-
oretical parabolic curve to the experimental profiles, except
that here we use the integral of the profiles.)

The link between De and d provides a way to scale the
Grain Hill model to field-derived estimates of Ds and Ra.
Here, we equate the theoretical effective diffusivity,De, with
the definition of the transport coefficient Ds of Furbish et al.
(2009). Noting that, at low gradients, cos2θ in Eq. (12) ap-
proaches unity, and using the prior relationNa = 2d , we may
write Ds for low slope angle as

Ds(θ→ 0)= 2aδ2d. (19)

In the Grain Hill model, the fact that low-angle D′e ≈ 60
implies that the dimensional equivalentDe(θ→ 0)≈ 60δ2d .
Equating Ds (the transport coefficient derived by Furbish
et al., 2009) and De (the effective transport coefficient de-
rived from the Grain Hill model),

Ds(θ→ 0)≈ 60δ2d. (20)

This relation can be used to scale the parameters in the
Grain Hill model with field data. For example, if one were
to assume an active regolith thickness of 0.4 m and a low-
gradient transport coefficient of Ds = 0.01 m2 yr−1, and set
δ to the active regolith thickness, then

d =
Ds

60δ2 ≈ 0.001yr−1. (21)

Here, d represents the frequency with which a given ex-
posed patch of regolith of width and depth δ is disturbed up-
ward. With the above values, the simulated hills in Fig. 8
would be 232 m long (valley to valley), with height ranging
from 1.6 to 57.6 m and base-level lowering rate from 0.04 to
4 mm yr−1.
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Figure 10. Relationship between dimensionless diffusivity and
mean gradient, from the series of 125 model runs of which a subset
is shown in Fig. 8.

3.2 Hillslope with regolith production from rock

Having established that the Grain Hill model reproduces
classic soil-mantled hillslope forms and has parameters that
can be related to the parameters in commonly used contin-
uum hillslope transport theories, we turn now to the case in
which regolith is generated from bedrock with a production
rate that may (or may not) limit the rate of erosion. We ex-
plore the role of regolith production with a series of model
runs in which w′ varies from 0.4 to 40. The upper end of this
range represents a condition in which the potential maximum
rate of regolith production greatly exceeds the rate of base-
level lowering. The lower end, 0.4, is less than the rate of
base-level fall, and would seem to be insufficient to allow for
equilibrium to occur, and yet nonetheless it does. Examples
of equilibrium hillslope forms found in this parameter space
are shown in Fig. 11.

Relationships among mean gradient, fractional regolith
cover, dimensionless disturbance rate d ′, and dimensionless
weathering rate w′ are illustrated in Fig. 12. For w′ > 1, the
gradient–d ′ relation (Fig. 12a) has the same shape as in the
purely regolith models: a threshold regime at lower d ′ tran-
sitioning to an inverse gradient–d ′ relation at higher d ′. This
indicates that when the maximum weathering rate (for a flat
surface) is substantially greater than the rate of base-level
fall, we recapture transport-limited conditions. With w′ < 1,
however, the hillslope achieves an equilibrium gradient that
is greater than that for the transport-limited case, and at lower
d ′, is greater than the threshold angle (Fig. 12a, b).

We can also examine the fractional regolith cover, which
is defined here as the number of rock–air cell pairs divided
by the total number of cell pairs at which air meets either
regolith or rock (Fig. 12c, d). The fractional regolith cover
shows relatively little sensitivity to d ′ (Fig. 12c). The cover
hovers around unity for high w′ and d ′ but systematically
declines with w′ when w′ is below about 10. (Note that the
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Figure 11. Final equilibrium profiles from Grain Hill runs with
rock and weathering. Domain size is 222 rows by 257 columns,
and uplift interval ranges from 100 to 10 000 years.

data points representing d ′ = 1000 and w′ > 1 have hillslope
heights of only a few particles and are therefore sensitive to
finite-size effects.)

