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Abstract. Passive monitoring of ground motion can be used for geophysical process analysis and natural haz-
ard assessment. Detecting events in microseismic signals can provide responsive insights into active geophysical
processes. However, in the raw signals, microseismic events are superimposed by external influences, for exam-
ple, anthropogenic or natural noise sources that distort analysis results. In order to be able to perform event-based
geophysical analysis with such microseismic data records, it is imperative that negative influence factors can be
systematically and efficiently identified, quantified and taken into account. Current identification methods (man-
ual and automatic) are subject to variable quality, inconsistencies or human errors. Moreover, manual methods
suffer from their inability to scale to increasing data volumes, an important property when dealing with very
large data volumes as in the case of long-term monitoring.

In this work, we present a systematic strategy to identify a multitude of external influence sources, characterize
and quantify their impact and develop methods for automated identification in microseismic signals. We apply
the strategy developed to a real-world, multi-sensor, multi-year microseismic monitoring experiment performed
at the Matterhorn Hörnligrat (Switzerland). We develop and present an approach based on convolutional neural
networks for microseismic data to detect external influences originating in mountaineers, a major unwanted
influence, with an error rate of less than 1 %, 3 times lower than comparable algorithms. Moreover, we present
an ensemble classifier for the same task, obtaining an error rate of 0.79 % and an F1 score of 0.9383 by jointly
using time-lapse image and microseismic data on an annotated subset of the monitoring data. Applying these
classifiers to the whole experimental dataset reveals that approximately one-fourth of events detected by an event
detector without such a preprocessing step are not due to seismic activity but due to anthropogenic influences
and that time periods with mountaineer activity have a 9 times higher event rate. Due to these findings, we argue
that a systematic identification of external influences using a semi-automated approach and machine learning
techniques as presented in this paper is a prerequisite for the qualitative and quantitative analysis of long-term
monitoring experiments.
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1 Introduction

Passive monitoring of elastic waves, generated by the rapid
release of energy within a material (Hardy, 2003) is a non-
destructive analysis technique allowing a wide range of ap-
plications in material sciences (Labuz et al., 2001), engineer-
ing (Grosse, 2008) and natural hazard mitigation (Michlmayr
et al., 2012) with recently increasing interest into investiga-
tions of various processes in rock slopes (Amitrano et al.,
2010; Occhiena et al., 2012). Passive monitoring techniques
may be broadly divided into three categories, characterized
by the number of stations (single vs. array), the duration of
recording (snapshot vs. monitoring) and the type of analysis
(continuous vs. event-based). On the one hand, continuous
methods such as the analysis of ambient seismic vibrations
can provide information on internal structure of a rock slope
(Burjánek et al., 2012; Gischig et al., 2015; Weber et al.,
2018a). On the other hand, event-based methods such as the
detection of microseismic events (which are the focus of this
study) can give immediate insight into active processes, such
as local irreversible (non-elastic) deformation occurring due
to the mechanical loading of rocks (Grosse and Ohtsu, 2008).
However, for the reliable detection of events irrespective of
the detection method, the signal source of concern has to be
distinguishable from noise, for example, background seis-
micity or other source types. This discrimination is a com-
mon and major problem for analyzing microseismic data.

In general, event-based geoscientific investigations focus
on events originating from geophysical sources such as me-
chanical damage, rupture or fracture in soil, rock and/or ice.
These sources originate, for example, in thermal stresses,
pressure variations or earthquakes (Amitrano et al., 2012).
However, non-geophysical sources can trigger events as well:
(i) anthropogenic influences such as helicopter or moun-
taineers (Eibl et al., 2017; van Herwijnen and Schweizer,
2011; Weber et al., 2018b) and (ii) environmental influ-
ences/disturbances, such as wind or rain (Amitrano et al.,
2010). One way to account for such external influences is to
manually identify their sources in the recordings (van Herwi-
jnen and Schweizer, 2011). This procedure, however, is not
feasible for autonomous monitoring because manual identifi-
cation does not scale well for increasing amounts of data. An-
other approach is to limit to field sites far away from possible
sources of uncontrolled (man-made) interference or to focus
and limit analysis to decisively chosen time periods known
not to be influenced by, for example, anthropogenic noise
(Occhiena et al., 2012). In practice, both the temporal limita-
tion as well as the spatial limitation pose severe restrictions.
First, research applications can benefit from close proximity
to man-made infrastructure since set up and maintenance of
monitoring infrastructure is facilitated (Werner-Allen et al.,
2006). Second, applications in natural hazard early warning
must not be restricted to special time periods only. Moreover,
they are specifically required to be usable close to inhabited
areas with an increasing likelihood for human interference

on the signals recorded. As a conclusion, it is a requirement
that external influences can be taken into account with an
automated workflow, including preprocessing, cleaning and
analysis of microseismic data.

A frequently used example of an event detection mecha-
nism is an event detector called STA/LTA that is based on
the ratio of short-term average to long-term average (Allen,
1978). Due to its simplicity, this event detector is commonly
used to assess seismic activity by calculating the number of
triggering events per time interval for a time period of in-
terest (Withers et al., 1998; Amitrano et al., 2005; Senfaute
et al., 2009). It is often used in the analysis of unstable slopes
(Colombero et al., 2018; Levy et al., 2011) and is available
integrated into many commercially available digitizers and
data loggers (Geometrics, 2018). With respect to unwanted
signal components, STA/LTA has also been used to detect
external influence factors such as footsteps (Anchal et al.,
2018) but due to its inherent simplicity, it cannot reliably
discriminate geophysical seismic activity from external (un-
wanted) influence factors such as noise from humans and nat-
ural sources like wind, rain or hail without manually super-
vising and intervening in the detection process on a case-by-
case basis. As a result, the blind application of STA/LTA will
inevitably lead to the false estimation of relevant geophysical
processes if significant external influences, such as wind, are
present (Allen, 1978).

There exist several algorithmic approaches to mitigate
the problem of external influences by increasing the selec-
tivity of event detection. These include unsupervised algo-
rithms such as auto-correlation (Brown et al., 2008; Aguiar
and Beroza, 2014; Yoon et al., 2015), but these are ei-
ther computationally complex or do not perform well for
low signal-to-noise ratios. Supervised methods can find
events in signals with low signal-to-noise ratio. For exam-
ple, template-matching approaches such as cross-correlation
methods (Gibbons and Ringdal, 2006) use event examples
to find similar events, failing if events differ significantly
in “shape” or if the transmission medium is very inhomo-
geneous (Weber et al., 2018b). The most recent supervised
methods are based on machine learning techniques (Reynen
and Audet, 2017; Olivier et al., 2018) including the use of
neural networks (Kislov and Gravirov, 2017; Perol et al.,
2018; Li et al., 2018; Ross et al., 2018). These learning
approaches show promising results with the drawback that
large datasets containing ground truth (verified events) are
required to train these automated classifiers. In earthquake
research, large databases of known events exist (Kong et al.,
2016; Ross et al., 2018), but in scenarios like slope insta-
bility, analyses where effects are on a local scale and spe-
cific to a given field site such data are inexistent. Here, in-
homogeneities are present on a very small scale and field
sites differ in their specific characteristics with respect to
signal attenuation and impulse response. In order to apply
such automated learning methods to these scenarios, obtain-
ing a dataset of known events is required for each new field
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site requiring substantial expert knowledge for a very ardu-
ous, time-consuming task. The aim of this study is to use a
semi-automatic workflow to train a classifier which enables
the automatic identification of unwanted external influences
in real-world microseismic data. By these means, the geo-
physical phenomena of interest can be analyzed without the
distortions of external influences.

