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Abstract. The scaling and similarity of fluvial landscapes can reveal fundamental aspects of the physics driving
their evolution. Here, we perform a dimensional analysis of the governing equation of a widely used landscape
evolution model (LEM) that combines stream-power incision and linear diffusion laws. Our analysis assumes
that length and height are conceptually distinct dimensions and uses characteristic scales that depend only on the
model parameters (incision coefficient, diffusion coefficient, and uplift rate) rather than on the size of the domain
or of landscape features. We use previously defined characteristic scales of length, height, and time, but, for the
first time, we combine all three in a single analysis. Using these characteristic scales, we non-dimensionalize
the LEM such that it includes only dimensionless variables and no parameters. This significantly simplifies the
LEM by removing all parameter-related degrees of freedom. The only remaining degrees of freedom are in the
boundary and initial conditions. Thus, for any given set of dimensionless boundary and initial conditions, all
simulations, regardless of parameters, are just rescaled copies of each other, both in steady state and through-
out their evolution. Therefore, the entire model parameter space can be explored by temporally and spatially
rescaling a single simulation. This is orders of magnitude faster than performing multiple simulations to span
multidimensional parameter spaces.

The characteristic scales of length, height and time are geomorphologically interpretable; they define relation-
ships between topography and the relative strengths of landscape-forming processes. The characteristic height
scale specifies how drainage areas and slopes must be related to curvatures for a landscape to be in steady state
and leads to methods for defining valleys, estimating model parameters, and testing whether real topography
follows the LEM. The characteristic length scale is roughly equal to the scale of the transition from diffusion-
dominated to advection-dominated propagation of topographic perturbations (e.g., knickpoints). We introduce a
modified definition of the landscape Péclet number, which quantifies the relative influence of advective versus
diffusive propagation of perturbations. Our Péclet number definition can account for the scaling of basin length
with basin area, which depends on topographic convergence versus divergence.

1 Introduction

Hillslopes and river valleys are organized in striking pat-
terns that appear to be repeated across landscapes and scales.
Furthermore, within each landscape the transition from hill-
slopes to valleys seems to occur at a characteristic scale.
These two properties have captivated scientists from the early
days of geomorphology (e.g., Gilbert, 1877; Davis, 1892).
Both properties are thought to be related to the scaling of

processes that shape fluvial landscapes (e.g., Perron et al.,
2008, 2012; Paola et al., 2009).

Scaling problems are often studied with the aid of di-
mensional analysis (e.g., Sonin, 2001; Bear and Cheng,
2010), which stems from Fourier’s principle that all terms
of physically meaningful equations should have consistent
dimensions (Huntley, 1967). Dimensional analyses of land-
scape evolution models (LEMs) have been used to describe
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how the relative strengths of landscape-forming processes
control properties of ridge and valley topography, such as
drainage density (Willgoose et al., 1991), shapes of basins
(Howard, 1994), the fluvial relief of mountains (Whipple
and Tucker, 1999), topographic roughness (Simpson and
Schlunegger, 2003), valley spacing (Perron et al., 2008,
2009), and drainage areas of first- and second-order valleys
(Perron et al., 2012). The aforementioned studies used LEMs
that, while differing in details, all assumed that fluvial land-
scapes are shaped by a combination of advective and diffu-
sive erosion, with the former dominating valleys and the lat-
ter dominating hillslopes.

Here, we present a dimensional analysis of the governing
equation of a simple, widely used LEM (see Eq. 1 below).
Our work is based on two key premises. First, we define
characteristic scales from the model parameters, rather than
from extrinsic properties of the simulated landscape, such
as the domain size or relief. Characteristic scales defined in
this way are intrinsic to each landscape and its parameters
(and thus to its underlying properties and to the strengths of
the processes that shape it), and are independent of the ini-
tial and boundary conditions of any simulation. Second, in
our approach we distinguish between the dimensions of hor-
izontal length and vertical height. These two premises are
not new (e.g., Willgoose et al., 1991; Whipple and Tucker,
1999; Perron et al., 2008; Robl et al., 2017), but here, for the
first time, we apply them jointly to define and interpret all of
the characteristic scales in this LEM. In so doing, we obtain
three characteristic scales – a characteristic length, height,
and time – that significantly simplify the model’s governing
equation. These characteristic scales are also geomorpholog-
ically interpretable, linking competition between processes
to the scales of the features that emerge from these processes.

Our specific results directly apply only to the LEM that
we dimensionally analyzed and to the landscapes that we can
assume to be described by this LEM. However, our work il-
lustrates an approach for the definition and interpretation of
characteristic scales that could potentially be employed in di-
mensional analyses of other LEMs as well.

2 Theory

2.1 Landscape evolution model

We perform a dimensional analysis of a simple, widely used
model that describes the evolution of landscapes under the
influence of stream-power incision, linear diffusion, and up-
lift, according to the governing equation

∂z

∂t
=−K

√
A |∇z| +D∇2z+U (1)

(e.g., Howard, 1994; Dietrich et al., 2003), where z(x, y) is
the elevation of a point with horizontal coordinates (x, y), t is
time and ∂z/∂t is the rate of change of elevation;K is the co-
efficient of incision, A is the drainage area (per unit contour

width) at the point (x, y), |∇z| is the norm of the gradient
of z (i.e., the topographic slope in the direction of steepest
descent, to which the gradient vector points by definition);
D is the coefficient of diffusion, ∇2z is the Laplacian of z
(i.e., the topographic curvature, here assumed to be positive
in concave-up areas, e.g., valleys, and negative in concave-
down areas, e.g., hillslopes); and U is the uplift rate. The
dimensions of the variables and parameters of Eq. (1) are
discussed in the following subsection, which focuses on di-
mensional analysis.

The incision term −K
√
A |∇z| gives the rate of change

of elevation due to detachment-limited sediment transport by
flowing water, assumed to be proportional to stream power,
i.e., the work performed by water per unit time per unit
streambed area (Dietrich et al., 2003). The incision term of
Eq. (1) is a specific case of the more general incision term
−KAm(|∇z|)n, which can take on different drainage area and
slope exponents m and n in order to express more general
incision behavior (e.g., Dietrich et al., 2003). Here, we as-
sume m= 0.5 and n= 1, in keeping with the stream-power
law and with the common assumptions that discharge scales
linearly with drainage area and that channel width scales
with the square root of drainage area, but in Appendix A we
present results from a dimensional analysis of the same LEM
with generic exponents m and n (Eq. A1). We show that all
the results and interpretations that we derived from the sim-
plified LEM (Eq. 1), which we present in the main text, can
be recovered from results of the generic LEM (Eq. A1) by
settingm=0.5 and n=1. We do not present any results or in-
terpretations that do not satisfy this condition. In other words,
our results are not merely properties of a special case; we
just describe them by simpler formulas whose presentation
and interpretation is straightforward. Additionally, the inci-
sion term could include a threshold, below which no incision
occurs (e.g., Dietrich et al., 2003; Perron et al., 2008). We
investigate the scaling behavior of an LEM with an incision
term with a non-zero incision threshold in other work, to be
published separately.

The diffusion term D∇2z gives the rate of change of ele-
vation due to diffusive sediment transport processes, such as
soil creep due to bioturbation and freeze–thaw cycles. The
diffusion term is linear and assumes that the flux of sediment
is proportional to the topographic slope (Fernandes and Diet-
rich, 1997). Depending on the sign of the curvature, this term
can be either negative or positive, corresponding to erosional
diffusion on ridges and hillslopes or depositional diffusion in
valleys.

The term U gives the rate of increase of elevation relative
to the boundary due to either a falling base level or tectonic
uplift of the domain’s interior. Throughout this paper, we re-
fer to both effects as uplift since they are mathematically in-
distinguishable.

If a landscape evolves to a condition in which, at every
point, the three terms of the right-hand side of Eq. (1) cancel
each other out, then ∂z/∂t = 0 everywhere; this condition is
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termed steady state or dynamic equilibrium. Numerical sim-
ulations are typically assumed to have converged to steady
state when the rate of elevation change is smaller than an ar-
bitrary, small threshold ε:

|∂z/∂t | ≤ ε, ∀ (x,y) . (2)

Equation (1) is presumed to describe soil-mantled land-
scapes with sufficiently cohesive soils and gentle slopes,
where we can assume that incision is detachment-limited and
diffusion is linear (e.g., Perron et al., 2008). Other types of
landscapes are shaped by processes that cannot be described
by Eq. (1). For example, diffusive processes on steep soil-
mantled hillslopes are better described by a nonlinear diffu-
sion term (e.g., Roering et al., 1999, 2007).

Equation (1) assumes that all three processes act at all
points of the landscape, without distinguishing between
channels or hillslopes (e.g., Howard, 1994; Simpson and
Schlunegger, 2003). All three terms are needed to model flu-
vial landscapes. Uplift fulfills the role of the source term,
forcing the evolution of the landscape (e.g., Tucker and Han-
cock, 2010). Without it, the landscape would decay to a
flat surface of zero elevation. The combination of the inci-
sion and diffusion terms is necessary for the emergence of
ridges and valleys. Whereas the incision term amplifies topo-
graphic perturbations, setting in motion a positive feedback,
the diffusion term dampens them, leading to a negative feed-
back (e.g., Smith and Bretherton, 1972; Perron et al., 2012).
Both types of feedback are needed for the synthesis of sur-
faces with complex structures that resemble ridge and val-
ley topography; therefore, the incision and diffusion terms of
Eq. (1), or other terms with equivalent properties, represent
the simplest combination of processes that can model land-
scapes characterized by ridge and valley topography (e.g.,
Smith and Bretherton, 1972; Howard, 1994). Because dif-
ferent points have different topographic properties (drainage
area, slope, and curvature), the modeled incision and dif-
fusion processes have different relative strengths across the
landscape. Thus, even though distinct convergent (channel)
and divergent (hillslope) landforms are not specified a priori,
they can emerge from Eq. (1) (e.g., Howard, 1994), at scales
that can be explored using dimensional analysis (e.g., Perron
et al., 2008, 2009, 2012).

2.2 Dimensional analysis

Our dimensional analysis of Eq. (1) begins by specifying the
dimensions of its various variables. We will rescale Eq. (1)
in the horizontal direction separately from the vertical direc-
tion so that we can study scaling of lengths and reliefs sepa-
rately (e.g., Dietrich and Montgomery, 1998). Therefore, we
must assume that the coordinates of points (x, y) have di-
mensions of length (L), while elevation z has an equivalent,
but conceptually distinct, dimension of height (H). Hunt-
ley (1967) outlined a theoretical justification for distinct di-
mensions for quantities with identical units and presented ex-

amples demonstrating the benefits of this approach. Distinct
dimensions of length and height have been adopted by some
previous studies of scaling of landscapes (e.g., Willgoose et
al., 1991) but using different approaches than the one out-
lined below. The three fundamental dimensions in this model
are length (L), height (H), and time (T), and all variables
of Eq. (1) have dimensions that are powers, products, or ra-
tios of L, H, and T. Specifically, the rate of elevation change
∂z/∂t and, thus, also the incision, diffusion, and uplift terms
of Eq. (1) have dimensions of H T−1. Given that the gradient
|∇z| and the curvature ∇2z have dimensions of H L−1 and
H L−2, respectively, the parameters K , D, and U must have
dimensions of T−1, L2 T−1, and H T−1, respectively.

Because the dimensions of all variables of Eq. (1) can be
expressed in terms of L, H, and T, we can non-dimensionalize
Eq. (1) using a characteristic length lc, a characteristic height
hc, a characteristic time tc, and combinations thereof. For im-
portant reasons that are discussed throughout this study, we
choose to define lc, hc, and tc as intrinsic scales, i.e., in terms
of the model’s parametersK ,D, and U , not in terms of sizes
of geomorphic features, such as basin length (e.g., Willgo-
ose et al., 1991; Whipple and Tucker, 1999) or total relief
(e.g., Whipple and Tucker, 1999; Perron et al., 2008), or in
terms of the extent of the solution domain (e.g., Simpson and
Schlunegger, 2003).

We define the characteristic length scale as

lc :=
√
D/K, (3)

which has dimensions of length. Perron et al. (2008) showed
that
√
D/K is related to the competition between incision

and diffusion and that it controls the scales of valley spacing
(Perron et al., 2009) and valley-network branching (Perron
et al., 2012). The quantity

√
D/K has also previously been

used to non-dimensionalize LEMs (e.g., Duvall and Tucker,
2015).

We introduce a characteristic height scale

hc := U/K, (4)

which has dimensions of height, and a characteristic
timescale

tc := 1/K, (5)

which has dimensions of time (these characteristic scales are
equivalent to those presented by Robl et al. (2017) using a
somewhat different formulation). The U/K ratio has been
previously used in several different contexts. For instance,
(U/K)1/n, where n is the slope exponent, is the steady-
state value (e.g., Moglen and Bras, 1995; Sklar and Dietrich,
1998) of the steepness index (e.g., Whipple, 2001), which has
been used to analyze river profiles and predict ridge migra-
tion dynamics (e.g., Wobus et al., 2006; Harkins et al., 2007;
Whipple et al., 2017). It has also been previously noted that
the U/K ratio scales relief (e.g., Sklar and Dietrich, 1998;
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Perron and Royden, 2013; Willett et al., 2014). To the best
of our knowledge, however, previous dimensional analyses
have not used U/K as a characteristic height scale to non-
dimensionalize landscape evolution equations.

