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Abstract. We present a new algorithm for solving the common problem of flow trapped in closed depressions
within digital elevation models, as encountered in many applications relying on flow routing. Unlike other ap-
proaches (e.g., the Priority-Flood depression filling algorithm), this solution is based on the explicit computation
of the flow paths both within and across the depressions through the construction of a graph connecting together
all adjacent drainage basins. Although this represents many operations, a linear time complexity can be reached
for the whole computation, making it very efficient. Compared to the most optimized solutions proposed so far,
we show that this algorithm of flow path enforcement yields the best performance when used in landscape evo-
lution models. In addition to its efficiency, our proposed method also has the advantage of letting the user choose
among different strategies of flow path enforcement within the depressions (i.e., filling vs. carving). Furthermore,
the computed graph of basins is a generic structure that has the potential to be reused for solving other problems
as well, such as the simulation of erosion. This sequential algorithm may be helpful for those who need to, e.g.,
process digital elevation models of moderate size on single computers or run batches of simulations as part of an
inference study.

1 Introduction

Finding flow paths on a topographic surface represented as
a digital elevation model (DEM) is a very common task that
is required by many applications in domains such as hydrol-
ogy, geomorphometry, soil erosion, and landscape evolution
modeling, and for which various algorithms have been pro-
posed for either gridded DEMs (e.g., O’Callaghan and Mark,
1984; Jenson and Domingue, 1988; Quinn et al., 1991; Tar-
boton, 1997) or unstructured meshes (e.g., Jones et al., 1990;
Banninger, 2007).

Closed depressions may arise in DEMs because they are
real topographic features or result from interpolation error
during DEM generation or its lack of resolution. These spu-
rious local minima need to be resolved because they disrupt
flow routing, produce hydrologically unrealistic results, or
introduce artificial singularities that may result from a sud-

den, unrealistic jump in computing discharge. Flow routing
is often corrected by filling depressions (e.g., Jenson and
Domingue, 1988), carving channels through artificial sills
(Rieger, 1998), or by using hybrid breaching-filling tech-
niques (Lindsay, 2016).

Although not having a linear time complexity, the most
recent algorithms of depression removal – e.g., the Priority-
Flood algorithm and its variants (Barnes et al., 2014a; Zhou
et al., 2016; Wei et al., 2018) – have been optimized so that
they can be used efficiently on large datasets. To increase per-
formance for very large datasets, further optimization efforts
have been focused primarily on rather complex, parallel vari-
ants of these algorithms (Barnes, 2016; Zhou et al., 2017).

Yet, in some applications flow path enforcement still re-
mains the main bottleneck. This is for example the case
in many landscape evolution models (LEMs) simulating an
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evolving topography (see Tucker and Hancock, 2010, for a
review) and that rely on flow routing to compute erosion
rates. To produce realistic results, flow path enforcement is
often applied many times, i.e., at each simulation time step
(Fig. 1), even when this eventually becomes irrelevant as the
modeled erosional processes usually tend to remove depres-
sions rather than deepen or add new ones (Braun and Willett,
2013). Furthermore, LEMs are also used as forward models
in sensitivity analyses and/or inferences on the parameters
that control erosional processes, which often require running
a large number of models to adequately explore the param-
eter space. Parallel flow routing and hydrological correction
algorithms do not help much here, as grid-search and/or sam-
pling methods (e.g., Sambridge, 1999) are generally easier to
implement and more effective to execute in parallel. Highly
optimized, sequential algorithms are still needed in this case.

We have developed a new method of flow enforcement that
is based on the explicit building of a graph of drainage basins
(possibly encompassing depressions) and the computation of
the flow paths both within and across those basins. This idea
was first introduced in a Computer Graphics implementation
of the stream power law (Cordonnier et al., 2016), but with
a sub-optimal complexity. Although this approach may ap-
pear naive at first glance, we have improved it by using fast
algorithms of linear complexity at each step of the proce-
dure, which now makes the whole computation very efficient.
Not only does this method enable the use of a wide range
of techniques of flow enforcement within the closed depres-
sions (e.g., depression filling, channel carving, or more ad-
vanced techniques), but it also provides generic data struc-
tures that could potentially be reused for solving other prob-
lems like modeling the behavior of erosion–deposition pro-
cesses within those depressions.

After a detailed presentation of the different steps of the
method, we will show in the sections below through some
results how our algorithm behaves and performs compared to
existing solutions of flow path enforcement. We will finally
discuss the assets and limitations of our method, with some
focus on landscape evolution modeling applications.

