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Abstract. Understanding land loss or resilience in response to sea-level rise (SLR) requires spatially extensive
and continuous datasets to capture landscape variability. We investigate the sensitivity and skill of a model that
predicts dynamic response likelihood to SLR across the northeastern US by exploring several data inputs and
outcomes. Using elevation and land cover datasets, we determine where data error is likely, quantify its effect
on predictions, and evaluate its influence on prediction confidence. Results show data error is concentrated in
low-lying areas with little impact on prediction skill, as the inherent correlation between the datasets can be
exploited to reduce data uncertainty using Bayesian inference. This suggests the approach may be extended
to regions with limited data availability and/or poor quality. Furthermore, we verify that model sensitivity in
these first-order landscape change assessments is well-matched to larger coastal process uncertainties, for which
process-based models are important complements to further reduce uncertainty.

1 Introduction

Estimates of global sea-level rise (SLR) predict increases be-
tween 0.3 and 1.2 m by 2100 (Church et al., 2013; Kopp et
al., 2014), while northeastern and mid-Atlantic US SLR pro-
jections are higher than the global average due to a variety of
factors including subsidence, static equilibrium effects, and
changing ocean dynamics (Goddard et al., 2015; Mitrovica
et al., 2011; Kopp, et al., 2014; Sella et al., 2007; Slangen et
al., 2014; Sweet et al., 2017a, b; Yin and Goddard, 2013; Yin
et al., 2009; Zervas et al., 2013). SLR impacts such as high-
tide flooding, barrier island narrowing, and salt marsh degra-
dation have been increasingly observed along the US East
Coast (e.g., Cahoon et al., 2009; Ezer and Atkinson, 2014;
Kirwan and Megonigal, 2013; Sweet and Park, 2014). The
northeastern US coast (from Maine southward through Vir-
ginia) is a diverse landscape, with major shipping ports (e.g.,
New York City, Boston, Norfolk), heavily populated cities
(e.g., Washington, D.C., New York City, Boston), and exten-
sive natural areas that provide a variety of habitat and ecosys-

tem services. Understanding and assessing how coastal land-
scapes such as this respond to SLR is central to refining adap-
tive management strategies (Fishman et al., 2014) and iden-
tifying areas that provide buffering or mitigation to support
long-term management targets (Pelletier et al., 2015).

Coastal environments are products of a complex inter-
play of exposure and processes, substrate and sediment sup-
ply, tidal ranges, and geomorphology (e.g., Davies, 1964;
FitzGerald et al., 2008; Hayes, 1979). As illustrated by
Carter (1988), a robust body of literature documents the eco-
logic transition of these environments from the shoreline over
geomorphic features (e.g., dunes and bluffs) landward. In
fact, a relatively steady SLR rate over the last few thousand
years is central to our modern coastal configuration, includ-
ing the development of barrier islands and wetlands (e.g.,
Redfield, 1972; Field and Duane, 1976; Shennan and Hor-
ton, 2002), as well as settlement patterns (McGranahan et
al., 2007; Liu et al., 2015; Kane et al., 2017). Because coastal
land elevation is primarily governed by the substrate and/or
underlying geology of the landscape, as well as being a prod-
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uct of the physical and biogeochemical processes acting on
it, it serves as a central parameter in defining the distribution
and configuration of ecosystems and their ability to evolve in
response to processes driving change (Gesch, 2009; Kempe-
neers et al., 2009).

Models are widely available (e.g., Marcy et al., 2011;
Strauss et al., 2012) to estimate the potential for SLR-
induced inundation across the landscape. These models use
present-day elevation as a primary input, which makes them
well-suited to identify impacts on developed areas, where
hard structures, barriers to migration, and other stabilization
measures constrain the landscape to its current elevation and
use. However, these models cannot depict landscape variabil-
ity in environments that respond dynamically to SLR through
mechanisms such as vertical accretion due to washover or
biomass accumulation. Lentz et al. (2016) addressed this
limitation by developing a coastal response model (Fig. 2)
for the northeastern US that predicts the likelihood of dy-
namic response to SLR, wherein dynamic is defined as the
ability of an environment to either maintain its current state
(e.g., a beach remains a beach) or transition to another non-
submerged state (e.g., a forest becomes a marsh).