The characteristic scales of length, height, and time lc, hc,
and tc, as defined above (Eqs. 3–5), have not been previously
combined to non-dimensionalize landscape evolution equa-
tions. Here, we adopt them as a group on purely dimensional
grounds because Eqs. (3), (4), and (5) define the only com-
binations of D, K , and U that yield dimensions of L, H,
and T, respectively. However, in Sect. 4 we also show that
these characteristic scales have interesting geomorphologi-
cal properties that further justify defining them according to
Eqs. (3)–(5).

In Appendix A, we define analogous characteristic scales
for an LEM with generic exponents m and n. In this more
general case, each of the three characteristic scales depends
on all three parameters K , D, and U .

Using the characteristic scales lc, hc, and tc, we can ex-
press length, height, and time in equivalent dimensionless
forms:

x = lcx
∗, y = lcy

∗, z= hcz
∗, t = tct

∗, (6)

where the starred variables are dimensionless. Likewise, we
can express each term of Eq. (1) as a corresponding di-
mensionless term multiplied by characteristic scales (or their
products and ratios) which carry the corresponding dimen-
sions.

Specifically, each differential (here using dz as an exam-
ple) can be re-expressed as

dz= hcdz∗. (7)

Consequently, we can express the rate of elevation change as

∂z

∂t
=
hc

tc

∂z∗

∂t∗
= U

∂z∗

∂t∗
, (8)

which suggests that we can view the uplift rateU as a charac-
teristic rate of elevation change. Furthermore, we can express
the gradient operator as

∇ =
∂

∂x
i+

∂

∂y
j =

1
lc

(
∂

∂x∗
i+

∂

∂y∗
j

)
=

1
lc
∇
∗, (9)

where i and j are the unit vectors in the direction of the x
and y coordinates and ∇∗ is the gradient operator in dimen-
sionless coordinates. Therefore, we can express topographic
slope as

|∇z| =
1
lc

∣∣∇∗ (hcz
∗
)∣∣=Gc

∣∣∇∗z∗∣∣ , (10)

where Gc is a characteristic gradient defined as

Gc :=
hc

lc
=

U
√
DK

. (11)

Our characteristic gradient Gc should not be confused with
the critical slope Sc used in a nonlinear diffusion law (e.g.,
Roering et al., 1999). Likewise, we can express topographic
curvature as

∇
2z=

1
l2c
∇
∗ 2 (hcz

∗
)
= κc∇

∗ 2z∗, (12)

where κc is a characteristic curvature defined as

κc :=
hc

l2c
=
Gc

lc
= U/D. (13)

Our characteristic curvature should not be confused with the
contour curvature, also denoted as κc elsewhere (e.g., Per-
ron et al., 2012). The negative of U/D has been previously
shown to describe the steady-state curvature of hilltops and
drainage divides (e.g., Roering et al., 2007; Perron et al.,
2009). Finally, given that areas scale as the square of lengths,
we can express drainage area as (e.g., Perron et al. 2008,
2012)

A= l2cA
∗
= AcA

∗, (14)

where Ac is a characteristic area, defined as

Ac := l
2
c =D/K. (15)

Substituting Eqs. (6), (8), (10), (12), and (14) into the gov-
erning equation (Eq. 1) yields(
hc∂z

∗
)
/
(
tc∂t
∗
)
=−K

√
AcA∗Gc

∣∣∇∗z∗∣∣+Dκc∇
∗ 2z∗+U,

which can be simplified to the dimensionless form

∂z∗

∂t∗
=−
√
A∗
∣∣∇∗z∗∣∣+∇∗ 2z∗+ 1. (16)

Equation (16) includes only dimensionless variables and
no parameters. Because Eq. (16) has no parameters to be ad-
justed, for a given set of boundary and initial conditions, it
will have only one steady-state solution, which will be ar-
rived at via only one path of evolution. This implies that
all simulated landscapes with any parameters (but properly
rescaled domains, boundary conditions, and initial condi-
tions) will evolve as rescaled replicas of each other because
they can all be reduced to Eq. (16) through rescaling by the
characteristic scales lc, hc, and tc. We explore this rescaling
property in length in Sect. 3 and in Appendix B.

Alternative dimensionless forms of Eq. (1) can reveal
properties of the LEM that are not revealed by Eq. (16).
For example, Perron et al.’s (2008) Eq. (19) was derived
using the domain half width as a characteristic length and
the steady-state maximum relief as a characteristic height. In
this way, Perron et al.’s (2008) dimensionless equation in-
cludes information about the domain size and the initial con-
ditions (which influence the final relief; e.g., Howard, 1994);
therefore, that equation highlights the dependence of its so-
lutions on the domain size and the initial conditions. Perron
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et al.’s (2008) Eq. (19) is equivalent to our Eq. (16) if one can
express the domain size and relief in terms of lc and hc, but
the relationships between these two different pairs of scales
will vary for different landscape configurations arising from
different initial and boundary conditions.

Likewise, Eq. (16) does not reveal that flow-routing algo-
rithms, and thus LEM solutions, can be resolution-dependent
if the channel width w is smaller than the mesh resolution δ
(e.g., Pelletier, 2010). This dependence can be minimized by
including the factor δ/w in the diffusion term (e.g., Pelletier,
2010) or the factor w/δ in the incision term (e.g., Perron et
al., 2008). Equation (16) does not include such factors. How-
ever, the rescaling of domains (detailed in Sect. 3) guarantees
that both w and δ scale with lc; this guarantees that the res-
olution dependence of model solutions is consistent across
rescaled landscapes.

The fact that Eq. (16) includes no parameters has an ad-
ditional important implication. One can use the factors that
appear in front of terms of a dimensionless equation to infer
the relative importance of each term (e.g., Huntley, 1967). In
the case of Eq. (16), all such factors are equal to 1, which
implies that none of the terms of this LEM (Eq. 1) is negligi-
ble everywhere across a landscape. In other words, each term
may be dominant at some points of a landscape, depending
on the local values of drainage area A, slope |∇z|, and curva-
ture ∇2z, even if it is negligible elsewhere. Therefore, none
of the terms of Eq. (1) can be dropped purely on grounds of
process dominance.

We can rewrite Eq. (16) in a form that reveals what con-
trols the relative dominance of each process across a land-
scape. Specifically, the dimensionless quantities of Eq. (16)
are equal to the ratio of the corresponding dimensional quan-
tities over appropriate characteristic scales (Eqs. 8, 10, 12,
and 14). Therefore, we can rewrite Eq. (16) as

∂z/∂t

U
=−

√
A
√
Ac

|∇z|

Gc
+
∇

2z

κc
+ 1. (17)

Equation (17) is exactly equivalent to Eq. (16) but helps
illuminate different properties of the model. Specifically,
Eq. (17) shows that the relative contributions of each of the
topographic properties A, |∇z|, and ∇2z are equal to their
ratios over the corresponding characteristic scales Ac, Gc,
and κc. The ratios in Eq. (17), or other, equivalent groupings
of variables and parameters, could be defined as dimension-
less numbers. Often, dimensional analyses use dimensionless
numbers to express the relative contributions of processes. In
the case of landscape evolution models, examples of such di-
mensionless numbers are uplift numbers (e.g., Whipple and
Tucker, 1999) and Péclet numbers (e.g., Perron et al., 2008).
Equation (17) expresses how such dimensionless numbers
emerge from the dimensionless governing equation.

3 Scaling and similarity of landscapes

The dimensionless form of the governing equation (Eq. 16)
implies that landscapes with any parameters but with prop-
erly rescaled boundary and initial conditions (see immedi-
ately below what we term as “proper” rescaling) will evolve
in such a way that snapshots of these landscapes at prop-
erly rescaled moments in time will be (horizontally and ver-
tically) rescaled copies of each other. In other words, the evo-
lution of these landscapes will obey temporal and geomet-
ric similarity. This, in turn, implies that such landscapes will
reach geometrically similar steady states.

We consider domains, elevations, and time to be properly
rescaled if they are equivalent when normalized by the char-
acteristic scales of length, height, and time lc, hc, and tc,
respectively. For instance, let a landscape have parameters
K , D, and U , and a second landscape have parameters K ′,
D′, and U ′. Variables and characteristic scales of the second
landscape are primed to match the notation of its parameters.
Domains are properly rescaled when pairs of points with di-
mensional coordinates (x, y) and (x′, y′) correspond to the
same point with dimensionless coordinates (x∗, y∗). Thus,

x′
∗
= x∗⇔ x′/l′c = x/lc⇔ x′ =

(
l′c/lc

)
x, (18a)

and, likewise,

y′ =
(
l′c/lc

)
y. (18b)

Likewise, elevations are properly rescaled when dimensional
elevations z and z′ at equivalent points (x, y) and (x′, y′) cor-
respond to the same dimensionless elevation z∗ at (x∗, y∗),
such that

z′ =
(
h′c/hc

)
z, (18c)

and two moments in time t and t ′ are properly rescaled when
they correspond to the same moment in dimensionless time
t∗ such that

t ′ =
(
t ′c/tc

)
t. (18d)

We should point out that simulations of these two
landscapes will reach geometrically similar steady states
only if we rescale the threshold ε in the steady-state
criterion of Eq. (2). Specifically, we assume that the
two landscapes have reached numerical steady states
that satisfy the criteria |∂z/∂t | ≤ ε and

∣∣∂z′/∂t ′ ∣∣≤
ε′. Using Eq. (8) we see that in the dimensionless
coordinate system of Eq. (16) these criteria become
|U (∂z∗/∂t∗) | ≤ ε⇔ | (∂z∗/∂t∗) | ≤ ε/U := ε∗ and, like-
wise,

∣∣U ′ (∂z∗/∂t∗) ∣∣≤ ε′⇔ | (∂z∗/∂t∗) | ≤ ε′/U ′ := ε′∗. If
the two numerical steady states are geometrically similar,
then they must be satisfying the same dimensionless crite-
rion, i.e., ε′∗ = ε∗, which leads to a steady-state threshold
rescaling formula:

ε′/U ′ = ε/U ⇔ ε′ =
(
U ′/U

)
ε. (19)
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Table 1. List of symbols (in the order they appear).

Symbol Dimensions Description Definition
(L: length, or first use
H: height,
T: time)

(x, y) L Horizontal coordinates Eq. (1)
z H Elevation Eq. (1)
t T Time Eq. (1)
K T−1 Incision coefficient Eq. (1)
D L2 T−1 Diffusion coefficient Eq. (1)
U H T−1 Uplift rate Eq. (1)
A L2 Drainage area Eq. (1)
|∇z| H L−1 Topographic slope Eq. (1)
∇

2z H L−2 Curvature Eq. (1)
m – Drainage area exponent Eq. (A1)
n – Slope exponent Eq. (A1)
ε H T−1 Steady-state threshold Eq. (2)
lc L Characteristic length Eq. (3)
hc H Characteristic height Eq. (4)
tc T Characteristic time Eq. (5)
(x∗, y∗), z∗, ∇∗, etc. – Dimensionless variables, operators, etc. Eq. (16)
i, j L Unit vectors Eq. (9)
Gc H L−1 Characteristic gradient Eq. (11)
κc H L−2 Characteristic curvature Eq. (13)
Ac L2 Characteristic area Eq. (15)
K ′, x′, lc′, etc. Parameters, variables, scales, etc., of the Eq. (18)

second of a pair of rescaled landscapes
uc L T−1 Characteristic horizontal velocity Eq. (20)
hI H Incision height Eq. (21)
hD H Diffusion height Eq. (22)
ks H Steepness index ks = A

m/n |∇z|

κthr H L−2 Curvature threshold for valley definition Sect. 4.1.4
hthr H Incision height threshold for valley definition hthr = l

2
c κthr+hc

Pe – Péclet number Eq. (36)
c L T−1 Kinematic wave celerity c =K

√
A

l L Length scale Sect. 4.2
tI T Incision time Eq. (34)
tD T Diffusion time Eq. (35)
p – Exponent of drainage area in scaling relationship Sect. 4.2.3

with flow path length

In the following subsections we use a numerical model
to demonstrate the temporal and geometric similarity of
rescaled landscapes that is implied by the dimensionless gov-
erning equation (Eq. 16). In addition, in Appendix B we out-
line a simple analytical proof of this similarity property. That
proof suggests that rescaling works only if we rescale ini-
tial conditions (elevations) by hc. This implies that rescaling
works only if lc and hc are defined separately, i.e., only if we
assume distinct dimensions for lengths and heights.

3.1 Numerical demonstration

3.1.1 Model setup

We used the Channel-Hillslope Integrated Landscape Devel-
opment (CHILD) model (Tucker et al., 2001) to numerically
demonstrate the similarity property revealed by the dimen-
sionless governing equation (Eq. 16). We chose CHILD due
to its wide use by the geomorphologic community and due
to the fact that it uses triangular irregular networks (TINs),
which avoid the geometric bias of regular grids (e.g., Braun
and Sambridge, 1997). We selected CHILD modules and pa-
rameters such that CHILD would simulate Eq. (1). Specif-
ically, we selected CHILD’s detachment-limited incision
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Table 2. Parameters and resulting characteristic scales of the three landscapes presented in Figs. 1–5. Landscape B, the baseline landscape,
has parameters with typical values (e.g., Perron et al., 2008; Tucker, 2009; Clubb et al., 2016). We use the baseline landscape to demonstrate
properties of height and length scales in Figs. 7–10.

