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Abstract. Most studies of gravel bed rivers present at least one bed surface grain size distribution, but there is
almost never any information provided about the uncertainty in the percentile estimates. We present a simple
method for estimating the grain size confidence intervals about sample percentiles derived from standard Wol-
man or pebble count samples of bed surface texture. The width of a grain size confidence interval depends on
the confidence level selected by the user (e.g., 95 %), the number of stones sampled to generate the cumula-
tive frequency distribution, and the shape of the frequency distribution itself. For a 95 % confidence level, the
computed confidence interval would include the true grain size parameter in 95 out of 100 trials, on average.
The method presented here uses binomial theory to calculate a percentile confidence interval for each percentile
of interest, then maps that confidence interval onto the cumulative frequency distribution of the sample in or-
der to calculate the more useful grain size confidence interval. The validity of this approach is confirmed by
comparing the predictions using binomial theory with estimates of the grain size confidence interval based on
repeated sampling from a known population. We also developed a two-sample test of the equality of a given
grain size percentile (e.g., Dso), which can be used to compare different sites, sampling methods, or operators.
The test can be applied with either individual or binned grain size data. These analyses are implemented in the
freely available GSDtools package, written in the R language. A solution using the normal approximation to
the binomial distribution is implemented in a spreadsheet that accompanies this paper. Applying our approach to
various samples of grain size distributions in the field, we find that the standard sample size of 100 observations
is typically associated with uncertainty estimates ranging from about £15 % to £30 %, which may be unaccept-
ably large for many applications. In comparison, a sample of 500 stones produces uncertainty estimates ranging
from about +9 % to +18 %. In order to help workers develop appropriate sampling approaches that produce the
desired level of precision, we present simple equations that approximate the proportional uncertainty associated
with the 50th and 84th percentiles of the distribution as a function of sample size and sorting coefficient; the true
uncertainty in any sample depends on the shape of the sample distribution and can only be accurately estimated
once the sample has been collected.

Published by Copernicus Publications on behalf of the European Geosciences Union.



790 B. C. Eaton et al.: Confidence intervals for grain size distributions

1 Introduction

A common task in geomorphology is to estimate one or
more percentiles of a particle size distribution, denoted Dp,
where D represents the particle diameter (mm) and the sub-
script P indicates the percentile of interest. Such estimates
are typically used in calculations of flow resistance, sedi-
ment transport, and channel stability; they are also used to
track changes in bed condition over time and to compare one
site to another. In fluvial geomorphology, commonly used
percentiles include Dso (which is the median) and Dgg. In
practice, sampling uncertainty for the estimated grain sizes
is almost never considered during data analysis and interpre-
tation. This paper presents a simple approach based on bi-
nomial theory for calculating grain size confidence intervals
and for testing whether or not the grain size percentiles from
two samples are statistically different.

Various methods for measuring bed surface sediment tex-
ture have been reviewed by previous researchers (Church
et al., 1987; Bunte and Abt, 2001b; Kondolf et al., 2003).
While some approaches have focused on using semiqualita-
tive approaches such as facies mapping (e.g., Buffington and
Montgomery, 1999), or visual estimation procedures (e.g.,
Latulippe et al., 2001), the most common means of charac-
terizing the texture of a gravel bed surface is still the cumu-
lative frequency analysis of some version of the pebble count
(Wolman, 1954; Leopold, 1970; Kondolf and Li, 1992; Bunte
and Abt, 2001a). Pebble counts are sometimes completed by
using a random walk approach, wherein the operator walks
along the bed of the river, sampling those stones that are un-
der the toe of each boot, and recording the b-axis diameter. In
other cases, a regular grid is superimposed upon the sedimen-
tological unit to be sampled and the b-axis diameter of all the
particles under each vertex is measured. In still other cases,
computer-based photographic analysis identifies the b axis
of all particles in an image of the bed surface, though this
introduces potential uncertainties associated with how much
of the particle is buried beneath the surface and how much is
visible from a photograph of the surface. Data are typically
reported as cumulative grain size distributions for 0.5¢ size
intervals (i.e., 8-11.3, 11.3-16, 16-22.6, 22.6-32 mm, and
so on) from which the grain sizes corresponding to various
percentiles are extracted.