2 Algorithm

The input of the algorithm is a topography T = (N ,E),
where N is a set of nodes and E is a set of edges that link
pairs of neighbor nodes. A node n is given a horizontal po-
sition pn and a vertical elevation zn. A topography may for
example result from a triangulation or correspond to a regu-
lar grid of four-connectivity (i.e, four neighbors per nodes) or
eight-connectivity (i.e., also including diagonal neighbors).
We follow the conventions of Braun and Willett (2013) to
define flow paths on the topography: each node n is given (1)
a single flow receiver, rcv(n), which corresponds to that of
its (strictly) downslope neighbors having the steepest slope,
and (2) a set of flow donors, Donors(n), which is a subset

of the neighbors of n and is defined as Donors(n)= {k ∈
Nb(n), s.t. rcv(k)= n}. We set rcv(n)=∅ when n is a sin-
gular node: it corresponds to either a user-defined boundary
node (e.g., a node on the domain boundary) or a local mini-
mum in the topography, i.e., a node inside the domain where
all of its neighbors have a higher elevation, and correspond to
either a pit or a flat-bottomed depression in Lindsay (2016)
terminology.

We propose an algorithm that updates the receivers of a
subset of N such that the flow is never trapped in local min-
ima. This algorithm primarily aims at resolving local min-
ima in the context of flow routing and thus leaves the eleva-
tion of the nodes unchanged. Hence it breaks the previously
introduced definition of a flow receiver: the new receivers
assigned by the algorithm generally produce some localized
“upslope flow”. While this seems unnatural and may not be
wanted, the data structures used by the algorithm provide
enough information to efficiently address this issue later de-
pending on the application, which is beyond the scope of this
work. Still, the algorithm ensures that the updated flow rout-
ing stays consistent across the whole topography by respect-
ing the following properties for each node n of the topogra-
phy.

1. There exists a single boundary node b (not a local min-
imum), and a unique flow path from n to b. The flow
path is defined as the set of nodes P = (n, rcv(n),
rcv(rcv(n)), . . .,b).

2. This flow path does not contain any cycle; i.e., each
node appears only once in P .

3. The receivers defining P are chosen such that it satisfies
properties 1 and 2, and minimizes the energy E, defined
as

E =
∑
i∈P

Ei . (1)

As a first approximation, we set Ei = zi (the altitude of the
node). We will discuss later the special case of nodes under
water level.

Our method is essentially based on the computation of a
graph connecting adjacent drainage basins. We define a basin
as the set of all nodes that flow toward the same singular node
(Fig. 2b). A basin is either a boundary basin or an inner basin
depending on whether the singular node is a boundary node
or a local minimum.

To better explain the problem that we want to solve, we
consider a filled topography as the result of an ideal physi-
cal process where a perfectly fluid material has been poured
onto an impermeable ground and stabilized at steady state.
For a node n, we define as water level (wn) the elevation
of the fluid surface, and as a spill any node s such that
∃d ∈ Donors(s) |wd = ws and zs >wrcv(s). Note that for a
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Figure 1. Simulation of the evolution of an escarpment over 70 time steps of 1000 years each and on a 1024× 256 regular grid, using the
FastScape model (Braun and Willett, 2013, see also Sect. 3 below). The grid nodes of the leftmost column (boundary nodes) have a fixed
elevation while the initial elevation of the other nodes corresponds to a 500 m high flat surface with small random perturbations. Using the
same set of model parameters, simulation results are shown (a) without and (b) with correction of flow routing in local depressions at each
time step. As illustrated, flow path disruptions in (a) cause a much slower migration of the escarpment, while the topography predicted in
(b) is usually considered more realistic, especially under temperate or humid climates.

flow routing observing the aforementioned properties, the
water level can be computed as wn =max(wrcv(n),zn). We
also use the term depression from Lindsay (2016) terminol-
ogy, and we define it with respect to a basin B as a subset of
nodes of B under water level, characterized by wn = wrcv(n).
Note that the water level of a boundary basin corresponds to
the elevation of its associated boundary node so that it con-
tains no depression. In the case of nested depressions, the
water level of a basin may be higher than the elevations of
all its nodes, which means that the spill does not always be-
long to B.

The energy of the nodes should be changed toEi = wi , but
as described later, one may choose various routing strategies
inside the depressions depending on the application. There-
fore, we allow any path within depressions by setting Ei to
zero inside them, and keeping Ei = zi elsewhere.

One may break the problem of flow path enforcement
down to three smaller problems: find the spill of each de-
pression, force the flow within the depressions to be routed
toward their respective spill, and ensure that the flow through
the spills is properly routed into adjacent basins. The pro-
posed algorithm addresses this problem in an explicit manner
and can be divided into three main stages.

1. Compute the basins and link all pairs of adjacent basins
(Fig. 2b).

2. Select only some of the basin links computed at the pre-
vious stage and orient them such that the flow is routed
consistently across adjacent basins, from inner basins
toward the boundary basins (Fig. 2c). This operation is
not trivial: an optimal selection needs a global knowl-
edge of the whole basin graph. To do so, we use an
algorithmic structure: a minimum spanning tree of the
basin graph. We propose here two algorithms, a sim-
ple one withO(n logn) complexity, and a more complex
one with O(n) complexity.