Parameters, Units Landscape A Landscape B Landscape C
characteristic scales (baseline)

K , a−1 10−5 10−6 10−7

incision coefficient
D, m2 a−1 10−3 10−2 10−1

diffusion coefficient
U , m a−1 10−5 10−4 2.5× 10−5

uplift rate
lc =
√
D/K , m 10 100 1000

characteristic length
hc = U/K , m 1 100 250
characteristic height
tc = 1/K , a 105 106 107

characteristic time
Ac = l

2
c , m2 102 104 106

characteristic area
Gc = hc/lc, m m−1 0.1 1 0.25
characteristic gradient
κc = Sc/lc = h

2
c/lc, m m−2 10−2 10−2 2.5× 10−4

characteristic curvature

module, with constant, uniform precipitation, along with lin-
ear diffusion and uniform uplift (see Tucker et al., 2001, and
Tucker, 2010, for definitions of CHILD’s assumptions, mod-
ules, and parameters). In Appendix C we present in more
detail how we set up our CHILD simulations and how we
retrieved our results from CHILD’s output files.

We ran simulations using multiple combinations of the
model parameters K , D, and U . We chose baseline param-
eter values of K = 10−6 a−1, D = 10−2 m2 a−1, and U =

10−4 ma−1, which are typical in the literature (e.g., Perron
et al., 2008; Tucker, 2009; Clubb et al., 2016), and we varied
each parameter by 2 orders of magnitude around its baseline
value in a total of 34 parameter combinations.

We applied these parameter combinations on rescaled
copies of two random, dimensional TINs. In Appendix C1.2
we describe how we prepared the rescaled TINs. Domain size
was 200 lc by 400 lc with an average mesh edge of 0.8 lc, re-
sulting in approximately 150 000 TIN vertices. Initial eleva-
tions were a uniform white noise, ranging between 0 and 0.1
hc. For each simulation we calculated lc and hc according to
Eqs. (3) and (4), respectively. We rescaled the horizontal TIN
coordinates and initial elevations according to Eqs. (18a–c).

Simulation time step lengths were not explicitly rescaled.
Rather, we defined simulation time step lengths using
Courant–Friedrichs–Lewy criteria (Refice et al., 2012) as de-
scribed in Appendix C (Eq. C3). As seen in Eq. (C4), it turns
out that the resulting time step lengths were in effect rescaled
by tc due to the dependence of the Courant–Friedrichs–Lewy
criteria on rescaled variables.

We ran simulations until they reached numerical steady
states, which we defined using rescaled steady-state thresh-
olds according to Eq. (19). We compared the resulting land-
scapes during their evolution and at their steady states.

3.1.2 Numerical results

The numerical results confirmed the rescaling properties of
the dimensionless governing equation (Eq. 16). Simulations
which were run on rescaled versions of the same random
TIN evolved similarly in space and time. Specifically, at time
steps rescaled by tc (Eq. 18d), elevations of corresponding
points across simulations could be rescaled by hc (Eq. 18c)
Furthermore, if steady-state criteria were rescaled according
to Eq. (19), then simulations reached geometrically similar
steady states.

In Figs. 1 and 2 we present steady-state results for
three landscapes (our baseline and two alternatives), and in
Figs. 3–5 we present transient results during their evolution.
These figures illustrate the geometric and temporal similar-
ity of these landscapes. The parameter combinations of these
three landscapes are a subset of all the combinations that
we used; their values can be seen in Table 2. We are pre-
senting these specific combinations for demonstration pur-
poses as they lead to wide ranges of lc and hc. However, all
the other parameter combinations that we tested also yielded
landscapes that exhibited temporal and geometric similarity.

In Fig. 1 we show steady-state shaded relief maps, and in
Fig. 2 we show elevation maps and transects. In both fig-
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Figure 1. Horizontal similarity of rescaled landscapes. Steady-state shaded relief maps demonstrate the horizontal geometric similarity of
three landscapes with widely varying parameters but properly rescaled domains (see Eq. 18 for definition of proper rescaling). We label axes
in units of each landscape’s characteristic length lc (on the bottom axis and on the right axis, in normal fonts) and in kilometers (on the top
axis and on the left axis, in bold fonts) to highlight the similarity of the three landscapes despite their very different sizes. The landscapes
are shown in order of increasing lc from left to right. Notice that the sizes of the three simulated domains differ by factors of 10 in units
of kilometers but are identical in units of lc. Lengths and heights scale separately. This leads to different characteristic gradients Gc across
landscapes, manifested as varying grayscale intensity ranges. Despite these pronounced differences in gradients, the three landscapes are
geometrically similar in plan view.

ures, lc and hc increase from left to right. We vary lc and hc
separately; thus, the characteristic gradient Gc does not vary
monotonically from left to right. In Fig. 2, the thick black
lines in the top panels mark transects corresponding to the
elevation profiles in the bottom panels and pass through the
highest peaks of the simulated landscapes. The coloring and
labeling of Figs. 1 and 2 highlight both the large differences
of scale and the geometric similarity of the three rescaled
landscapes. For comparison, lengths and elevations on axes
and color bars are shown both in units of kilometers or me-
ters using bold fonts and in units of lc or hc using normal
fonts. Note that the lc and hc values for different landscapes
are different as they depend on the model parameters. Color
scales of elevation maps in Fig. 2 are rescaled by hc to assist
with comparing the elevations of features.

In the shaded relief maps of Fig. 1, the spatial pattern of
ridges and valleys is identical across the three landscapes, il-
lustrating their horizontal geometric similarity, although their
shaded relief contrast varies, reflecting their different char-
acteristic gradients Gc. Likewise, in the elevation maps of
Fig. 2, the spatial pattern of colors is identical across the three
landscapes. This illustrates that the three landscapes are ge-

ometrically similar both horizontally and vertically because
the color scales are rescaled by hc. Finally, the horizontal and
vertical geometric similarity of the three landscapes is illus-
trated also by the shapes of the transects of Fig. 2.

The geometric similarity of the three steady-state land-
scapes is exact, not just visually convincing. Our domain
rescaling procedure does not affect the point IDs of the TIN
vertices, so we can directly compare corresponding points
using their IDs. In these simulated landscapes, the maximum
absolute difference in dimensionless elevations z∗ of corre-
sponding points was less than 10−9 units of hc.

Figures 3–5 show shaded relief maps, elevation maps, and
transects for four snapshots in time during the evolution of
the three landscapes. Each column shows snapshots of the
three landscapes that correspond to the same moment in
dimensionless time (but different moments in dimensional
time), with time increasing from left to right. Each row shows
the evolution of one landscape, with one set of model param-
eters. As in Figs. 1 and 2, lengths and elevations on axes
and color bars in units of kilometers or meters are shown
in bold, and the corresponding values in units of lc or hc
are shown in normal font for comparison. Labels above each
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Figure 2. Vertical similarity of rescaled landscapes. Steady-state elevation maps and transects demonstrate the vertical geometric similarity
of the three landscapes of Fig. 1. We color the maps by elevation with color scales that are rescaled by each landscape’s characteristic height
hc using a color map distributed with the SIGNUM model (Refice et al., 2012). Notice that across color scales, each color corresponds to
the same elevation value in units of hc but to different elevation values in meters. Therefore, the fact that the color patterns are identical
reveals the vertical similarity of the landscapes. Transects corroborate the vertical similarity. Transects pass through the highest peak of the
landscapes and are marked on the maps with thick black lines. Note that elevations measured in units of hc (in normal fonts) are the same,
while elevations measured in meters (in bold fonts) are different. The landscapes are shown in order of increasing lc from left to right. (The
ranges of elevation in map color scales and transect z axes match those of Figs. 4 and 5.)

snapshot show time in millions of years (in bold fonts) and
in units of tc (in normal fonts). Color scales of elevation
maps in Fig. 4 are rescaled by hc to assist with comparing
the elevations of features. For each landscape, we use one
color scale that remains constant in time to highlight how re-
lief evolves. Each landscape’s color scale is set to match the
highest elevation among the four snapshots. We use differ-
ent color scales for different landscapes and rescale them by
hc to facilitate comparison of features across landscapes. Vi-
sual comparison shows the three landscapes to be temporally
similar, since at the same moments in properly rescaled time

they are in geometrically similar transient states. Note that
lc and hc are different across landscapes, but for each land-
scape, they are constant in time. Note also that the snapshots
that we present are not equally spaced in time because these
landscapes evolve rapidly at first and much more slowly later.

As in the case of steady-state landscapes, the temporal and
geometric similarity of the three evolving landscapes is ex-
act, not just visually convincing. Throughout the evolution
of the three landscapes, the maximum absolute difference in
dimensionless elevations z∗ of corresponding points at cor-
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Figure 3. Temporal similarity of evolving, rescaled landscapes. We compare the evolution of the three landscapes of Fig. 1 using shaded
relief maps drawn at four properly rescaled moments in time (see Eq. 18d for definition of proper rescaling of time). The comparison shows
that, at rescaled moments in time, the horizontal patterns of the landscapes are geometrically similar (and geometrically identical in units
of lc). Each row shows four snapshots of a given landscape. The fourth column shows steady-state landscapes, i.e., those of Fig. 1. The
snapshots that appear in each vertical column correspond to the same moment in rescaled time. Values of time in units of tc are the same
along each column (labels in normal fonts), while the values of time in years vary (labels in bold fonts). Time increases from left to right, and
horizontal scale increases from top to bottom. Lengths and heights scale separately; this leads to different characteristic gradients Gc across
landscapes, manifested as varying grayscale intensity ranges across rows.
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Figure 4. Temporal, horizontal, and vertical similarity of evolving, rescaled landscapes. We compare elevation maps of the three evolving
landscapes of Fig. 2, using the same snapshots as in Fig. 3 and the same layout (i.e., landscapes sorted by row, rescaled times sorted
by column). Color maps are rescaled by each landscape’s characteristic height, hc. The comparison illustrates the horizontal and vertical
geometric similarity of the landscapes at rescaled moments in time. For each landscape (i.e., across each row), we use a single color scale,
constant in time, to show how elevations (rescaled by each landscape’s characteristic height hc) evolve. The fact that the color patterns are
identical within each column reveals the vertical component of the temporal and geometric similarity of the landscapes. Thick black lines
mark the transects shown in Fig. 5. The fourth column shows steady-state landscapes, i.e., those of Fig. 2.
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Figure 5. Temporal and vertical similarity of evolving, rescaled landscapes. Transects of the three evolving landscapes of Fig. 2 corroborate
the vertical component of their temporal and geometric similarity. We use the same snapshots as in Figs. 3 and 4 with the same layout (i.e.,
landscapes sorted by row, rescaled times sorted by column). The rescaled transects are identical along each column, demonstrating the exact
temporal and geometric similarity of the rescaled landscapes. Transects pass through the highest peak of the steady-state landscapes and are
marked on the maps of Fig. 4 with thick black lines. The fourth column shows steady-state transects, i.e., those of Fig. 2.

responding moments of dimensionless time is less than 10−7

units of hc.

3.2 Implications of temporal and geometric similarity

3.2.1 Deducing how model parameters control
landscape metrics

The geometric similarity of rescaled landscapes implies that
all horizontal coordinates (x, y) and elevations z, and thus
all lengths and heights, will be rescaled by the characteristic
length and height scales lc and hc, respectively, according to
Eq. (18a–c). Likewise, the temporal similarity of the evolu-
tion of rescaled landscapes implies that all time intervals will
be rescaled by the characteristic timescale tc according to
Eq. (18d). Thus, any variables that combine the dimensions
of length L, height H, and/or time T will be rescaled by the
corresponding combinations of lc, hc, and tc. For example,
as we showed in Sect. 2.2, drainage areas, slopes, curvatures,

and rates of elevation change are rescaled by the characteris-
tic area Ac = l

2
c , characteristic gradient Gc = hc/lc, charac-

teristic curvature κc = hc/l
2
c , and uplift rate U = hc/tc (we

showed that U can be viewed as a characteristic rate of ele-
vation change; Eq. 8).

The characteristic scales of length, height, and time lc, hc,
and tc depend only on the model parameters K , D, and U
(Eqs. 3–5). Therefore, we can infer how any variable scales
withK ,D, and U based on how its corresponding character-
istic scale combines lc, hc, and tc (which we can infer from
how the variable’s dimensions combine L, H, and T). For ex-
ample, from the definitions of lc, Gc, hc, tc, Ac, κc, and U
(Eqs. 3, 11, 4, 5, 15, 13, 8), we infer that if we change the
incision coefficient by a factor k, i.e., if we change it from
K to kK, then all distances and slopes will change by 1/

√
k,

all reliefs, durations, and drainage areas will change by 1/k,
and all (Laplacian) curvatures and rates of elevation change
will remain the same.
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As an additional example, the ratio of the characteristic
length lc to the characteristic time tc defines a characteristic
horizontal velocity

uc :=
lc

tc
=
√
DK. (20)

We can, thus, deduce that horizontal velocities of drainage
divide migration must scale by uc, i.e., by

√
DK . This does

not imply that all drainage divides move with velocity uc.
Rather, it implies that any formula describing drainage di-
vide migration must scale as

√
DK and cannot include any

other terms that depend on the model parameters K , D, and
U . Such a formula will also depend on factors that vary
locally across the landscape (such as, for example, divide
asymmetry) and which must be derived separately for spe-
cific cases; they cannot be derived by scaling considerations.
These principles provide a plausibility check for theoretical
predictions of drainage divide migration in landscapes that
follow Eq. (1). The same general approach may also be ap-
plicable in landscapes that follow other governing equations
if one can define a characteristic velocity (which may scale
differently than the example shown in Eq. 20).