The models with w′ < 1 present a seeming paradox: how
is it possible to achieve an equilibrium form when the max-
imum weathering rate appears to be lower than the rate of
uplift relative to base level? The solution to the paradox lies
in surface area. The surface area of rock that is exposed to
weathering is not fixed but rather depends on the overall
slope length, the terrain roughness, and the fractional regolith
cover. To appreciate the first effect, consider a planar slope at
angle θ with no regolith cover. If wδ represents the maxi-
mum slope-normal bedrock weathering rate, then the verti-
cal rate is simply wδ/cosθ . All else equal, increasing gra-
dient will increase vertical weathering rate, thereby provid-
ing a feedback between gradient and rock lowering rate. A
second feedback relates to topographic roughness: all else
equal, a rougher surface will experience a greater weathering
rate because it provides more surface area. The third feed-
back, which is embedded in the depth-dependent regolith
production hypothesis (Ahnert, 1967) lies in regolith cover:
the greater the exposure of rock (or the thinner the cover), the
faster the average rate of rock-to-regolith conversion. In the
Grain Hill model, this third feedback is represented by frac-
tional bedrock exposure (since weathering only occurs when
rock cells are juxtaposed with air cells).

To test whether these are indeed the feedbacks responsible
for equilibrium topography in the Grain Hill model, we can
compare the rate of material influx (uplift relative to base-
level) with the expected rate of rock-to-regolith conversion.
In the Grain Hill model, the expected rate of regolith pro-
duction, P , in cross-sectional area per time, is the product of
weathering rate per cell face, w, the cross-sectional area of a
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Figure 12. Mean equilibrium gradient and regolith thickness for models with rock and weathering, as a function of d ′ and w′. Data repre-
sent 125 runs with d ∈ [10−3,10−2.5,10−2,10−1.5,10−1

] yr−1, w′ ∈ [100,100.5,101,101.5,102
], and τ ∈ [102,102.5,103,103.5,104

] yr.
Horizontal dashed lines show model’s angle of repose for regolith.

cell, A, and the number of rock–air cell faces, nra,

P = wAnra. (22)

The rate of material addition due to uplift relative to base-
level, U , again in cross-sectional area per time, is the area of
a cell, A, multiplied by the horizontal width of the domain in
cells, nH, divided by the interval between uplift events, τ :

U = nHA/τ. (23)

Equality between rock uplift and weathering can be ex-
pressed as

1
τ
= w

nra

nH
. (24)

The ratio on the right side represents the surface-area ef-
fect, in the form of surface area exposed to weathering per
unit horizontal area. The balance is illustrated in Fig. 13,
which compares the left-hand and right-hand terms for each
of the 125 model runs with weathering. Each data point rep-
resents a single snapshot in time, and so scatter is to be ex-
pected. To help diagnose the scatter around the 1 : 1 line, the

data are divided into quintiles by fractional regolith cover, Fr
(note that some of the points in the lower quintiles are ob-
scured by being over-plotted along the 1 : 1 line). Many of
the points that fall off the 1 : 1 line, especially at the high end
(higher 1/τ ), come from runs with Fr > 80%; with very few
exposed rock–air pairs, a small fluctuation in the nra can pro-
duce a relatively large change in predicted weathering rate.
At the low end, many of the points above the 1 : 1 line come
from runs with a maximum height of only a few cells, which
are subject to finite-size effects.

The main message of Fig. 13 is that the Grain Hill model
demonstrates an equilibrium adjustment between rock uplift
and rock weathering. The weathering rate does not have a
fixed upper “speed limit,” but rather is set by the exposed sur-
face area, which in turn is a function of gradient, roughness,
and regolith cover. Solutions with a discontinuous regolith
cover are indicative of this adjustment. Slopes can grow ar-
bitrarily steep, with weathering and erosion increasingly at-
tacking from the sides as the gradient rises.
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Figure 13. Comparison between rate of material input, 1/τ
(cells / year), with effective rate of weathering, wnra/nH, from 125
model runs (see text).