3. Update the flow receivers. Using the links selected at the
previous stage, we update (only some of) the receivers
to enforce the flow both within and across inner basins
so that it is ensured to finally reach the boundary basins
and their associated boundary nodes. We propose three
different methods (one may choose a method over an-
other depending on the specific problem to solve).

Each of these stages processes the whole DEM, and as
such are run only once for a given topography. They are each
detailed in the next sections.
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Figure 2. Illustration of the inputs and the first steps of the proposed flow routing algorithm. (a) The input topography is defined on top of a
mesh by a set of nodes and edges. A single edge is selected for each node, it connects the node to its flow receiver, i.e., its neighbor with the
steepest slope. Nodes with no receiver are local minima (colored in the figure). (b) All the nodes that flow to a same local minimum belong
to the same basin. A graph of basins is created by connecting together adjacent basins with links, which are materialized on the mesh by
edges representing the passes, i.e., the crossings of lowest elevation that connect each pair of basins (black thick arrows). (c) Some of the
links are selected by computing a minimum spanning tree and the corresponding passes are oriented in the direction of the flow across the
basins (unidirectional arrows). This structure is then used to update the flow receivers so that the flow reaches the domain boundaries without
being interrupted.

2.1 Basin computation and linkage

This first stage consists in first assigning a basin identifier,
basin_id(n), to each node n of the topography. The identifiers
are added sequentially by starting at singular nodes and pars-
ing the nodes using a depth-first traversal in the direction of
the donors (see Appendix A1). The case of flat-bottomed de-
pressions does not require any particular treatment: all nodes
within flat areas are singular nodes and therefore are each
assigned a unique basin identifier.

Then, the links connecting all pairs of adjacent basins are
retrieved. To each link also corresponds an edge of the to-
pography, here called a pass, which represents the crossing
of lowest elevation between the two basins. For example,
the link L= (B1,B2) connects the basins B1 and B2 and
has the corresponding Pass(L)= (n1,n2), where n1 ∈ B1 and
n2 ∈ B2 and where the chosen (n1,n2) minimizes zpass(L) =

max(zn1 ,zn2 ). We define a single procedure to retrieve both
the links and their pass (see Appendix A2). This procedure
parses each edge of the topography: if the two nodes of the
current edge each have different basin identifiers, then (1) it
adds a new link if no link has been already set for these two
basins, and (2) it sets or maybe updates the pass of that link
with the current edge.

The sets of basins B and the set of retrieved links L both
define a basin graph. It is worth noting that, at this stage,
the links and passes are not oriented and that only one link
and pass are stored for two adjacent basins. The procedure
described above runs sequentially and will not add the link
(B2,B1) if it already added the link (B1,B2).

2.2 Flow routing across adjacent basins

This second stage tackles the problem of selecting the right
subset of links so that we obtain consistent flow paths on the
basin graph. To illustrate the proposed solution, let us start
from an inner basin. If it is filled with water, the water level
will rise until it finds a pass where water eventually pours
into another, adjacent basin. The associated link is then called
the outflow of the basin. Hence, routing the flow across the
basins consists in connecting all outflows such that the re-
sulting flow paths, from inner basins to the boundary basins,
have the same properties as stated above; i.e., those paths are
unique, contain no cycle, and minimize the energy needed to
reach the boundary basins.

If we add to the basin graph a virtual basin (let us call it ex-
ternal basin) to which we link all the boundary basins (i.e.,
the external basin may be viewed as a bucket collecting all
the flow that leaves the domain), then we can represent the
connected outflows using a specific algorithmic structure: a
tree. More specifically, a basin tree is a tree that satisfies the
properties above: it actually corresponds to a minimum span-
ning tree of the basin graph, i.e., a subset of the basin graph
resulting from a selection of the links so that the following
energy is minimized:

Etree =
∑
L

∈Ozpass(L), (2)

whereO is the set of selected links (or the set of outflows)
and zpass(L) is the elevation of their respective passes.

We propose two algorithms for the computation of a min-
imum spanning tree. Kruskal’s algorithm is very generic and
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simple with a log-linear complexity. We also propose a sec-
ond algorithm, which leverages the planar nature of the basin
graph to reach a linear complexity.

2.2.1 Kruskal’s algorithm

Kruskal’s algorithm (Kruskal, 1956) is one of the most clas-
sical algorithms used for computing minimum spanning trees
and is known to have a O(m logm) complexity, where m
is the number of links. The number of links being always
bounded by a linear function of the number n of nodes in the
grid (Euler formula), using this algorithm induces a global
upper bound of O(n logn) on the complexity of our solu-
tion. This algorithm uses a union–find structure to store and
merge equivalence classes of objects (see Algorithm 1). The
idea here is to parse all links L ∈ L sorted by increasing ele-
vation zpass(L), progressively grouping each pair of basins as
a larger, virtual one (equivalence class). All subsequent paths
between basins within this equivalence class are discarded to
prevent loops. The union–find data structure has three opera-
tions:

MakeSet Create an equivalence class containing a single el-
ement.

