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S1: Comparison of two relations for sediment fall velocity: Dietrich (1982) against Ferguson and Church (2004) 1 

In this paper, we implement the relation of Dietrich (1982) to calculate sediment fall velocity vs. The relation is, 2 
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where b1 = 2.891394, b2 = 0.95296, b3 = 0.056835, b4 = 0.002892, b5 = 0.000245, and  = 10-6 is the kinematic viscosity of 6 

water. 7 

Another widely used relation for sediment fall velocity is the relation of Ferguson and Church (2004), which is 8 

regarded as applying to nearly the entire range of viscous to turbulent conditions. 9 
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where C1 = 18 and C2 = 0.4 for smooth spheres; C1 = 18 and C2 = 1.0 for sieve diameters of natural sand; and C1 = 20 and C2 11 

= 1.1 for nominal diameters of natural sand. More specifically, the relation of Ferguson and Church (2004) converges to Stokes’ 12 

law for small grains, and to a constant drag coefficient for large grains. 13 

Considering the fact that the sediment of LYR is finer than most sand-bed rivers (Ma et al., 2017), here we compare 14 

the two relations for sediment fall velocity in the context of the LYR. The two parameters in Ferguson and Church are specified 15 

as C1 = 18 and C2 = 1.0. In our simulation, the sediment size range of the LYR is specified as 15 m ~ 500 m. 16 

According to Fig. S1, the relation of Dietrich (1982) and the relation of Ferguson and Church (2004) coincide with 17 

each other within this size range, thus justifying our implementation of Dietrich (1982) in the simulation. For grain sizes 18 

smaller than 15 m, sediment becomes washload in the LYR and Dietrich (1982) predicts sediment fall velocities that are 19 

smaller than those predicted by Ferguson and Church (2004). For sediment coarser than 500 m, Dietrich (1982) somewhat 20 

overestimates sediment fall velocity compared with Ferguson and Church (2004). 21 
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 22 
Figure S1. Comparison of two relations for sediment fall velocity: Dietrich (1982) and Ferguson and Church (2004) 23 

S2: Numerical simulation of uniform sediment under hydrographs 24 

In this section, we conduct additional cases for the case of uniform sediment. The computational conditions are the 25 

same as those implemented in Section 3.1 of the main text, except that the unsteady inflow discharge is considered. The flood 26 

has a symmetrical triangular hydrograph with a peak discharge of 3000 m3/s (corresponding to a discharge per unit width of 27 

10 m2/s), a minimum discharge of 300 m3/s (corresponding to a discharge per unit width of 1 m2/s), and a flood duration of 4 28 

days. Figure S2 shows the hydrograph as used here. The flood intermittency factor is specified as unity since hydrographs are 29 

being considered. The sediment supply rate is the same as that in Section 3.1 of the main text, thus corresponding to a cutoff 30 

of sediment supply. The hydrograph is repeated for 3 times. 31 
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 32 
Figure S2. Hydrograph of the inflow discharge 33 

Figure S3 shows the river evolution within the 3 floods predicted by the flux form of Exner equation. Due to the 34 

cutoff of sediment supply, the bed degrades and the sediment load declines from the upstream end. Moreover, sediment load 35 

shows a reduction in the downstream direction at the peak discharge, but an increase at the low discharge, which corresponds 36 

to the nonuniformity of the flow hydraulics (i.e. the propagation of a flood wave). Figure S4 shows the river evolution predicted 37 

by the entrainment form of the Exner equation, with the sediment fall velocity calculated by the relation of Dietrich (1982). A 38 

comparison of Figs. S3 and S4 indicates that the two formulations predict very similar results even when hydrographs are 39 

considered. 40 
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 41 

Figure S3. Results for uniform sediment within 3 hydrographs simulated by the flux form of Exner equation: time variation 42 

of (a) bed elevation zb, (b) sediment load per unit width qs of the LYR in response to the cutoff of sediment supply. The inset 43 

shows detailed results near the upstream end. The dash lines are at the peak discharge and the solid lines are at the minimum 44 

discharge. 45 
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 46 

Figure S4. Results for uniform sediment within 3 hydrographs simulated by the entrainment form of Exner equation: time 47 

variation of (a) bed elevation zb, (b) sediment load per unit width qs of the LYR in response to the cutoff of sediment supply. 48 

The inset shows detailed results near the upstream end. The dash lines are at the peak discharge and the solid lines are at the 49 

minimum discharge. 50 

S3: Numerical simulation of sediment mixtures under hydrographs 51 

In this section, we study additional examples for the case of sediment mixtures. The computational conditions are the 52 

same as those implemented in Section 3.2 of the main text, except that the unsteady inflow discharge is considered. The flood 53 
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hydrograph is identical to that in Section S2, as shown in Fig. S2. The sediment supply rate is the same as that in Section 3.2 54 

of the main text, thus corresponding to a cutoff of sediment supply. The hydrograph is repeated for 3 times. 55 

Figure S5 shows the river evolution within the first 3 floods predicted by the flux form of Exner equation, and Fig. 56 

S6 shows the river evolution predicted by the entrainment form of Exner equation. The sediment fall velocity is calculated by 57 

the relation of Dietrich (1982). Even though the river morphodynamic processes become much more complicated when the 58 

hydrograph rather than constant flow discharge is considered, a comparison of Figs. S5 and S6 still shows that the two 59 

formulations predict very different patterns of grain sorting. Kinematic waves are evident in the flux form, but no kinematic 60 

waves are evident in the entrainment form. 61 

 62 

 63 

Figure S5. Results for sediment mixtures within 3 hydrographs simulated by the flux form of Exner equation: time variation 64 

of (a) bed elevation zb, (b) total sediment load qsT, (c) surface geometric mean grain size Dsg and (d) geometric mean grain size 65 
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of sediment load of the LYR in response to the cutoff of sediment supply. The inset shows detailed results near the upstream 66 

end. The dash lines are at the peak discharge and the solid lines are at the minimum discharge. 67 

 68 

 69 

Figure S6. Results for sediment mixtures within 3 hydrographs simulated by the entrainment form of Exner equation: time 70 

variation of (a) bed elevation zb, (b) total sediment load qsT, (c) surface geometric mean grain size Dsg and (d) geometric mean 71 

grain size of sediment load of the LYR in response to the cutoff of sediment supply. The inset shows detailed results near the 72 

upstream end. The dash lines are at the peak discharge and the solid lines are at the minimum discharge. 73 

S4: Iterative solution of sediment transport rate qsi in the entrainment form 74 

The parameter qsi in Eq. (40) of the main text is solved iteratively as given below, 75 
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where the superscript denotes the order of iteration. The following zero-order solution is specified as an initial value; 77 
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From this we can get the first order and second order solutions, 79 
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             (S8) 82 

The second order iterative solution to Eq. (S8) is tedious in form, but the only terms of importance on the right-hand 83 

side are the spatial derivatives. Therefore we drop the time derivatives for simplicity. This gives, 84 

 
   

  

w w sei
si sei sei

si oi si oi

q q q
q q q

v r x v r x
        (S9) 85 

which corresponds to Eq. (41) as implemented in Section 4.2 of the main text. 86 