Operator error and the technique used to randomly se-
lect bed particles have frequently been identified as impor-
tant sources of uncertainty in bed surface samples (Hey and
Thorne, 1983; Marcus et al., 1995; Olsen et al., 2005; Bunte
et al., 2009) but one of the largest sources of uncertainty in
many cases is likely to be associated with sample size, par-
ticularly for standard pebble counts of about 100 stones. Un-
fortunately, the magnitude of the confidence interval bound-
ing an estimated grain size is seldom calculated and/or re-
ported and the implications of this uncertainty are — we be-
lieve — generally under-appreciated. To address this issue, we
believe that it should become standard practice to calculate
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and graphically present the confidence intervals about sur-
face grain size distributions.

For the most part, attempts to characterize the uncertainty
in pebble counts have focused on estimating the uncertainty
in Dsg and have typically assumed that the underlying dis-
tribution is lognormal (Hey and Thorne, 1983; Church et al.,
1987; Bunte and Abt, 2001b); when used to determine the
number of measurements required to reach a given level of
sample precision, these approaches also require that the stan-
dard deviation of the underlying distribution be known be-
forehand.

Attempts to characterize the uncertainty associated with
other percentiles besides the median have relied on empirical
analysis of extensive field data sets (Marcus et al., 1995; Rice
and Church, 1996; Green, 2003; Olsen et al., 2005); how-
ever, the statistical justification for applying those results to
pebble counts from other gravel bed rivers having a differ-
ent population of grain sizes is weak. Perhaps because of the
complexity involved in extending the grain size confidence
intervals about the median to the rest of the distribution, re-
searchers almost never present confidence intervals on cumu-
lative frequency distribution plots or constrain comparisons
of one distribution to another by any estimate of statistical
significance. While others have recognized the limitations of
relatively small sample sizes (Hey and Thorne, 1983; Rice
and Church, 1996; Petrie and Diplas, 2000; Bunte and Abt,
2001Db), it still seems to be standard practice to rely on sur-
face samples of about 100 observations.

Fripp and Diplas (1993) presented a means of generat-
ing confidence intervals bounding a grain size distribution.
They presented a method for determining the minimum sam-
ple size required to achieve a desired level of sample pre-
cision using the normal approximation to the binomial dis-
tribution, wherein uncertainty is expressed in terms of the
percentile being estimated (i.e., they estimated the percentile
confidence interval), but not in terms of actual grain sizes
(i.e., the grain size confidence interval). Based on their anal-
ysis, Fripp and Diplas (1993) recommended surface samples
of between 200 and 400 stones to achieve reasonably pre-
cise results. Petrie and Diplas (2000) demonstrated that the
percentile confidence interval predicted by Fripp and Diplas
(1993) is similar to the empirical estimates produced by Rice
and Church (1996), who repeatedly subsampled a known
population of grain size measurements in order to quantify
the confidence interval; Petrie and Diplas (2000) also rec-
ommended plotting the confidence intervals on the standard
cumulative distribution plots as an easy way of visualizing
the implications of sampling uncertainty. It is worth noting
that the previous analyses were used to determine the sample
size necessary to achieve a given level of sample precision;
they were not adapted to the analysis and interpretation of
previously collected surface distribution samples.

A number of studies have compared grain size distribu-
tions for two or more samples to assess differences among
sites, sampling methods, or operators (Hey and Thorne,
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1983; Marcus et al., 1995; Bunte and Abt, 2001a; Olsen et al.,
2005; Bunte et al., 2009; Daniels and McCusker, 2010). A
simple approach would be to construct confidence intervals
for the two estimates. If the confidence intervals do not over-
lap, then one can conclude that the estimates are significantly
different at the confidence level used to compute the intervals
(e.g., 95 %); if a percentile estimate from one sample falls
within the confidence interval for the other sample, then one
cannot reject the null hypothesis that the percentile values
are the same. However, the conclusion is ambiguous when
the confidence intervals overlap but do not include both esti-
mates; even for populations with significantly different per-
centile values, it is possible for the confidence intervals to
overlap. Therefore, there is a need for a method to allow two-
sample hypothesis tests of the equality of percentile values.