3.2.2 Improving modeling efficiency

The temporal and geometric similarity of our rescaled sim-
ulations (Sect. 3.1) implies that we can explore the entire
K , D, and U parameter space by rescaling a single simu-
lation. For instance, if we are interested in how the slope–
area curve depends on these three parameters, we can run
one simulation with one combination of K , D, and U and
plot its slope–area curve. To obtain the slope–area curve for
any other combination of parameters K ′, D′, and U ′, we
can simply rescale slopes by the characteristic gradient and
drainage areas by the characteristic area, i.e., we can mul-
tiply slopes by

(
U ′/
√
D′K ′

)
/
(
U
√
DK

)
and drainage ar-

eas by
(
D′/K ′

)
/ (D/K) (see Eqs. 11 and 15). The resulting

rescaled drainage areas and slopes will be exactly equal to
the drainage areas and slopes of a simulation with parame-
ters K ′, D′, and U ′, and with domain size, resolution, and
initial conditions that are rescaled as described in Sect. 3.1.

Exploring a parameter space by rescaling can be orders of
magnitude more efficient than running multiple simulations
for multiple parameter combinations. For example, consider
a numerical experiment exploring 10 values for each of the
three parameters K , D, and U , in all possible combinations.
Exploring this parameter space by brute force would require
1000 simulations versus just one simulation with the rescal-
ing approach.

Inferring the results of a simulation by rescaling the results
of another simulation assumes that the sizes of the simulation
domains are equal in units of characteristic length lc (i.e., do-
main sizes are rescaled by lc); this may often be physically
unrealistic. For example, if the simulation domain represents

an island, increasing lc (e.g., by increasing the diffusion co-
efficient D) will make the island less dissected (i.e., will in-
crease the spacing of valleys) but will not make the island
bigger as would be required to keep the domain size con-
stant in units of lc. Consequently, the original island will look
rougher than the island with increased lc and the two islands,
overall, will not be geometrically similar, even in a statistical
sense. Locally, however, features that are much smaller than
both islands, and sufficiently far from the coastlines, will be
insensitive to whether the coastlines are rescaled or not; thus,
these features may be statistically similar (even if their ex-
act spatial patterns differ). Therefore, our rescaling approach
may give us insight into how model parameters control the
behavior of sufficiently small features, regardless of whether
domain rescaling is assumed.

However, if we vary the model parameters such that the
features of interest are no longer small with respect to the
domain, then these features will be influenced by boundary
effects and may not be able to express their intrinsic shapes or
behaviors, i.e., the shapes or behaviors that they would have
if they were small relative to the domain. On the other hand,
if we vary the parameters such that features of interest are
not sufficiently large with respect to the resolution, then these
features may be influenced by resolution effects because they
may be insufficiently resolved. In both of these cases, we can
no longer reasonably assume that we can study the features
of interest with a rescaling approach.

To be able to assess which combinations of domain sizes
and resolutions and model parameters K , D, and U could
result in boundary or resolution effects, one should consider
domain sizes and resolutions in units of characteristic length
lc. For example, the regime transition from dominant diffu-
sion to dominant incision occurs at length scales of the or-
der of lc as shown by Perron et al. (2008, 2009); see also
Sect. 4.2.2 below. Thus, if we want to study this regime
transition, we should vary the model parameters such that
lc remains sufficiently small compared to the domain size
and sufficiently large compared to the resolution. How small
is sufficiently small (and, likewise, how large is sufficiently
large) will not be known a priori. However, if, within a range
of values of lc, a feature’s properties and behavior scale ac-
cording to lc, hc, and tc as described in Sect. 3.2.1 (e.g., if
drainage divide migration velocity follows Eq. 20), then we
can infer a posteriori that it can be studied with a rescaling
approach over that range of lc.

In general, one should consider all the specifications of
simulations not only in units of meters and years but also in
units of lc, hc, and tc (amplitudes of initial conditions in units
of hc, rates of elevation change in units of hct

−1
c , etc.). Like-

wise, we recommend converting simulation results into units
of lc, hc, and tc (drainage densities in units of l−1

c , drainage
areas of valley heads in units of l2c , response times in units
of tc, etc.). This can be helpful in comparing seemingly dis-
parate model results and identifying which metrics and fea-
tures can be studied with a rescaling approach.
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4 Interpretations of the characteristic scales

The values of the characteristic scales depend on the relative
magnitudes of the model parameters K , D, and U and thus
on the relative strengths of incision, diffusion, and uplift. In
the present section, we show that the characteristic scales can
link the relative strengths of these processes with topographic
properties of the landscape. Thus, they can aid the study of
process competition and regime transitions.

4.1 Height scales

4.1.1 Using height scales to quantify the vertical
influence of incision, diffusion, and uplift

The incision, diffusion, and uplift terms of the governing
equation (Eq. 1) give the rates of change of elevation due
to the respective processes. We can scale these rates using
the characteristic time tc along with the characteristic height
hc and two additional height scales that we introduce in this
section.

The definitions of the characteristic height (hc = U/K;
Eq. 4) and the characteristic time (tc = 1/K; Eq. 5) show
that hc is the elevation uplifted per unit of tc, i.e., hc = U tc.
Therefore, we can view hc as a scale that measures the contri-
bution of uplift to elevation change per unit of tc. We extend
this notion to the incision and diffusion terms of the govern-
ing equation (Eq. 1) and define an incision height scale as the
erosion due to incision per unit of tc,

hI :=K
√
A |∇z| tc =

√
A |∇z| , (21)

and a diffusion height scale as the elevation change due to
diffusion per unit of tc,

hD :=D∇
2ztc = l

2
c ∇

2z. (22)

Intuitive interpretations of hI, hD, and hc are schematically
illustrated in Fig. (6), which is described in more detail in
the following subsection (Sect. 4.1.2). The incision height is
defined as a positive quantity, but because it measures ero-
sion we should remember that it is pointing in a downward
direction. The diffusion height is negative for erosive diffu-
sion and positive for depositional diffusion. We observe that,
for the case of Eq. (1), which has drainage area and slope
exponents m= 0.5 and n= 1, hI is equal to the steepness
index, defined as ks = A

m/n |∇z| (e.g., Whipple, 2001). For
slope exponents n 6= 1, however, ks and hI are not equal; ks

is proportional to h1/n
I (Eq. A19).

In geometrically similar landscapes, the incision and diffu-
sion heights of corresponding points will be rescaled by the
characteristic height hc in the same way as all other vari-
ables with dimensions of height (elevations, reliefs, etc.).
Specifically, assume that two geometrically similar land-
scapes have parameters K , D, and U and K ′, D′, and U ′

(and thus have characteristic scales lc, hc, and tc and lc′, hc
′,

and tc′; note that primed variables refer to the second land-
scape, whose parameters are also primed). As we explain
in Sect. 3 and Appendix B, corresponding points in these
landscapes, i.e., points with coordinates such that x′/l′c =
x/lc and y′/l′c = y/lc (Eqs. 18a, b), will have drainage ar-
eas and slopes such that

√
A′/lc

′
=
√
A/lc and

∣∣∇ ′z′∣∣/Gc
′
=

|∇z|/Gc. Therefore, they will have incision heights that are
related according to

hI
′/hc
′
=
√
A′
∣∣∣∇ ′z′∣∣∣/hc

′
=
(
lc
′/lc

)√
A
(
Gc
′/Gc

)
|∇z|/hc

′

=
√
A |∇z|/hc = hI/hc. (23a)

Likewise, one can show that they will have diffusion heights
that are related according to

hD
′/hc
′
= hD/hc. (23b)

Equation (23a, b) are examples of the ability of a charac-
teristic scale to rescale variables with which it has the same
dimensions – in this case the characteristic height hc rescales
hI and hD even though they are not physical heights (they
just have dimensions of height).

Note that Eq. (23a) shows that, if we define a dimension-
less incision height h∗I as the ratio of the incision height hI
to the characteristic height hc, then it will be equal to the
dimensionless incision terms of Eqs. (16) and (17), i.e.,

h∗I : = hI/hc =
(√
A |∇z|

)
/
(√
AcGc

)
=
√
A
∗ ∣∣∇∗z∗∣∣ . (24a)

Likewise, one can show that an analogously defined dimen-
sionless diffusion height h∗D will be equal to the dimension-
less diffusion terms of Eqs. (16) and (17), i.e.,

h∗D := hD/hc =∇
2z/κc =∇

∗ 2z∗. (24b)

Equation (24a, b) highlight that the three terms of the dimen-
sionless Eqs. (16) and (17) quantify the relative contributions
of incision, diffusion, and uplift to elevation change.

4.1.2 Properties of the incision, diffusion, and
characteristic height scales hI, hD, and hc

We can express the governing equation Eq. (1) in terms of
the incision, diffusion, and characteristic height scales hI, hD,
and hc if we multiply it by the characteristic time tc:

(∂z/∂t) tc =−hI+hD+hc. (25)

In steady state (∂z/∂t = 0), Eq. (25) yields

0=−hI+hD+hc, for ∂z/∂t = 0, (26)

which we can manipulate in various ways to reveal useful
properties of the three height scales hI, hD, and hc.
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Figure 6. Schematic illustration of height scales. Profiling the incision, diffusion, and characteristic height scales hI, hD, and hc along a flow
path allows visualizing their properties as described by Eqs. (27)–(29). Panel (a) shows the height scales of incision, diffusion, and uplift (hI,
hD, and hc, corresponding to the solid, dashed, and dotted black lines, respectively) along a flow path from the drainage divide to a valley.
Panel (b) shows these height scales as changes in elevation along a steady-state elevation profile (thick green line). Subtracting hI from the
elevations along the profile, or adding hD or hc to them, shows the change in elevation per unit of characteristic time tc that would result
from incision, diffusion, and uplift (the solid, dashed, and dotted gray lines, respectively). At the divide (point P1), incision is ineffective and
diffusion balances uplift (hI = 0 and hD =−hc; Eq. 28). At the point where curvature is zero (point P2), net diffusion is zero and incision
balances uplift (hD = 0 and hI = hc; Eq. 27). (Note that P2, where ∇2z= 0, generally is not the same as the inflection point of the profile
line.) Along the entire profile, the combination of incision and diffusion balances uplift; thus, the distance between the hI and hD lines in (a)
(solid and dashed black lines) is constant and equal to hc (hI−hD = hc; Eq. 29).

First, we focus on points that have zero curvature
(∇2z= 0). At these points, the net effect of diffusion on el-
evation is zero; thus, incision and uplift must be in balance
with each other in steady state. Setting hD = 0 in Eq. (26),
we can mathematically express the incision–uplift balance at
these points in two equivalent ways:

hI = hc⇔
√
A |∇z| = U/K, for ∂z/∂t = 0,∇2z= 0. (27)

These expressions show that the characteristic height hc de-
termines the steady-state value of the incision height hI at
points with zero curvature so that incision and uplift are in
balance with each other (since diffusion has a zero net con-
tribution to elevation change at these points). Points with zero
curvature represent a regime transition between concave-
down hillslopes, characterized by net erosion by diffusive
transport, and concave-up valleys, characterized by net de-
position by diffusive transport (e.g., Howard, 1994). Thus,
a notable implication of Eq. (27) is that points with hI = hc
will map out this important topography- and process-related
regime transition in steady state. Equation (27) is reminis-
cent of a bedrock river steady-state slope–area relation, and
we discuss the similarities and differences between them in
Sect. 4.1.3.

Second, we focus on drainage divides, where the drainage
area A is zero and there is no incision. At drainage di-
vides, diffusion and uplift must be in balance with each other

in steady state. Setting hI = 0 in Eq. (26), we express the
diffusion–uplift balance on drainage divides as hD =−hc.
Substituting the definitions of hD and the characteristic cur-
vature κc and rearranging yields the steady-state value of
drainage divide curvature (e.g., Roering et al., 2007; Perron
et al., 2009):

∇
2z=−hc/l

2
c =−κc =−U/D,

for ∂z/∂t = 0,A= 0. (28)

This relation shows that we can view the characteristic height
hc and length lc as two distinct components (one vertical,
the other horizontal) that jointly determine the steady-state
curvature of drainage divides so that diffusion and uplift are
in balance.

Equations (27) and (28) refer to special points where inci-
sion or diffusion is zero. These are special cases of a general
steady-state property of hc that is valid at all points; rearrang-
ing Eq. (26) yields

hc = hI−hD, for ∂z/∂t = 0, (29)

which shows that the difference hI−hD is constant and equal
to hc across steady-state landscapes.

Figure 6 schematically illustrates how the incision, dif-
fusion, and characteristic height scales hI, hD, and hc vary
along a steady-state profile. In Fig. 6b, the green line shows a
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steady-state profile that traces a flow path from the drainage
divide to a point in a valley. Subtracting hI from the eleva-
tions along the profile, or adding hD or hc to them, yields
three gray lines (one solid, one dashed, and one dotted) that,
respectively, show the individual contributions of incision,
diffusion, and uplift to elevation change per unit of tc. (These
contributions are equivalent to how the profile would change
if only incision, diffusion, or uplift operated on it, at their
equilibrium rates, for one unit of tc.) The three contributions
must sum to 0 at all points along this equilibrium profile.
Whereas Fig. 6b shows elevations and elevation changes,
Fig. 6a shows the values of hI, hD, and hc along the pro-
file, using black lines that have the same shapes as the corre-
sponding gray lines of Fig. 6b. Figure 6a schematically illus-
trates the relationships described by Eqs. (27), (28), and (29).
Specifically, at the divide (point P1), hI is 0 and hc and hD
are equal and opposite; at the point of zero curvature (point
P2; also shown magnified in Fig. 6b), hD is 0 and hI equals
hc; and over the entire profile, hc = hI−hD (the spacing be-
tween the dashed and solid black lines is constant and equal
to hc).

