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S1: Comparison of two relations for sediment fall velocity: Dietrich (1982) against Ferguson and Church (2004)

In this paper, we implement the relation of Dietrich (1982) to calculate sediment fall velocity vs. The relation is,

v, =R;4/RgD (S1)
(R, )=-b,+b,/n(Re,)-b, [ﬁn(Rep)]2 b, [En(Rep)T +h, [ﬁn(Rep)}4 (52)
e - DD o

where b; = 2.891394, b, = 0.95296, bs = 0.056835, b, = 0.002892, bs = 0.000245, and v = 107 is the kinematic viscosity of
water.
Another widely used relation for sediment fall velocity is the relation of Ferguson and Church (2004), which is
regarded as applying to nearly the entire range of viscous to turbulent conditions.
RgD?

Vs = 5105 (S4)
C,v+(0.75C,RgD?)

where C; = 18 and C, = 0.4 for smooth spheres; C, = 18 and C, = 1.0 for sieve diameters of natural sand; and C; = 20 and C;
= 1.1 for nominal diameters of natural sand. More specifically, the relation of Ferguson and Church (2004) converges to Stokes’
law for small grains, and to a constant drag coefficient for large grains.

Considering the fact that the sediment of LYR is finer than most sand-bed rivers (Ma et al., 2017), here we compare
the two relations for sediment fall velocity in the context of the LYR. The two parameters in Ferguson and Church are specified
as C1 =18 and C, = 1.0. In our simulation, the sediment size range of the LYR is specified as 15 pm ~ 500 pm.

According to Fig. S1, the relation of Dietrich (1982) and the relation of Ferguson and Church (2004) coincide with
each other within this size range, thus justifying our implementation of Dietrich (1982) in the simulation. For grain sizes
smaller than 15 pum, sediment becomes washload in the LYR and Dietrich (1982) predicts sediment fall velocities that are
smaller than those predicted by Ferguson and Church (2004). For sediment coarser than 500 pum, Dietrich (1982) somewhat

overestimates sediment fall velocity compared with Ferguson and Church (2004).
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Figure S1. Comparison of two relations for sediment fall velocity: Dietrich (1982) and Ferguson and Church (2004)
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S2: Numerical simulation of uniform sediment under hydrographs

In this section, we conduct additional cases for the case of uniform sediment. The computational conditions are the
same as those implemented in Section 3.1 of the main text, except that the unsteady inflow discharge is considered. The flood
has a symmetrical triangular hydrograph with a peak discharge of 3000 m%/s (corresponding to a discharge per unit width of
10 m?/s), a minimum discharge of 300 m%/s (corresponding to a discharge per unit width of 1 m?/s), and a flood duration of 4
days. Figure S2 shows the hydrograph as used here. The flood intermittency factor is specified as unity since hydrographs are

being considered. The sediment supply rate is the same as that in Section 3.1 of the main text, thus corresponding to a cutoff

of sediment supply. The hydrograph is repeated for 3 times.

1000
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Figure S2. Hydrograph of the inflow discharge

Figure S3 shows the river evolution within the 3 floods predicted by the flux form of Exner equation. Due to the
cutoff of sediment supply, the bed degrades and the sediment load declines from the upstream end. Moreover, sediment load
shows a reduction in the downstream direction at the peak discharge, but an increase at the low discharge, which corresponds
to the nonuniformity of the flow hydraulics (i.e. the propagation of a flood wave). Figure S4 shows the river evolution predicted
by the entrainment form of the Exner equation, with the sediment fall velocity calculated by the relation of Dietrich (1982). A
comparison of Figs. S3 and S4 indicates that the two formulations predict very similar results even when hydrographs are

considered.
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Figure S3. Results for uniform sediment within 3 hydrographs simulated by the flux form of Exner equation: time variation
of (a) bed elevation zy, (b) sediment load per unit width gs of the LYR in response to the cutoff of sediment supply. The inset
shows detailed results near the upstream end. The dash lines are at the peak discharge and the solid lines are at the minimum

discharge.
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Figure S4. Results for uniform sediment within 3 hydrographs simulated by the entrainment form of Exner equation: time
variation of (a) bed elevation z,, (b) sediment load per unit width gs of the LYR in response to the cutoff of sediment supply.
The inset shows detailed results near the upstream end. The dash lines are at the peak discharge and the solid lines are at the
minimum discharge.

S3: Numerical simulation of sediment mixtures under hydrographs

In this section, we study additional examples for the case of sediment mixtures. The computational conditions are the

same as those implemented in Section 3.2 of the main text, except that the unsteady inflow discharge is considered. The flood
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hydrograph is identical to that in Section S2, as shown in Fig. S2. The sediment supply rate is the same as that in Section 3.2
of the main text, thus corresponding to a cutoff of sediment supply. The hydrograph is repeated for 3 times.

Figure S5 shows the river evolution within the first 3 floods predicted by the flux form of Exner equation, and Fig.
S6 shows the river evolution predicted by the entrainment form of Exner equation. The sediment fall velocity is calculated by
the relation of Dietrich (1982). Even though the river morphodynamic processes become much more complicated when the
hydrograph rather than constant flow discharge is considered, a comparison of Figs. S5 and S6 still shows that the two
formulations predict very different patterns of grain sorting. Kinematic waves are evident in the flux form, but no kinematic
waves are evident in the entrainment form.
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Figure S5. Results for sediment mixtures within 3 hydrographs simulated by the flux form of Exner equation: time variation

of (a) bed elevation z, (b) total sediment load gsr, (c) surface geometric mean grain size Dsg and (d) geometric mean grain size
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of sediment load of the LYR in response to the cutoff of sediment supply. The inset shows detailed results near the upstream

end. The dash lines are at the peak discharge and the solid lines are at the minimum discharge.
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Figure S6. Results for sediment mixtures within 3 hydrographs simulated by the entrainment form of Exner equation: time

variation of (a) bed elevation zy, (b) total sediment load gsr, (C) surface geometric mean grain size Dsg and (d) geometric mean

grain size of sediment load of the LYR in response to the cutoff of sediment supply. The inset shows detailed results near the

upstream end. The dash lines are at the peak discharge and the solid lines are at the minimum discharge.

S4: Iterative solution of sediment transport rate gsi in the entrainment form

The parameter gsi in Eq. (40) of the main text is solved iteratively as given below,
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(m) ]
6 qsi

(m)
.(m+1) — o qw i u + aqsi
q3| qsel Vsi rOi | f ot ox (S5)

i |

where the superscript denotes the order of iteration. The following zero-order solution is specified as an initial value;

0" =0, (s6)

From this we can get the first order and second order solutions,

o
W_y _ % |1 \u +5qsei
Ui = Oei |1 et x (S7)
Ay {5
2 q, 1 01 q, | 1 u 00, q, O q, | 1 u 0q,
qsi = qsel T T AL qsei - T + - A qsei - T +
Vsiroi If at u Vsiroi If at 8X Vsiroi 8X Vsiroi If at GX
(S8)

The second order iterative solution to Eq. (S8) is tedious in form, but the only terms of importance on the right-hand

side are the spatial derivatives. Therefore we drop the time derivatives for simplicity. This gives,

g~ Of, Oy OO
qsi _qsei Vsiroi ax{qsei Vsiroi ox J (S9)

which corresponds to Eq. (41) as implemented in Section 4.2 of the main text.