The confidence of our probabilistic dynamic response out-
comes depends on the accuracy of model input parame-
ters, which include continuous land cover and elevation data.
Here, we use the nearly 38 000 km2 coverage of Lentz et
al. (2016) to examine (1) the sensitivity of predictions to dif-
ferences in the certainty of these input data and (2) model
skill to determine where better data are necessary to improve
prediction confidence and affect results. We explore the in-
herent correlation between elevation and coastal land cover
distributions in our model by testing the ability of Bayesian
inference to capture this relationship such that elevation may
be used to predict land cover and vice versa. We hypothe-
size that the relationship between these data inputs over such
an extensive and diverse expanse reduces uncertainty in each
parameter in our framework and that potential data error is
sufficiently minor that it does not obscure important process
thresholds that would in turn affect predicted outcomes. In
addition to better understanding model sensitivity to these
parameters, our results also clarify how Bayesian inference
may be used to supplement poorer data quality and/or uncer-
tainty, particularly in low-lying coastal environments.

2 Data and methods

2.1 Previous work

Lentz et al. (2015a) mapped coastal response predictions –
the probability of dynamic response or DP – using a Bayesian
network (BN) probabilistic modeling approach (Table 1). We
define DP as the likelihood of land cover type to retain its ex-
isting state or transition to a new non-submerged state under
the given SLR projection. By this definition, DP is a binary
outcome in that if the coast does not respond dynamically to

SLR, it will inundate, and therefore DP equals one minus the
probability of inundation. A DP value of 0.5 indicated the
highest uncertainty in that either dynamic response or inun-
dation had an equally likely probability of occurrence (Lentz
et al., 2016).

The study area was a 38 000 km2 region from Maine to
Virginia, USA, bounded by the 10 m elevation contour in-
land to −10 m offshore. The BN (Fig. S1 in the Supplement)
produced two probabilistic outcomes at a 30× 30 m resolu-
tion for future SLR scenarios in the 2020s, 2030s, 2050s,
and 2080s: (1) adjusted land elevation (AE) relative to the
projected sea level and (2) dynamic response or DP. As de-
scribed in Lentz et al. (2015a), the SLR scenarios were com-
prised of three components: ocean dynamics (generated from
24 Coupled Model Intercomparison Project Phase 5 (CMIP5)
models; Taylor et al., 2012), ice melt (as estimated by Bam-
ber and Aspinall, 2013, for the two Antarctic ice sheets and
based on Marzion et al., 2012, and Radic et al., 2013, for
glaciers and ice caps), and global land water storage (based
on Church et al., 2013). Percentiles of these three compo-
nents were estimated and then aggregated to provide an SLR
scenario and corresponding uncertainty. The projected SLR
scenario ranges for each decade used in our model are shown
in Fig. S1 as follows: 2020s (0 to 0.25 m); 2030s (0.25 to
0.5 m); 2050s (0.5 to 0.75 m); and 2080s (0.75 to 2 m).

AE predictions were generated through implementation of
a deterministic equation (see Fig. S1). First, SLR scenarios
were combined with vertical land movement rates due to sub-
sidence and other non-tectonic effects (using rates derived
from a combination of GPS CORS stations in Sella et al.,
2007, and long-term tide gauge data in Zervas et al., 2013)
to make projections relative (local). Projected relative SLR
values were then subtracted from elevation data binned in
ranges (as shown in Fig. S1), which were comprised of a
combination of high-resolution elevation data from the Na-
tional Elevation Dataset (NED; Gesch, 2007) supplemented
where necessary with coarser-resolution bathymetry from the
National Oceanic and Atmospheric Administration National
Geophysical Data Center’s Coastal Relief Model (National
Oceanic and Atmospheric Administration, 2014) to predict
adjusted land elevation (AE) ranges relative to the projected
sea level. Before model integration, high-resolution eleva-
tion data were converted to mean high water from the North
American Vertical Datum 1988 using VDatum conversion
grids (National Ocean Service, 2013).