3.3 Comparison between weathering rule and
inverse-exponential model

The most popular function to describe regolith production
from bedrock is the decaying exponential formula proposed
by Ahnert (1967), which has proved consistent with esti-
mates of production rate obtained using cosmogenic radionu-
clides (Heimsath et al., 1997; Small et al., 1999). The produc-
tion rate is given by

P = P0 exp(−R/R∗) , (25)

where P0 is the maximum (bare bedrock) production rate, R
is regolith thickness, and R∗ is a depth-decay scale on the
order of decimeters. On a flat surface, assuming no erosion
or deposition, the expected rate of change of R over time is

dR

dt
=
ρr

ρs
(1−ω)P0 exp(−R/R∗) , (26)

where ρr and ρs are the bulk densities of parent material and
regolith, respectively, and ω is the fraction of parent ma-
terial removed in solution upon weathering. Starting from
a bare surface, and assuming isovolumetric weathering (in
which case ρs = (1−ω)ρr), the expected regolith thickness
as a function of time can be found by integrating Eq. (26):

R

R∗
= ln

[
P0

R∗
t + 1

]
. (27)

We can compare this with the behavior of the cellular
weathering rule by running the case of a flat, initially bare-
rock surface from which weathered material may neither en-
ter nor leave (Fig. 14, case d w−1

= 0). When the disturbance
rate is zero, the cellular weathering model asymptotically
approaches a steady regolith thickness of exactly one cell
(thickness equal to δ). This is so because the model allows
weathering to occur only when rock cells are exposed to air
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Figure 14. Regolith thickness versus time, as predicted by inverse-
exponential theory (log growth; solid cyan curve) and the Grain Hill
model with a range of ratios of disturbance rate (d) to weathering
rate (w). Time (horizontal axis) is non-dimensionalized by multi-
plying by w.

cells, and there is no disturbance process that would juxta-
pose rock and air once the initial weathered layer has formed.
When disturbance rate is non-zero, however, regolith contin-
ues to form even after the mean thickness r exceeds unity
(representing one characteristic disturbance depth). Continu-
ation of regolith production occurs because the disturbance
process intermittently exposes rock, at which point it be-
comes subject to weathering. The greater the disturbance
rate, the more frequent the exposure and hence the more rapid
weathering (Fig. 14). For any ratio d w−1, the model’s weath-
ering behavior clearly differs from the logarithmic growth
in thickness predicted by exponential theory. This represents
both a strength and a weakness in the Grain Hill model. On
the one hand, the model under its present configuration can-
not account for rock-to-regolith conversion resulting from
processes that penetrate more than one characteristic distur-
bance depth δ into the subsurface. For example, the model
neglects the possibility that some plant roots may penetrate
deeply and contribute to disaggregation, or that an unusually
deep freezing front in a cold winter might cause rock fracture
and displacement of the resulting fragments (e.g., Anderson
et al., 2012). On the other hand, the model honors the likeli-
hood that soil disturbance and regolith production are closely
linked processes, rather than independent: all else equal, a
greater disturbance rate will tend to produce faster rates of
both regolith production and downslope soil movement.

3.4 Rock collapse and vertical cliffs

Some rock slopes display a cliff-and-rampart morphology in
which a vertical or near-vertical rock face stands above an
inclined, often sediment-mantled buttress (Figs. 1 and 15).
Although common in sedimentary rocks where a resistant
unit forms the cliff and a weaker unit the buttress, the same
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(a)

(b)

Figure 15. Two examples of cliff-and-rampart morphology.
(a) Near Palisade, Colorado, USA, after recent rock-fall event
(photo courtesy of D. Nathan Bradley and Dylan Ward). (b) Col-
orado Plateau, Utah, USA. Note that contact between lower rampart
and subvertical slopes, both of which have formed in a gray shale
unit, occurs without any apparent break in lithology.

morphology is sometimes found in apparently homogeneous
lithology (Fig. 15b). The cliff portion of such slopes suggests
a process of undermining and collapse, with the cliff-forming
material being cohesive enough to maintain a vertical face
but too weak to support overhangs.