To address these problems, this paper contains the follow-
ing contributions. We propose a strategy to identify and deal
with unwanted external influences in multi-sensor, multi-
year experiments. We compare the suitability of multiple al-
gorithms for mountaineer detection using a combination of
microseismic signals and time-lapse images. We propose a
convolutional neural network (CNN) for source identifica-
tion. We exemplify our strategy for the case of source iden-
tification on real-world microseismic data using monitoring
data in steep, fractured bedrock permafrost. We further pro-
vide the real-world microseismic and image data as an an-
notated dataset containing data from a period of 2 years as
well as an open-source implementation of the algorithms pre-
sented.

2 Concept of the classification method

In this work, we present a systematic and automated ap-
proach to identify unwanted external influences in long-
term, real-world microseismic datasets and prepare these
data for subsequent analysis using a domain-specific anal-
ysis method, as illustrated in Fig. 1. Traditionally, the sig-
nal, consisting of the phenomena of interest and superim-
posed external influences, is analyzed directly as described
earlier. However, this analysis might suffer from distortion
through the external influences. By using additional sensors
like weather stations, cameras or microphones and external
knowledge such as helicopter flight plans or mountain hut
(Hörnlihütte) occupancy, it is possible to semi-automatically
label events originating from non-geophysical sources, such
as helicopters, footsteps or wind without the need of expert
knowledge. Such “external” information sources can be used
to train an algorithm that is then able to identify unwanted
external influence. Using this approach, multiple external
influences are first classified and labeled in an automated
preprocessing step with the help of state-of-the-art machine
learning methods. Subsequent to this classification, the addi-
tional information can be used for domain-specific analysis,
for example, to separate geophysical and unwanted events
triggered by a simple event detector such as an STA/LTA
event detector. Alternatively, more complex approaches can
be used, taking into account signal content, event detections
and classifier labels of the external influences. However, the
specifics of such advanced domain-specific analysis meth-
ods are beyond the scope of this paper and subject to future
work. A basic example of a custom domain-specific analysis
method is the estimation of separate STA/LTA event rates for

Figure 1. Real-world measurement signals contain the phenom-
ena of interest superimposed with external influences. If directly
analyzed, the results are perturbed by the external influences. In
contrast to this approach (dashed lines), in this paper, we suggest
a systematic and automated approach to first identify a multitude
of external influence sources in microseismic signals using a classi-
fier. The classifier result data can then be used to quantify unwanted
signal components as well as drive more extensive and powerful
event detection and characterization methods leveraging combina-
tions of both the signals as well-labeled and classified noise data
(solid lines).

time periods when mountaineers are present and when they
are not, which we use as a case study in the evaluation section
of this paper to exemplify our method.

Figure 2 illustrates the overall concept in detail. In a first
step, the available data sources of a case study are assessed
and cataloged. Given a case study (Sect. 3) consisting of mul-
tiple sensors, one or more sensor signals are specified as pri-
mary signals (for example, the microseismic signals, high-
lighted with a light green arrow in the figure) targeted by
a subsequent domain-specific analysis method. Additionally,
secondary data (highlighted with dark blue arrows) are cho-
sen to support the classification of external influences con-
tained in the primary signal. Conceptually, these secondary
data can be of different nature, either different sensor sig-
nals, e.g., time-lapse images or weather data, or auxiliary
data such as local observations or helicopter flight data. All
data sources are combined into a dataset. However, this re-
sulting dataset is not yet annotated as required to perform
domain-specific analysis leveraging the identified and quan-
tified external influences.

Two key challenges need to be addressed in order to es-
tablish such an annotated dataset by automatic classification:
(i) suitable data types need to be selected for classification
since not every data type can be used to continuously clas-
sify every external influence (for example, wind sensors are
not designed to capture the sound of footsteps; flight data
may not be available for each time step) and (ii) a single
(preferred) or at least a set of suitable, well-performing clas-
sifiers has to be found for each type of external influence
source. Once these challenges have been solved, a subset of
the dataset is manually annotated in order to select and train
the classifier(s) in a “preparatory” phase required to be per-
formed only once, which includes manual data assessment
(Sect. 4) as well as classifier selection and training (Sect. 5).
The trained classifier is then used in an automated setup to
annotate the whole dataset (Sect. 6). This “execution” phase
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Figure 2. Conceptual illustration of the classification method to enable domain-specific analysis of a primary sensor signal (in our case,
microseismic signals denoted by the light green arrow) based on annotated datasets: a subset of the dataset, containing both sensor and
auxiliary data, is used to select and train a classifier that is subsequently applied to the whole dataset. By automatically and systematically
annotating the whole dataset of the primary signal of concern, advanced methods can be applied that are able to leverage both multi-sensor
data as well as annotation information.

can be performed in a one-shot fashion (post-processing all
data in one effort) or executed regularly, for example, on a
daily or weekly basis if applied to continuously retrieved
real-time monitoring data. This additional information can be
used to perform a subsequent domain-specific analysis. This
study concludes with an evaluation (Sect. 7) and discussion
(Sect. 8) of the presented method.

3 Case study

The data used in this paper originate from a multi-sensor
and multi-year experiment (Weber et al., 2018b) focus-
ing on slope stability in high-alpine permafrost rock walls
and understanding the underlying processes. Specifically,
the sensor data are collected at the site of the 2003 rock-
fall event on the Matterhorn Hörnligrat (Zermatt, Switzer-
land) at 3500 m a.s.l., where an ensemble of different sen-
sors has monitored the rockfall scar and surrounding environ-
ment over the past 10 years. Relevant for this work are data
from a three-component seismometer (Lennartz LE-3Dlite
MkIII), images from a remote-controlled high-resolution
camera (Nikon D300, 24 mm fixed focus), rock surface tem-
perature measurements, net radiation measurements and am-
bient weather conditions, specifically wind speed from a co-
located local weather station (Vaisala WXT520).

The seismometer applied in the case study presented is
used to assess the seismic activity by using an STA/LTA
event detector, which means for our application that the seis-
mometer is chosen as the primary sensor and STA/LTA trig-
gering is used as the reference method. Seismic data are
recorded locally using a Nanometrics Centaur digitizer and
transferred daily by means of directional Wi-Fi. The data are
processed on demand using STA/LTA triggering. The high-
resolution camera’s (Keller et al., 2009) field of view cov-
ers the immediate surroundings of the seismic sensor loca-

tion as well as some backdrop areas further away on the
mountain ridge. Figure 3 shows an overview of the field
site including the location of the seismometer and an ex-
ample image acquired with the camera. The standard image
size is 1424× 2144 pixels captured every 4 min. The Vaisala
WXT520 weather data as well as the rock surface tempera-
ture are transmitted using a custom wireless sensor network
infrastructure. A new measurement is performed on the sen-
sors every 2 min and transmitted to the base station, resulting
in a sampling rate of 30 samples h−1.

