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Abstract. In the arctic and high mountains it is common to measure vertical changes of ice sheets and glaciers
via digital elevation model (DEM) differencing. This requires the signal of change to outweigh the noise as-
sociated with the datasets. Excluding large landslides, on the ice-free earth the land-level change is smaller in
vertical magnitude and thus requires more accurate DEMs for differencing and identification of change. Pre-
viously, this has required meter to submeter data at small spatial scales. Following careful corrections, we are
able to measure land-level changes in gravel-bed channels and steep hillslopes in the south-central Andes us-
ing the SRTM-C (collected in 2000) and the TanDEM-X (collected from 2010 to 2015) near-global 12–30 m
DEMs. Long-standing errors in the SRTM-C are corrected using the TanDEM-X as a control surface and apply-
ing cosine-fit co-registration to remove ∼ 1/10 pixel (∼ 3 m) shifts, fast Fourier transform (FFT) and filtering to
remove SRTM-C short- and long-wavelength stripes, and blocked shifting to remove remaining complex biases.
The datasets are then differenced and outlier pixels are identified as a potential signal for the case of gravel-bed
channels and hillslopes. We are able to identify signals of incision and aggradation (with magnitudes down to
∼ 3 m in the best case) in two> 100 km river reaches, with increased geomorphic activity downstream of knick-
points. Anthropogenic gravel excavation and piling is prominently measured, with magnitudes exceeding ±5 m
(up to > 10 m for large piles). These values correspond to conservative average rates of 0.2 to > 0.5 m yr−1 for
vertical changes in gravel-bed rivers. For hillslopes, since we require stricter cutoffs for noise, we are only able
to identify one major landslide in the study area with a deposit volume of 16±0.15×106 m3. Additional signals
of change can be garnered from TanDEM-X auxiliary layers; however, these are more difficult to quantify. The
methods presented can be extended to any region of the world with SRTM-C and TanDEM-X coverage where
vertical land-level changes are of interest, with the caveat that remaining vertical uncertainties in primarily the
SRTM-C limit detection in steep and complex topography.

1 Introduction

Geodynamic and geomorphological processes operating at
different timescales result in vertical change (herein dh) on
the earth’s surface. In the cryosphere, dh studies use re-
peat surveys or digital elevation model (DEM) differenc-
ing on annual to sub-annual time steps (e.g., Berthier et al.,
2007; Nuimura et al., 2012; Neelmeijer et al., 2017; Brun
et al., 2017). Changes to snow and ice occur most rapidly
(aside from landslides), but dh measurement outside of the

cryosphere also provide aggradation and incision monitoring
for rivers (e.g., Lane et al., 2003; Wheaton et al., 2010; Cook,
2017; Mason and Mohrig, 2018), volumes of landslides and
extruded lava (e.g., Bagnardi et al., 2016; Bessette-Kirton
et al., 2018), and earthquake displacements (Oskin et al.,
2012). Large-scale monitoring of dh on soil, rock, and un-
consolidated sediment is an elusive problem requiring signals
that outweigh the noise in collection methods and resulting
datasets.
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Vertical accuracies for modern gridded spaceborne DEMs
are on the order of 2–8 m in mountainous regions, though
significantly worse on steepening slopes (e.g., Rexer and
Hirt, 2014; Purinton and Bookhagen, 2017). Using DEMs
from sources like the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER; Tachikawa et al.,
2011) with higher uncertainties is acceptable for monitoring
glaciers and ice sheets (e.g., Brun et al., 2017), where dh be-
tween even sub-annual time steps can be tens to hundreds of
meters over areas of many square kilometers. On the other
hand, dh of soil, rock, and unconsolidated sediment are of-
ten at the centimeter to meter scale and far more localized
over up to a few hundred to thousand square meters. Due to
these limitations, previous studies relied on intensive map-
ping from aerial photos (e.g., Hovius et al., 1997), sparse
cross sections with large temporal spans (e.g., Rinaldi and
Simon, 1998), or – more recently – meter to submeter to-
pographic data from lidar or photogrammetric point clouds
(e.g., Lane et al., 2003; Booth et al., 2009; Perroy et al., 2010;
Cook, 2017) or select optical satellites with submeter resolu-
tion like Pleiades and WorldView (e.g., Bagnardi et al., 2016;
Bessette-Kirton et al., 2018). Despite recent advances in me-
ter to submeter lidar, satellite, and unmanned aerial vehicle
data availability (Passalacqua et al., 2015), these remain lim-
ited in spatial and temporal coverage, and sometimes pro-
hibitively expensive. Coarser gridded DEMs from radar and
optical spaceborne sensors remain the best and often the only
option in large or remote areas.

The publicly available Shuttle Radar Topography Mis-
sion (SRTM) DEM is an earth snapshot from its 10-day
collection aboard the Space Shuttle Endeavour in Febru-
ary 2000. The mission produced an interferometric syn-
thetic aperture radar (InSAR) DEM from C-band (5.6 cm
wavelength) radar for 80 % of earth’s landmasses from typ-
ically 2–3 ascending and descending swaths (Farr et al.,
2007). The SRTM-C has seen numerous succeeding re-
leases and void filling (e.g., Jarvis et al., 2008). We use
the most recent floating-point-reprocessed 1 arcsec (∼ 30 m)
NASADEM, taking only the non-void-filled original SRTM-
C tiles (herein SRTM-C; Crippen et al., 2016; found in
the “srtmOnly” directories under https://e4ftl01.cr.usgs.gov/
provisional/MEaSUREs/NASADEM/, last access: 26 Octo-
ber 2018).

The TanDEM-X 0.4 and 1 arcsec (∼ 12 and∼ 30 m) DEM
released in 2016 – here received through scientific German
Aerospace Center (DLR) proposals – is the next genera-
tion of radar-derived global topography following the SRTM.
The TanDEM-X, covering 97 % of earth’s landmasses, was
generated by semi-automated processing and stacking of
> 470000 ascending and descending X-band (3.1 cm wave-
length) TerraSAR-X and TanDEM-X satellite bistatic scenes
collected from December 2010 to January 2015 (Krieger
et al., 2013; Rizzoli et al., 2017). As elevations are averaged
between scenes, we take the date of the TanDEM-X as Jan-
uary 2015, thus providing a 15-year time step of dh between

SRTM-C and TanDEM-X. Using the latest possible date for
TanDEM-X elevations means that rates of change are conser-
vative minimum values.