To explore the origins of ramp-and-cliff morphology, we
consider a version of the Grain Hill model that adds an extra
rule to represent collapse: any rock particle that directly over-
lies air has the possibility to transition to a falling regolith
particle, with the same rate as gravitational transition from
resting to falling; in other words, as soon as a rock particle
has been undermined, it behaves like cohesionless material.

Under dynamic equilibrium, this rule produces a mor-
phology with slopes that are roughly planar, with alternat-
ing vertical and sloping sections and patchy regolith cover
(Fig. 16). With w′ ≤ 1, gradient and regolith cover depend
strongly on w′ and show little or no sensitivity to d ′. When
w′� 1, the hillslope forms resemble pinnacles. These exam-
ples demonstrate two combined feedbacks between weather-
ing and base-level fall: the surface area susceptible to weath-

(a) d' = 0.1, w' = 1 (b) d' = 1, w' = 1

(c) d' = 0.1, w' = 0.1 (d) d' = 1, w' = 0.1

Figure 16. Quasi-steady model hillslope profiles created using a
collapse rule, under four different combinations of d ′ and w′. Insets
show magnified views of a portion of each hillslope.

ering, and the frequency and magnitude of material collapse
through undermining.

The case of transient evolution under a stable base level
leads to the formation of a regolith-mantled, angle-of-repose
ramp (Fig. 17). The slope break remains relatively sharp as it
retreats headward. The ramp forms as a transport slope. The
angle of repose is an attractor state: if the angle were steeper,
weathered material would be rapidly removed as a result of
gravitational instability; if it were substantially lower, mate-
rial would accumulate, because transport would be limited to
the (much lower) rate of disturbance-driven creep motions.
Hence, the Grain Hill model predicts that formation of a
sediment-mantled ramp beneath a steeper, actively weather-
ing rock slope is an expected outcome for a steep rock slope
under stable base level.

3.5 Blocks

Weathering and erosion in landscapes underlain by relatively
massive, fracture- or joint-bounded rock can sometimes pro-
duce large “blocks” of rock, defined here as clasts that are too
large to be displaced upward by normal hillslope processes.
The release of blocks from dipping sedimentary or volcanic
strata can alter both the shape and relief of hillslopes (Glade
et al., 2017). When blocks are delivered to streams, they can
influence the channel’s roughness, gradient, erosion rate, and
longitudinal profile shape (Shobe et al., 2016).

As discussed in Sect. 2.6, the Grain Hill model can be
modified to honor blocks by defining an additional cell type
that represents blocks. The weathering process is modified
such that a rock cell now weathers into a block, and the block
in turn may weather to form regolith. When a block is un-
dermined directly from below, it will fall just as a normal
regolith particle would. When a block particle lies adjacent
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Figure 17. Time series showing transient erosion of a steep rock slope under a stable base-level, highlighting formation of ramp-and-cliff
morphology. Simulation shows 20 000 years of slope evolution under d = w = 10−3 yr−1. Nominal width, assuming δ = 0.1 m, is 12 m.

(a) (b)

(c) (d)

Figure 18. Examples of models that include blocks. Rock (black)
weathers to blocks (dark red), which can only move downward or
downward plus laterally. Blocks in turn weather to regolith (light
brown) (GIF-format animations of similar runs are available as an
online resource; see Tucker, 2018a).

to and above an air cell, a disturbance event may occur that
causes the block to shift downward on the slope. By these
means, blocks in the model may move downward, or down-
ward and laterally, but never upward. An implicit assumption
in this treatment is that blocks do not roll long distances (fur-
ther than their own diameter) upon release.