The objective of this article is to introduce robust
distribution-free approaches to (a) compute percentile con-
fidence intervals and then map them onto a given cumulative
frequency distribution from a standard pebble count in order
to estimate the grain size confidence interval for the sample
and (b) conduct two-sample hypothesis tests of the equality
of grain size percentile values. The approaches can be ap-
plied not only in cases in which individual grain diameters
are measured but also to the common situation in which grain
diameters are recorded within phi-based classes, so long as
the number of stones sampled to derive the cumulative dis-
tribution is also known.

The primary purpose of this work is to guide the analy-
sis and interpretation of the grain size samples. While grain
size confidence intervals are most applicable when compar-
ing two samples to ascertain whether or not they are statisti-
cally different, we also demonstrate how knowledge of grain
size uncertainty could be applied in a management context,
where flood return period is linked to channel instability (for
example). As we demonstrate in this paper, percentile uncer-
tainty is distribution free and can be estimated using stan-
dard look-up tables similar to those used for ¢ tests (see Ta-
bles B1-B4), or using the normal approximation to the bino-
mial distribution referred to by Fripp and Diplas (1993) (see
Appendix A). Translating percentile confidence intervals to
grain size confidence intervals requires information about the
grain size distribution; it is essentially a mapping exercise,
not a statistical one. We implement both the estimation of a
percentile confidence interval and the mapping of it onto a
grain size confidence interval using (1) a spreadsheet that we
provide which uses the normal approximation to the bino-
mial distribution, described by Fripp and Diplas (1993), and
(2) an R package called GSDtools that we have written
for this purpose that uses the statistical approach described
in this paper. A demonstration is available online at https:
/fbceaton.github.io/GSDtools_demo_2019.nb.html (last ac-
cess: 24 May 2019), which provides instructions for in-
stalling and using the GSDtools package; the demonstra-
tion is also included in the data repository associated with
this paper. Finally, we use both existing data sets and the re-
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Figure 1. Binomial probability distribution for obtaining between
40 and 60 successes in 100 trials when the probability of success is
0.5. The probabilities for each outcome are calculated using Eq. (1).

sults from a Monte Carlo simulation to develop recommen-
dations regarding the sample sizes required to achieve a pre-
determined precision for estimates of the Dso and the Dg4.

2 Calculating confidence intervals

2.1 Overview

The key to our approach is that the estimation of any grain
size percentile can be treated as a binomial experiment, much
like predicting the outcome of a coin-flipping experiment.
For example, we could toss a coin 100 times and count the
number of times the coin lands head-side up. For each toss
(of a fair coin at least), the probability (p) of obtaining a
head is 0.50. The number of times that we get heads during
repeated experiments comprising 100 coin tosses will vary
about a mean value of 50, following the binomial distribution
(see Fig. 1).

The probability of getting a specific number of heads (By)
can be computed from the binomial distribution:

k nk__ M

Bi(k,n, p) = p"(1—p) Ko — )] ey
for which k is the number of successes (in this case the num-
ber of heads) observed during n trials for which the prob-
ability of success is p. The probabilities of obtaining be-
tween 40 and 60 heads calculated using Eq. (1) are shown
in Fig. 1. The sum of all the probabilities shown in the figure
is 0.96, which represents the coverage probability, P, asso-
ciated with the interval from 40 to 60 successes.

We can apply this approach to a bed surface grain size
sample based on a grid-based sampling approach or the stan-
dard Wolman pebble count approach because for both meth-
ods the probability of sampling a stone of a given size is pro-
portional to the relative area of the bed covered by stones
of that size. Imagine that we are sampling a population of
surface sediment sizes like that shown in Fig. 2a, for which
the true median grain size of the population (Dsg) is known
(the population shown is defined by 3411 measurements of

Earth Surf. Dynam., 7, 789-806, 2019


https://bceaton.github.io/GSDtools_demo_2019.nb.html
https://bceaton.github.io/GSDtools_demo_2019.nb.html