In this submission we discuss the errors associated with
each of these datasets and the corrections applied to miti-
gate uncertainties in their differencing for dh detection out-
side of the cryosphere. This is therefore a data quality and
methods-focused study. Geomorphic change detection is ap-
plied via correction and differencing of the TanDEM-X and
SRTM-C over the south-central Andes in northwestern Ar-
gentina (Fig. 1) to identify and measure areas of dh in
gravel-bed channels specifically and then across the land-
scape. Here, steep gradients in elevation (∼ 1–4 km), rain-
fall (∼ 0.1–1 m yr−1), and vegetation (subtropical forests and
croplands to arid, succulent-covered slopes) cause high rates
of mass transfer (Bookhagen and Strecker, 2012; Savi et al.,
2016; Schildgen et al., 2016), further influenced by climate
change (Castino et al., 2016a, b, 2017) and anthropogenic
modification (gravel mining and weirs). To conclude, we dis-
cuss caveats driven by remaining uncertainties prevalent in
spaceborne DEMs collected over complex topography.

2 Spaceborne DEM errors

Yamazaki et al. (2017) classify spaceborne DEM errors into
speckle noise, stripe noise, absolute bias, and tree height
bias. We divide this further for the case of SRTM-C and
TanDEM-X (both radar DEMs) into (i) sensor specific re-
lated to radar and spacecraft collection and (ii) terrain spe-
cific related to land-surface cover and topographic complex-
ity. We do not consider DEMs from optical sensors such as
ASTER (Tachikawa et al., 2011) and the Advanced Land
Observing Satellite (ALOS; Tadono et al., 2014), which
have well documented errors (e.g., Racoviteanu et al., 2007;
Nuth and Kääb, 2011; Fisher et al., 2013; Yamazaki et al.,
2017) and perform worse than radar, with vertical accuracies
> 5 m (1σ ) and persistent high-frequency artifacts (Purinton
and Bookhagen, 2017). Additionally, a dearth of cloud-free,
high-quality ASTER imagery covering the study area pre-
cludes the automated DEM generation of Girod et al. (2017)
and regression techniques of Wang and Kääb (2015). On the
other hand, within the study area, the SRTM-C and TanDEM-
X both exhibit vertical uncertainties < 3.5 m (Purinton and
Bookhagen, 2017) and also have an appropriately long time
difference for vertical land-level change detection. Auxiliary
rasters including the water indication mask (WAM), height
error mask (HEM), consistency mask (COM), and coverage
map (COV) delivered with TanDEM-X (Wessel, 2018) allow
enhanced understanding of DEM quality (see Sect. S1 in the
Supplement).

Random, or speckle, error caused by instrument thermal
noise and localized de-correlation is the primary sensor bias
for radar (Rodríguez et al., 2006). These localized, small
magnitude errors reduce with increasing looks used in the
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Figure 1. Overview of study area in NW Argentina with (a) elevation, (b) rainfall (Tropical Rainfall Measurement Mission 12-year average;
TRMM2B31; Bookhagen and Strecker, 2008), and (c) vegetation (MODIS product 13C1 enhanced vegetation index 14-year average; MODIS
EVI; Huete et al., 1994), where lower, brown (higher, green) values represent sparse (dense) vegetation. Note strong east–west gradients in
all three maps. The white watershed boundary delineates the internally drained Altiplano–Puna Plateau. The gray line in (b) and (c) indicates
the 2000 m contour line. The yellow patches in (c) are areas identified in the TanDEM-X water indication mask (WAM) as having low
amplitude and/or low coherence. These patches correspond to salt flat (salar) regions on the plateau, water bodies (e.g., reservoirs in the
low-elevation areas), steep and vegetated areas (DEM error), and other zones of coherence loss, such as the dunes identified. Inset boxes
in (c) indicate locations of dh map-view Figs. 8–9, with the TanDEM-X tile boundary in green. Note anthropogenic tampering of natural
gravel-bed channels (Río Grande and Río Toro) with downstream flow diversion (weirs) and gravel mining activity near the populous cities
of Salta and Jujuy.

final mosaic. Speckle presents a greater issue in SRTM-C
given the maximum three swaths at lower latitudes (Farr
et al., 2007). Such noise is expected to be minimal in the
TanDEM-X, with average coverage in our study area of 7 as-
cending and descending scenes and up to 14 in many steep ar-
eas (Fig. S1 in the Supplement). Smoothing data prior to and
after phase unwrapping (e.g., multi-looking, adaptive filters,
or down-sampling) can further reduce speckle. The SRTM-
C raw resolution of ∼ 30 m is similar to the final 1 arcsec
product, though, due to interferogram smoothing to reduce
noise, the estimated true ground resolution of the final prod-
uct is 45–60 m (Sun et al., 2003; Farr et al., 2007; Tachikawa
et al., 2011). This may be improved in the newly released
data (Crippen et al., 2016), but this remains to be tested.
Multi-looking of 4×5 pixels of raw radar returns (resolution
∼ 3.3 m) was used in the case of TanDEM-X to generate a fi-
nal 0.4 arcsec (∼ 12 m) product, thus significantly smoothing
and reducing speckle (Rizzoli et al., 2017).

Besides a small geolocation error expected in both DEMs
from instrument uncertainties, the SRTM-C has a number
of spacecraft-specific biases, manifested in short- and long-
wavelength striping (Rodríguez et al., 2006; Yamazaki et al.,
2017). The short-wavelength (∼ 0.5–1 km, magnitudes typ-
ically < 0.5 m) stripes are related to jitter in the antenna
mast caused by the periodic firing of shuttle attitude thrusters
(Farr et al., 2007). Longer-wavelength errors with magni-
tudes > 1 m are caused by individual swath tilts and form
complex undulating patterns over ∼ 100 km distances (Crip-
pen et al., 2016; Yamazaki et al., 2017). TanDEM-X satellite
biases can be found in slight tilting of individual TerraSAR-
X and TanDEM-X scenes (e.g., Neelmeijer et al., 2017),
though these tilts were removed during stacking in the end
product (Rizzoli et al., 2017). The careful monitoring and
control maintained over flight geometry, in addition to post-
processing to remove tilts using ICESat (Ice, Cloud, and land
Elevation Satellite; Schutz et al., 2005), restricts most of the
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TanDEM-X uncertainty to the second category of terrain-
specific error (Rizzoli et al., 2017).