We examine model runs in which a resistant rock layer is
embedded in a weak sedimentary material that is soft enough
to be treated as regolith (Fig. 18). The modeled hillslopes are
qualitatively consistent both with field observations and with
the mixed continuum–discrete model of Glade et al. (2017)
and Glade and Anderson (2017) in that block-mantled slopes
are generally concave upward, reflecting a downslope de-
crease in the flux of blocks as weathering progressively trans-
mutes them into regolith.

4 Comparison to field sites

We perform a basic validation of the Grain Hill model by
comparing its output to real field sites, testing whether the

model is capable of reproducing realistic hillslope forms at
the correct spatial scale under known boundary conditions.
Field sites were chosen such that model boundary conditions
could be derived from independent field estimates of rate pa-
rameters such asDs and the rate of base-level fall. To perform
this test, we consider two examples: a convex-upward, soil-
mantled hillslope in Gabilan Mesa, California, USA (Fig. 2a,
b), and a steep, quasi-planar, discontinuously mantled hills-
lope in the Yucaipa Ridge, California, USA (Fig. 2c, d). For
each of these two case studies, the hillslopes appear to be ap-
proximately at steady state, and independent estimates exist
for the rate of base-level fall, U (Binnie et al., 2007; Perron
et al., 2009, 2012). We estimated the effective transport coef-
ficient, Ds, for the profiles shown in Fig. 2a, c by measuring
the second derivative of the one-dimensional hillslope eleva-
tion profiles, ∂

2η

∂x2 , and solving for Ds using

Ds =−
U

∂2η

∂x2

. (28)

For the Gabilan Mesa profile, we estimated the profile-
averaged effective transport coefficient as 0.0345 m2yr−1.
The effective rate of base-level lowering has been estimated
at U ≈ 1.47×10−4 m yr−1 (Perron et al., 2012). To construct
a Grain Hill model for the Gabilan profile, we begin by as-
suming a characteristic disturbance depth of δ = 1 m. This
value was chosen to be consistent with measured soil depths
that typically range between 0.2 and 1.2 m (Johnstone et al.,
2017). We treat the system as transport-limited, consisting
of mobile material, so that weathering is not explicitly mod-
eled. The disturbance parameter, d , is then calculated from
the independently estimated value of Ds using Eq. (20). The
interval between uplift events is τ = δ/U ≈ 6800 years. The
resulting modeled equilibrium profile provides a reasonably
good match to the observed Gabilan profile, with a convex-
upward shape and a hilltop height of about 45 m above the
slope base (Fig. 19a).

For Yucaipa Ridge, we estimated the transport coeffi-
cient at Ds ∼ 0.028 m2 yr−1 on the basis of hilltop curva-
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Figure 19. Steady state models using parameters estimated from
observed hillslope profiles. (a) Parameters are based on Gabilan
Mesa, with the profile shown in Fig. 2a, b for comparison. (b) Pa-
rameters based on Yucaipa Ridge, with the profile shown in Fig. 2c,
d for comparison.

ture and an estimated effective rate of base-level lowering of
≈ 0.0027 m yr−1 (Binnie et al., 2007). Using Eq. (20), this
equates to a disturbance-rate parameter d = 0.00468 yr−1

and an uplift interval of 370 years in the Grain Hill model.
Bedrock outcrops are common on the Yucaipa Ridge hill-
slopes, implying a thin, discontinuous regolith cover. We
therefore treat the system as consisting of bedrock that must
be weathered before it can become mobile. Because we do
not have independent information on the effective maximum
rock weathering rate, the Yucaipa case is a somewhat weaker
test: we can only ask whether there exists a geologically rea-
sonable value of w such that the model reproduces the ob-
served relief and shape of the slope profile. Through trial
and error, we find that with a weathering rate parameter
w = 0.002 yr−1 (which corresponds to a maximum regolith
production rate of 2 mm yr−1), the model does a credible job
of capturing the shape and size of the Yucaipa profile (com-
pare Fig. 2c with 19b). Although this particular value was ob-
tained through a simple calibration process, it is at least both
geologically reasonable and, as one might expect, somewhat
lower than the rate of base-level lowering.