792 B. C. Eaton et al.: Confidence intervals for grain size distributions

o |
~ Population
50th Percentile
© _| Dso
o
o
[0
c
= 9 |
c o
o
'-E |
o <
5 S
=
o
N
o
S (a)
o
I I I T
0.5 1.0 2.0 5.0
Grain size (mm)
e ]
~ ® Reference points| #j‘
Percentile C.I. oS
© | &
o oY
. 5
=]
=
<
Rel
h
o
Q.
[e]
=
o
(c)

5.0

Grain size (mm)

1.0

Sample
— dso

0.8

0.6

Proportion finer
0.4

0.2

(b)

0.0

0.5 1.0 2.0 5.0

Grain size (mm)

1.0

® Reference points|
Grain size C.I.

0.8

Proportion finer

0.2

(d)

0.0

Grain size (mm)

Figure 2. Defining the relation between the percentile confidence interval (C.1.) and the grain size confidence interval for a sampled d5
value. (a) Begin with the known distribution for the population being sampled, with a vertical line indicating the true Ds. (b) Derive a sample
distribution from 100 measurements from the population shown in panel (a) (note that the sample d5( and the population D5 are different).
(c) Use binomial theory to estimate the percentile confidence interval that contains the population D5q. (d) Map the percentile confidence
interval onto the sample cumulative frequency distribution to estimate the grain size confidence interval around the sample estimate, ds
(note that the confidence interval does indeed contain the true D5 for the population).

bed surface b-axis diameters at randomly selected locations
in the wetted channel of a laboratory experiment performed
by the authors and has a median surface size of 1.7 mm). We
know that half of the stream bed (by area) would be cov-
ered by particles smaller than the D5, so for each stone that
we select the probability of it being smaller than the Dsg is
0.50. If we measure 100 stones and compare them to the D5y,
then binomial sampling theory tells us that the probability of
selecting exactly 50 stones that are less than Ds is just 0.08
but that the probability of selecting between 40 and 60 stones
less than Dsg is 0.96 (see Fig. 1).

Figure 2b shows a random sample of 100 stones taken
from the population shown in Fig. 2a. Each circle represents
a measured b-axis diameter and all 100 measurements are
plotted as a cumulative frequency distribution; the median
surface size of the sample, dso, is 1.5 mm. Note that, in this
paper, we use D; to refer to grain size of the ith percentile
for a population and d; to refer to the grain size of the ith
percentile of a sample. There are clear differences between
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the distribution of the sample and the underlying population,
which is to be expected.

The first step in calculating a grain size confidence interval
that is likely to contain the true median value of the popula-
tion is to choose a confidence level; in this example, we set
the confidence level to 0.96, corresponding to the coverage
probability shown in Fig. 1. Looking at the upper boundary
of the binomial distribution in Fig. 1, an outcome in which 60
stones are smaller than D5 corresponds to dgg < Dsp; at the
lower boundary, a result in which 40 stones are smaller than
Dsq corresponds to dag < Dsg. As a result, the true value of
the Dso will fall between the sample dao and the sample dgg
96 % of the time under repeated random sampling. This rep-
resents the percentile confidence interval (see Fig. 2¢) and it
does not depend on the shape of the grain size distribution.
For reference, a set of percentile confidence interval calcula-
tions are presented in Tables B1-B4 (Appendix B).

Once a confidence level has been chosen and the percentile
confidence interval has been identified, a grain size confi-
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dence interval can be estimated by mapping the percentile
confidence interval onto the sampled grain size distribution,
as indicated graphically in Fig. 2d. Unlike the percentile con-
fidence interval, the grain size confidence interval depends on
the shape of the cumulative frequency distribution and can
only be calculated once the sample has been collected.

The approach demonstrated above for the median size can
be applied to all other grain size percentiles by varying the
probability p in Eq. (1) accordingly. For example, the prob-
ability of picking up a stone smaller than the true Dg4 of
a population is 0.84, while the probability of picking up a
stone smaller than the true Djg is just 0.16. If we define P to
be the percentile of interest for the population being sampled,
then the probability of selecting a stone smaller than that per-
centile is p = P /100, meaning that there is a direct corre-
spondence between the grain size percentile and the proba-
bility of encountering a grain smaller than that percentile. As
we show in the next section, the binomial distribution can be
used to derive grain size confidence intervals for any estimate
of dp for a sample that can be expected to contain the true
value of Dp for the entire population.