Land-surface cover plays a key role in modulating radar
returns. TanDEM X-band and SRTM C-band radar have dif-
ferent penetration depths in dense vegetation (Carabajal and
Harding, 2006; Hofton et al., 2006; Wessel et al., 2018) and
snow and ice (Rignot et al., 2001; Rossi et al., 2016), leading
to different height returns. We note this important caveat but
are able to ignore it for our particular study question (land-
level change of bare material) and area (only partial vegeta-
tion and no permanent snow and ice). Subtropical vegetation
in our study area does allow some exploration of the effect
on dh; however, we find no clear relation (see Sect. S2). In
any case, vegetation differences are expected to be less sig-
nificant than for optical data, which returns only the canopy
heights (e.g., Yamazaki et al., 2017). Both DEMs have major
inconsistencies and speckle over water bodies, wet salt flats,
and deserts caused by de-correlation, variable reflectance,
and/or weak backscatter of the radar signal (Rodríguez et al.,
2006; Farr et al., 2007; Wendleder et al., 2013; Rizzoli et al.,
2017). For the SRTM-C, these areas are largely voids any-
way, and for TanDEM-X the WAM raster provides informa-
tion on coherence and amplitude for each pixel to identify
these untrustworthy measurements (Fig. 1c).

Remaining errors in the SRTM-C and TanDEM-X are re-
lated to terrain characteristics (see Sect. S2). This is the result
of topographic complexity below the resolution of the sensor,
radar geometry considerations (layover, foreshortening, and
shadowing), and interferometric phase unwrapping errors, all
most pronounced in steep mountains. Such terrain biases are
demonstrated in the SRTM-C with elevation (Berthier et al.,
2006; Paul, 2008), slope and aspect (Gorokhovich and Vous-
tianiouk, 2006; Van Niel et al., 2008; Peduzzi et al., 2010;
Shortridge and Messina, 2011), and resolution (manifested
in curvature) (Gardelle et al., 2012), and in the TanDEM-
X with only slope (Purinton and Bookhagen, 2017; Wessel
et al., 2018). Terrain slope – also related to relief (Fig. S7) – is
the primary cause of error in any DEM, demonstrated in the
division of vertical uncertainties for most DEMs into slope
bins (e.g., Wessel et al., 2018). Slope-dependent errors may
be reduced with finer-resolution data and increased look an-
gles for mosaicking, as in the case of TanDEM-X, but these
uncertainties are expected to remain as the most prevalent
cause of error in any spaceborne DEM.

With this framework for understanding the potential error
sources in the SRTM-C and TanDEM-X, it is possible to cor-
rect one dataset to another in a multistep processing chain
(e.g., Yamazaki et al., 2017) allowing dh identification and
measurement with greater certainty.

3 Methods

Given the excellent agreement with differential GPS glob-
ally (Wessel et al., 2018) and in the study area (Purinton

and Bookhagen, 2017) along with the minimal errors associ-
ated with orbital characteristics, we consider the TanDEM-X
DEM as our reference surface in order to correct the more
problematic SRTM-C. During correction, we do not apply
any speckle reduction (e.g., via an adaptive filter as in Ya-
mazaki et al., 2017), as we are interested in raw elevation
values and not a smoothed DEM. For the SRTM-C we select
the non-void-filled NASADEM data so as not to include any
auxiliary elevation measurements from, for instance, ASTER
(Crippen et al., 2016). Importantly, both DEMs are refer-
enced to the WGS84 ellipsoid vertical datum, whereas pre-
vious SRTM-C releases have been referenced to the EGM96
geoid (Farr et al., 2007), thus requiring a geoid-adjustment
step introducing additional uncertainties prior to comparison.

For correction and differencing we use the 0.4 arcsec
TanDEM-X that we bilinearly resampled to 1 arcsec to match
the raw resolution of the SRTM-C. Wessel (2018) notes that
the delivered TanDEM-X 1 arcsec tiles, which we also have
a number of, were generated with average resampling of the
0.4 arcsec tiles by DLR and not by any increase in multi-
looks or interferogram smoothing. We tested a number of
resampling schemes including average, bilinear, cubic, and
cubic spline on the original 0.4 arcsec tiles and found better
results (lower vertical uncertainty compared with differential
GPS) from the commonly used bilinear resampling, whereas
the unedited 1 arcsec tiles delivered by the DLR – generated
by average resampling – had higher vertical uncertainties.

The TanDEM-X and recently updated SRTM-C were both
referenced to high-accuracy ICESat (Schutz et al., 2005;
Zwally et al., 2009) measurements (collected between 2003
and 2009) during final block adjustments (Crippen et al.,
2016; Rizzoli et al., 2017). While this removes the complete
independence of these datasets, the relative sparsity of these
points (170 m along track and up to 80 km across track) does
not provide a continuous adjustment surface, but rather acts
to improve local elevations and overall DEM quality with re-
spect to remaining tilts (Rizzoli et al., 2017). Throughout the
study dh refers to the TanDEM-X–SRTM-C 15-year differ-
ences (including both real change and vertical uncertainties).

3.1 SRTM-C correction steps

Our correction chain was applied using the previous SRTM-
C output at each stage as input in the following step. All
steps were carried out on a 1◦× 1◦ tile-by-tile basis (un-
projected WGS84 vertical and horizontal datums); however,
merging tiles and then processing produced identical results.
We also found comparable results using Universal Trans-
verse Mercator (UTM) equal area projected tiles. The cor-
rection steps served to correct SRTM-C orbital biases and
did not attempt to correct for terrain characteristics. We as-
sumed that actual vertical change in our study area repre-
sented an extremely small fraction of pixels in the ∼ 13 mil-
lion pixel dh raster for each tile. This ensures that the correc-
tions only rectified SRTM-C biases on stable terrain and were
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not influenced by smaller areas of true vertical land-level
changes. Comparison of correction steps was done using
normalized percentage difference histograms and quantile–
quantile (QQ) plots.

3.1.1 Co-registration

We corrected for subpixel offsets known to affect DEM com-
parisons (Van Niel et al., 2008; Berthier et al., 2007) using
the universal co-registration of Nuth and Kääb (2011). This
rigid translation is based on a cosine function fit to the rela-
tionship between terrain aspect and dh normalized by terrain
slope:

dh

tan(α)
= a · cos(b−ψ)+ c, (1)

where α is slope; ψ is aspect; and the variables a, b, and
c are the magnitude, direction, and mean bias, respectively.
The shifts were applied to the SRTM-C by bilinear resam-
pling with the dx = a · cos(b) and dy = a · sin(b) vectors
used to weight the neighboring cells, and the mean shift
dz= c · tan(α) was added at the end.

We fit Eq. (1) to only slopes > 5◦ and, if necessary based
on goodness-of-fit parameters, continued iteration of the fit-
ting, shift vector solving, and interpolation until the magni-
tude of the shift vector (a) was < 0.5 m or the reduction in
normalized median absolute difference (NMAD; Höhle and
Höhle, 2009) on stable terrain was < 5 % (Nuth and Kääb,
2011).