Significant data gaps are prevented by using solar panels,
durable batteries and field-tested sensors, but given the cir-
cumstances on such a demanding high-alpine field site, cer-
tain outages of single sensors, for example, due to power
failures or during maintenance, could not be prevented. Nev-
ertheless, this dataset constitutes an extensive and close-to-
complete dataset.

The recordings of the case study were affected by external
influences, especially mountaineers and wind. This reduced
the set of possible analysis tools. Auxiliary data which help
to characterize the external influences are collected in addi-
tion to the continuous data from the sensors. In the presented
case, the auxiliary data are non-continuous and consist of lo-
cal observations, preprocessed STA/LTA triggers from We-
ber et al. (2018b), accommodation occupancy of a nearby
hut and a non-exhaustive list of helicopter flight data from a
duration of approximately 7 weeks provided by a local heli-
copter company.

In following, we use this case study to exemplify our
method, which was presented in the previous sections.

4 Manual data assessment

A ground truth is often needed for state-of-the-art classifiers
(such as artificial neural networks). To establish this ground
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Figure 3. The field site is located on the Matterhorn Hörnligrat at 3500 m a.s.l. which is denoted with a red circle. The photograph on the
right is taken by a remotely controlled DSLR camera at the field site on 4 August 2016, 12:00:11 CET. The seismometer of interest (white
circle) is located on a rock instability which is close to a frequently used climbing route.

truth while reducing the amount of manual labor, only a sub-
set of the dataset is selected and used in a manual data as-
sessment phase, which consists of data evaluation, classifier
training and classifier selection as depicted in Fig. 4. Data
evaluation can be subdivided into four parts: (i) character-
ization of external influences in the primary signal (that is
the relation between primary and secondary signals), (ii) an-
notating the subset based on the primary and secondary sig-
nals, (iii) selecting the data types suitable for classification
and (iv) performing a first statistical evaluation with the an-
notated dataset, which facilitates the selection of a classifier.
Characterization and statistical evaluation are the only steps
where domain expertise is required while it is not required
for the time- and labor-intensive annotation process.

The classifier selection and training phase presumes the
availability of a variety of classifiers for different input data
types, for example, the broad range of available image clas-
sifiers (Russakovsky et al., 2015). The classifiers do not per-
form equally well on the given task with the given subset.
Therefore, classifiers have to be selected based on their suit-

ability for classification given the task and the data. A se-
lection of classifiers is therefore trained and tested with the
annotated subset and optimized for best performance, which
can, for example, be done by selecting the classifier with the
lowest error rate on a defined test set. The classifier selection,
training and optimization is repeated until a sufficiently good
set of classifiers has been found. This suitability is defined
by the user and can, for example, mean that the classifier is
better than a critical error rate. These classifiers can then be
used for application in the automatic classification process.

In the following, the previously explained method will be
exemplified for wind and mountaineer detection using micro-
seismic, wind and image data from a real-world experiment.
The required steps of subset creation, characterization, anno-
tation, statistical evaluation and the selection of the data type
for classification are explained. Before an annotated subset
can be created the collected, data must be characterized for
their usefulness in the annotation process, i.e., which data
type can be used to annotate which external influence.
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Figure 4. The manual preparation phase is subdivided into data evaluation (a) and classifier selection and training (b). First, the data
subset is characterized and annotated. This information can be used to do a statistical evaluation and select data types which are useful for
classification. Domain experts are not required for the labor-intensive task of annotation. The classifiers are selected, trained and optimized
in a feedback loop until the best set of classifiers is found.

4.1 Characterization

The seismometer captures elastic waves originating from dif-
ferent sources. In this study, we will consider multiple non-
geophysical sources, which are mountaineers, helicopters,
wind and rockfalls. Time periods where the aforementioned
sources cannot be identified are considered as relevant, and
thus we will include them in our analysis as a fifth source,
the “unknown” source. The mountaineer impact will be char-
acterized on a long-term scale by correlating with hut ac-
commodation occupancy (see Fig. 10) and on a short-scale
by person identification on images. Helicopter examples are
identified by using flight data and local observations. By ana-
lyzing spectrograms, one can get an intuitive feeling for what
mountaineers or helicopters “look” like, which facilitates the
manual annotation process. In Fig. 5, different recordings
from the field site are illustrated, which have been picked by
using the additional information described at the beginning
of this section. For six different examples, the time domain
signal, its corresponding spectrogram and STA/LTA triggers
are depicted. The settings for the detector are the same for all
the subsequent plots. It becomes apparent in Fig. 5b–c that
anthropogenic noise, such as mountaineers walking by or he-
licopters, is recorded by seismometers. Moreover, it becomes
apparent that it might be feasible to assess non-geophysical

sources on a larger time frame. Mountaineers, for example,
show characteristic patterns of increasing or decreasing loud-
ness, and helicopters have distinct spectral patterns, which
could be beneficial to classify these sources. Additionally, the
images captured on site show when a mountaineer is present
(see Fig. 3), but due to fog, lens flares or snow on the lens,
the visibility can be limited. The limited visibility needs to be
taken into account for when seismic data are to be annotated
with the help of images. Another limiting factor is the tempo-
ral resolution of one image every 4 min since mountaineers
could have moved through the camera’s field of view in be-
tween two images.

The wind sensor can directly be used to identify the impact
on the seismic sensor. Figure 6 illustrates the correlation be-
tween tremor amplitude and wind speed. Tremor amplitude
is the frequency-selective, median, absolute ground velocity
and has been calculated for the frequency range of 1–60 Hz
according to Bartholomaus et al. (2015). By manually an-
alyzing the correlation between tremor amplitude and wind
speed, it can be deduced that wind speeds above approxi-
mately 30 km h−1 have a visible influence on the tremor am-
plitude.

Rockfalls can best be identified by local observations since
the camera captures only a small fraction of the receptive
range of the seismometers. Figure 5e illustrates the seis-
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Figure 5. Microseismic signals and the impact of external influences. (a) During a period of little anthropogenic noise, the seismic activity is
dominant. (b) In the spectrogram, the influence of mountaineers becomes apparent. Shown are seismic signatures of (c) a helicopter in close
spatial proximity to the seismometer, (d) wind influences on the signal and (e) a rockfall in close proximity to the seismometer. The red dots
in the signal plots indicate the timestamps of the STA/LTA triggers from Weber et al. (2018b).

mic signature of a rockfall. The number of rockfall observa-
tions and rockfalls caught on camera is however very limited.
Therefore, it is most likely that we were unable to annotate
all rockfall occurrences. As a consequence, we will not con-
sider a rockfall classifier in this study.

It can be seen in Fig. 5a that during a period which is not
strongly influenced by external influences the spectrogram
shows mainly energy in the lower frequencies with occa-
sional broadband impulses.