Union Merge two equivalence classes.

Find Get the equivalence class of an object.

The optimal implementation of the union–find structure
provides a O(α(N )) complexity for these operations, where
N is the number of elements in the structure (i.e., here the
number of basins) and α is the inverse Ackermann function
whose complexity is lower than O(logN ). This however re-
quires first sorting the links by increasing weight (i.e., by the
elevation of their respective passes), which finally yields a
O(m logm) complexity for the whole computation.

2.2.2 Planar graphs

The problem of finding the minimum spanning tree is known
to have aO(N ) complexity when the graph is planar (Mareš,
2002). A planar graph is a graph which can be embedded in a
plane such that none of its edges cross another one. The basin
graph described in Sect. 2.1 is an example of a planar graph.

The key intuition behind the algorithm proposed in Mareš
(2002) is that at least half of the vertices of a planar graph
have at most eight neighbors. The algorithm is then an adap-
tation of another classical algorithm, named Boruvka’s algo-
rithm (Boruvka, 1926); see Algorithm 2 for more details. The
O(N ) complexity comes from the fact that at each step of the
outer loop, we parse and remove at least half of the nodes
of the graph, and

∑
N +N/2+ ·· ·+ 1< 2N . As the num-

ber of grid nodes n > N , the complexity of this algorithm
is bounded by O(n). As demonstrated by Mareš (2002), the
limit of eight neighbors for the selection of a basin in the in-
ner loop is critical in halving the number of edges at each
iteration of the outer loop and thus in obtaining a linear time
complexity.

A special case may arise when the basin graph is computed
from a grid of eight-connectivity. In this case, the edges of
the graph may cross each other due to the diagonal connec-
tivity, possibly making the basin graph not perfectly planar.
This is, however, rather unlikely as it implies that two passes
connecting different basins are found on the two diagonals
connecting four adjacent nodes of the grid. Furthermore, this
issue does not impact the correctness of the algorithm. Only
the linear complexity is not formally proven. Because it is
not planar, the case of an eight-connectivity grid would fall
in the second category mentioned by Mareš (2002) of graphs
closed on graph minor. We have validated this experimentally
by randomly computing minors of differently sized eight-
connected graphs. We found an edge density of 4, imply-
ing that half of the basins in the basin graph are linked to at
most 16 adjacent basins (and not eight as for planar graphs) at
any step of the algorithm. Therefore, we have demonstrated
the linear complexity for eight-connected graphs experimen-
tally, although future work is needed to prove this in a formal
framework.

2.3 Updating flow receivers

The basin tree obtained at the previous stage must be oriented
before routing the flow from inner basins to the boundary
basins. This is achieved by traversing the tree in the reverse
order (i.e., starting from the boundary basins) and labeling
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the two nodes of each pass, one as nin (incoming flow) and
the other one as nout (outgoing flow). Depending on their el-
evation, either nin or nout is the spill node of the correspond-
ing basin.

The last stage then consists in updating the flow receivers
so that any flow entering an inner basin is ensured to leave the
basin through nout. The most straightforward solution would
be to only update the receiver of each local minimum p so
that rcv(p)= nout. Note that if nin has a higher elevation than
nout, then two receivers must be updated: rcv(nin)= nout and
rcv(n)= nin. This very simple solution ensures topological
continuity of the flow but does not preserve its spatial conti-
nuity. We therefore propose two other, more realistic meth-
ods: one similar to depression filling and another similar to
depression carving. Note that we use carving and filling as
metaphors as our algorithm only changes the flow graph con-
nectivity without altering elevation values. For each of the
variants, the donors and stack structures need to be updated
to reflect the changes in the receivers.

2.3.1 Depression carving

The idea here is to mimic the effect of a river carving a nar-
row trench between the bottom of the depression and the
spill: a new, single path is computed from the local mini-
mum to the pass. In fact, the most direct path is already de-
fined by the flow receivers that were computed initially, but
it is in the reverse order, i.e., from the pass to the local mini-
mum. Hence, it is trivial to follow this path and progressively
revert the receivers until the local minimum is reached (see
Algorithm 3).