To test the sensitivity of the Yucaipa example to the as-
sumed characteristic disturbance depth, we ran a second ex-
periment in which δ was reduced to 0.75 m, and the weath-
ering, disturbance rate, and uplift parameters were rescaled
accordingly. The relief and mean gradients of the two cases
are nearly identical, with planar slopes and a relief in both
cases of ∼ 100 m.

These two examples demonstrate that the Grain Hill model
parameters are not arbitrary but instead can be linked through
straightforward reasoning to field estimates of transport effi-
ciency and base-level lowering. When one does so, the model
successfully reproduces both the shape and scale of observed
slopes.

5 Discussion

With just three parameters – disturbance frequency (d), char-
acteristic disturbance depth (δ), and base-level fall frequency
(u) – the Grain Hill algorithm can reproduce the convex-
upward to quasi-planar forms associated with soil-mantled
hillslopes (Fig. 8). With the addition of a parameter that rep-
resents rock-to-regolith conversion rate, the algorithm ac-
commodates partly mantled, rocky hillslopes (Figs. 11, 16,
17). By adding a rule for detachment of blocks from resistant
rock, the model reproduces hillslope forms associated with
hogbacks and ledge-forming escarpments (Fig. 18).

A common criticism of cellular automaton models is that
they involve arbitrary rules and/or parameters that can nei-
ther be measured nor verified in the real world. That is not the
case for the Grain Hill model, for which the parameters are
tied to measurable physical quantities. For example, the dis-
turbance frequency d is directly related to the frequency pa-
rameterNa in statistical theory of soil transport developed by
Furbish et al. (2009), and through that theory to the diffusion-
like transport coefficient Ds that is commonly estimated in
field studies. This connection between model parameters and
field measurements is illustrated by the model’s ability to
reproduce the correct shape and scale of observed hillslope
forms when estimates ofDs andU are available (Figs. 2, 19).
In the transport-limited case, there are no tunable parame-
ters: given independent estimates of Ds and U , the correct
morphology is recovered (Figs. 2a, 19a). In the case where
rock weathering appears to play a role, and an independent
estimate of P0 is not available, the model requires an estima-
tion of maximum weathering ratew. Nonetheless, a plausible
value of w (0.002 m yr−1), somewhat smaller than the rate
of base-level fall (0.0027 m yr−1), reproduces the observed
shape and relief in the Yucaipa Ridge case study.

The transport dynamics predicted by the Grain Hill model
are consistent with continuum soil-transport theory, which
treats soil as a fluid with a downslope flow rate that depends
on slope gradient. Like the popular Andrews–Bucknam non-
linear transport law (e.g., Andrews and Bucknam, 1987;
Howard, 1994; Roering et al., 1999), the transport-limited
form of the Grain Hill model predicts diffusion-like behavior
in which the effective diffusivity increases with slope gradi-
ent, with an asymptote at a threshold angle (Fig. 10). In one
sense, the Grain Hill model is actually closer to the process
level than fluid-like continuum models, because net downs-
lope mass flux arises from a sequence of stochastic distur-
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bance events rather than being dictated by a macroscopic
transport law.

One limitation of the Grain Hill model is that its threshold-
like behavior arises from the lattice geometry: regolith cells
perched at a 30◦ angle above and to one side of an air cell
are treated as unconditionally unstable. Whereas the timing
of motion is treated as a stochastic process, the occurrence
of motion is inevitable (unless some other event occurs first).
This treatment neglects the possibility of frictional locking
among noncohesive grains at angles somewhat above 30◦, as
well as the possibility of cohesion. This limitation could be
overcome by introducing a probabilistic treatment of grain
stability: a grain aggregate will be stable with a given proba-
bility p, and unstable with probability 1−p. Such a treatment
would introduce an additional parameter, but this parameter
could in principle be estimated from physical experiments.
The addition of a “sticking rule” like this might also make
it possible for models with alternative lattice geometries to
manifest the same dynamics, thereby decoupling the basic
model framework from the geometry of the lattice on which
it is implemented.