The red circles in the subplots in Fig. 5 indicate the times-
tamps of the STA/LTA events for a specific geophysical anal-
ysis (Weber et al., 2018b). By varying the threshold of the
STA/LTA event trigger, the number of events triggered by
mountaineers can be reduced. However, since the STA/LTA
event detector cannot discriminate between events from geo-
physical sources and events from mountaineers, changing the
threshold would also influence the detection of events from
geophysical sources. This fact would affect the quality of
the analysis since the STA/LTA settings are determined by

the geophysical application (Colombero et al., 2018; Weber
et al., 2018b).

4.2 Annotation

The continuous microseismic signals are segmented for an-
notation and evaluation. Figure 7 provides an overview of
the three segmentation types, event-linked segments, image-
linked segments and consecutive segments. Image-linked
segments are extracted due to the fact that a meaningful re-
lation between seismic information and photos is only given
in close temporal proximity. Therefore, images and micro-
seismic data are linked in the following way. For each image,
a 2 min microseismic segment is extracted from the contin-
uous microseismic signal. The microseismic segment’s start
time is set to 1 min before the image timestamp. Event-linked
segments are extracted based on the STA/LTA triggers from
Weber et al. (2018b). For each trigger, the 10 s following
the timestamp of the trigger are extracted from the micro-
seismic signal. Consecutive segments are 2 min segments se-

www.earth-surf-dynam.net/7/171/2019/ Earth Surf. Dynam., 7, 171–190, 2019



178 M. Meyer et al.: Systematic identification of external influences in multi-year microseismic recordings

Figure 6. Impact of wind (light orange) on the seismic signal. The
tremor amplitude (dark blue) is calculated according to Bartholo-
maus et al. (2015). The effect of wind speed on tremor amplitude
becomes apparent for wind speeds above approximately 30 km h−1.
Note the different scales on the y axes.

Figure 7. Illustration of microseismic segmentation. Event-linked
segments are 10 s segments starting on event timestamps. Image-
linked segments are 2 min segments centered around an image
timestamp. Consecutive segments are 2 min segments sequentially
extracted from the continuous microseismic signal.

quentially extracted from the continuous microseismic sig-
nal.

Only the image-linked segments are used during annota-
tion; their label can, however, be transferred to other seg-
mentation types by assigning the image-linked label to over-
lapping event-linked or consecutive segments. Image-linked
and event-linked segments are used during data evaluation
and classifier training. Consecutive segments are used for au-
tomatic classification on the complete dataset. Here, falsely
classified segments are reduced by assigning each segment a
validity range. A segment classified as mountaineer is only
considered correct if the distance to the next (or previous)
mountaineer is less than 5 min. This is based on an estima-
tion of how long the mountaineers are typically in the audible
range of the seismometer.

For mountaineer classification, the required label is
“mountaineer” but additional labels will be annotated which
could be beneficial for classifier training and statistical analy-
sis. These labels are “helicopters”, “rockfalls”, “wind”, “low
visibility” (if the lens is partially obscured) and “lens flares”.
The “wind” label applies to segments where the wind speed
is higher than 30 km h−1, which is the lower bound for no-
ticeable wind impact as resulted from Sect. 4.1.

Figure 8 depicts the availability of image-linked segments
per week during the relevant time frame. A fraction of the
data is manually labeled by the authors, which is illustrated
in Fig. 8. Two sets are created: a training set containing 5579
samples from the year 2016, and a test set containing 1260
data samples from 2017. The test set has been sampled ran-
domly to avoid any human prejudgment. For each day in
2017, four samples have been chosen randomly, which are
then labeled and added to the test set. The training set has
been specifically sampled to include enough training data for
each category. This means, for example, that more moun-
taineer samples come from the summer period where the
climbing route is most frequently used. The number of ver-
ified rockfalls and helicopters is non-representative, and al-
though helicopters can be manually identified from spectro-
grams, the significance of these annotations is not given due
to the limited ground truth from the secondary source. There-
fore, for the rest of this study, we will focus on mountaineers
for qualitative evaluation. For statistical evaluation, we will
however use the manually annotated helicopter and rockfall
samples to exclude them from the analysis. The labels for all
categories slightly differ for microseismic data and images
since the types of sources which can be registered by each
sensor differ. This means, for instance, that not every classi-
fier uses all labels for training (for example, a microseismic
classifier cannot detect a lens flare). It also means that for the
same time instance one label might apply to the image but
not to the image-linked microseismic segment (for example,
mountaineers are audible but the image is partially obscured
and the mountaineer is not visible). This becomes relevant in
Sect. 5.3.4 when multiple classifiers are used for ensemble
classification.

4.3 Data type selection

After the influences have been characterized, the data type
which best describe each influence needs to be selected. The
wind sensor delivers a continuous data stream and a direct
measure of the external influence. In contrast, mountaineers,
helicopters and rockfalls cannot directly be identified. A data
type including information about these external influences
needs to be selected. Local observations, accommodation oc-
cupancy and flight data can be discarded for the use as clas-
sifier input since the data cannot be continuously collected.
According to Sect. 4.1, it seems possible to identify moun-
taineers, helicopters and rockfalls from microseismic data.
Moreover, mountaineers can also be identified from images.
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Figure 8. Number of image/microseismic data pairs in the dataset
(dark blue) and in the annotated subset (light orange) displayed over
the week number of the years 2016 and 2017. Note the logarithmic
scale on the y axis.

As a consequence, the data types selected to perform clas-
sification are microseismic data, images and wind data. The
microseismic data used are the signals from the three com-
ponents of the seismometer.

5 Classifier selection and training

The following section describes the classifier preselection,
training, testing and how the classifiers are used to annotate
the whole data stream as illustrated in Fig. 4b. First, a brief
introduction to convolutional neural networks is given. If the
reader is unfamiliar with neural networks, we recommend to
read additional literature (Goodfellow et al., 2016).

5.1 Convolutional neural networks

Convolutional neural networks have gained a lot of interest
due to their advanced feature extraction and classification
capabilities. A convolutional neural network contains mul-
tiple adoptable parameters which can be updated in an iter-
ative optimization procedure. This fact makes them generi-
cally applicable to a large range of datasets and a large range
of different tasks. The convolutional neural network consists
of multiple so-called convolutional layers. A convolutional
layer transforms its input signal with ci channels into ch fea-
ture maps as illustrated in Fig. 9. A hidden feature map FH,k

is calculated according to

FH,k = g

(
ci∑

j=1
I ∗j wk,j + bk

)
,

where ∗ denotes the convolution operator, g(·) is a nonlinear
function, Ij is an input channel, bk is the bias related to the
feature map FH,k , and wk,j is the kernel related to the input
image Ij and feature map FH,k . Kernel and bias are trainable
parameters of each layer. This principle can be applied to
subsequent convolutional layers. Additionally, a strided con-
volution can be used which effectively reduces the dimen-
sion of a feature map as illustrated by L1 in Fig. 9. In an
all-convolutional neural network (Springenberg et al., 2014),
the feature maps of the output convolutional layer are aver-
aged per channel. In our case, the number of output channels
is chosen to be the number of event sources to be detected.
Subsequent scaling and a final (nonlinear) activation func-
tion are applied. If trained correctly, each output represents
the probability that the input contains the respective event
source. In our case, this training is performed by calculat-
ing the binary cross-entropy between the network output and
the ground truth. The error is back-propagated through the
neural network and the parameters are updated. The training
procedure is performed for all samples in the dataset and is
repeated for multiple epochs.