2.3.2 Depression filling

Unlike the previous method, we update here the receivers as
if the depressions were completely filled by some material.
We define a procedure that starts at a pass and then progres-
sively parses all neighbor nodes in a breadth-first order as
long as these are below water level, at the same time updating
the receiver of the current parsed node as being one among
its neighbors that has already been parsed (see Algorithm 4).
We repeat this procedure for all depressions by traversing the
basin tree from the boundary basins to the most inner ones so
that accurate water level values can be computed during the
procedure. Receivers are chosen according to a cost func-
tion that we define here as the minimal Euclidean distance

between a node and nout. This function does not yield the
perfect path patterns that one would obtain by including ob-
stacles in the computation of the Euclidean distance on a reg-
ular grid, but it is simple and efficient while being accurate
enough. We prefer this method over a simple breadth-first
search, which depends on the order in which neighbors are
visited and which leads to more pronounced straight lines af-
ter erosion, due to the four- or eight-connectivity.

3 Results

Our algorithm is run under different settings to illustrate
its behavior and compare it with some other state-of-the-
art methods. Most of the examples below are shown within
the context of landscape evolution modeling, using a sim-
ple model of block uplift vs. channel erosion by the stream
power law. This model simulates the evolution of the topo-
graphic surface z, which can be written as follows:

∂z

∂t
= U −KAm(∇z)n, (3)

where U is the uplift rate, A is the drainage area (a surro-
gate for water discharge), ∇z the local topographic gradient,
and K , m, and n are the parameters of the stream power law.
The latter is solved numerically on a 2-D regular grid using
an implicit scheme of linear complexity (see the FastScape
algorithm described in Braun and Willett, 2013). In particu-
lar, the local gradient ∇z is chosen as the slope between the
eroded node and its receiver (forced to 0 if its value is nega-
tive in order to avoid erosion artifacts in the case of “upslope
flow” caused by updated receivers). We choose this algorithm
which is particularly well suited to our flow routing method,
although some discussion on the limits of this algorithm can
be found in Campforts and Govers (2015) for steep topog-
raphy. As common settings, we use K = 7×10−4 m0.2 yr−1,
m= 0.4, and n= 1. Grid spacing is 100 m in both directions.
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Figure 3. Our algorithm of flow enforcement run on a synthetic case. (a) Hillshade and contour plot of the input topography with apparent
depressions. (b) Basins (areas of unique, random colors) and all passes connecting adjacent basins (thin black lines). (c) Flow directions
across the basins (white arrows), as resulting from the computation of a minimum spanning tree from the basin graph, and water level (blue
areas) after some erosion is applied to the input topography.

3.1 Illustration of the algorithm

The behavior of our algorithm of flow path enforcement is
best illustrated using a simple synthetic topography as in-
put. A set of 25 local minima is sampled on a regular grid
of 500× 500 nodes and the elevation of the topographic sur-
face is locally computed as a fixed proportion of the distance
to the nearest local minimum (Fig. 3a). The first step of the
algorithm delineates the basin of each local minimum and
finds all possible connections (links) between the basins, lo-
cated at the lowest pass between each pair of adjacent basins
(Fig. 3b). Then, a minimum spanning tree is computed from
the graph of these links to find the path of minimum energy
that would allow the water to leave the basins (white arrows
in Fig. 3c). The flow receivers can then be updated by using
the edges of this basin tree. The updated receivers are in turn
used by the FastScape algorithm to slightly erode the basin
boundaries during one time step of 100 years. The result is
shown as well as the final water level in Fig. 3c.

3.2 Effect of flow path enforcement strategies on eroded
topographies

Figure 1 already shows the effect of flow path enforcement
vs. no enforcement on the evolution of an escarpment under
active erosion processes. A second set of experiments, shown
in Fig. 4, illustrates the impact that the different strategies
of flow receiver updating have on the evolution of the to-
pographic surface under the action of channel erosion. The
input synthetic topography is defined on a 100× 100 regu-
lar grid and looks like an inverted pyramid with 45◦ regular
slopes, forming a single, big depression (Fig. 4a). The node
at the middle of the top boundary is the only node that is not
part of the depression: it has the same elevation as the node
at the center of the grid and it is defined as a boundary node.

A single time step of 5000 years of erosion only (no uplift) is
performed using each of the strategies described in Sect. 2.3.

Simple correction. In this specific case, the algorithm up-
dates the receivers of only three nodes: (1) one of
the neighbors of the boundary node, which here corre-
sponds to the spill of the closed depression, (2) one of
the neighbors of the spill that, together with the spill,
forms the pass connecting the depression to the bound-
ary node, and (3) the local minimum at the bottom of the
depression. The new assigned receivers are for (1) the
boundary node itself, (2) the spill, and (3) the other
node of the pass. We can see in Fig. 4b that this strat-
egy does not allow channel erosion to propagate much
from the boundary node into the closed depression. In
fact, drainage area values close to the boundary node
are high enough to trigger erosion but the low values
of drainage area in the vicinity (within the depression)
prevent further propagation of the erosion wave.

Depression carving. Unlike the former strategy and as ex-
pected, Fig. 4c shows that the depression carving strat-
egy allows erosion to propagate toward the local mini-
mum along a narrow and deep trench.