Dynamic response probabilities (DP) were estimated by
coupling the predicted AE ranges with expert knowledge on
the response of generalized land cover types (six categories
that respond distinctly to SLR ecologically or morphologi-
cally – subaqueous, marsh, beach, rocky, forest, and devel-
oped – as described in Lentz et al. (2015a) and shown in Ta-
ble S1 in the Supplement). Although the resulting predictions
provided a robust accounting of uncertainty from some of
the data inputs and knowledge of physical landscape change
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Table 1. Summary table of accuracy rates for all confusion matrices of land cover and elevation comparisons. Accuracy rates are calculated
by summing where predictions matched observations (the diagonal bolded terms in Tables S2–S4) and dividing by the total number of
outcomes. Confusion matrices are available in the Supplement (Tables S2–S4).

Confusion matrix Accuracy rate

C-CAP vs. DSL land cover comparison 85 %
Predicted vs. observed land cover (elevation inputs; original distributions) 69 %
Predicted vs. observed land cover (elevation inputs; uniform distributions) 56 %
Predicted vs. observed elevation (land cover inputs; original distributions) 66 %
Predicted vs. observed elevation (land cover inputs; uniform distributions) 58 %

processes, the relative influence of these uncertainties on the
predictions has not been explored explicitly.

2.2 Sensitivity and skill assessment

We assessed the role of potential error in elevation (E) and
land cover (LC) datasets on predicted outcomes. Beaches and
estuarine wetlands exist near sea level; likewise, forests re-
quire elevations that provide adequate vadose zone thickness.
While this correlation between E and LC allows one to be
probabilistically predicted from the other, doing so also re-
sults in error correlation. Model elevation data came from the
National Elevation Dataset (1/9 or 1/3 arcsec; U.S. Geolog-
ical Survey, 2015) and Coastal Relief Model (as described in
Lentz et al., 2015a). The expected errors in E from these data
were included in previous predictions (Lentz et al., 2016),
but their effect on predictions was not specifically addressed.
Furthermore, the LC values (from McGarrigal et al., 2017)
were not treated as uncertain, which was inconsistent with
the treatment of all the other relationships in the Lentz et
al. (2016) analysis. Better understanding of E and LC er-
ror helps to constrain it and identify where better data may
improve predictions. Conversely, knowing where data have
lower error helps to identify where process uncertainty is
highest, which can help prioritize future research efforts.

We expanded our testing to determine (1) how our LC
dataset compares with other LC data and previous error quan-
tification results, (2) how E uncertainty is refined by LC
information, and (3) where error in LC and E datasets is
most likely to affect our predictions. As described in Lentz
et al. (2016), inference training (Bayes’ rule) was applied in
the model to capture the correlation between E and LC in the
form

P (Ei|LCj )= P (LCj |Ei)×P (Ei)/P (LCj ), (1)

where we evaluate the i outcome in the first term on the
right as the probabilistic relationship conditioned on inputs
from the j spatial location. Using this relationship, LC, en-
tered with total certainty (such that P (LCj ) is 1.0 if LCj cor-
responds to the land cover data at a particular location or
P (LCj )= 0.0 if it does not), updates the prior E, entered
with known uncertainty, based on the values of the digital

elevation model over the entire modeling domain. Similarly,
E data are used to establish conditional probabilities of LC.
By assessing potential E and LC error using a BN that im-
plements Eq. (1) (Fig. S1), we can evaluate model skill in
reducing error.

2.2.1 Land cover data comparison

As noted in Lentz et al. (2015a), the 2010 land cover data
in the model (hereafter DSL, after McGarrigal et al., 2017)
combine a variety of sources to capture detailed ecosys-
tems information. To better evaluate land cover data error,
we compared land cover data with the 2010 Coastal Change
Analysis Program (CCAP) land cover dataset, which has a
quantified error (NOAA, 2017, https://www.coast.noaa.gov/
dataregistry/search/collection/info/ccapregional, last access:
19 October 2016) and was thus used as our “observed” data
source. Although the DSL land cover data contain much
more detailed ecosystem information than CCAP (19 classes
in CCAP vs. 197 classes in DSL), our generalization of DSL
data into six classes (Table S1) allowed us to similarly gen-
eralize CCAP data and compare the two datasets in terms of
user error (accuracy, or how often the LC type in the DSL
data would be the same in the CCAP or observed data) and
producer error (reliability, or how often the LC type in the
CCAP or observed data would be the same in the DSL data).
When generalizing the two datasets for purposes of compari-
son, we further grouped together beach and rocky categories,
as both exposed bedrock and beach–dune categories are in-
cluded in the CCAP “bare land” category (Table S1). Data
grids were compared using ArcGIS software’s Combine tool
(ESRI, 2016).