5.2 Classifier selection

Multiple classifiers are available for the previously selected
data types: wind data, images and microseismic data.

For wind data, a simple threshold classifier can be used,
which indicates wind influences based on the wind speed.
For simplicity, the classifier labels time periods with wind
speed above 30 km h−1 as “wind”. For images, a convolu-
tional neural network is selected to classify the presence of
mountaineers in the image. The image classifier architecture
is selected from the large pool of available image classifiers
(Russakovsky et al., 2015). For microseismic data, three dif-
ferent classifiers will be preselected: (i) a footstep detector
based on manually selected features (standard deviation, kur-
tosis and frequency band energies) using a linear support
vector machine (LSVM) similar to the detector used in An-
chal et al. (2018), (ii) a seismic event classifier adopted from
Perol et al. (2018) and (iii) a non-geophysical event classi-
fier which we call MicroseismicCNN. We re-implemented
the first two algorithms based on the information from the
respective papers. The third is a major contribution in this
paper and has been specifically designed to identify non-
geophysical sources in microseismic data.

The proposed convolutional neural network (CNN) to
identify non-geophysical sources in microseismic signals
uses a time–frequency signal representation as input and con-
sists of 2-D convolutional layers. Each component of the time
domain signal, sampled at 1 kHz, is first offset compensated
and then transformed with a short-time Fourier transforma-
tion (STFT). Subsequently, the STFT output is further pro-
cessed by selecting the frequency range from 2 to 250 Hz
and subdividing it into 64 linearly spaced bands. This time–
frequency representation of the three seismometer compo-
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Figure 9. Simplified illustration of a convolutional neural network. An input signal, for example, an image or spectrogram, with a given
number of channels ci is processed by a convolutional layer LH. The output of the layer is a feature map with ch channels. Layer LO takes
the hidden feature map as input and performs a strided convolution which results in the output feature map with reduced dimensions and
number of channels co. Global average pooling is performed per channel and additional scaling and a final activation are applied.

nents can be interpreted as 2-D signal with three channels,
which is the network input. The network consists of multiple
convolutional, batch normalization and dropout layers, as de-
picted in Table 1. Except for the first convolutional layer, all
convolutional layers are followed by batch normalization and
rectified linear unit (ReLU) activation. Finally, a set of global
average pooling layer, dropout, trainable scaling (in the form
of a convolutional layer with kernel size 1) and sigmoid ac-
tivation reduces the features to one value representing the
probability that a mountaineer is in the microseismic signal.
In total, the network has 30 243 parameters. In this architec-
ture, multiple measures have been taken to minimize over-
fitting: the network is all-convolutional (Springenberg et al.,
2014), batch normalization (Ioffe and Szegedy, 2015) and
dropout (Srivastava et al., 2014) are used and the size of the
network is small compared to recent audio classification net-
works (Hershey et al., 2016).

5.3 Training and testing

We will evaluate the microseismic algorithms in two scenar-
ios in Sect. 7.1. In this section, we describe the training and
test setup for the two scenarios as well as for image and en-
semble classification. In the first scenario, event-linked seg-
ments are classified. In the second scenario, the classifiers on
image-linked segments are compared. The second scenario
stems from the fact that the characterization from Sect. 4.1
suggested that using a longer temporal input window could
lead to a better classification because it can capture more
characteristics of a mountaineer. Training is performed with
the annotated subset from Sect. 4, and a random 10 % of the
training set are used as the validation set, which is never used
during training. For the non-geophysical and seismic event
classifiers, the number of epochs has been fixed to 100 and
for the image classifier to 20. After each epoch, the F1 score

Table 1. Layout of the proposed non-geophysical event classifier,
consisting of multiple layers which are executed in sequential order.
The convolutional neural network consists of multiple 2-D convolu-
tional layers (Conv2D) with batch normalization (BatchNorm) and
rectified linear unit (ReLU) activation. Dropout layers are used to
minimize overfitting. The sequence of global average pooling layer,
a scaling layer and the sigmoid activation compute one value be-
tween 0 and 1 resembling the probability of a detected mountaineer.

Layer Stride
Output

channels

Conv2D+BatchNorm + Linear 1 32
Conv2D+BatchNorm + ReLU 2 32
Dropout – 32
Conv2D+BatchNorm + ReLU 2 32
Dropout – 32
Conv2D+BatchNorm + ReLU 1 32
Conv2D+ReLU 1 32
Dropout – 32
Conv2D+ReLU 1 1
Global average pooling 1 1
Dropout – 1
Conv2D 1 1
Sigmoid activation – 1

of the validation set is calculated, and based on it, the best
performing network version is selected. The F1 score is de-
fined as

F1 score=
2 · true positive

2 · true positive+ false negative+ false positive
.

The threshold for the network’s output is determined by run-
ning a parameter search with the validation set’s F1 score as
the metric. Training was performed in batches of 32 sam-
ples with the ADAM (Kingma and Ba, 2014) optimizer and
cross-entropy loss. The Keras (Chollet, 2015) framework
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with a TensorFlow backend (Abadi et al., 2015) was used
to implement and train the network. The authors of the seis-
mic event classifier (Perol et al., 2018) provide TensorFlow
source code, but to keep the training procedure the same, it
was re-implemented with the Keras framework. The footstep
detector is trained with scikit-learn (Pedregosa et al., 2011).
Testing is performed on the test set which is independent of
the training set and has not been used during training. The
metric error rate and F1 score are calculated.

It is common to do multiple iterations of training and test-
ing to get the best-performing classifier instance. We per-
form a preliminary parameter search to estimate the number
of iterations. The estimation takes into account the number
of training types (10 different classifiers need to be trained)
given the limited processing capabilities. As a result of the
search, we train and test 10 iterations and select the best clas-
sifier instance of each classifier type to evaluate and compare
their performance in Sect. 7.

The input of the microseismic classifiers must be variable
to be able to perform classification on event-linked segments
and image-linked segments. Due to the principle of convolu-
tional layers, the CNN architectures are independent of the
input size, and therefore no architectural changes have to be
performed. The footstep detector’s input features are aver-
aged over time by design and are thus also time invariant.

5.3.1 Event-linked segments experiment

Literature suggests that STA/LTA cannot distinguish geo-
physical sources from non-geophysical sources (Allen,
1978). Therefore, the first microseismic experiment investi-
gates if the presented algorithms can distinguish events in-
duced by mountaineers from other events in the signal. The
event-linked segments are used for training and evaluation.
The results will be discussed in Sect. 7.1.

5.3.2 Image-linked segments experiment

In the second microseismic experiment, the image-linked
segments will be used. Each classifier is trained and evalu-
ated on the image-linked segments. The training parameters
for training the classifiers on image-linked segments are as
before but additionally data augmentation is used to mini-
mize overfitting. Data augmentation includes random circu-
lar shift and random cropping on the time axis. Moreover, to
account for the uneven distribution in the dataset, it is made
sure that during training the convolutional neural networks
see one example of a mountaineer every batch. The learning
rate is set to 0.0001, which was determined with a prelimi-
nary parameter search. The classifiers are then evaluated on
the image-linked segments.