Depression filling. Using the depression filling strategy,
flow receivers are updated over a large area of the de-
pression as if the water surface was replaced by a very
gentle slope toward the spill. As a result, erosion affects
a great part of the modeled domain, with the emergence
of a star-like pattern centered at the spill (Fig. 4d). The
number and disposition of the branches of the star are
due to the grid eight-connectivity used here.

Choosing one strategy over another greatly depends on the
specific application. For example, the simple correction strat-
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Figure 4. Demonstration of the effect of flow path enforcement on erosion, using different strategies of flow receivers “correction” within
inner basins. (a) Hillshade and contour plot of the initial topography. (b), (c) and (d) Hillshade and contour plot of the topography obtained
after running a single time step of 5000 years with channel erosion only (no uplift), with flow receivers updated using each of the different
strategies described in Sect. 2.3. Water level is shown in blue, and is computed by propagating the spill elevation while parsing the nodes in
the upstream order (based on updated donors).

egy may be acceptable if one assumes that no erosion could
happen in depressions below the water level. However, in-
terrupted drainage area patterns within the depressions may
be problematic when used with erosion algorithms like the
FastScape model, which uses an implicit time scheme for
solving the stream power law but still treats drainage area
explicitly, resulting in too slow opening of the closed depres-
sions by erosion. The depression carving or depression fill-
ing strategies generally yield better results in the latter case.
These two strategies have, however, contrasting behaviors
and choosing one or the other will depend on several criteria
such as the size (i.e., depth vs. volume) of the depressions.

3.3 Performances

To assess the performance of our algorithm, we have run
multiple benchmarks under various settings. Although these
benchmarks mostly take place in the framework of landscape
evolution modeling, they provide results that may be useful
in other applications too. Note that for better readability, we
present here only the results from benchmarks applied to a
fixed grid of 16 384×16 384 nodes. We obtain consistent re-
sults for other grid sizes.

We have run benchmarks for our algorithm – including
the two variants for computing the minimum spanning tree
but considering only the depression filling strategy – as well
as for three other state-of-the-art algorithms of local minima
resolution, respectively proposed by Barnes et al. (2014a),
Zhou et al. (2016), and Wei et al. (2018). All three of those
algorithms fill the depressions using improved variants of
the Priority-Flood algorithm that reduce the number of nodes
processed by a priority queue. The Barnes et al. (2014a) vari-
ant used here, i.e., Priority-Flood+ε, is only slightly opti-
mized but has the advantage of filling the depressions with a
nearly flat surface so that flow directions can be determined.
Interestingly, the simplicity of this first version makes it the

most efficient when the number of local minima is large (see
Sect. 4). While being the most optimized sequential variant
that has been proposed so far, the Wei et al. (2018) variant
fills the depressions with perfectly flat surfaces and thus has
to be combined with a flat resolution algorithm – we use
here an optimal O(n) algorithm proposed by Barnes et al.
(2014b). We apply the same treatment to the Zhou et al.
(2016) variant. All variants fill the depressions by directly
updating the elevation values on the grid. To ensure proper
comparison with our algorithm, we thus need to run them on
a temporary copy of the elevation values before computing
the flow receiver for each node of the grid. With our algo-
rithm being optimized for a sequential usage, we chose not
to compare it to the parallel versions of Barnes (2016) and
Zhou et al. (2017). Both the algorithms and the benchmarks
are implemented using the C++ language. For the state-of-
the-art algorithms, we reuse the implementations available
in the RichDEM library v2.2.9 (Barnes, 2018). The bench-
marks where computed on an Intel Xeon Silver 4110 CPU
(2.1 GHz, 32.0 Go RAM). We used Microsoft Visual Studio
compiler with fast optimization options. Note that because of
the differences in the design/implementation used in Rich-
DEM vs. our code, the benchmarks presented here should be
seen as an illustration of the theoretical complexities of the
algorithm variants rather than a strict comparison of their ac-
tual performances.

In a first set of benchmarks, we create an input topography
by running the FastScape model (starting from an initial flat
surface with small random perturbations) until steady state is
reached (the uplift rate is set to 5× 10−3 m yr−1), and then
by lowering the elevation of an arbitrary number of nodes
down to 10−5 m below their lowest neighbors. Those nodes
are chosen randomly on even rows and columns to make sure
that we obtain the same number of local minima in the input
topography. Note that each generated basin has a size of at
most nine cells, which allows for a fine control on the cumu-
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Figure 5. Results from benchmarks assessing the performance of our algorithm for local minima resolution – including both O(n logn)
Kruskal’s and O(n) Mareš’ variants for computing the minimum spanning tree, compared to three other solutions based on variants of the
Priority-Flood depression filling algorithm proposed by Barnes et al. (2014a), Zhou et al. (2016), and Wei et al. (2018). See text for more
details about the setup of these benchmarks. (a) Execution time measured for local minima resolution applied once to a synthetic input
topography vs. total number of local minima generated in the input topography. (b) Evolution of the number of local minima detected
in the topography obtained at each of the first 20 time steps of a FastScape model run. Each curve corresponds to a given magnitude of
random perturbations added to produce spatially variable uplift rates (magnitude values are relative to a fixed uplift rate of 5×10−3 m yr−1).
(c) Execution time measured for local minima resolution at each time step, with either spatially uniform or variable uplift rates (i.e., a relative
noise magnitude of either 0 % or 20 %). The blue curves refer to our algorithm using the O(n) variant for computing the minimum spanning
tree.