Substituting the definitions of hI and hD (Eqs. 21, 22) into
Eq. (29) yields

hc =
√
A |∇z| − l2c ∇

2z, for ∂z/∂t = 0, (30)

which shows that the constant difference hI−hD implies that,
in steady state, drainage areas A, slopes |∇z|, and curvatures
∇

2z are constrained by a relationship that is constant across
the landscape and is parameterized by hc (along with lc).

In this sense, we can interpret the characteristic height hc
as a parameter that constrains the steady-state values of the
drainage area A, slope |∇z|, and curvature ∇2z across the
landscape so that incision, diffusion, and uplift are in bal-
ance.

For drainage area and slope exponents m and n such that
2m 6= n (Eq. A1), hc depends on all three parameters K ,
D, and U (Eq. A9). Therefore, we should not interpret the
characteristic height hc as a scale that expresses the relative
strength of uplift versus incision (as the definition hc = U/K

(Eq. 4) may seem to suggest) but rather interpret it as ex-
pressing the relative strengths of all three processes. Thus,
the aforementioned interpretation that hc constrains steady-
state topography so that all three processes are in balance is
in line with the definition of hc for generic exponents m and
n.

Given that Eq. (30) can be rewritten as
√
A |∇z| = l2c ∇

2z+hc, for ∂z/∂t = 0, (31)

if we plot the product
√
A |∇z| versus the curvature ∇2z we

can graphically illustrate how hc and lc constrain A, |∇z|,
and ∇2z in a steady-state landscape. Additionally, we can
graphically illustrate the special cases on points with zero
curvature and on drainage divides described by Eqs. (27)
and (28), respectively. We show such a plot in Fig. 7 using

Figure 7. Steady-state relationship between drainage areas, slopes,
and curvatures, parameterized by characteristic length and height
scales lc and hc. Plotting incision height data (hI =

√
A |∇z|) ver-

sus curvature data (∇2z) from the simulated steady-state landscape
B (shown in Figs. 1–5) shows that these data followed a linear trend
consistent with the relation

√
A |∇z| = l2c ∇

2z+hc (Eq. 31). We la-
bel incision height and curvature axes in units of meters and m m−2,
respectively, in bold fonts, and in units of characteristic height hc
and characteristic curvature κc, respectively, in normal fonts. Verti-
cal and horizontal dashed lines facilitate the calculation of the slope
and intercept of this trend. For every unit of κc of curvature increase,
the product

√
A |∇z| increases by a unit of hc; thus, the trend’s slope

is hc/κc = l
2
c . The value

√
A |∇z| = hc corresponds to the curvature

value ∇2z= 0; thus, the trend’s intercept is hc. The linear relation-
ship illustrated here shows that we can view the characteristic length
and height lc and hc as parameters of a steady-state relationship that
constrains the topographic properties A, |∇z|, and∇2z. This rela-
tionship must be satisfied so that incision, diffusion, and uplift are
in equilibrium. Thus, we can view hc as a scale that expresses the
competition between these three processes. (Note the two arrows
that mark where data from points P1 and P2 of Fig. 6 would plot.)

data from the simulated equilibrium landscape B (shown in
Figs. 1 and 2). Figure 7 shows that

√
A |∇z| versus ∇2z plots

on a straight line, as demanded by Eq. (31). In Fig. 7, the ver-
tical dashed lines show the values∇2z= 0 and∇2z= κc; the
horizontal dashed lines show the values

√
A |∇z| = hc and√

A |∇z| = 2hc. Therefore, these dashed lines illustrate that
the straight line on which the data points plot has an inter-
cept equal to the characteristic height hc and a slope equal to
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hc/κc, i.e., equal to l2c , the square of the characteristic length,
as demanded by Eq. (31).

4.1.3 Quantitative predictions

Equations (30) and (31), the relationships that constrain
steady-state topography, are testable predictions. They im-
ply that we can test whether the governing equation Eq. (1)
describes a given, presumably steady-state, real-world land-
scape by plotting estimates of the product

√
A |∇z| versus

estimates of the curvature ∇2z from across this landscape.
These estimates should plot on a straight line, as shown in
Fig. 7 for our simulated landscape. (Note that our analysis
only shows that Eqs. (30) and (31) must hold for a steady-
state landscape governed by Eq. (1); we have not shown that
a landscape that conforms to Eqs. (30) and (31) is necessar-
ily governed by Eq. (1) or in steady state. Although it seems
unlikely that data from a non-steady-state landscape that fol-
lows different geomorphic transport laws would happen to
plot according to Eqs. (30) and (31), this premise should be
tested using numerical experiments.)

Equation (31) can be used to estimate model parameters.
Specifically, we can estimate l2c (i.e., theD/K ratio) from the
slope of plots of the product

√
A |∇z| versus the curvature

∇
2z and estimate hc (i.e., the U/K ratio) from the intercept

of these plots. Alternatively, given that κc = hc/l
2
c (Eq. 13),

we can rewrite Eq. (31) as

√
A |∇z| =

hc

κc
∇

2z+hc = hc
∇

2z+ κc

κc
, (32)

and estimate hc as the slope of plots of the product
√
A |∇z|

versus the quantity
(
∇

2z+ κc
)
/κc. To apply Eq. (32) to real-

world data we would need to estimate κc, e.g., as discussed
above from steady-state drainage-divide curvature (e.g., Per-
ron et al., 2009). Note that Eqs. (30)–(32) are equivalent to
Eq. (5) of Perron et al. (2009), which they used to estimate
lc and which they recognized as a test for model validity. For
instance, dividing Eq. (32) by κc yields Eq. (5) of Perron et
al. (2009).

Another equation that could hypothetically be used to es-
timate model parameters is Eq. (27), which is reminiscent of
the steepness-index formula Am/n |∇z| = (U/K)1/n that has
been used to estimate model parameters from steady-state
profiles of bedrock rivers (e.g., Sklar and Dietrich, 1998;
Whipple, 2001). Although the two equations are similar in
form, they apply to different points on the landscape. Equa-
tion (27) describes points of zero curvature, where diffusive
transport is negligible, whereas the steepness-index formula
is applied to bedrock rivers, where curvature is clearly not
zero but diffusive transport is nonetheless assumed to be zero
(and thus Eq. (1) does not apply). To estimate hc, Eq. (27)
can only use the relatively few points with zero curvature,
whereas Eq. (32) can use data from the whole landscape and,
thus, would presumably yield more robust estimates of hc.

Figure 8. Steady-state valley networks visualized by incision
height hI. The simulated equilibrium landscape B (shown in
Figs. 1–5) is shown here with each pixel colored by the incision
height hI =

√
A |∇z|. In steady state, this incision height is lin-

early related to topographic curvature (Eq. 33, Fig. 7), with val-
ues of hI < hc corresponding to convex topography (ridgelines) and
values of hI > hc corresponding to concave topography (valleys).
Thus, high values of hI reveal the dendritic valley network.

4.1.4 Valley definition

Valleys have been defined as areas where the quantity
A(|∇z|)2 exceeds some threshold value (e.g., Montgomery
and Dietrich, 1992; Orlandini et al., 2011; Clubb et al., 2014).
This quantity is equal to (hI)2, the square of the incision
height. Montgomery and Dietrich (1992) used thresholds of
A(|∇z|)2 as criteria for defining channels and valleys, con-
cluding that channelization and valley incision are controlled
by the same topographic properties. Other authors have used
curvature ∇2z to define valleys; specifically, valleys have
been defined as regions with curvature above some thresh-
old, i.e., ∇2z ≥ κthr, where the threshold curvature κthr is as-
sumed to be zero (e.g., Howard, 1994) or a small positive
value (e.g., Lashermes et al., 2007; Pelletier, 2013). Here,
we demonstrate that these seemingly disparate criteria are
closely related in steady-state landscapes that follow Eq. (1).
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Figure 9. Prediction of ridge migration by differences of incision height hI across ridges. These maps show that migrating ridges move
toward the side with relatively smaller hI values. Panel (a) shows four snapshots during the early phase of the evolution of landscape B
(also shown in Figs. 1–5). The red squares seen in (a) are focused on a ridge that migrates from left to right; they are also shown magnified
in (b). The dashed black lines inside the red squares are fixed at the initial position of the migrating ridge to illustrate its movement more
clearly. The black arrows in (b) point to the direction toward which the ridge will migrate. In all maps, each pixel is colored by the incision
height hI =

√
A |∇z|. Darker colors correspond to higher values of hI. These maps show that drainage basins expanded at the expense of

neighboring drainage basins with lighter colors, i.e., with relatively lower hI values. For the case of Eq. (1), the incision height hI is equal to
the steepness index ks, which was among the metrics used by Whipple et al. (2017) to quantify erosion rates. Therefore, these maps confirm
Whipple et al.’s (2017) finding that the direction of ridge migration can be predicted by erosion rate differences across migrating ridges.

Equations (26) and (31) can be combined as

hI =
√
A |∇z| = l2c ∇

2z+hc, for ∂z/∂t = 0, (33)

which shows that, in steady state,
√
A |∇z| – the square

root of Montgomery and Dietrich’s valley criterion – is lin-
early related to topographic curvature ∇2z. Equation (33)
shows that points with ∇2z ≥ κthr will be identical to points
whose incision heights hI =

√
A |∇z| exceed a correspond-

ing threshold value hthr. Figure 8 graphically illustrates the
property of hI to define valleys. It shows that coloring the
simulated equilibrium landscape B (shown in Figs. 1 and 2)
using the hI value of each pixel reveals a dendritic pattern.
Given that hI and ∇2z are linearly related, they have identi-
cal spatial patterns; thus, the dendritic pattern of Fig. 8 shows
the valley network defined by either criterion.
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Given that one is a linear function of the other, are
there practical reasons to prefer A(|∇z|)2 or ∇2z as a val-
ley definition criterion? The first criterion requires comput-
ing drainage areas to each point on the landscape, which
can be computationally tedious, whereas the second crite-
rion requires estimating curvatures, which can be sensitive
to topographic noise. Note, however, that thresholds of the
quantity A(|∇z|)2 correspond to curvature thresholds only if
2m= n. In the more general case of 2m 6= n (Eq. A1), cur-
vature thresholds will correspond to thresholds of the quan-
tity A(|∇z|)n/m (Eq. A26), rather than A(|∇z|)2 (e.g., Ijjasz-
Vasquez and Bras, 1995).

4.1.5 Divide migration dynamics

Equation (33) holds only in steady state; its counterpart in
transient states would be (∂z/∂t) tc+hI = l

2
c ∇

2z+hc, as
implied by Eq. (25). In transient states, the term (∂z/∂t) tc
varies across the landscape. Thus, the incision height hI is
not linearly related with curvature ∇2z, but nonetheless it re-
mains a useful quantity. For instance, it reproduces Whip-
ple et al.’s (2017) finding that erosion rate differences across
drainage divides can predict the direction of divide migra-
tion. In Fig. 9 we show four snapshots of the simulated evolv-
ing landscape B (shown in Figs. 3 and 4), which we col-
ored using the hI value of each pixel. This coloring revealed
that hI’s spatial distribution followed dendritic patterns. Fur-
thermore, it revealed that dendritic patterns across migrating
drainage divides had different colors, i.e., different hI val-
ues. Finally, it revealed that drainage basins overwhelmingly
tended to expand at the expense of neighbors with dendritic
patterns with relatively lower hI values. Figure 9 suggests
that hI predicts the direction of divide migration. This prop-
erty characterized the entire evolution of landscape B, but
was more evident during the early phases from which we
chose the four snapshots of Fig. 9. For the case of Eq. (1),
hI is equal to the steepness index ks, which was one of the
metrics that Whipple et al. (2017) used to measure erosion
rates; thus, Fig. 9 also illustrates the use of ks to predict di-
vide migration dynamics.

4.2 Scales of length and time

Perron et al. (2008, 2009, 2012) expressed the competi-
tion between diffusion, which smooths landscapes, and in-
cision, which dissects them, in terms of a Péclet number
Pe=Kl2/D, where l is a length scale that characterizes
landscape features of interest. Their analysis implied that in-
cision and diffusion should be equally effective when the Pé-
clet number is roughly equal to 1, and thus the length scale is
roughly equal to

√
D/K , i.e., to the characteristic length lc.

They showed that distances between equally spaced valleys
scale with lc, while drainage areas of first-order valley heads
and of second- to first-order valley branching scale with l2c ,
i.e., with the characteristic area Ac. Here, we introduce a re-

lated, but different, definition of the Péclet number and ex-
plore its implications. One such implication is that we can
use this Péclet number to interpret the characteristic scales
of length and time lc and tc as scales that characterize a tran-
sition between regimes of dominant diffusion and dominant
incision.

4.2.1 Quantifying the horizontal influence of incision and
diffusion

To examine the properties of lc, we focus on the horizon-
tal effects of incision, diffusion, and uplift. This approach is
in line with our goal to study horizontal and vertical scal-
ing separately and with the assumption that the dimensions
of length and height are distinct. Equation (1) explicitly de-
fines rates of elevation change, i.e., effects of processes in the
vertical direction. However, the incision and diffusion terms
have additional, implicit horizontal effects. Specifically, inci-
sion advects topographic perturbations, such as knickpoints,
and diffusion smooths them (e.g., Whipple and Tucker, 1999;
Perron et al., 2008). We can quantify the strength of these
effects using timescales that characterize incision and diffu-
sion.