To be able to compare the results of the classifiers trained
on image-linked segments to the classifiers trained on event-
linked segments (Sect. 5.3.1), the classifiers from Sect. 5.3.1
will be evaluated on the image-linked segments as well. The

metrics can be calculated with the following assumption: if
any of the event-linked segments which are overlapping with
an image-linked segment are classified as mountaineer, the
image-linked segment is considered to be classified as moun-
taineer as well.

The results will be discussed in Sect. 7.1.

5.3.3 Image classification

Since convolutional neural networks are a predominant tech-
nique for image classification, a variety of network archi-
tectures have been developed. For this study, the MobileNet
(Howard et al., 2017) architecture is used. The number of
labeled images is small in comparison to the network size
(approximately 3.2 million parameters) and training the net-
work on the Matterhorn images will lead to overfitting on the
small dataset. To reduce overfitting, a MobileNet implemen-
tation which has been pre-trained on ImageNet (Deng et al.,
2009), a large-scale image dataset, will be used. Retraining
is required since ImageNet has a different application fo-
cus than this study. The climbing route, containing the sub-
ject of interest, only covers a tiny fraction of the image, and
rescaling the image to 224× 224 pixels, the input size of the
MobileNet, would lead to vanishing mountaineers (compare
Fig. 3). However, the image size cannot be chosen arbitrarily
large since a larger input requires more memory and results
in a larger runtime. To overcome this problem, the image has
been scaled to 448× 672 pixels, and although the input size
differs from the pre-trained version, network retraining still
benefits from pre-trained weights. Data augmentation is used
to minimize overfitting. For data augmentation, each image
is slightly zoomed in and shifted in width and height. The
network has been trained to detect five different categories.
In this paper, only the metrics for mountaineers are of inter-
est for the evaluation and the metrics for the other labels are
discarded in the following. However, all categories are rel-
evant for a successful training of the mountaineer classifier.
These categories consist of “mountaineer”, “low visibility”
(if the lens is partially obscured), “lens flare”, “snowy” (if
the seismometer is covered in snow) and “bad weather” (as
far as it can be deduced from the image).

5.3.4 Ensemble

In certain cases, a sensor cannot identify a mountaineer al-
though there is one; for example, the seismometers cannot
detect when the mountaineer is not moving or the camera
does not capture the mountaineer if the visibility is low.
The usage of multiple classifiers can be beneficial in these
cases. In our case, microseismic and image classifiers will be
jointly used for mountaineer prediction. Since microseismic
labels and image labels are slightly different, as discussed in
Sect. 4.2, the ground truth labels must be combined. For a
given category, a sample is labeled true if any of microseis-
mic or image labels are true (logical disjunction). After indi-
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vidual prediction by each classifier, the outputs of the clas-
sifiers are combined similarly and can be compared to the
ground truth.

5.4 Optimization

Due to potential human errors during data labeling, the train-
ing set has to be regarded as a weakly labeled dataset. Such
datasets can lead to a worse classifier performance. To over-
come this issue, a human-in-the-loop approach is followed,
where a preliminary set of classifiers is trained on the training
set. In the next step, each sample of the dataset is automat-
ically classified. This procedure produces a number of true
positives, false positives and true negatives. These samples
are then manually relabeled and the labels for the dataset are
updated based on human review. The procedure is repeated
multiple times. However, this does not completely avoid the
possibility of falsely labeled samples in the dataset, since the
algorithm might not find all human-labeled false negatives,
but it increases the accuracy significantly. The impact of false
labels on classifier performance will be evaluated in Sect. 7.1.

6 Automatic classification

In Sect. 7.1, it will be shown that the best set of classifiers
is the ensemble of image classifier and MicroseismicCNN.
Therefore, the trained image classifiers and Microseismic-
CNN classifier are used to annotate the whole time period
of collected data to quantitatively assess the impact of moun-
taineers. The image classifier and the MicroseismicCNN will
be used to classify all the images and microseismic data, re-
spectively. The consecutive segments and images are used
for prediction. To avoid false positives, we assume that a
mountaineer requires a certain amount of time to pass by the
seismometer as illustrated in Fig. 7; therefore, a mountaineer
annotation is only considered valid if its minimum distance
to the next (or previous) mountaineer annotation is less than
5 min. Subsequently, events within time periods classified as
mountaineers are removed and the event count per hour is
calculated.

7 Evaluation

In the following, the results of the different classifier exper-
iments described in Sect. 5.3 will be presented to determine
the best set of classifiers. Furthermore, in Sect. 7.2 and 7.3,
results of the automatic annotation process (Sect. 6) will used
to evaluate the impact of external influences on the whole
dataset.

7.1 Classifier evaluation

The results of the classifier experiments (Table 2) show that
the footstep detector is the worst at classifying mountaineers,
with an error rate of 0.1702 on event-linked segments and

Table 2. Results of the different classifiers. The addition of
“(events)” labels the classifier versions trained on event-linked seg-
ments

Error rate F1 score

Event-linked segments

Footstep detector (events) 0.1702 0.7692
Seismic event classifier (events) 0.1250 0.8291
MicroseismicCNN (events) 0.0641 0.9062

Image-linked segments

Footstep detector (events) 0.0706 0.5389
Seismic event classifier (events) 0.0540 0.6047
MicroseismicCNN (events) 0.0309 0.731
Footstep detector 0.0952 0.52
Seismic event classifier 0.0313 0.7383
MicroseismicCNN 0.0096 0.9167

Image classifier 0.0088 0.9134
Ensemble 0.0079 0.9383

0.0952 on image-linked segments. Both convolutional neural
networks score a lower error rate on image-linked segments
of 0.0096 (MicroseismicCNN) and 0.0313 (seismic event
classifier). For the given dataset, our proposed Microseis-
micCNN network outperforms the seismic event classifier
in both the event-linked segment experiment as well as the
image-linked segment experiment. The MicroseismicCNN
using a longer input window (trained on image-linked seg-
ments) is comparable to classification on images and outper-
forms the classifier trained on event-linked segments. When
combining image and microseismic classifiers, the best re-
sults can be achieved.

The number of training/test iterations that were run for
each classifier has been set to 10 through a preliminary pa-
rameter estimation. To validate our choice, we have evalu-
ated the influences of the number of experiments for only
one classifier. The performance of the classifier is expected
to depend on the number of training/test iterations (more iter-
ations indicate a better chance of selecting the best classifier).
However, the computing time is increasing linearly with in-
creasing number of iterations. Hence, a reasonable trade-off
between the performance of the classifier and the comput-
ing time is desired to identify the ideal number of iterations.
Figure 11 represents the statistical distribution of the clas-
sifier’s performance for the different number of training/test
iterations. Each box plot is based on 10 independent sets of
training/test iterations. While the box indicates the interquar-
tile range (IQR) with the median value in orange, the whisker
on the appropriate side is taken to 1.5 × IQR from the quar-
tile instead of the maximum or minimum if either type of
outlier is present. Beyond the whiskers, data are considered
outliers and are plotted as individual points. As can be seen
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Figure 10. Event count, hut occupancy and rock temperature over time: (a) for the years 2016 and 2017 and (b) for a selected period during
defreezing of the rock. The event rate from Weber et al. (2018b) is illustrated in light blue and the rate after removal of mountaineer-induced
events in dark blue. The strong variations in event rates correlate with the presence of mountaineers and hut occupancy and in panel (b) with
the total net radiation. The impact of mountaineers is significant after 9 July and event detection analysis becomes unreliable.

in Fig. 11, the F1 score saturates at nine iterations. Therefore,
our choice of 10 iterations is a reasonable choice.