lative size of the depressions. Figure 5a shows the execution
times of our algorithm vs. state-of-the-art algorithms for an
increasing number of local minima. We can see that in these
settings our algorithm (both variants for the computation of
the minimum spanning tree) globally outperforms the state-
of-the-art solution of Wei et al. (2018) combined with flat
resolution. Note that without combining it with a flat reso-
lution algorithm, the Wei et al. (2018) algorithm shows an
equivalent performance to our approach, provided that the
depressions remain evenly distributed. In that case, the main
difference between the two approaches is that ours provides
data structures (flow paths, basin graph) that might be reused
elsewhere. By contrast, the Barnes et al. (2014a) Priority-
Flood variant shows an inverse trend: it performs much worse
in the absence of depression but the execution time rapidly
decreases when increasing the total number of local minima,
eventually achieving better performance than our algorithm.
This is explained by the very simple implementation of this
variant, in which all the nodes are processed by a priority
queue in the absence of depression (not optimal) while a
plain queue is used for most of the nodes if the topography
is largely covered by depressions, making this variant near
optimal in that specific case. Note that for high numbers of
local minima we also start to discern in Fig. 5a the difference
in performance of the variants used to compute the minimum
spanning tree, here explained by their log-linear vs. linear
complexity.

In a second set of benchmarks, we analyze the perfor-
mances of the algorithms for local minima resolution through
full simulations of landscape evolution. We run the FastScape
model over 20 time steps of 10 000 years each, starting from
a flat topography with small random perturbations (thus con-
taining many local minima) and using fixed boundary con-
ditions, i.e., boundary nodes all along the grid boundaries.
The simulations are all based on a uniform uplift rate of
5×10−3 m yr−1 but each differ by the magnitude of the ran-
dom field (created on a coarser, 1500× 1500 grid) added to
produce spatially variable uplift rates. This magnitude ranges
from 0 % to 20 % of the uniform uplift rate. As shown in
Fig. 5b, a greater magnitude of perturbation of uplift rates
reduces the rate at which the local minima disappear un-
der the action of channel erosion as the simulation proceeds.
With no perturbation, all local minima are removed after the
first time step. This has important implications for the over-
all time spent on resolving local minima during a simula-
tion. Figure 5c shows that, with uniform uplift, our algorithm
greatly optimizes this overall time compared to the Priority-
Flood variant of Barnes et al. (2014a). Even with variable
uplift rates, our algorithm performs better after only a few
time steps.

4 Analysis

We focus our discussion on an in-depth analysis of the dif-
ferences in performance obtained by the different state-of-
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the-art algorithms, as reported in the section above. Barnes
et al. (2014a) propose progressively flooding the topography
from exterior to interior, keeping in a priority queue all the
parsed nodes except for the ones in depressions, which are
processed using a plain queue. The operations used in this
algorithm can be split in two main categories: one handling
the nd nodes in depression areas, with nd < n the total num-
ber of nodes, and another one handling the other “regular”
nodes, nr = n− nd, using the priority queue. As a depres-
sion encloses at least one node (a local minimum) and zero
or more nodes in the immediate vicinity, the total number of
nodes in depression areas is always greater than or equal to
the total number of local minima nl, that is, n− nd ≤ n− nl.
Therefore, the complexity of Barnes et al. (2014a) Priority-
Flood variant is bounded by k0+k1 n+k2 (n−nl) log(n−nl),
where k0, k1, and k2 are constants. Due to the very simple
formulation of this algorithm, k1 is very small. The improved
variants of Priority-Flood proposed by Zhou et al. (2016) and
Wei et al. (2018) further reduce the number of nodes that are
processed by the priority queue by carefully selecting spill
candidates among the regular nodes. In those variants, the to-
tal number of nodes processed by the priority queue becomes
nearly proportional to the number of local minima, inverting
the formulation of the complexity that is here bounded by
k3+k4 n+k5 nl lognl. Because those variants are more com-
plex, k4 has higher values.

We also derive the complexity of our algorithm taking its
stages separately. The first and last stages, i.e., the compu-
tation of the basin graph and the update of flow receivers,
are both bounded by k6+ k7n, with a relatively high value
for the k6 and k7 constants. The second stage, i.e., the com-
putation of the minimum spanning tree, is bounded by ei-
ther k8 nl lognl when using the Kruskal’s algorithm or k9 nl
when using the algorithm proposed by Mareš (2002), with
k8 < k9. Both expressions above are valid considering that
nl ∼N values (the number of basins) for N large.