The inclusion of rock-to-regolith conversion enables the
Grain Hill model to predict a continuum of slope forms from
fully soil mantled to intermittently covered to bare. However,
there are several limitations in the treatment of regolith pro-
duction that could be improved on. The weathering rule as-
sumes that regolith production can only occur when rock is
exposed to air, which obviously neglects the role of shallow
subsurface processes such as root or frost wedging. The ef-
fective weathering depth scale is the same as the disturbance
scale, and equal to the cell size. This assumption is probably
reasonable if the processes responsible for weathering and
disturbance were one and the same, but not if they are dis-
tinct processes with different length scales. The Grain Hill
model also does not account explicitly for chemical weather-
ing, which in some cases can extend well below the surface.
Finally, the model’s effective regolith-production behavior
does not follow the log-growth curve predicted by inverse-
exponential theory for a stable surface (Fig. 14). With these
caveats in mind, one advantage of the stochastic model of re-
golith production is that it effectively treats the disturbance
and regolith-production processes as being closely linked: all
else equal, the production rate is higher when disturbance is
more frequent.

The popular inverse-exponential model for regolith pro-
duction implies the existence of a speed limit to landscape
evolution: in the absence of rock landsliding, erosion rate
cannot exceed the maximum rate of rock-to-regolith conver-
sion. Moreover, the model implies the existence of a bare
landscape once the rate of erosion exceeds the maximum
rate of regolith production. Heimsath et al. (2012) found ev-
idence, however, that in fact there are additional stabilizing
mechanisms, and that these manifest in landscapes with thin,
patchy soils. The Grain Hill model is consistent with these
observations in that it predicts the natural emergence of a dis-

continuous regolith cover, with the fractional cover exerting
an influence on the average rate of weathering and erosion.
Furthermore, the model behavior highlights the importance
of slope length and roughness in modulating the regolith pro-
duction rate: all else equal, steeper or rougher slopes allow
higher production rates, leading to an additional feedback be-
tween relief and erosion rate for rocky hillslopes. The possi-
bility of rock collapse upon undermining by weathering pro-
vides another feedback mechanism that may allow rates of
erosion to exceed the flat-surface maximum regolith produc-
tion rate (Fig. 16).

The Grain Hill model also provides insight into transient
evolution of rocky slopes. Experiments on the relaxation of
rocky slopes that are steeper than the threshold angle predict
the formation of a regolith-mantled pediment at the angle
of repose, which extends upslope as the steep upper slope
gradually recedes (Fig. 17). This scarp–pediment morphol-
ogy emerges without any variation in material strength, re-
quiring only a period of base-level stability.

As a computational framework for exploring hillslope
forms, the Grain Hill model has the advantage that it pro-
vides a mechanistic link between events (disturbance and
weathering) and long-term morphologic evolution, without
the need to specify a flux law. The model has the further
advantage of being fully two dimensional, allowing distur-
bance and weathering events to initiate from the side as well
as vertically. A further key element is that the model can
mix timescales: a short timescale associated with grain mo-
tion, an intermediate timescale associated with disturbance
events, and a much longer timescale for slope evolution. Mix-
ing these disparate timescales in a single computer model is
made possible by the fact that most of the time grains are
stationary: the algorithm operates on small (stochastic) time
steps during those moments when grains are moving, and on
much longer steps when no grains are in motion (for fur-
ther information on the discrete-event algorithm behind the
model, see Tucker et al., 2016).