In Sect. 5.4, the possibility of falsely labeled training sam-
ples has been discussed. As expected, our evaluation in Ta-
ble 3 indicates that falsely labeled samples have an influ-

ence on the classification performance since the mean per-
formance is worse for a high percentage of false labels.
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Figure 11. The statistical distribution of the classifier’s perfor-
mance for the different number of training/test iterations is illus-
trated. Each box plot is based on 10 independent sets of training/test
iterations. The F1 score saturates after 9 iterations and validates our
choice of 10 iterations.

Table 3. Influence of falsely labeled data points on the test perfor-
mance. Shown are the mean values over 10 training/test iterations.

False labels (%) 25 12.5 6.25 3.125 0

F1 score (mean) 0.7953 0.8633 0.8761 0.8835 0.8911
Error rate (mean) 0.0208 0.0149 0.0139 0.0129 0.0122

7.2 Statistical evaluation

The annotated test set from Sect. 4.2 and the automatically
annotated set from Sect. 6 are used for a statistical evaluation
involving the impact of external influences on microseismic
events. Only data from 2017 are chosen, since wind data are
not available for the whole training set due to a malfunction
of the weather station in 2016. The experiment from Weber
et al. (2018b) provides STA/LTA event triggers for 2017. Ta-
ble 4 shows statistics for several categories, which are three
external influences and one category where none of the three
external influences are annotated (declared as “unknown”).
For each category, the total duration of all annotated seg-
ments is given and how many events per hour are triggered. It
becomes apparent that mountaineers have the biggest impact
on the event analysis. Up to 105.9 events per hour are de-
tected on average during time periods with mountaineer ac-
tivity, while during all other time periods the average ranges
from 9.09 to 13.12 events per hour. This finding supports our
choice to mainly focus on mountaineers in this paper and
shows that mountaineers have a strong impact on the analy-
sis. As a consequence, a high activity detected by the event
trigger does not correspond to a high seismic activity; thus,
relying only on this kind of event detection may lead to a
false interpretation. From the automatic section in Table 4, it

can be deduced that the average number of triggered events
per hour for times when the signal is influenced by moun-
taineers increases by approximately 9 times in comparison to
periods without annotated external influences. The effect of
wind influences on event rate is not as clear as the influence
of mountaineers. The values in Table 4 indicate a decrease
of events per hour during wind periods, which will be briefly
discussed in Sect. 8.2.

As can be seen in Fig. 12, events are triggered over the
course of the whole year, whereas events that are annotated as
coming from mountaineers occur mainly during the summer
period. The main increase in event count occurs during the
period when the rock is unfrozen, which unfortunately coin-
cides with the period of mountaineer activity. Therefore, it
is important to account for the mountaineers. However, even
if the mountaineers are not considered, the event count in-
creases significantly during the unfrozen period. The inter-
pretation of these results will not be part of this study but
they are an interesting topic for further research.

7.3 Automatic annotation in a real-world scenario

The result of applying the ensemble classifier to the whole
dataset is visualized for two time periods in Fig. 10. The
figure depicts the event count per hour before and after re-
moving periods of mountaineer activity, as well as the rock
temperature, the overnight stays at the Hörnlihütte and the
total net radiation. From Fig. 10a, it becomes apparent that
the mountaineer activity is mainly present during summer
and autumn. An increase is also visible during increasing hut
overnight stays. During winter and spring, only few moun-
taineers are detected but some activity peaks remain. By
manual review, we were able to discard mountaineers as
cause for most of these peaks; however, further investigation
is needed to explain their occurrence.

Figure 10b focuses on the defreezing period. The zero
crossing of the rock temperature has a significant impact on
the event count variability. A daily pattern becomes visible
starting around the zero crossing. Since few mountaineers are
detected in May, these can be discarded as the main influence
for these patterns. The total net radiation, however, indicates
an influence of solar radiation on the event count. Further in-
depth analysis is needed but this example shows the benefits
of a domain-specific analysis, since the additional informa-
tion gives an intuitive description of relevant processes and
their interdependencies. After 9 July, the impact of moun-
taineers is significant and the event detection analysis be-
comes unreliable. Different evaluation methods are required
to mitigate the influence of mountaineers during these peri-
ods.

Figure 13 depicts that mountaineer predictions and hut oc-
cupancy correlate well, which indicates that the classifiers
work well. The discrepancy in the first period of each sum-
mer needs further investigation. With the annotations for the
whole time span, it can be estimated that from all events de-
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Table 4. Statistics of the manually and automatically annotated sets of 2017 per annotation category. “Unknown” represents the category
when none of the other categories could have been identified. Given are the total duration of annotated segments per category and the mean
number of STA/LTA events per category.

Unknown Mountaineer Wind Helicopter

Manual
Duration (hours) 28.87 1.9 6.6 3.73
Mean number of events per hour 10.6 95.26 11.21 13.12

Automatic
Duration (hours) 6832.3 296.53 1364.2 –
Mean number of events per hour 11.76 105.9 9.09 –

Figure 12. Illustration of the cumulative number of events triggered by the STA/LTA event detector for all events, for events triggered by
mountaineers and for events triggered by unknown sources. The results presented in this paper were used to annotate the events. The time
period during which the rock temperature in 1 m depth is above 0 ◦C is shaded in gray.

tected in Weber et al. (2018b), approximately 25 % originate
in time periods with mountaineer activity and should there-
fore not be regarded as originating from geophysical sources.

8 Discussion

8.1 Classification of negative examples

The previous section has shown that a certain degree of un-
derstanding of the scenario and data collected is nevertheless
necessary in order to achieve a significant analysis. The effort
in creating an annotated data subset, despite being time and
labor consuming, is an overhead but as we show can be out-
weighed by the benefits of better analysis results. For data
annotation, two distinct approaches can be followed: anno-
tating the phenomena of interest (positive examples) or an-

notating the external influences (negative examples). Posi-
tive examples, used in Yuan et al. (2018), Ruano et al. (2014)
and Kislov and Gravirov (2017), inherently contain a limita-
tion as this approach requires that events as well as influenc-
ing factors must be identified and identifiable in the signal
of concern. This is especially hard where no ground truth
information except (limited) experience by professionals is
available. Therefore, the strategy presented in this work to
create an annotated dataset using negative examples is ad-
visable to be used. It offers to perform cross-checks if cer-
tain patterns can be found in different sensor/data types, and
in many cases the annotation process can be performed by
non-experts. Also, additional sensors allow to directly quan-
tify possible influence factors. The detour required by first
classifying negative examples and then analyzing the phe-
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Figure 13. Correlation of mountaineer activity and hut occupancy. The normalized number of mountaineer segments per week and the
normalized number of overnight stays at the Hörnlihütte per week is plotted over time.

nomena of interest offers further benefits. In cases where the
characteristics of the phenomena of interest are not known
in advance (no ground truth available) and in cases where a
novel analysis method is to be applied or when treating very-
long-term monitoring datasets, working only on the primary
signal of concern is hard and error margins are likely to be
large. In these cases, it is important to take into account all
knowledge available including possible negative examples,
and it is significant to automate as much as possible using
automatic classification methods.