The incision term of Eq. (1) has the form of a kinematic
wave and advects perturbations at a rate equal to the kine-
matic wave celerity c =K

√
A (e.g., Whipple and Tucker,

1999). The time needed to advect perturbations over some
distance l gives an appropriate measure of incision’s hori-
zontal influence; thus, we define an incision timescale as

tI :=
l

K
√
A
. (34)

A small tI value corresponds to a strong horizontal influence
of incision (the stronger the incision, the less time is needed
for advection over a given distance l).

The diffusion term of Eq. (1) smooths elevation differ-
ences by redistributing them over an expanding region of
neighboring points. For example, an elevation difference that
is initially concentrated at a single point will evolve as a
Gaussian function, centered around this point and with a
standard deviation that grows proportionally to

√
Dt . In gen-

eral, all elevation perturbations will spread proportionally to
√
Dt regardless of their initial shape because the diffusion

term of Eq. (1) is linear and thus the superposition princi-
ple applies (e.g., Balluffi et al., 2005). Thus, the quantity
√
Dt is a length scale that characterizes how far diffusion

can spread elevation perturbations during some time t . Con-
sequently, the diffusion timescale (e.g., Perron et al., 2008,
2012)

tD :=
l2

D
, (35)

which is equal to the time needed for the quantity
√
Dt to

reach some value l, is an appropriate measure of diffusion’s
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horizontal influence. Analogously to tI, a small tD value cor-
responds to a strong horizontal influence of diffusion.

Following Perron et al. (2008, 2009, 2012), we quantify
the relative horizontal influence of incision versus diffusion
across a landscape by the ratio of the diffusion time tD to the
incision time tI. Using the definitions in Eqs. (34) and (35)
leads to the following definition of the Péclet number Pe:

Pe := tD/tI =
K
√
Al

D
=

√
Al

l2c
. (36)

Given that small tD or tI values correspond to strong influ-
ences of the respective process, small Pe values correspond
to hillslopes, where diffusion is horizontally dominant, and
large Pe values correspond to valleys, where incision is hori-
zontally dominant.

The transition between the regimes of horizontally domi-
nant diffusion and incision can be assumed to occur where
the incision and diffusion timescales are roughly equal, i.e.,
where tI ≈ tD or, equivalently, where Pe≈ 1. Substituting
this value into the definition of the Péclet number (Eq. 36)
yields

Pe≈ 1⇔
√
Al ≈ l2c . (37)

As mentioned above, Perron et al.’s (2008) Péclet number is
equal to 1 for a length scale equal to lc. In contrast, Eq. (37)
shows that our Péclet number is equal to 1 not for specific
values of the length scale l or the drainage area A but rather
for all combinations of values for which

√
Al is equal to l2c .

Note that l2c =
√
Aclc; thus, if both l ≈ lc and A≈ Ac, then

Pe≈ 1. Furthermore, note that for l ≈ lc and A≈ Ac, the in-
cision and diffusion times are both roughly equal to the char-
acteristic time, i.e., tI ≈ tc and tD ≈ tc. Thus, the character-
istic scales of length, area, and time can be interpreted as
characterizing the regime transition from dominant diffusion
to dominant incision.

4.2.2 Spatial distribution of the Péclet number across a
landscape

To calculate values of the Péclet number Pe across a land-
scape, we must specify what the length scale l is. In this
study, we define l as the maximum distance along flow paths
from a point to the drainage divide and refer to it as the
point’s flow path length. Because the incision term has the
form of a kinematic wave (and kinematic waves propagate
only in the direction of the gradient; Lighthill and Whitham,
1955), perturbations are advected only in the uphill direction
along flow paths. Thus, it is reasonable to quantify advec-
tion’s influence using a length scale that is measured along
flow paths and points in the uphill direction; the flow path
length is such a length scale. Because the diffusion term
spreads out elevation differences in all directions (uphill and
downhill along flow paths and laterally across flow paths), its
influence could be quantified using several length scales, in-
cluding the flow path length. Because the flow path length is

Figure 10. Steady-state valley networks visualized by Péclet num-
ber Pe. The simulated equilibrium landscape B (shown in Figs. 1–
5) is shown here with each pixel colored by the logarithm of
Pe=

√
A l/l2c (Eq. 36), where l is the flow path length (the max-

imum distance along flow paths from each pixel to the drainage
divide). The Péclet number quantifies the relative horizontal influ-
ence of incision versus diffusion. Thus, dark pixels in this map are
horizontally dominated by incision (i.e., valleys) and light pixels by
diffusion (i.e., ridgelines).

the natural length scale for the incision term and one of sev-
eral possible length scales for the diffusion term, it is a rea-
sonable length scale for calculating the Péclet number, which
measures the relative influence of advection versus diffusion.

Figure 10 shows how the Péclet number Pe varies across a
landscape. We calculated Pe according to Eq. (36), assuming
that l is the flow path length and using data from the simu-
lated equilibrium landscape B (as shown in Figs. 1, 2, and 8).
Each pixel in Fig. 10 is colored by log10Pe. We used the loga-
rithm to visualize values of Pe that are both much smaller and
much larger than 1. Figure 10 shows that the highest values
of Pe follow the dendritic valley network, similar to the high-
est values of the incision height hI (see Fig. 8). Diffusion and
incision are horizontally dominant on hillslopes and in val-
leys, respectively. Therefore, the dendritic patterns in Fig. 10
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suggest that our Péclet number (defined by Eq. (36) and cal-
culated using the flow path length) is a reasonable measure of
the relative horizontal influence of incision versus diffusion.

Just as the incision and diffusion heights hI and hD can be
rescaled by the characteristic height hc (Eq. 23a, b), one can
show that, at corresponding points in geometrically similar
landscapes, the incision and diffusion times tI and tD can be
rescaled by the characteristic time tc; i.e.,

tI
′/tc
′
= tI/tc, (38a)

tD
′/tc
′
= tD/tc. (38b)

Furthermore, one can show that, at corresponding points in
geometrically similar landscapes, Péclet numbers are equal;
i.e.,

Pe′ =
√
A′l′/lc

′2
=
√
Al/l2c = Pe. (38c)

In other words, if we plotted maps of Pe using data from the
simulated landscapes A and C, then we would obtain rescaled
copies of the map of Pe derived from landscape B (as seen in
Fig. 10).

4.2.3 Implications of the new Péclet number definition

In this subsection, we discuss the differences between the
Péclet number defined in this study and the Péclet number
defined by Perron et al. (2008, 2009, 2012). Our definition
(Eq. 36) includes both the drainage area A and the length
scale l, whereas theirs included only l. Specifically, our Pé-
clet number is defined as Pe=

√
Al/l2c , whereas theirs was

defined as Pe=Kl2/D = l2/l2c (for drainage area and slope
exponents m= 0.5 and n= 1). To introduce their Péclet
number, Perron et al. (2008) defined an incision-term celer-
ity that implicitly assumed that l =

√
A, and in this way they

substituted l2 for
√
Al. In contrast, we defined the incision

and diffusion timescales and the Péclet number (Eqs. 34–36)
using an abstract length scale l, and we calculated values of
the Péclet number assuming that l is the flow path length.

To determine how our Péclet number scales with the flow
path length l or the drainage area A, we first need to ex-
plore the scaling relationship between l and A. The flow path
length l scales as a power law of the drainage area A, i.e.,
as Ap, with an exponent p that depends on how convergent
or divergent the topography is. (Here, we refer to horizon-
tal topographic convergence or divergence, as measured, for
example, by the contour curvature.) In convergent contribut-
ing areas, the scaling exponent is p = 0.5 (i.e., l scales as√
A; e.g., Montgomery and Dietrich, 1992), in planar con-

tributing areas, it is p = 1 (i.e., l scales linearly with A; e.g.,
Pelletier, 2010), and in divergent topography, it is p > 1. In
general, the topography of contributing areas is not purely
convergent, planar, or divergent; it is a mixture of these three
types. In such cases, the scaling exponent p will be some-
where between the values of the three types of topography,

Figure 11. Dependence of drainage area on flow path length and
convergence or divergence of topography. Three points that have
equal flow path lengths can have very different drainage areas. Ele-
vation contours (gray lines) reveal that point P1 is in a valley with
convergent topography, P2 on a hillslope with planar topography,
and P3 on an interfluve with divergent topography. The thick dashed
line shows the ridge line, and the three dotted lines show flow paths
from the ridge to the points P1, P2, and P3. The three flow paths
have equal lengths l. The three brown polygons show the contribut-
ing areas that correspond to a given contour width (thick black bars)
centered at the three points. Point P1 has a much larger drainage area
A than points P2 and P3. Note the topography of the contributing
area of point P1; it tends to become planar near the ridge. Specifi-
cally, the lateral boundaries of the contributing area tend to become
parallel, and the curvature of the contour lines decreases. This ex-
ample highlights that, in general, contributing areas have mixed to-
pographies.

depending on how they are mixed. At large scales, l will gen-
erally scale as

√
A (e.g., Mueller, 1972), which corresponds

to convergent topography.
Figure 11 schematically illustrates how the scaling rela-

tionship between flow path length l and drainage area A de-
pends on the topography of contributing areas. It shows a
point inside a valley (P1) that has convergent contributing
topography, a point on a hillslope (P2) that has planar con-
tributing topography, and a point on an interfluve (P3) that
has divergent contributing topography. Figure 11 shows that,
even though the three points have equal flow path lengths,
they have different drainage areas, and those drainage areas
scale differently with flow path length. Additionally, Fig. 11
illustrates how contributing areas can have mixed topogra-
phies; for example, the contributing area of P1 becomes less
convergent and more planar near the ridge.

Given that the Péclet number Pe is proportional to
√
Al

(Eq. 36) and that l scales as Ap, the Péclet number will
scale as l1+1/(2p) or Ap+1/2. The values of the exponents
1+ 1/(2p) and p+ 1/2 are determined by the value of p,
which depends on topography as described above. Therefore,
in convergent topography, and at large scales, Pe will scale as
l2 or A. At small scales in non-convergent or mixed topogra-
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phy, Pe will scale with l raised to a power less than 2 or with
A raised to a power greater than 1.

Perron et al.’s (2008, 2009, 2012) Péclet number scales
as l2. To calculate Pe across real-world landscapes, Per-
ron et al. (2012) defined the length scale l as the length of
basins and calculated it from drainage area data according to
l =
√

3A; in this case their Péclet number scales as A. Con-
sequently, in convergent topography, and at large scales, both
their Péclet number and ours scale as l2 or as A. In contrast,
at small scales in non-convergent or mixed topography, the
two Péclet numbers scale differently from each other with l
and A.

5 Summary and conclusions

In this study, we perform a dimensional analysis of an LEM
that includes terms for stream-power incision, linear dif-
fusion, and uplift (Eq. 1; e.g., Howard, 1994; Dietrich et
al., 2003). The governing equation that we analyze in the
main text (Eq. 1) includes the relatively simple incision term
K
√
A |∇z|, which is a special case of the more general inci-

sion law KAm(|∇z|)n (Eq. A1). As we demonstrate in Ap-
pendix A, results obtained from a dimensional analysis of the
LEM with the general incision law (Eq. A1) are equivalent to
results obtained from the LEM with the simple incision law
(Eq. 1), but the latter have much simpler forms and, thus, are
more suitable for presentation in the main text.

Our dimensional analysis is based on two key premises.
First, we assume that the dimensions of length and height are
conceptually distinct. Second, we use only intrinsic charac-
teristic scales, i.e., scales that depend only on the parameters
of the model (the incision coefficient K , the diffusion coef-
ficient D, and the uplift rate U ), not on sizes of the domain
or of landscape features. We use the characteristic scale lc
(Eq. 3) previously defined by Perron et al. (2008), and we
introduce new characteristic scales of height and time hc and
tc. (Eqs. 4 and 5). The use of these three characteristic scales
allows us to obtain three main results.

First, rescaling the governing equation (Eq. 1) by lc, hc,
and tc yields a dimensionless form (Eq. 16) that includes only
variables and no parameters. Because it has no parameters
that can be adjusted, this dimensionless equation has only
one solution for any given set of (dimensionless) boundary
and initial conditions. This result means that landscapes that
are rescaled horizontally by lc (Eq. 18a, b) and whose initial
conditions are rescaled vertically by hc (Eq. 18c) will fol-
low temporally and geometrically similar evolutions; i.e., if
we compare these landscapes at times that are rescaled by tc
(Eq. 18d), then they will be copies of each other (rescaled
horizontally by lc and vertically by hc). We demonstrate the
temporal and geometric similarity of rescaled landscapes the-
oretically (Appendix B) and numerically (Sect. 3.1, Figs. 1–
5).

Second, lc, hc, and tc can be combined to define other char-
acteristic scales (e.g., characteristic velocities, slopes, and
curvatures), which rescale variables whose dimensions com-
bine L, H, and T in the same way. Based on these defini-
tions of characteristic scales, we can straightforwardly de-
duce scaling relations between any landscape metric and the
model parameters K , D, and U because all of our scales are
defined to depend only on parameters. As an example, we
present a characteristic horizontal velocity that must rescale
the migration velocity of drainage divides (Eq. 20).

The temporal and geometric similarity of rescaled land-
scapes implies that we can explore all combinations of the
model parameters K , D, and U by simulating a single com-
bination of parameters for any given dimensionless domain
size, resolution, and initial conditions. We can then simply
rescale the results of this simulation to obtain any results for
any other combinations of parameters, which is significantly
more efficient than running multiple simulations for multiple
parameter combinations.