2.2.2 Model skill

Our training dataset included E and LC data at ∼ 42000000
grid cells throughout the northeast US. We tested our BN (de-
veloped with Netica software; Norsys Software Corp, 2013)
and trained on these datasets, to predict E values from LC
data and LC data from E values, by assessing posterior prob-
ability distributions in our BN and evaluating the error rate
between predictions and observations. To perform this test,
we built a separate two-variable BN to implement Eq. (1)
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Figure 1. Updated probability distributions after training between elevation and land cover datasets with nonuniform (dark) and uniform
(light) priors (the latter to limit regional LC bias), (a) showing land cover distributions under selected elevation ranges and (b) elevation
distributions under selected land cover types. Land cover categories (Table S1) are abbreviated as follows: S – subaqueous; M – marsh; B –
beach; R – rocky; F – forest; and D – developed.

consisting only of E and LC data (Fig. 1). The network was
trained on the full elevation and DSL land cover dataset us-
ing Eq. (1), and an error rate was calculated based on the
number of times the network predicted a value for a dataset
that did not match the observed value at a given location. To
test the extension of the inference relationship to situations
in which E or LC data inputs may be unavailable or limited,
the modified BN was used to predict an E value (or LC, as
the BNs can be run as both forward and inverse models) as if
it were unobserved given only the (uniformly distributed) LC
data (or E value) as an input, and the corresponding posterior
probabilities were observed.

2.2.3 Mismatch error

Some errors were expected from inconsistencies between the
LC data and the E data, such as where subaqueous cate-
gories (Fig. 1) co-occurred with elevations above 0 m (refer-
enced to mean high water, or MHW, in our model) and eleva-
tions below 0 m co-occurred with a land cover category other
than subaqueous. These mismatches might be due to clas-
sification or elevation error, datum changes, or changes over
time. To evaluate the impact of these mismatches, we focused
on an area contained within the highest resolution and con-
tinuous elevation boundary contours (−1 to 10 m from the
1/3 NED) using about half our points (∼ 22000000), as we
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anticipated that mismatch errors farther offshore than −1 m
would be low (i.e., below 0 m and subaqueous). We classified
mismatches by (1) E data resolution (1/3 and, where avail-
able, 1/9 arcsec data from the National Elevation Dataset)
and (2) LC type to determine whether errors might be ex-
plained systematically due to inputs.

Once identified, we examined the effects of mismatches
on the accuracy of predicted outcomes. First, our model
was used to identify corresponding DP likelihood among LC
types and the low-lying E ranges most commonly mistaken
for one another (−1 to 0 and 0 to 1 m). Rather than evalu-
ating a specific time step, we made input parameters defin-
ing relative SLR uniform (vertical land movement and pro-
jected sea level, as in Fig. S1) to assess overarching impacts
on predictions. Mismatches were also compared geospatially
with measured land cover shifts in the 2001 to 2010 CCAP
change data (NOAA, 2013) to assess where E and LC data
inputs, due to slightly differing dates in their data collection
(Lentz et al., 2015a), may have captured dynamic state shifts
due to process-based changes (e.g., movement of sand bod-
ies around inlets or marsh erosion and/or inundation; Gomez
et al., 2016).

3 Results

3.1 Land cover error

Our LC error assessment found 15 % error between CCAP
and DSL data; this value is the same as the published 15 %
error for the CCAP dataset (Table 1 and McCombs et al.,
2016). A confusion matrix (Table S2) reveals which LC
classes were most commonly mistaken; the most frequent
were bare land misclassified as subaqueous and marsh mis-
classified as non-marsh vegetation.

In addition to having the lowest number of pixels of all the
land cover classes, user error and producer accuracy were
lowest for the bare land category (49 % and 21 %, respec-
tively); the lowest number of correctly classified pixels was
in the bare land class when compared with the ground truth
(CCAP) class. The bare land class also had the lowest num-
ber of pixels when compared with all other LC categories.