8.2 Multi-sensor classification

In Sect. 5, multiple classifiers for different sensors have been
presented. The advantages of classifying microseismic sig-
nals are that continuous detection is possible and that no
additional sensors are required. The classification accuracy
of the convolutional neural network and the image classi-
fier presented are comparable. Classification of time-lapse
images, however, has the disadvantage of a low time res-
olution proportional to the capture frequency, for example,
a maximum of 15 images per hour in our example. Con-
tinuous video recording could close this gap at the cost of
requiring a more complex image classifier, the size of the
data and higher processing times, which are likely infeasi-
ble. The main advantage of images is that they can be used
as additional independent sensors to augment and verify mi-
croseismic recordings. First, images can be used for anno-
tations, and second, they can be used in an ensemble clas-

sifier to increase the overall accuracy. The different modali-
ties strengthen the overall meaningfulness and make the clas-
sifier more robust. Table 4 shows that during windy seg-
ments less events are triggered than in periods that cannot be
categorized (“unknown” category). A possible explanation
is that the microseismic activity is superimposed by broad-
band noise originating in the wind. For these time segments,
a variable trigger sensitivity (Walter et al., 2008) or a dif-
ferent event detection algorithm can improve the analysis.
Better shielding the seismometer from the wind would re-
duce these influences significantly but the typical approach
in seismology to embed it into the ground under a substan-
tial soil column is next to impossible to implement in steep
bedrock and perennially frozen ground as found on our case-
study field site. Nonetheless, Table 4 gives an intuitive feel-
ing that our method performs well since the statistical dis-
tribution of manually and automatically annotated influences
sources is similar. We therefore conclude that with our pre-
sented method it is possible to quantify the impact of external
influences on a long-term scale and across variable condi-
tions.

8.3 Feature extraction

In Sect. 4.1, the different characteristics of event sources
have been discussed. The characteristic features can be used
to identify and classify each source type. The convolutional
neural network accomplishes the task of feature extraction
and classification simultaneously by training on an extensive
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annotated dataset. An approach without the requirement of
an annotated dataset would be to manually identify the char-
acteristics and then design a suitable algorithm to extract the
features. For example, the helicopter pattern in Fig. 5c shows
distinct energy bands indicating the presence of a fundamen-
tal frequency plus the harmonics. These features could be
traced to identify the model and possibly localize a helicopter
(Eibl et al., 2017) with the advantage of a relaxed dataset
requirement. The disadvantage would be the requirement of
further expertise in the broad field of digital signal processing
and modeling as well as more detailed knowledge on each
such phenomena class of interest. Also, it is likely that such
an approach would require extensive sensitivity analysis to
be performed alongside modeling. Moreover, if the algorithm
is handcrafted by using few examples, it is prone to overfit-
ting based on these examples (see also the next subsection).
This problem of overfitting exists as well for algorithm train-
ing and can be solved by using more examples; however, it is
easier to annotate a given pattern (with the help of additional
information) than understanding its characteristics, and thus
the time- and labor-consuming task of annotation can be out-
sourced in the case of machine learning. Figure 5 indicates
that little anthropogenic noise (Fig. 5a) has less broadband
background noise than wind (Fig. 5d) and the impulses oc-
cur in a different frequency band. However, the signal plots
show a similar pattern. To identify wind from microseismic
data manually, one could utilize a frequency-selective event
detector, although it is not clear if this pattern and frequency
range are representative of every occurrence of wind and if
all non-wind events could be excluded with such a detector.
Using a dedicated wind sensor for identification of wind peri-
ods as presented in this study overcomes these issues with the
drawback of an additional sensor which needs to be installed
and maintained, and that during failure of the additional sen-
sor no annotation can be performed.

8.4 Overfitting

A big problem with machine learning methods is overfitting
due to too few data examples. Instead of learning representa-
tive characteristics, the algorithm memorizes the examples.
In our work, overfitting is an apparent issue since the refer-
ence dataset is small as described in Sect. 4.2. As explained
in the previous sections, multiple measures have been intro-
duced to reduce overfitting (data augmentation, few parame-
ters, all convolutional neural network, dropout). The test set
has been specifically selected to be from a different year to
exclude that severe overfitting affects the classifier perfor-
mance. The test set includes examples from all seasons, day-
and nighttime, and is thus assumed representative for upcom-
ing, never-before-seen data. However, overfitting might still
exist in the sense that the classifier is optimized for one spe-
cific seismometer. Generalization to multiple seismometers
still needs to be proven since we did not test the same clas-
sifier for multiple seismometers, which might differ in their

specific location, type or frequency response. This will be an
important study for the future since it will reduce the dataset
collection and training time significantly if a new seismome-
ter is deployed.

8.5 Outlook

This work has only focused on identifying external influ-
ences, what we have shown to be a prerequisite for micro-
seismic analysis. Future work lies in finding and applying
specific analytic methods, especially finding good parame-
ter sets and algorithms for each context. Additionally, the
classifier could be extended to include helicopters as well as
geophysical sources such as rockfalls. A disadvantage of the
present method is the requirement of a labeled dataset. Semi-
supervised or unsupervised methods (Kuyuk et al., 2011) as
well as one- or few-shot classification methods (Fei-Fei et al.,
2006) could provide an alternative to the presented training
concept without the requirement of a large annotated dataset.

9 Conclusions

In this paper, we have presented a strategy to evaluate the im-
pact of external influences on a microseismic measurement
by categorizing the data with the help of additional sensors
and information. With this knowledge, a method to classify
mountaineers has been presented. We have shown how ad-
ditional sensors can be beneficial to isolate the information
of interest from unwanted external influences and provide a
ground truth in a long-term monitoring setup. Moreover, we
have presented a mountaineer detector, implemented with a
convolutional neural network, which scores an error rate of
only 0.96 % (F1 score: 0.9167) on microseismic signals and a
mountaineer detector ensemble which scores an error rate of
0.79 % (F1 score: 0.9383) on images and microseismic data.
The classifiers outperform comparable algorithms. Their ap-
plication to a real-world, multi-sensor, multi-year microseis-
mic monitoring experiment showed that time periods with
mountaineer activity have an approximately 9 times higher
event rate and that approximately 25 % of all detected events
are due to mountaineer interference. Finally, the findings of
this paper show that an extensive, systematic identification of
external influences is required for a quantitative and qualita-
tive analysis on long-term monitoring experiments.

Code and data availability. The dataset is available at
https://doi.org/10.5281/zenodo.1320835 (Meyer et al., 2018) and
the accompanying code at https://doi.org/10.5281/zenodo.1321176
(Meyer and Weber, 2018).
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