Such a modeling approach assumes that simulation do-
mains are rescaled, but this is not always physically realistic
(e.g., if a domain represents an island, changing model pa-
rameters may change the sizes of ridges and valleys on the
island, but not the size of the island itself). Nonetheless, as
we explain in Sect. 3.2.2, landscape features that are suffi-
ciently small with respect to the domain size may locally re-
main statistically similar, even if the landscapes globally are
not similar. Therefore, the rescaling approach may offer in-
sights into how such features depend on model parameters,
even if the domain is not rescaled.

However, if landscapes are not rescaled and model param-
eters are varied too widely, then boundary or resolution ef-
fects may arise. These boundary and resolution effects will
be minimized if the domain size is much larger than lc and
the resolution is much smaller than lc. More generally, we
recommend performing model simulations in units of the
characteristic scales (i.e., in dimensionless terms) instead of
in conventional dimensional units. This should be helpful in
comparing disparate model results and identifying which fea-
tures can be rescaled.

Third, lc, hc, and tc can be interpreted as expressing the
competition between incision, diffusion, and uplift and as
linking the relative strengths of these processes to topo-
graphic properties of the landscape (Sects. 4.1, 4.2). This
interpretation is facilitated by introducing process-specific
scales of height and time hI, hD, tI, and tD (Eqs. 21, 22, 34,
and 35) that measure the vertical and horizontal influences
of incision and diffusion. The incision and diffusion heights
quantify the contribution of these processes to the total eleva-
tion change per unit tc. The incision and diffusion timescales
quantify how long it takes for these processes to propagate el-
evation perturbations over some horizontal length scale (i.e.,
the stronger a process, the smaller its timescale).

In steady-state landscapes, the characteristic height hc is
everywhere equal to the difference between the incision and
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diffusion height scales, i.e., hc = hI−hD (Eq. 29), and in
this way hc expresses the balance between incision, diffu-
sion, and uplift. Given that we define hI as a function of
drainage area and slope and hD as a function of curvature,
hc = hI−hD expresses how steady-state topography is linked
to the balance between incision, diffusion, and uplift (Eq. 30,
Figs. 6, 7). Equations (29) and (30) show that hc expresses
the balance between all three processes, not only between
incision and uplift as the definition hc = U/K (Eq. 4) seem-
ingly suggests. This can also be seen by the fact that, for the
case of the LEM with the general incision law (Eq. A1), the
definition of hc includes all three parameters (Eq. A9).

Equation (30) is a testable prediction that can discrimi-
nate between landscapes that are in steady state and follow
the governing equation (Eq. 1), and those that do not. Fur-
thermore, it can be rearranged to estimate lc and hc, i.e., the
parameter ratios D/K and U/K . Finally, it implies that the
incision height hI is linearly related to curvature (Eq. 33).
Thus, the spatial distribution of hI follows the valley network
(Fig. 8), and hI can be used as a proxy for curvature to define
the hillslope–valley transition.

The characteristic scales of length and time lc and tc
characterize the regime transition from diffusion-dominated
to incision-dominated propagation of topographic perturba-
tions. Following Perron et al. (2008, 2009, 2012), we quan-
tify the relative influence of incision versus diffusion by the
ratio of the diffusion timescale tD to the incision timescale tI.
This leads to a new definition of the Péclet number (specifi-
cally, Pe=

√
Al/l2c , where l is the flow path length to the di-

vide; Eq. 36). The spatial distribution of this Péclet number
follows the valley network (Fig. 10), with small Pe values
corresponding to diffusion-dominated features (ridges and
hillslopes) and large Pe values corresponding to incision-
dominated features (valleys). The transition occurs where Pe
is roughly equal to 1 (i.e., where tI and tD are roughly equal).
This condition is satisfied by combinations of length scale l
and drainage area A for which

√
Al ≈ l2c (Eq. 37). One such

combination is l ≈ lc and A≈ l2c , in which case tI and tD are
both also roughly equal to tc.

Our definition of the Péclet number differs from that in
Perron et al. (2008, 2009, 2012) in that ours includes both
the length scale l and the drainage area A, while theirs in-
cludes only l. Perron et al.’s definition implicitly assumes that
l =
√
A. We assume that l is the flow path length, i.e., the

maximum distance along the flow paths from a point to the
divide. In this way our Pe expresses how topographic con-
vergence and divergence control the relative importance of
incision versus diffusion across the landscape (Sect. 4.2.3,
Fig. 11). In convergent topography, the two Pe definitions
(ours and Perron et al.’s) both scale as l2. However, in planar
or divergent topographies, Perron et al.’s Pe still scales as l2,
whereas ours scales as lp with p ≤ 3/2

To summarize, lc, hc, and tc lead to a dimensionless form
of the governing equation that significantly simplifies the
model. Additionally, they can be combined to rescale any

variables with dimensions in L, H, and T. Finally, they ex-
press process competitions and link them to topographic
properties. The ability of lc, hc, and tc to perform all of these
tasks is a direct consequence of the two key premises under-
lying our dimensional analysis (characteristic scales are in-
trinsic, and horizontal lengths and vertical heights are dimen-
sionally distinct). Our analysis suggests that lc, hc, and tc, as
a group, are fundamental properties of landscapes that follow
equations such as Eqs. (1) or (A1). This in turn suggests that
lc, hc, and tc or their combinations may explain additional
properties of ridge and valley topography beyond those that
we briefly mention here for demonstration purposes. There-
fore, it may be illuminating to estimate lc, hc, and tc in future
landscape studies, whether in the field, in laboratory experi-
ments, or in computer simulations.
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Appendix A: Dimensional analysis of LEM with
generic slope and area exponents m, n

A1 Generic governing equation

We perform a dimensional analysis of an LEM with an inci-
sion term with generic drainage area and slope exponents m
and n that follows the governing equation

∂z

∂t
=−KAm(|∇z|)n+D∇2z+U. (A1)

A2 Dimensions and characteristic scales

The variables and parameters of Eq. (A1) have the following
dimensions. Coordinates of points (x, y) have dimensions
of L, elevation z has dimensions of H, and time t has di-
mensions of T. Therefore, using square brackets to denote
the dimensions of quantities, we obtain

[
∂z/∂t

]
=H T−1,

[A]=L2, [|∇z|]=H L−1,
[
∇

2z
]
=H L−2. Consequently,

the coefficient of incision K has dimensions of

[K]=

[
∂z/∂t

][
Am(|∇z|)n

] = HT−1

L2mHnL−n
= Ln−2mH1−nT−1. (A2)

Likewise, the coefficient of diffusion and the uplift rate have
dimensions of

[D]= L2 T−1, (A3)

[U ]= HT−1. (A4)

All terms of Eq. (A1) have dimensions that can be ex-
pressed in terms of L, H, and T. Therefore, we can non-
dimensionalize Eq. (A1) using a characteristic length lc, a
characteristic height hc, a characteristic time tc, and combi-
nations thereof. We wish to define lc, hc, and tc as functions
of only the parametersK ,D, and U and the exponentsm and
n. We can utilize Eqs. (A2)–(A4) to derive these functions.
Below, we present how the definition of lc is obtained. The
definitions of hc and tc can be obtained analogously.

We assume that lc will be the product of three power laws
of the three parameters K , D, and U , i.e., lc =KkDdUu,
where k, d , and u are unknown exponents that we seek to
determine. The two sides of this definition of lc must have
the same dimensions, i.e., [lc]=

[
KkDdUu

]
, which implies,

in combination with Eqs. (A2)–(A4), that

L=[K]k[D]d [U ]u =
(

Ln−2mH1−nT−1
)k(

L2 T−1
)d

(
HT−1

)u
= L(n−2m)k+2d H(1−n)k+uT−k−d−u. (A5)

We can find the exponents k, d , and u by requiring that in
the right-hand side of Eq. (A5), the exponent of L is equal to
1 and the exponents of H and T are equal to 0, i.e., by solving
the system

(n− 2m)k +2d = 1
(1− n)k +u = 0
−k −d −u = 0

. (A6)

The solution of this system is

k =
−1

n+ 2m
, d =

n

n+ 2m
, u=

1− n
n+ 2m

, (A7)

i.e., L=
(

[K]−1[D]n[U ]1−n )1/(n+2m).
Therefore, the characteristic length can be defined as

lc =
(
K−1DnU1−n

)1/(n+2m)
. (A8)

Following the same procedure, we find definitions of the
characteristic scales of height and time:

hc =
(
K−2Dn−2mU2−n+2m

)1/(n+2m)
, (A9)

tc =
(
K−2Dn−2mU2−2n

)1/(n+2m)
. (A10)

For m= 0.5 and n= 1, Eqs. (A8)–(A10) yield the corre-
sponding Eqs. (3)–(5) in the main text.

Note the exponents of the parameters K , D, and U in the
definitions of lc, hc, and tc (Eqs. A8–A10). The following
observations can be made:

– For n= 1, the definitions of lc and tc are simplified be-
cause U drops out.

– For n= 2m, the definitions of hc and tc are simplified
because D drops out.

– D would drop out of lc’s definition if n= 0 andU would
drop out of hc’s definition if n= 2+2m. Such exponents
would not yield physically meaningful stream-power or
shear-stress incision laws.

– K never drops out of any of the three definitions.

– Therefore, eliminating U from lc’s and tc’s definitions
(for n= 1) or eliminating D from hc’s and tc’s defini-
tions (for n= 2m) are the only simplifications of the
definitions of characteristic scales that correspond to
meaningful stream-power or shear-stress incision laws.

– Equation (1) satisfies both n= 1 and n= 2m; therefore,
it results in the simplest set of characteristic scales that
are physically meaningful.

Based on the definitions of lc, hc, and tc we define a char-
acteristic area

Ac = l
2
c =

(
K−2D2nU2−2n

)1/(n+2m)
, (A11)

a characteristic gradient

Gc = hc/lc =
(
K−1D−2mU1+2m

)1/(n+2m)
, (A12)

and a characteristic curvature

κc =Gc/lc = hc/l
2
c = U/D. (A13)
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Note that the uplift rate can be viewed as a characteristic rate
of elevation change because

hc/tc = U. (A14)

We define a characteristic horizontal velocity as

uc = lc/tc =
(
K1D2mU−1+n

)1/(n+2m)
. (A15)

We have shown that the characteristic scales of the gov-
erning equation in the main text, Eq. (1), are consistent with
the characteristic scales of Eq. (A1). Below we confirm that
all results and interpretations that refer to Eq. (1) and were
presented in the main text are also consistent with Eq. (A1).

A3 Dimensionless governing equation

We define dimensionless variables according to Eqs. (6, 8,
10, 12, and 14) (using the characteristic scales defined by
Eqs. A8–A13) and substitute into Eq. (A1):

∂z

∂t
=−KAm(|∇z|)n+D∇2z+U ⇔

hc∂z
∗

lc∂t∗
=−KAmc A

∗mGnc
(∣∣∇∗z∗∣∣)n+Dκc∇

∗ 2z∗+U

⇔ . . .⇔ U
∂z∗

∂t∗
= U

(
−A∗m

(∣∣∇∗z∗∣∣)n+∇∗ 2z∗+ 1
)

⇔
∂z∗

∂t∗
=−A∗m

(∣∣∇∗z∗∣∣)n+∇∗ 2z∗+ 1. (A16)

A4 Height scales

We define an incision height as the erosion due to incision
during one unit of tc:

hI =KA
m(|∇z|)n tc

= Am(|∇z|)n
(
Kn+2m−2Dn−2mU2−2n

)1/(n+2m)
. (A17)

Note that the dimensionless incision height is

hI

hc
=
KAm(|∇z|)n tc

hc
=
Am(|∇z|)n

U/K
. (A18)

The incision height hI is related with the steepness index
ks according to

ks = A
m/n
|∇z| =

(
hI

K tc

)1/n

. (A19)

We define a diffusion height as the elevation change due
to diffusion per unit of tc:

hD =D∇
2z tc = (D tc) ∇2z=

(
K−1DnU1−n

)2/(n+2m)

∇
2z= l2c ∇

2z. (A20)

Note that the dimensionless diffusion height is

hD

hc
=
D∇2z tc

hc
=
∇

2z

U/D
=
∇

2z

κc
. (A21)

Multiplying Eq. (A1) by tc and substituting from
Eqs. (A14), (A17), and (A20), we obtain

(∂z/∂t) tc =−KAm(|∇z|)n tc+D∇2z tc+U tc

⇔ (∂z/∂t) tc =−hI+hD+hc, (A22)

which in steady state becomes

0=−hI+hD+hc. (A23)

At points of zero curvature (∇2z= 0), Eq. (A23) becomes

hI = hc⇔ Am(|∇z|)n
(
Kn+2m−2Dn−2mU2−2n

)1/(n+2m)

=

(
K−2Dn−2mU2−n+2m

)1/(n+2m)

⇔ Am(|∇z|)n = U/K. (A24)

Therefore, hc and U/K are the steady-state values of hI and
Am(|∇z|)n, respectively, at points of zero curvature. Form=
0.5 and n= 1, i.e., for the governing equation in the main
text (Eq. 1), these two relations coincide.

At drainage divides (A= 0), Eq. (A23) becomes

hD =−hc⇔ D∇2z tc =−U tc⇔ ∇
2z

=−U/D =−κc. (A25)

Substituting the definition of hD (Eq. A20) into Eq. (A23)
yields

hI = l
2
c ∇

2z+hc; (A26)

i.e., hI remains a linear function of curvature in steady state.
Thus, hI can be used for valley definition for the generic
model in the same way that it can be used for the simplified
model.