3.2 Model skill

The two-parameter BN showed that for this implementation,
LC was nearly as useful for constraining E as the other way
around (Fig. 1; Tables S3–S4). Figure 1a shows that when
nonuniform E data were used to predict LC, subaqueous en-
vironments were the most probable prediction for elevations
lower than 0 m (as illustrated by the top four plots on the left).
This result reflects, in part, the dominance of subaqueous en-
vironments in our dataset and therefore the strong prior prob-
ability that any location below this elevation would be cov-
ered by water (Fig. S1). Additionally, we developed a modi-
fied BN with uniform prior distributions of LC (Fig. 1a) and

E (Fig. 1b) to reevaluate the inference relationship as if all
prior states of the nodes were equally probable, which limits
prediction bias from the lower percentage representation of
certain land cover categories in the region.

Generally (for both original and uniform prior BNs), ele-
vation signatures specific to different land cover types were
observed, with subaqueous, marsh, and beach environments
appearing at low-lying elevations and developed and forested
areas showing a predominance in higher-elevation settings
(Fig. 1a). When relying on the original prior LC distribu-
tion, the network had a corresponding accuracy rate of 69 %
(Table 1) and found beaches and rocky areas were not more
probable than another land cover type. Here, beaches were
most commonly confused with subaqueous and marsh land
cover types and rocky areas with subaqueous (Table S3a).
Uniformly distributed LC priors yielded slightly different
predicted outcomes, wherein the network never found rocky
and forested land cover types more probable than another
land cover type, most commonly confusing them with sub-
aqueous and developed land cover types, respectively (Ta-
ble S3b). Overall, the accuracy rate in the inference relation-
ship between E and LC was 56 % when uniform LC prior
distributions were used (Table 1).

When land cover data were used to predict elevation
(Fig. 1b), a consistent dependence of the E distribution on
the LC data was seen, with E increasing as LC traversed
submerged, marsh, beach, rocky, and forested environments.
Overall, accuracy and reliability were lowest for the −1 to
0 and 0 to 1 m ranges with both original and uniform prior
distributions of E (Tables S4a and b). The difference in pre-
diction using the uniform prior BN was that the 5–10 m range
category was predicted, whereas this elevation was not more
probable than another when original priors were used. The
accuracy rate in the inference relationship between LC and
E was 66 % for the original prior distribution and 58 % for
the uniform priors (Table 1).

3.3 Mismatch error

We define a mismatch as a location where the subaqueous
LC type co-occurred with elevations above 0 m or where the
remaining LC types co-occurred with elevations below 0 m.
The mismatch assessment (Fig. 2a) showed that land–water
mismatches affect 15 % of the reduced (> 19 000 km2) pre-
diction area (Fig. 2b), and the most commonly occurring
mismatches (Fig. 2c) were among dynamic environments
(subaqueous, marshes, and beaches) at low elevations (−1
to 1 m). More than half of the mismatch data were com-
prised of LC categories other than subaqueous below 0 m. Of
these, nearly all environments were found in the −1 to 0 bin,
wherein marshes were the dominant environment type (35 %
of mismatch), followed by beaches (8 % of mismatch). The
remaining LC types (rocky, forest, developed) comprised
< 6 % of the observed mismatch area combined. The cumu-
lative probability of the subaqueous category falling into a
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Figure 2. Results of mismatch analysis (a) in a selected area with inset of enlarged view; (b) shown as a percentage of the prediction area
within the 1/3 National Elevation Dataset (NED) contour boundary and by elevation source type; (c) by land cover type as a percentage of
the total mismatch area, where lighter hues show the percent of predictions in the −1 to 0 m range (with the exception of subaqueous, which
shows a 0 to 1 m range), and darker hues show the percent of predictions in the −10 to 1 m range; and (d) the corresponding probability of
dynamic response (DP) likelihood for each land cover type in the elevation ranges most commonly mistaken (light gray box shows the as
likely as not likelihood range (0.33 > P > 0.66) following Mastrandrea et al., 2010).

positive E range (0 to 1 or 1 to 5 m) made up the remain-
der of the mismatch data (42 %), with nearly 78 % of these
falling within the 0 to 1 m range.