Our co-registration did not correct for slope and curvature
using polynomial fitting (e.g., Kääb, 2005; Gardelle et al.,
2012) as this introduces empirical models and additional un-
certainties. We did not observe a linear positive or negative
trend between slope and dh (Fig. S7). Curvature versus dh
demonstrates the difference in actual resolution of raw sen-
sor data between the SRTM-C and TanDEM-X (Fig. S10);
however, correction of this intrinsic measurement limit in-
troduces artificial elevations and is thus inappropriate for
dh mapping between DEMs from different data sources and
time steps (see Sect. S2).

Iterative shifting and bilinear resampling of one DEM to
another by decimeter steps had the same effect on rectify-
ing aspect biases (same shift vectors leading to minimiza-
tion of bias) as the empirical fitting of the cosine relation-
ship and calculation of shift vectors (see Iterative Shifting
Video in the Supplement). This indicates the robust nature of
the method of Nuth and Kääb (2011), assuming a sufficient
distribution of high-slope, multi-aspect-facing topography is
available for cosine fitting. The minimization of the sum of
errors and cross-correlation methods (e.g., Kääb, 2005) were
unsuccessful at removing shifts in our study region.

3.1.2 Destriping

For removal of long- and short-wavelength striping patterns
in the SRTM-C, we followed previous work using frequency
analysis techniques to identify striping artifacts (e.g., Ar-
rell et al., 2008) and noise (e.g., Purinton and Bookhagen,
2017) in DEMs. We took particular inspiration from Ya-
mazaki et al. (2017) and used fast Fourier transforms (FFTs)
to filter the dh. In a first step, we removed all pixels identi-
fied as having low coherence in the TanDEM-X WAM. This
filtered large water bodies and other areas that may show ar-
tifact noise affecting FFT analysis. Following this, any void
pixels (including the low-coherence areas) were set to dh= 0
and an FFT was run. The power spectral density (PSD) was
calculated as the magnitude of the FFT squared and a mean
5× 5 filter was passed over it. The ratio of original and
smoothed PSD was then taken to identify regions of the spec-
trum with high outliers (high ratio) representing cyclic, tile-
spanning stripe bias. We used the 97.5th percentile of the ra-
tio as the cutoff value. The remaining top 2.5 % high- and
low-frequency outliers received an inverse FFT, which pro-
duced a map of the long- and short-wavelength stripes. These
stripes were then removed from the SRTM-C and the process
was repeated iteratively until the improvement in root mean
squared error (RMSE) was < 5 %.

We refer to the above parameters as nonaggressive destrip-
ing, since we are just “shaving off” the top of the distribution.
In aggressive tests, we experimented with lower percentile
cutoff values (e.g., 95th) and lower tolerance for RMSE con-
vergence (e.g., < 2 % improvement). While these more ag-
gressive destriping schemes did successfully eliminate the
SRTM-C orbital biases, we also found that the true topog-
raphy was often filtered following the more than five iter-
ations needed to meet the RMSE convergence requirements
(Fig. S11). Therefore, we chose to use the nonaggressive cut-
offs and ran additional blocked shifting discussed in the fol-
lowing section.

3.1.3 Blocked shifting

Patchy positive and negative regions in the co-registered, de-
striped dh map were solved by breaking the 1◦× 1◦ tile
into square blocks and shifting each block by the median
value. These areas likely correspond to remaining orbital
biases that were not removed in our nonaggressive destrip-
ing technique. There may be local correspondence between
these patches and atmospheric water vapor conditions at
the time of SRTM-C collection in February 2000; however,
such data at the sub-kilometer scale necessary for analysis is
unavailable. Furthermore, local adjustment of the SRTM-C
and TanDEM-X to ICESat measurements could contribute to
these shifts, though the contribution is difficult to quantify.

We began by masking the low-coherence pixels (again
from the WAM) since these would disproportionately con-
tribute to local median shifts. Using a variety of block sizes
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with edge lengths ranging from 1.35 to 7.2 km, we found the
median dh and median slope in each block. We used the me-
dian slope to normalize the median dh values, since we ex-
pect areas of higher slope to have greater uncertainties and
biases (Fig. S7) unrelated to SRTM-C orbital biases. Further-
more, we allowed a maximum shift per block of ±1 m, thus
ensuring that this step did not cause unreasonably large shifts
due to outliers contained in a given block.

3.2 Differencing for change detection

Following orbital SRTM-C bias corrections, it is possible to
merge corrected tiles and create maps of dh to measure areas
of actual change. Previous change mapping over gravel-bed
channels has relied on level-of-detection cutoffs and proba-
bilistic thresholding (e.g., Lane et al., 2003; Wheaton et al.,
2010). These studies have, however, been developed for me-
ter to submeter photogrammetric or lidar data. Here we use
a hybrid approach of statistical outlier detection on the entire
distribution of pixels followed by a level-of-detection cut-
off for remaining pixels well within the bounds for expected
noise between the datasets. Remaining uncertainties are pri-
marily caused by speckle noise and terrain characteristics,
with the biggest impact from slope. The following sections
provide a detailed description of the change detection method
for channels and hillslopes.

3.2.1 Channels

We know from field observations that large braided gravel-
bed channels in the study area (Fig. 1b) change rapidly with
local incision and aggradation (natural and anthropogenic in
the form of gravel mining) on the order of meters during
the past decade. Outlines of the bank-to-bank active width
of the primary channel branch were digitized from open-
source satellite imagery from BingTM and GoogleEarthTM.
We buffered the resulting channels by −60 m (upper limit
of gridded SRTM-C resolution). This means we only use
the wide (> 120 m), non-vegetated channel reaches from Río
Toro and Río Grande where there has been recent aggrada-
tion and incision.

Change mapping was done by separating the in-channel
dh values into bins of contributing error factors (local relief
and TanDEM-X individual scene consistency) and applying
5th and 95th percentile cutoffs to each bin, thus only taking
the top (positive equals aggradation) and bottom (negative
equals incision) 5 % of outliers. We first used the TanDEM-
X WAM to remove the untrustworthy dh pixels where co-
herence was lost three or more times (Wessel, 2018). Be-
cause gravel-bed channels represent a low-slope environment
with no vegetation and we are only measuring wide valleys,
we assumed that DEM errors from SRTM-C and TanDEM-
X were restricted to random speckle noise. Nonetheless, to
account for steeper areas with potentially more error from
phase unwrapping, we separated dh into relief bins using the

pixels’ 500 m radius relief values. We also separated dh by
the TanDEM-X consistency and height error masks (Figs. S2
and S3). Taken together, dh pixels in high-relief, high-height
error, and low-consistency bins required greater magnitudes
to avoid noise cutoffs than vice versa. A minimum-level-
of-detection approach (Lane et al., 2003) was taken as the
RMSE of the entire dh map on low-slope (similar to channel
slope) areas. In a final step, all remaining in-channel dh val-
ues below this RMSE cutoff were removed as likely noise.
Volume changes are calculated from the sum of the pixel
area (900 m2) multiplied by vertical change, with uncertain-
ties taken as the level-of-detection RMSE and propagated via
Eq. (15) in Lane et al. (2003).