The complexities of the algorithms that we have derived
here are all consistent with the benchmark results shown
in Fig. 5a. The difference between the two minimum span-
ning tree algorithms is visible only for a large number of
local minima, as predicted by their respective asymptotic
complexity, while being unnoticeable for low nl where the
other stages of the processing prevail. Similar expressions
obtained for the complexity of our algorithm vs. the solution
based on Wei et al. (2018) are also well illustrated by sub-
parallel curves in the figure. The inverse trend observed for
the Barnes et al. (2014a) solution is explained by its complex-
ity, where the term (n−nl) log(n−nl) tends towards zero as nl
increases.

For all the algorithms compared here, the memory con-
sumption grows linearly with the DEM size. Barnes et al.
(2014a), Zhou et al. (2016), and Wei et al. (2018) Priority-
Flood variants only use a supplementary queue to unload
the priority queue, making it very memory-efficient. By con-
trast, our algorithm stores more information like the struc-

tures used for representing flow paths (receivers, donors,
and stack), the basin graph, and possibly some additional
data structures like those needed by the algorithm of Mareš
(2002). Some of these data might be required for further pro-
cessing, e.g., the flow paths in landscape evolution modeling
applications. Other data related to the basin graph increase
the memory consumption, although in practice the number of
local depressions – and thus the size of the graph – is small
enough with respect to the size of the grid, resulting in only a
small memory overhead compared to the Priority-Flood vari-
ants.

5 Conclusions

We have presented here a new algorithm for flow path en-
forcement in topographies with depressions. We have de-
signed this algorithm within the framework of landscape evo-
lution modeling and we have demonstrated through bench-
marks that, in this scope, it may greatly improve performance
compared to other state-of-the-art solutions. The potential
of this algorithm is, however, not limited to landscape evo-
lution models. On a broader scope, the basin graph and its
minimum spanning tree are generic structures that other ap-
plications may leverage, possibly through derived quantities
such as the water level of each depression. We propose here
optimal methods to compute those structures and quantities.
Despite the fact that our algorithm is rather complex and re-
quires some work to be properly implemented, it is designed
in a composable way such that it is easy to reuse one or sev-
eral of its components. Adding new features like alternative
strategies of flow path enforcement within the depressions
would require only little effort, too.

While being versatile, this new algorithm does not pro-
vide a universal solution to the problem of flow routing
both within and across closed depressions. Perhaps its main
limitation is the assumption of single- direction flow, i.e.,
each node has one unique flow receiver. Adding full support
for multiple-direction flow (MDF) without losing in perfor-
mance is rather difficult and would require a fair amount of
redesign work at each of the three stages of the algorithm:

– Basin computation should take into account divergent
flow (basin labels are not unique for grid nodes located
on drainage divides).

– It should be theoretically possible to route the outflow
from an inner basin into more than one of its adjacent
basins (this is currently not possible using a minimum
spanning tree computed from the basin graph).

– Alternative, MDF-compliant methods should be imple-
mented to update the flow receivers within the depres-
sions.

Other algorithms like the Priority-Flood do not have that lim-
itation: they act directly on elevation values and do not pre-
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vent us from applying MDF flow routing methods on the
modified topography.

Another limitation of this algorithm is its sequential imple-
mentation. Further work is needed to adapt it so that it could
be run on modern, multi-core, and/or GPU-based architec-
tures. Still, many use cases would benefit from the current
implementation. These include processing datasets of mod-
erate size on a single computer or running batches of simu-
lations or analysis pipelines, e.g., in the context of sensitivity
analyses or inferences on model parameters.
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Appendix A: Algorithms

A1 Basin computation

Algorithm 5 finds which basin each node of the grid belongs
to by assigning them a label. One unique label is defined
(here by an integer) for each basin.

A2 Basin linkage

Algorithm 6 creates the graph of basins by linking together
each pair of adjacent basins. It also finds the passes of low-
est elevation between those adjacent basins. Note that the
links are undirected, such that Links.contains((b0, b1)) ==
Links.contains((b1, b0)).
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Code availability. The code used for the implementation
of the algorithm, examples, and benchmarks presented in
this paper is available here: https://github.com/fastscape-lem/
flow-routing-depressions (last access: 13 May 2019; Cordonnier
et al., 2019). Note that this read-only repository contains a
snapshot version of the fastscapelib library that has been extracted
for reproducibility purposes. Further maintenance and new de-
velopments will happen in the fastscapelib’s main repository:
https://github.com/fastscape-lem/fastscapelib (last access: 12
March 2019; Bovy and Braun, 2019).
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