Mismatches helped to highlight what may be systematic
offsets with the E and LC data inputs. The most common
mismatches were nearly evenly divided between 1/3 and
1/9 arcsec NED datasets; however, mismatch error was more
dominantly comprised of elevation data below 0 m sourced
to the 1/9 arcsec NED, and error sourced to the 1/3 arcsec
dataset most commonly came from the subaqueous category
falling into a positive E range. Mismatch error was also
nearly 3 times as likely to occur in marshes or subaqueous
categories as in any other LC category (Fig. 2b). In sum,
mismatches were most concentrated in low-lying ranges
for coastal areas (1) comprised of LC categories (beaches,
marshes) most commonly misclassified in the LC compari-
son (Sect. 3.1) and (2) where land cover was most inaccurate
and unreliable when used in predicting elevation (−1 to 1 m,

Sect. 3.2). Using uncertainty terminology as in Mastrandrea
et al. (2010), mismatched beaches had a likely DP (P > 0.66)
in both −1 to 0 and 0 to 1 m bins (Fig. 2d), whereas the DP
for the remaining mismatched land cover categories between
−1 and 1 m were as likely as not (0.33 < P < 0.66; marshes,
forests) to unlikely (P > 0.33; rocky, developed).

4 Discussion

The high overall agreement between CCAP and DSL data
when reclassified (Table S1) indicates DSL data have at most
moderate error. Although the elevation data have a stated,
calculated error that was integrated directly in our model, a
similar error estimate was not available for the land cover
(DSL) data (although our probabilistic framework allows this
to be incorporated if available). Comparing the DSL land
cover dataset to a dataset with a known error value (CCAP)
revealed an identical error rate (15 %) to that determined for
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CCAP alone (McCombs et al., 2016). Although we cannot
confirm that this error resides solely with the CCAP data,
the updated and more detailed information in the DSL data,
as well as the similarity in error rate with the published
CCAP error, suggests that entering the DSL data as if they
are known with certainty is an appropriate assumption for
most of our LC categories.

The land cover comparison also showed that bare land and
marsh categories are those most commonly classified as an-
other category (subaqueous and non-marsh vegetation, re-
spectively). The greatest error in the comparison – the bare
land category – is in part explained by the substantial un-
derrepresentation of beaches in both datasets when com-
pared with other LC types. Due to this underrepresentation,
beaches are never the most probable land cover type pre-
dicted from E when original prior distributions are applied
(Table 3a). Our uniform prior test demonstrates that in spite
of this regional bias, there is also ambiguity in the E–LC re-
lationship with regards to beaches and marshes in our model;
when either marshes are beaches are predicted from E with
a uniform prior, they match the observed LC (user accuracy)
47 %–49 % of the time, respectively (Table S3b). However,
beaches are more confidently predicted in the −1 to 0 m
range than other land cover types (Fig. 1b), suggesting that
a majority of beaches in our model training data are shal-
lowly submerged. Incorporating first-return lidar instead of
bare earth data in our model could further distinguish the six
LC types from one another via vegetation differences (e.g.,
Lee and Shan, 2003; Im et al., 2008; Reif et al., 2011) and
better distinguish intertidal areas, which may allow for the
refinement of marsh, beach, and forest classifications (e.g.,
Kepeneers et al., 2009; Sturdivant et al., 2017).

Testing our two-node BN revealed that Bayesian inference
can be used to fill data gaps or enhance data quality. Ap-
plying both nonuniform and uniform priors (the latter to re-
move the regional land cover biases specific to the northeast-
ern US) showed that land-cover-specific elevation signatures
are present. Notable distinctions were between elevation end-
members (very high or very low relief; subaqueous, forests,
developed) and midrange (moderate relief; marshes, beaches,
rocky) areas. Assessing model skill in the E and LC relation-
ship revealed an accuracy of 56 % (uniform priors) to 69 %
(nonuniform priors), showing that including the regional LC
bias helped to improve predictions (Table 1) and that the most
commonly missed LC–E predictions occurred in elevations
closest to mean sea level (−1 to 1 m).