3.2.2 Entire landscape

When considering dh over the entire landscape, we include
far more uncertainties related chiefly to steeper terrain. Thus,
the error must be handled differently than for strictly low-
slope pixels (in-channel). First, a corrected dh map for the
entire study area was generated. Similar to channel map-
ping, low-coherence pixels were removed with the WAM and
dh was separated into bins of slope, height error, and con-
sistency to retrieve only the top and bottom 5 % of outliers
in each bin set. The level-of-detection cutoff was taken as
the RMSE across the entire landscape, which was almost en-
tirely stable terrain, and remaining dh values below this cut-
off were eliminated.

At this stage, a great many lone and patchy dh values re-
mained. Given this, it was not possible to automatically iden-
tify areas of change that were only a small number of pixels
in size. Interested in large-scale changes, likely not associ-
ated with a single pixel, we sought connected pixels showing
all up or all down vertical motion. To winnow the potential
change pixels, we applied binary opening with a 1-pixel ra-
dius circular kernel, thus removing many unconnected out-
liers and small patches. Next, we took the summed dh of
each separate patch. It was assumed that the majority of
patches, and thus the majority of summed values, were re-
maining noise in the difference map, whereas signal should
be spatially coherent and largely positive or negative. There-
fore, by applying a standard deviation cutoff over summed
patches (here we used 1σ , though this can be easily set for
testing), we removed a vast majority of remaining pixels and
only kept the largest outliers. This limited the method to only
assessing the largest coherent vertical changes in the land-
scape but eliminated the possibility of misidentifying change
that was in fact noise. These remaining patches can be ex-
plored in map view and compared with satellite or historical
imagery for further confirmation and analysis.
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Figure 2. Relationship of dh (normalized by the tangent of the slope) to aspect (a) before and (b) after co-registration and bilinear resampling
of SRTM-C. We fit to Eq. (1) on all raw data. Note the close match between equation fit and median values. The cosine relationship in (a)
is caused by overestimation of the SRTM-C on NE-facing aspects (peaking at ∼ 60◦) and underestimation on SW-facing aspects (peaking at
∼ 220◦). The resulting (dx, dy) shift vector is directed SW.

Figure 3. One iteration of FFT destriping from one tile (24◦ S, 66◦W). Both median and RMSE improve from (a) the co-registered map to
(c) the destriped map. Stripes removed by FFT are shown in (b). Note that (c) is not the final corrected map as the iteration was run twice
more before RMSE began to converge at a 5 % tolerance level. Voids (white space) are untrustworthy pixels removed by TanDEM-X WAM
cutoff prior to destriping.

4 Results

4.1 Correction steps

Co-registration of SRTM-C to TanDEM-X revealed X–
Y shifts of ∼ 1/10 of a pixel (∼ 3.7 m). Although minor
Z shifts (∼ 1 m) were also determined and corrected during
co-registration, these were not unique across entire tiles, but
rather related to long-wavelength SRTM-C biases. The co-
sine fitting to dh normalized by terrain slope can be seen in
Fig. 2, whereas in map view the change is more subtle and
difficult to discern.

In Fig. 3, we demonstrate one iteration of destriping for
a single SRTM-C tile (24◦ S, 66◦W). It is apparent in the
co-registered dh map that a number of long- and short-

wavelength shifts are affecting the tile. Using our FFT, sta-
tistical cutoffs, inverse transform, and stripe removal, the re-
sulting dh map has a much more uniform appearance and
the median and RMSE are both reduced. This process was
typically repeated 2–4 times per tile, until the RMSE began
to converge. While topographic uncertainties remain in steep
and high-relief regions, the overprinting biases are reduced.

Since we do not use an aggressive FFT filtering scheme,
a number of patchy outliers remain. We attempted to cor-
rect these regions using blocked shifting (Fig. 4), shown in
this case over three tiles covering the foreland and Altiplano–
Puna Plateau region (24–26◦ S, 66◦W). After testing multi-
ple block sizes, we preferred blocks with an edge length of
3.6 km, since these provide a small enough area to correct
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Figure 4. Blocked shifting on three destriped and merged tiles (24–26◦ S, 66◦W). Blocks are 3.6 km in height and width. The (a) destriped
median and RMSE both improve slightly in (d) the final shifted dh map. Note that the original blocked medians (b) show a slight pattern
resembling the long-wavelength stripe bias from SRTM-C. In (c) we have normalized the median shifts by the median slope values, so as
not to overcorrect the steeper regions with higher uncertainties. The color scheme is changed for (b) and (c), and the scale of (c) is half the
width of (b) since it only extends to the maximum allowable shift of±1 m. Scales and color scheme in (a) and (d) are identical. Voids (white
space) are untrustworthy pixels removed by TanDEM-X WAM cutoff prior to median calculation.

highly localized inconsistencies, while also being far greater
in size than the largest vertical changes we would expect in
the landscape.

4.1.1 Comparison of correction steps

Since stacked histograms are difficult to interpret and larger
magnitude outliers are fewer in number and thus obscured,
we plotted the normalized bin percentage difference of dh
in each step of correction (Fig. 5). Co-registration mostly
caused a mean shift in the distribution. Moving to destrip-
ing, the number of pixels at high outlier values went down
significantly (> 20 % drop in ±15–20 m bins) and there was
some (∼ 10 %) increase in bins±5 m, whereas the number of
values close to zero dh decreased. This represents an overall
redistribution of error from the SRTM-C orbital biased pat-
terns (Fig. 3) to a more uniform spatial pattern (Fig. 4). The
final blocked shifting caused very little overall change in the
distribution, which was mostly in the form of another mean
shift (this time directed the other way from co-registration).
These effects can also be seen in a QQ–plot of each subse-
quent correction step (Fig. 6), where co-registration caused a

mean shift and some outlier reduction, de-striping had a large
effect on narrowing the distribution at the tails, and blocked
shifting again had a minimal effect on narrowing the distri-
bution at the most extreme outliers. In all cases, the median
value (0.5 quantile) moved closer to zero. Overall, these plots
indicate the importance of SRTM-C correction and of the de-
striping step in particular prior to using TanDEM-X–SRTM-
C dh maps for change mapping.

4.2 Areas of change

As discussed in the methods, we separated potential
change identification and measurement from corrected (co-
registered, destriped, block shifted) dh maps between the in-
channel pixels and the entire landscape.