2.1.1 Statistical basis

This section presents the statistical basis for the approach
outlined above in a more rigorous manner. In order to il-
lustrate our approach for estimating confidence intervals in
detail, we will use a sample of 200 measurements of b-axis
diameters from our laboratory population of 3411 observa-
tions. These data are sorted in rank order and then used to
compute the quantiles of the sample distribution. The differ-
ence between the cumulative distribution of raw data (based
on 200 measurements of b-axis diameters) and the standard
0.5¢ binned data (which is typical for most field samples) is
illustrated in Fig. 3. While the calculated dg4 value for the
binned data shown in Fig. 3a is not identical to that from the
original data, the difference is small compared with the grain
size confidence interval associated with a sample size of 200,
shown in Fig. 3b. We first develop a method to apply to sam-
ples comprising » individual measurements of grain diameter
and then describe an approximation that can be applied to the
more commonly encountered 0.5¢ binned cumulative grain
size distributions.

2.1.2 Exact solution for a confidence interval

Suppose we wish to compute a confidence interval contain-
ing the population percentile, D p, from our sample of 200 b-
axis diameter measurements. The first step is to generate or-
der statistics, d(;), by sorting the measurements into rank or-
der from lowest to highest (such that d() < dp) < ... <du)).
Figure 3a plots d(;) against the ratio (i — 1)/n, which is a di-
rect estimate of the proportion of the distribution that is finer
than that grain size.
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To define a confidence interval, we first specify the confi-
dence level, usually expressed as 100 - (1 — «) %. For 95 %
confidence, o = 0.05. Following Meeker et al. (2017), we
then find lower and upper values of the order statistics (d()
and dy,), respectively) that produce a percentile confidence
interval with a coverage probability that is as close as pos-
sible to 1 — « , but no smaller. Note that, in our example of
100 coin tosses from the previous section, we made a calcu-
lation by setting / = 40 and u = 60, which gave us a coverage
probability of 96 %. Coverage probability is defined as

u—1 -1
Pe=7"Bi(k,n, p)— > Bi(k,n, p), 2)
k=0 k=0

where By is the binomial probability distribution for k suc-
cesses in n trials for probability p, defined in Eq. (1). The
goal, then, is to find integer values [ and u that satisfy the
condition that P. > 1 —«, with the additional condition that /
and u be approximately symmetric about the expected value
of k (i.e., n- p). The lower grain size confidence bound for the
estimate of D p is then mapped to grain size measurement d;)
and the upper bound is mapped to d(). Obviously, this ap-
proach cannot be applied to the binned data usually collected
in the field but is intended for the increasingly common au-
tomated image-based techniques that retain individual grain
size measurements.

We have created an R function (QuantBD) that deter-
mines the upper and lower confidence bounds and returns the
coverage probability, which is included in the GSDtools
package. Our function is based on a script published on-
line!, which follows the approach described in Meeker et al.
(2017). For n = 200, p = 0.84, and o = 0.05 (i.e., 95 % con-
fidence level), [ = 159 and u = 180, with a coverage prob-
ability (0.953) that is only slightly greater than the desired
value of 0.95. This implies that the number of particles in a
sample of 200 measurements that would be smaller than the
true Dg4 should range from 159 particles to 180 particles,
95 % of the time (see Fig. 4). This in turn implies that the
true Dgy could correspond to sample estimates ranging from
the 80th percentile (i.e., 159/200) to the 90th percentile (i.e.,
180/200). We can translate the percentile confidence bounds
into corresponding grain size confidence bounds using our
ranked grain size measurements: the lower bound of 159 cor-
responds to a measurement of 2.8 mm and the upper bound
corresponds to a measurement of 3.6 mm.