A5 Scales of length and time

The celerity of the incision term is

c (A, |∇z|)=KAm(|∇z|)n−1. (A27)

Therefore, the time needed to advect perturbations over some
distance l defines an incision timescale:

tI =
l

KAm(|∇z|)n−1 . (A28)

The diffusion timescale of Eq. (A1) is the same as in the
case of Eq. (1); i.e., according to Eq. (35), it is tD = l2/D.

Therefore, the Péclet number is defined as

Pe= tD/tI =
Am(|∇z|)n−1 l

D/K
. (A29)

We observe that l2m+1
c Gn−1

c =D/K . Therefore, the Péclet
number definition becomes

Pe=
Am(|∇z|)n−1l

l2m+1
c Gn−1

c
=

(
A

Ac

)m(
|∇z|

Gc

)n−1(
l

lc

)
. (A30)
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The condition Pe≈ 1 is satisfied at points with length scale
l, drainage area A, and slope |∇z| such that

Pe≈ 1 ⇔
(
A

Ac

)m(
|∇z|

Gc

)n−1(
l

lc

)
≈ 1

⇔ Am(|∇z|)n−1l ≈ l2m+1
c Gn−1

c . (A31)

One combination of length scales, drainage areas, and slopes
that satisfies this condition is l ≈ lc, A≈ Ac, and |∇z| ≈Gc.
Substituting these values into the definitions of tI and tD
yields tI ≈ tc and tD ≈ tc.

Appendix B: Rescaling of landscapes

We outline an analytical proof of the rescaling property
implied by the dimensionless governing equation (Eq. 16),
namely that landscapes with any parameters will evolve tem-
porally and geometrically similarly and will reach geometri-
cally similar steady states provided that we properly rescale
their boundary and initial conditions. Equation (18a–d) de-
fines what we term as proper rescaling.

A simple way to demonstrate this property is to explore the
necessary conditions for the dimensionless governing equa-
tion (Eq. 16) to describe two different landscapes and then
show that the same conditions lead to a temporally and ge-
ometrically similar evolution of these two landscapes. Let a
landscape have parameters K , D, and U and a second land-
scape have parameters K ′ = kK , D′ = dD, and U ′ = uU ,
where k, d , and u are positive real numbers, and let both land-
scapes satisfy Eq. (16). In what follows, we denote variables
and scales of the second landscape as primed to match the
notation of its parameters.

First, we derive rescaling relationships between character-
istic scales of the two landscapes as functions of k, d , and u.
The second landscape’s characteristic length scale, lc′, will
be

lc
′
=
√
D′/K ′ =

√
(dD)/(kK) =

√
d/k lc. (B1a)

Likewise, its remaining characteristic scales will be

hc
′
= (u/k) hc, (B1b)

tc
′
= (1/k) tc, (B1c)

Ac
′
= (d/k) Ac, (B1d)

Gc
′
=

(
u/
√
dk
)
Gc, (B1e)

κc
′
= (u/d) κc. (B1f)

Second, we derive relationships between coordinates of
the landscapes and between moments in time during their
evolution. We substitute Eq. (B1a) into Eq. (18a) and obtain

x′ =
(
l′c/lc

)
x =

√
d/k x. (B2a)

Likewise, we can obtain

y′ =
√
d/k y (B2b)

and

t ′ = (1/k) t. (B2c)

We consider the two landscapes to be temporally and geo-
metrically similar if the points (x, y) and (x′, y′) have eleva-
tions z and z′ at moments in time t and t ′, respectively, such
that

z′
(
t ′
)
= (u/k) z (t) . (B2d)

Third, one can show that drainage areas, time derivatives,
and differential operators of the two landscapes will be re-
lated according to

A′ = (d/k) A, (B2e)
∂/∂t ′ = k∂/∂t, (B2f)

∇
′
=
√
k/d ∇, (B2g)

∇
′2
= (k/d) ∇2. (B2h)

Fourth, we can retrieve the following dimensional gov-
erning equation for the second landscape if we start from
the dimensionless Eq. (16) and use the rescaling formulas
of Eq. (18):

∂z′

∂t ′
=−K ′

√
A′
∣∣∇ ′z′∣∣+D′∇ ′2z′+U ′. (B3)

We can retrieve Eq. (1), the first landscape’s dimensional
governing equation, by reversing the derivation of Eq. (16)
presented in Sect. 2.2. In Eq. (B3) it is important to note that
we use primed elevations, time, drainage areas, and differen-
tial operators. This is the necessary condition for the dimen-
sionless Eq. (16) to describe both landscapes, and we found
it by using Eqs. (B2a–h) to rescale variables between the two
landscapes.

Fifth, we can now show that rescaling according to
Eqs. (B2a–h) additionally leads to temporal and geometric
similarity. Specifically, we can show that if the two land-
scapes are geometrically similar (i.e., they obey Eq. B2d) at
any moments in time t and t ′ that are rescaled according to
Eq. (B2c), then they will remain geometrically similar for all
later moments in time. To show this we compare the left-hand
side and the incision, diffusion, and uplift terms of the right-
hand side of the dimensional governing equations of the two
landscapes. These terms have dimensions of H T−1, i.e., di-
mensions of a vertical velocity. Thus, to simplify notation,
we denote them here as v, vI, vD, and vU, respectively. The
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comparisons show that

vI
′
(
t ′
)
=−K ′

√
A′
∣∣∇ ′z′ (t ′)∣∣

=−kK
√

(d/k) A
√
k/d |∇ ((u/k) z (t))|

= −uK
√
A |∇z (t)| = uvI (t) ; (B4a)

likewise,

vD
′
(
t ′
)
= uvD (t) , (B4b)

vU
′
(
t ′
)
= uvU (t) , (B4c)

and, therefore, also

v′
(
t ′
)
= vI

′
(
t ′
)
+ vD

′
(
t ′
)
+ vU

′
(
t ′
)

= u (vI (t)+ vD (t)+ vU (t))= uv (t) . (B4d)

Thus, after a time interval dt ′, the second landscape will have
elevation equal to

z′
(
t ′+ dt ′

)
= z′

(
t ′
)
+ v′

(
t ′
)

dt ′ = (u/k)z (t)+ uv (t) (1/k)dt

= (u/k) (z (t)+ v (t)dt)= (u/k)z (t + dt) ; (B5)

i.e., the two landscapes will continue obeying Eq. (B2d) and
thus remain geometrically similar.

Therefore, we can conclude that if the two landscapes have
geometrically similar initial conditions, then they will evolve
temporally and geometrically similarly and will reach geo-
metrically similar steady states.

Appendix C: Numerical simulation setup

C1 Inputs

C1.1 Calculation of CHILD parameters

To simulate the governing equation (Eq. 1) with CHILD we
used the detachment-limited module; constant, uniform, and
continuous precipitation; zero infiltration; hydraulic geome-
try scaling exponents ωb and ωs equal to 0.5; and detachment
capacity exponents mb, nb, and Pb equal to 1 (see Tucker et
al., 2001, and Tucker, 2010, for definitions of CHILD’s as-
sumptions, modules, and parameters).

For this choice of exponents, the rate of elevation change
due to incision is calculated by CHILD from the following
equations (in CHILD notation):

∂z

∂t

∣∣∣∣
Incision

=−Dc =−kbτ, (C1a)

τ = kt

√
P
√
A

kw
S, (C1b)

whereDc is the maximum detachment capacity in ma−1, τ is
stream power per unit bed area in Wm−2, kb is a detachment
rate coefficient in m a−1 (W m−2)−1 (i.e., kb is the rate of
elevation change per each unit of stream power per unit bed

area), kt is the specific weight of water in N m−3, P is the
precipitation intensity in m a−1, kw is bankfull width per unit
scaled discharge in s0.5 m−0.5, and S is slope (Tucker et al.,
2001; Tucker, 2010).

Equating the incision term of Eq. (1) to Dc, we can relate
the incision coefficient,K , with CHILD’s parameters accord-
ing to

K =
kbkt
√
P

kw

√
1a

√
31557600s

. (C2)

CHILD input files use a mixed system of units which in-
cludes both years and seconds, and the program converts
variables to a single system of units. Therefore, to calculate
the values of parameters entered into CHILD’s input files, we
must include the unit conversion factor seen in Eq. (C2).

We varied the values of K by varying the value of kb
according to Eq. (C2), while we used constant values of
kt = 9810Nm−3, P ≈ 1.31ma−1, and kw = 10s0.5m−0.5.

We defined combinations of the parameters K , D, and U ,
each ranging by 2 orders of magnitude around arbitrary base-
line values. The baseline values were found to be used fre-
quently in the literature (e.g., Perron et al., 2008; Tucker,
2009; Clubb et al., 2016). Table 2 shows values of param-
eters, characteristic scales, and simulation properties of the
three landscapes presented in Figs. 1–5 and 7–10, including
the baseline landscape (landscape B).

C1.2 Simulation domain and mesh

We synthesized two random TINs by randomly perturbing a
deterministic TIN generated by the geometry definition mod-
ule of MATLAB’s PDE toolbox. We used MATLAB to better
control the rescaling procedure that we describe below. We
exported the rescaled TINs of simulations as text files. Using
the coordinates of TIN points included in these files, CHILD
calculated the corresponding Delaunay triangulation using
its own, built-in modules. We set all four domain boundaries
to be open (see Tucker, 2010).

To prepare rescaled TINs, we followed the following pro-
cedure. First, we synthesized two random TINs on rectan-
gular domains with x coordinates between 0 and 200 and
y coordinates between 0 and 400; the average triangle edge
length was 0.8, and the z coordinates were drawn from a uni-
form distribution between 0 and 0.1. By assuming that the
aforementioned values are unitless, we can consider the re-
sulting TINs to be dimensionless. Second, using Eqs. (3) and
(4), we calculated the characteristic length and height scales
lc and hc that correspond to the parameter combination of
each simulation. Third, using Eq. (6), we multiplied the x,
y, and z coordinates of the points of the dimensionless TINs
by the lc and hc of each simulation. This yielded each sim-
ulation’s dimensional TINs with size of 200 lc by 400 lc, an
average triangle edge of 0.8 lc, and initial elevations between
0 and 0.1hc. CHILD assumes that x, y, and z are in units of
meters; therefore, we calculated lc and hc in units of meters
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as well. The above procedure resulted in dimensional TINs
that are rescaled copies of each other according to Eqs. (18a–
c).

C1.3 Time steps

We defined the time step length 1t using Courant–
Friedrichs–Lewy criteria for the incision and diffusion terms
of Eq. (1) according to the following formulas (Refice et al.,
2012):

1t =min[1tInc., 1tDiff.] , (C3a)

with

1tInc. =min
[

Lij

K
√
Ai

]
, (C3b)

1tDiff. =min

[
L2
ij

2D

]
, (C3c)

where Lij is the length of the TIN edge connecting points
i and j and Ai is the drainage area of point i. Normalizing
lengths and drainage areas in Eqs. (C3 b, c) by lc and l2c ,
respectively, yields

1tInc. =min

 lcL
∗

ij

K

√
l2cA
∗

i

= 1
K

min

[
L∗ij
√
Ai
∗

]

= tcmin

[
L∗ij√
A∗i

]
= tc1t

∗
Inc., (C4a)

1tDiff. =min

[
l2cL
∗

ij
2

2D

]
=

1
K

min

[
L∗ 2
ij

2

]
= tc min

[
L∗ 2
ij

2

]
= tc1t

∗

Diff.. (C4b)

Therefore, both the incision and diffusion time step limits
are in effect rescaled by tc, even though we do not explicitly
impose such scaling.

CHILD allows the definition of a single time step length,
which is used throughout the entire simulation. However,
since Ai evolves during simulations, we do not know a pri-
ori which combination of Lij and Ai will yield the smallest
1tInc.. Therefore, to be on the safe side, we calculate 1tInc.
using the domain-wide minimum of Lij and an Ai equal to
0.5(100lc)2, which is the area of a square whose diagonal
spans the domain’s half width. We assume that this square
has a similar area as the largest basins to be formed. To avoid
very small Lij , which would result in very short 1t , we do
not allow TIN perturbation during the synthesis of random
TINs (described above) to result in Lij shorter than one-third
of the average TIN length of 0.8lc.

C1.4 Steady state

We assume that ε∗ = 0.001 in Eq. (19); i.e., we assume that
a steady state has been reached when

max
[
|1zi |

1t

]
≤ 0.001U, (C5)

where 1zi is the elevation change in point i during a time
step 1t .

C2 Outputs

CHILD produces output files with various variables. Rele-
vant to our model are those with data of elevation zi , drainage
area Ai , slope |∇zi |, and stream power per unit streambed
area τi , at every point i, the point IDs of TIN triangle and
edge vertices, and the ID of the neighbor to which each point
drains.

Using the triangle and edge output data, we define the
Voronoi polygon associated with a point i and calculate this
point’s curvature∇2zi and elevation change rate due to diffu-
sion vD i according to the following formulas (Tucker et al.,
2001):

∇
2zi =−

1
3i

∑
j=1

Mi zi − zj

λij
wij , (C6)

vDi =D∇
2zi, (C7)

where 3i is the area of the Voronoi polygon of point i, j is
neighbors of i,Mi is the number of these neighbors, zi and zj
are elevations of points i and j , λij is the distance between
i and j , and wij is the length of the Voronoi polygon edge
shared between i and j .
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