4.2.1 Channels

Binning corrected in-channel dh and cutting off any remain-
ing outliers within the low-slope RMSE of ∼ 3 m reduced
the data density significantly by cutting out any pixels within
expected noise. The potential signal pixels were then plotted

Earth Surf. Dynam., 6, 971–987, 2018 www.earth-surf-dynam.net/6/971/2018/



B. Purinton and B. Bookhagen: Vertical land-level change from SRTM-C and TanDEM-X 979

Figure 5. Characteristic (a) stacked histograms and (b) normalized
percentage bin difference from three tiles merged and processed
(24–26◦ S, 66◦W). Though it is difficult to interpret the histograms,
plotting their difference (normalized by bin count) as percentage
change between successive steps demonstrates the shifting of the
median to near zero and the reduction in outliers.

atop longitudinal profiles from the Río Toro and Río Grande
(Fig. 7). The point clouds of dh values were colored with a
Gaussian kernel density estimate (KDE) to demonstrate the
denser (warmer colors) versus sparser (cooler colors) zones
of measurement. The density is displayed as percentiles of
the full distribution of the 2-D KDE of dh from both chan-
nels. Turning to map view, we can observe the location of
these pixels in the channel and their relation to local char-
acteristics, upstream factors, and anthropogenic tampering
(Fig. 8).

4.2.2 Entire landscape

To be mapped as true vertical change, an area in the greater
landscape must be significantly large and coherently posi-
tive or negative since many of the pure noise patches are
> 10 pixels in size (> 0.01 km2). Furthermore, the individual
pixels must show significant height changes above the over-
all RMSE of ∼ 6 m and outlier cutoffs in each bin, which in
steeper bins may be > 10 m. Examining results in map view

Figure 6. Quantile–quantile (QQ) plots showing the difference be-
tween each successive correction step from three tiles merged and
processed (24–26◦ S, 66◦W). (a) Original to co-registered, (b) co-
registered to destriped, and (c) destriped to block shifted. We note
that co-registration and destriping have the greatest effect on zero-
median shifting and narrowing the outliers. The quantiles (0.01,
0.05, 0.5, 0.95, and 0.99) and their respective values are indicated
on each axis to highlight this effect.

(Fig. 9) allows assessment of the potential true signal versus
noise. At this stage it is necessary to include auxiliary data
from field knowledge or remote sources like aerial or satel-
lite imagery (e.g., GoogleEarthTM). Our method was able
to identify one major landslide in the study area (Fig. 9d);
however, most other measurements are remaining large ar-
tifacts attributable to both the SRTM-C and TanDEM-X.
Low-coherence zones that may represent change between the
TerraSAR-X and TanDEM-X contributing scene collection
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Figure 7. Longitudinal profiles of (a) Río Grande and (b) Río Toro overlain with the point cloud of the potential dh signal (pixels outside of
the range of expected noise). Error bars are RMSE from low-slope (< 5◦) terrain outside of the channel area. Each dh point cloud is colored
by probability density from a Gaussian 2-D KDE to show the denser (warmer) versus sparser (cooler) reaches. The KDE is scaled over all
measurements from both channels and relative percentiles of the full distribution are used to highlight denser zones, particularly in (b) Río
Toro. Note the x-axis range is 100 km greater for the longer Río Grande, despite the same axis scaling. The color scheme for elevation profiles
on right axes matches the map-view color of each channel in Fig. 1b. The knickpoint in Río Grande is caused by the large Del Medio fan
(Savi et al., 2016), whereas the origin in Río Toro is tectonic, caused by the Gólgota Fault (Marrett et al., 1994; Hilley and Strecker, 2005).
In both cases, the majority of the dh signal appears downstream of the knickpoint. The map view of green highlighted regions is shown in
Fig. 8.

(Fig. 9b and c) are necessarily removed in the WAM cutoff
prior to binning.

5 Discussion

5.1 Necessity of correction steps

The original SRTM-C is plagued by numerous terrain- and
sensor-specific errors and biases (e.g., Carabajal and Hard-
ing, 2006; Gorokhovich and Voustianiouk, 2006; Van Niel
et al., 2008; Gallant and Read, 2009; Yamazaki et al., 2017).
Despite reprocessing of the original data in the new NASA-
DEM product, many of these errors remain (Crippen et al.,
2016). On the other hand, the newer TanDEM-X apparently
has far fewer biases related to satellite geometry, and most
of the error is restricted to terrain characteristics like slope
and vegetation, though results are still nascent (e.g., Baade

and Schmullius, 2016; Purinton and Bookhagen, 2017; Wes-
sel et al., 2018). Our correction steps do not seek to elim-
inate bias related to terrain characteristics at the scale of a
few hundred meters, but rather to correct large-scale biases
related to primarily the SRTM-C at scales of several hundred
meters to kilometers. Perhaps this reduction in bias is most
obvious in the map view of the subsequent dh patterns be-
tween processing steps (Figs. 3a to 4a to Fig. 4d), but we
also show statistically that these steps lead to a narrowing
of the distribution and centering of the differences on zero-
median (Figs. 5 and 6). We assume that the vast majority of
the pixels (outside of the cryosphere) should be unchanged
over 15 years, and thus median shifts between the datasets at
large scales are biases in need of correction.

Co-registration indicates NE-facing aspects are overesti-
mated by the SRTM-C causing a negative excursion in the
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Figure 8. Map views of the in-channel dh measurements for Río Grande (a) and Río Toro (c) highlighted in the longitudinal profiles in
Fig. 7. For location of each map refer to Fig. 1c. More details are shown in zoomed-in images of the in-channel dh measurements in (b)
and (d). The solid outline is the digitized bank-to-bank channel and the stippled line is the −60 m buffer area of measurement. We note large
areas of incision related to the steep and narrow channel downstream of the Del Medio fan and knickpoint in Río Grande (a), immediately
followed by a zone of aggradation with levee structures to direct gravels (b). For Río Toro (c) we highlight the anthropogenic influence of
gravel mining generating large piles and also causing incision due to local excavation (d).

cosine fit, whereas SW-facing aspects are underestimated
and thus the dh compared to TanDEM-X is positive. This
error mostly affects higher slopes (Nuth and Kääb, 2011),
which is the reason for the normalization of dh by the tan-
gent of the slope. The directions of bias correspond to the
look direction orthogonal to the SRTM-C descending path
and parallel to the ascending path. This indicates that the
source of this bias is the SRTM-C, as reported by previous
authors (Bourgine and Baghdadi, 2005; Gorokhovich and
Voustianiouk, 2006; Shortridge and Messina, 2011), and not
TanDEM-X. A shift – accompanied by bilinear resampling –
of just ∼ 3.7 m (magnitude a of Eq. 1 fit) to the SW rectifies
this aspect bias.