The Grain Hill framework has several important limita-
tions. It is not practical to simulate motion of individual
grains unless the spatial scale is quite limited (e.g., Fig. 6)
or the grains are unusually large (Fig. 18). If one wished to
model individual grains (of order, say, 10−3 m) at the scale
of a hillslope (of order 102 m), a much more efficient solu-
tion algorithm would be needed. Furthermore, the nature of a
cellular automaton is such that physical interactions are lim-
ited to adjacent cells only; long-distance effects such as stress
transmission cannot easily be represented. In one sense, the
restriction to short-range influence could be seen as an ad-
vantage, in that it forces one to think about how it is that
mass or energy is actually transmitted in a granular medium.
But the restriction means that well-known principles such as
solid-state stress cannot easily be represented. On the other
hand, the model does capture non-local transport, in which
particles set in motion can travel a distance comparable to
the slope length (Foufoula-Georgiou et al., 2010; Tucker and
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Bradley, 2010; Furbish and Roering, 2013). Non-local trans-
port emerges in the Grain Hill model when the slope angle
is near or above 30◦, such that there is a high probability
that a disturbed particle will land in an unstable location and
continue moving without the need for a second disturbance
event.

A further limitation concerns the fixed cell size. Because
the model is restricted to a fixed cell size, the Grain Hill
framework does not lend itself to treatment of multiple grain
sizes (apart from the simple “aggregates and blocks” ap-
proach illustrated in Fig. 18). Despite these limitations, the
Grain Hill model provides a useful framework for exploring
hillslope process and form in the context of stochastic events.

6 Conclusions

A continuous-time stochastic cellular automaton model
known as the Grain Hill model allows for computational
simulation of two-dimensional slope forms that arise from
stochastic disturbance and (possibly) weathering events. The
model operates on a hexagonal lattice, with cell states rep-
resenting fluid, rock, and grain aggregates that are either sta-
tionary or in a state of motion in one of the six cardinal lattice
directions. An optional additional state represents unusually
large grains (“blocks”) that cannot be displaced upward by
disturbance events.

The Grain Hill model is able to reproduce a range of
common slope forms, from fully soil mantled to rocky and
partially mantled. The bestiary of forms that the model can
produce includes convex-upward soil mantled slopes, planar
slopes (bare, soil mantled, or in between), and cliffs with
basal ramparts. When the model is configured to include a
resistant rock layer that decomposes into blocks, the model
reproduces observed hogback-like slope forms and qualita-
tively matches the behavior predicted by a recent continuum–
discrete model (Glade et al., 2017; Glade and Anderson,
2017).

In its simplest guise, the model has only three process
parameters, which represent disturbance frequency, charac-
teristic disturbance depth, and base-level lowering rate, re-
spectively. Incorporating physical weathering of rock adds
one additional parameter, representing the characteristic rock
weathering rate. These parameters are not arbitrary but rather
have a direct link with corresponding parameters in con-
tinuum theory. Comparison between observed and modeled
slope forms demonstrates that the model can reproduce both
the shape and scale of real hillslope profiles.

Experiments with the Grain Hill model highlight the im-
portance of regolith cover fraction in governing both the
downslope mass transport rate and the rate of physical weath-
ering. Equilibrium rocky hillslope profiles are possible even
when the rate of base-level lowering exceeds the nominal
bare-rock weathering rate, because increases in both slope
gradient and roughness can allow for rock weathering rates

that are greater than the flat-surface maximum. Finally, ex-
periments in transient relaxation of steep, rocky slopes pre-
dict the formation of a regolith-mantled pediment that mi-
grates headward through time while maintaining a sharp
slope break.

Code and data availability. The Grain Hill model is freely avail-
able in an open-source repository (Tucker, 2018b), as is the Landlab
toolkit (Hobley et al., 2017; Hutton et al., 2016). Videos showing
simulations of mesa and hogback evolution are also available as an
online resource (Tucker, 2018a).
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