In addition to missed predictions, our testing revealed that
some E ranges and LC categories were never the most prob-
able outcome. This was true for several land cover types
(specifically, beaches and rocky under original E priors;
rocky and forest under uniform priors; Tables S3) and one
elevation range (5–10 m elevation under original LC priors;
Table S4b). For the original priors, we attribute this to the
underrepresentation of certain classes (regional bias) in our
training data, wherein beaches, rocky, and 5–10 m elevation

ranges were infrequent when compared to other classes or
bins. In the case of uniform priors, our BN is detecting the
slightly stronger relationship of some land cover types in cer-
tain elevation ranges (e.g., developed in the 1 to 5 m range),
thereby making other E–LC relationships never more proba-
ble than these. Although bin reassignments that span smaller
elevation ranges could help resolve more specific land cover
signatures in our model, particularly for low-lying beaches
and marshes, this would likely occur at the cost of increased
prediction uncertainty as outcomes would span a larger num-
ber of bins.

Our mismatch analysis revealed that LC and E mis-
matches are uncommon and found at low elevations (−1
to 1 m) in dynamic environments (beaches, marshes, and
subaqueous categories). Mismatches were most infrequent
among typically higher-elevation environments (forests, de-
veloped, and rocky). We suggest that low-elevation mis-
matches resulted from physical changes, such as tidal inlets
causing submerged sandbars to become subaerial beach or
forests becoming marshes. However, comparison with CCAP
changes from 2001 to 2010 revealed a very small (3 %) corre-
spondence with identified areas of mismatch. Results instead
may suggest that high-resolution (1/9 NED) E data capture a
systematic offset in part due to MHW submergence from da-
tum conversion (Lentz et al., 2015a), particularly for marshes
and beaches (Fig. 3b). In addition to elevation data that ac-
count for vegetation, as suggested earlier, seamless and con-
tinuous topographic and bathymetric data (Danielson et al.,
2016) would constrain resolution error and better resolve dis-
tinctions between subaerial and subaqueous environments.

Ultimately, the contributions of data error are unlikely to
change the DP uncertainty categories (Fig. 2d). In the case
of LC error, the most commonly confused LC categories
were subaqueous with beach categories and marshes with
forests. In either case, when coupled with E data, beaches
and subaqueous categories between −1 and 1 m generally
have a likely DP and marshes and forests have an as likely
as not DP (Fig. 2d), with the latter emphasizing the dom-
inance of process uncertainty as accounted for in our orig-
inal model via expert elicitation (as described in Lentz et
al., 2015a) over data error in affecting DP outcomes. Fur-
thermore, the response of developed and some beach areas
to SLR is also particularly uncertain in our model due to
unknowns regarding human behavior (Wong et al., 2014).
Socioeconomic factors (McNamara et al., 2011; Hinkel et
al., 2014) may determine where buildings and critical in-
frastructure are adapted to a dynamically changing land-
scape, coastal engineering projects are employed or upgraded
(Gedan et al., 2011; Arkema et al., 2013), and alternatives
such as inland migration (Hauer et al., 2016; Hauer, 2017)
or managed retreat occur. Our probabilistic modeling frame-
work allows us to update likelihood predictions as more in-
formation about the SLR response of the coastal landscape,
and the people living on it, becomes available.
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5 Conclusions

Our results show that (a) land cover error between two data
sources is consistent with published error for one source
(15 %), (b) inference training further reduces error, and
(c) mismatch error is low with respect to the prediction area.
To better resolve elevation and land cover distinctions in low-
lying environments, elevation that accounts for vegetation
distinctions and/or seamless datasets including both topog-
raphy and bathymetry may be useful. However, the ability to
capture the relationship between elevation and land cover via
Bayesian inference in such a sizeable region demonstrates
that it is possible to extend this application where data re-
strictions or gaps might otherwise limit expansion.

Furthermore, data input error has a minimal effect on our
predicted outcomes, particularly when uncertainty terminol-
ogy is applied (Fig. 2d). These outcomes therefore support
first-order decision-making surrounding the inundation po-
tential of specific environments, providing an essential risk
assessment tool (NRC, 2009). We find that uncertainty in the
response of different land cover types to varying SLR scenar-
ios in our coastal response model is composed dominantly
of uncertainty in physical and ecological processes, as op-
posed to data error, particularly for developed areas and low-
elevation marshes (Lentz et al., 2016). To further refine as-
sessments of future coastal response in areas of concern, data
or deterministic models that account for site-specific SLR re-
sponse rates and process knowledge will be well-paired with
this approach.
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