As opposed to Yamazaki et al. (2017), we do not set a
user-defined ratio for FFT destriping, but rather use statis-
tical “shaving off” of only the outlier stripe noise until the
data converge. This conservative approach retains the true to-
pographic signal at the expense of remaining stripe noise. In
the case of more aggressive FFT filtering, using lower per-
centiles for the ratio cutoff and more strict RMSE conver-
gence requirements, the actual topography began to filter out
of the dh maps (Fig. S11), which, as stated, is not the aim of
our orbital bias correction steps and would lead to the inclu-
sion of artificial (i.e., FFT generated) dh measurements.

Remaining stripe noise is apparent in Fig. 4b, where
the blocked medians resemble the original long-wavelength
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Figure 9. (a) Map view of landscape-wide dh identification. For location refer to Fig. 1c. Our method returns little change on the low-erosion
Altiplano–Puna. The dunes (b–c) are not identified since they are masked out using the TanDEM-X auxiliary WAM as low-coherence zones.
This indicates their rapid displacement between the TerraSAR-X and TanDEM-X scene collection. Our method is able to identify one major
landslide (d) in the Del Medio catchment (Savi et al., 2016); however, there are many erroneous results in steep and vegetated zones to the
east, shown in (e) over the TanDEM-X hillshade.

stripe pattern, though discontinuous. Despite the appearance
in some areas of more negative values in the western parts of
tiles (higher elevation, Altiplano–Puna Plateau), we do not
find any clear relation between block medians and elevation
at any block size or in any tile (see Sect. S3). Block shifting
removes the remaining noise, but again we avoid correcting
for strongly overprinting topographic biases related to slope
by normalizing the block median dh by median slope. Over-
all, these steps provide a more trustworthy dh map, while
respecting the inherent biases in radar-derived spaceborne
DEMs.

5.2 Potential change mapping

For lower-slope regions (i.e., channels), the potential for
change mapping is greater than in steeper areas. This is
caused by the better agreement and lower vertical uncertainty
of the two datasets in flatter, vegetation-free areas. In both
channels, the largest density of measurements is found be-
low the respective knickpoints. This corresponds to an or-
der of magnitude increase in the 2-D KDE shown by the
warm-colored patches in Fig. 7. In terms of the actual number
of measurements (number of dh pixels) per binned channel
reach, Fig. S13 demonstrates this approximately 5- to 10-

fold increase in the downstream reaches with a simple his-
togram. This result partially has to do with a narrower chan-
nel and thus less measurements available above the knick-
points (hence the numerous gaps in measurement in the up-
stream reaches); however, these results also appear to in-
dicate that the most geomorphic work is happening down-
stream of the oversteepening point. This also coincides with
a transition to a wetter environment in both cases.

The Río Toro has a particularly dense zone of measure-
ments at the mountain front where naturally high rates of
aggradation are enhanced by human gravel excavation and
piling. On the other hand, in the Río Grande the downstream
measurements are spread over a greater channel reach and
thus appear less dense in the 2-D KDE (the measured Río
Grande is ∼ 100 km greater in length than the Río Toro).
Downstream of the knickpoint, Río Toro is in a net aggrada-
tion state with a corrected dh volume of 0.81±0.15×106 m3,
whereas for Río Grande the net state is incision with a
volume of −0.69± 0.15× 106 m3. In comparison, the pre-
correction volume in each case is −1.18± 0.12× 106 and
2.80± 0.11× 106 m3 for Río Toro and Río Grande, respec-
tively, thus indicating a flip in sign and reduction of magni-
tude following careful corrections applied prior to differenc-
ing.
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Locally, the aggrading and incising patches may be related
to braided channel avulsion and subsequent rapid incision
into the unconsolidated bed material during frequent high-
discharge events brought by convective rainfall in the sum-
mer monsoon (Castino et al., 2016a, b, 2017). In map view
(Fig. 8), we see that these automated measurements can be
correlated with additional sources. For Río Grande, the steep
knickpoint at the Del Medio fan (Savi et al., 2016; Schildgen
et al., 2016) causes a major zone of incision immediately fol-
lowed by aggradation where the material is deposited. Field-
work has indicated that some of this incision is man-made,
caused by attempted removal of aggrading material coming
from the productive (e.g., debris flows see Savi et al., 2016)
Del Medio catchment. Levee structures (Fig. 8b) are a tes-
tament to this tendency towards aggradation downstream of
this extremely erosive fan. The cause of aggradation in the
Río Toro is clearly enormous gravel piles being created just
at and downstream of the mountain front. The volume of the
large gravel pile indicated in Fig. 8d directly at the mountain
front in Río Toro is 0.78±0.06×106 m3, with this growth be-
tween SRTM-C and TanDEM-X observed during field work
over the past decade and from GoogleEarthTM historical im-
agery back to 2003. This is coupled with incision in the active
channel upstream of the piles where gravel is being removed
to prevent widespread aggradation.

In terms of rates of change, our minimum measurable dh
of±3 m corresponds to a rate of±0.2 m yr−1, given the con-
servative 15-year time difference between DEMs. This rate
represents an average for the entire measurement period and
assumes constant geomorphic change, whereas the true rates
are more stochastic, following rainfall and anthropogenic ac-
tivity variation. The area of greatest point density in the lon-
gitudinal profiles in Fig. 7 is centered at±5 m, corresponding
to a rate of ±0.33 m yr−1, with maximum rates of incision
and aggradation, occurring at anthropogenic gravel piles and
excavation sites, in excess of±0.5 m yr−1. Human tampering
is known to cause significant excursions from natural river
dynamics (Kondolf, 1997; Grant, 2012), and we have shown
that signals of excavation and piling are highlighted as above-
the-noise outliers. Previous studies have demonstrated simi-
lar rates over longer timescales (tens to hundreds of years)
using more sparse measurements (e.g., Rinaldi and Simon,
1998; Rovira et al., 2005; Walter and Merritts, 2008; Comiti
et al., 2011) and at shorter timescales (< 5 years) from meter-
scale lidar data (Lane et al., 2003; Wheaton et al., 2010). The
identification and quantification of incision and aggradation
have important implications for infrastructure and agriculture
given that 60 % of global sediment delivery to coasts origi-
nates in high mountain regions (Syvitski et al., 2005).

Mapping dh signals across the entire landscape presents
a greater challenge given the higher uncertainties on steeper
more complex topography. Nevertheless, using the binning
method, binary operations, and outlier selection removes
a large portion of the noise from the corrected data. Our
method displays very little change on the low-relief, low-

slope Altiplano–Puna besides some salt flat areas that were
not removed by the coherence masking from the TanDEM-X
WAM. Remaining noise mapped as potential change is clear
at the mountain front where steep slopes and heavy vege-
tation causes complication of accurate radar measurement.
In many locations these erroneous patches correspond with
low-amplitude or low-coherence zones also identified in the
WAM. We were able to automatically map one landslide, pre-
viously reported on by Savi et al. (2016), in the Del Medio
sub-catchment of the Humahuaca Basin using this method.
This material likely contributes to the aggradation we see
occurring downstream of the fan in the longitudinal profile
(Fig. 7a) and in map view (Fig. 8a). The calculated detach-
ment and deposit volumes from this massive earth movement
are−10.5±0.12×106 and 16±0.15×106 m3, respectively,
with vertical land-level changes greater than ±50 m asso-
ciated with the break-off and lobe (Fig. 9d). These magni-
tudes of change show little difference in the pre- and post-
corrected mapping, indicating (a) this is a localized region
of good agreement between SRTM-C and TanDEM-X and
(b) this large landslide can be identified in uncorrected dif-
ference maps.

The area of sand dunes, clearly visible as a low-coherence
region from the TanDEM-X WAM in Figs. 1c and 9b and c,
is not mapped as potential change since the coherence mask-
ing prior to binning eliminates this area from consideration.
Examination of dh in this region is very noisy since the
TanDEM-X contains measurements spanning 5 years, thus
causing completely different height inputs for the same pixel
in many scenes. This indicates the potential of the WAM
alone for mapping change on shorter timescales outside of
very steep areas.

5.3 Caveats of the data and method

Spaceborne DEMs present significant challenges for accu-
rate height measurements, though, until lidar or submeter
satellite data become more widespread and cheaper (Pas-
salacqua et al., 2015), they are the only option in many
study areas. On the other hand, unmanned aerial vehicles and
point clouds generated using structure-from-motion technol-
ogy could already provide a viable alternative (Javernick
et al., 2014; Cook, 2017), but applying these methods at the
scale of entire catchments or over tens of kilometers of river
reaches is not feasible. Previously, dh measurement from
space has been primarily focused on the cryosphere (e.g.,
Berthier et al., 2006; Nuth and Kääb, 2011; Neelmeijer et al.,
2017) due to limitations in data accuracy. Certainly radar
data are more adequate than optical data (e.g., Fisher et al.,
2013; Purinton and Bookhagen, 2017) for the case of un-
consolidated sediment, particularly since different penetra-
tion depths do not affect measurement (Rignot et al., 2001;
Rossi et al., 2016), assuming limited vegetation.

Here we have demonstrated the potential of new high-
accuracy datasets such as TanDEM-X to correct outstand-
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ing biases in the SRTM-C and potentially contribute to
land-level change mapping and measurement over previously
unattainable scales. Given remaining noise in the datasets,
change mapping is limited to large areas of coherent change
(e.g., massive landslides) or specific low-slope areas of in-
terest such as wide gravel-bed rivers. In any case, field data
(e.g., repeat total station or GPS surveys), field knowledge
(e.g., via observations of incising reaches or roads dam-
aged by aggrading channels), and/or auxiliary data (e.g.,
GoogleEarthTM historical imagery change mapping) are nec-
essary for accurate assessment of the location of true change
signals versus noise. Further, the magnitude of change must
be significantly above the expected uncertainty between
DEMs, which in the case of SRTM-C and TanDEM-X is
as low as ∼ 3 m on flat, sparsely vegetated terrain, and in-
creasing with slope and topographic complexity. We posit
that these correction steps may also be applied to cryospheric
studies; however, radar penetration would need to be care-
fully considered first as this may exceed dh signals.

6 Conclusions

In this study we have presented a novel use of two near-
global spaceborne DEMs (SRTM-C and TanDEM-X) sep-
arated by ∼ 15 years to measure land-level changes in the
south-central Andes in northwestern Argentina. Previous
measurement of land-level changes at the scale of entire
mountain belts has been restricted to the cryosphere, where
the signal of snow and ice change outweighs the noise as-
sociated with DEMs used for differencing (typically ASTER
or single TerraSAR-X and TanDEM-X CoSSC DEMs). On
the other hand, studies outside of the cryosphere have re-
lied on high-accuracy meter to submeter data at much smaller
scales to measure height changes in rivers and hillslopes. Us-
ing the TanDEM-X DEM as a control surface, we corrected
long-standing SRTM-C errors related to orbital biases. We
then successfully differenced the two datasets to identify and
quantify land-level changes outside of expected noise caused
by radar DEM speckle and other terrain-dependent errors, in-
creasing with steep and complex topography. Noise from im-
perfect datasets continues to hinder signal detection in low-
magnitude geomorphic change detection; however, this study
continues to push the envelope of the potential for change
mapping using the data currently available to many scien-
tists.

Our method is useful for the case of large gravel-bed rivers
where the width far exceeds SRTM-C 1 arcsec resolution
considerations. In such flat, vegetation-free environments it
is useful to analyze the river alone and not include additional
uncertainties brought by increasing slopes and dense vegeta-
tion. For these steeper regions, the use of greater outlier cut-
offs and the necessity for large and coherent patches of land-
level change, both to remove the majority of noise, limit the
method to only very large earth movements. In either case,

only signals outside of expected noise can be confidently
identified, which in the case of gravel-bed rivers typically
fall in the realm of human tampering. From the TanDEM-
X auxiliary data alone it is also possible to identify regions
that changed during TanDEM-X collection (2010–2015) us-
ing the water indication mask; however, this does not provide
quantifiable change.

Overall, the use of relatively coarse (1 arcsec) spaceborne
DEMs to derive land-level changes benefits from higher-
accuracy radar-derived data, whereas the use of optical data
is limited to submeter-resolution satellites. The application
of this method to other regions around the world could in-
dicate previously unmapped vertical changes. In the future,
both the SRTM-C and TanDEM-X will continue to be used
as snapshots of the earth’s surface separated by over a decade
and thus useful for differencing against newer datasets yet to
be developed to continue measuring vertical change outside
of the cryosphere.

Code and data availability. Python codes for co-registration,
FFT destriping, blocked shifting, and potential change map-
ping are available on GitHub at https://github.com/UP-RS-ESP/
TanDEM-SRTM-dh (Purinton, 2018). The SRTM-C updated
NASADEM tiles can be found at https://e4ftl01.cr.usgs.gov/
provisional/MEaSUREs/NASADEM/ (US Government, 2018).
TanDEM-X data are only available from DLR commercially for the
time being.
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