2.1.3 Approximate solution producing a symmetrical
confidence interval

One disadvantage of the exact solution described above is
that the areas under the tails of the binomial distribution dif-
fer (Fig. 4) such that the expected value is not located in the

1 https://stats.stackexchange.com/q/284970, last
19 September 2018, posted by user “whuber”.

access:
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Figure 4. Binomial distribution values for n =200 and p = 0.84,
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distribution that lie outside the interval. The vertical dashed lines in-
dicate confidence limits computed by an approximate approach that
places equal area under the two tails outside the confidence interval.

center of the confidence interval. Meeker et al. (2017) de-
scribed a solution to this problem that uses interpolation to
find lower or upper limits for one-sided intervals (i.e., con-
fidence intervals pertaining to a one-tailed hypothesis test).
This approach can be applied to find two-sided intervals by
finding one-sided intervals, each with a confidence level of
1 —a/2, which result in a confidence interval that is symmet-
ric about the expected value. By interpolating between the
integer values of k, we can find real numbers for which the
binomial distribution has values of «/2 and 1 — «/2, which
we refer to as [, and u.. The corresponding grain sizes can be
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found by interpolating between measured diameters whose
ranked order brackets the real numbers /. and .

The interpolated values of /. and u. are indicated in Fig. 4
by dashed vertical lines. As can be seen, the values of / and
u generated using the equal tail approximation are shifted to
the left of those found by the exact approach, resulting in
a symmetrical confidence interval. The corresponding grain
sizes representing the confidence interval are 2.7 mm and
3.4 mm, which are similar to the exact solution presented
above.

2.1.4 Approximate solution for binned data

We have adapted the approximate solution described above
to allow for estimation of confidence limits for binned data,
which is accomplished by our R function called WolmanCI
in the GSDtools package. Just as before, we use the equal
area approximation of the binomial distribution to compute
upper and lower limits (/e and u.) but then we transform these
ordinal values into percentiles by normalizing by the num-
ber of observations. Using our sample data, the ordinal con-
fidence bounds /. = 157.03 and u, = 177.36 thus become the
percentile confidence bounds d79 and dgo, respectively.

Next, we simply interpolate from the binned cumulative
frequency distribution to find the corresponding grain sizes
that define the grain size confidence interval. Note that the
linear interpolation is applied to log,(d) and that the inter-
polated values are then transformed to diameters in millime-
ters. This interpolation procedure is represented graphically
in Fig. 3b; the horizontal lines represent the percentile con-
fidence interval (defined by l./n and ue/n), while the grey
box indicates the associated grain size confidence interval.
Our binned sample data yield a grain size confidence interval
for the Dgy that range from 2.8 to 3.5 mm.

www.earth-surf-dynam.net/7/789/2019/
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The binomial probability approach uses the sample cumu-
lative frequency distribution to calculate the grain size confi-
dence interval. The need to use the sample distribution in this
approach makes it difficult to predict the statistical power of
sample size, n, prior to collecting the sample. However, the
approach can be applied to any previously collected distribu-
tion, provided the number of observations used to generate
the distribution is known.

3 Two-sample hypothesis tests

3.1 When individual grain diameters are available

Suppose we have two samples for which individual grain di-
ameters have been measured (e.g., two sites, two operators,
two sampling methods). The values in the two samples are
denoted as X; (where i ranges from 1 ton,)and Y; (j =1to
ny), where n, and ny are the number of grains in each sam-
ple. In this case, one can use a resampling method (specifi-
cally the bootstrap) to develop a hypothesis test. A straight-
forward approach is based on the percentile bootstrap (Efron,
2016) and involves the following steps:

1. Take a random sample, x, which comprises a bootstrap
sample of n, diameters, with replacement, from the set
of values of X;. The order statistics for the bootstrap
sample are denoted as x(), k =1 to n.

2. Take a random sample, y, which comprises a bootstrap
sample of n, diameters, with replacement, from the set
of values of Y;. The order statistics for the bootstrap
sample are denoted as y(), [ =1 to ny,.

3. Determine the desired percentile value from each boot-
strap sample, (dp), and (dp)y, and compute the differ-
ence, Adp = (dp)x — (dp)y.

4. Repeat steps 1 to 3 n, times (e.g., n, = 1000), each time
storing the value of Adp.

5. Determine a confidence interval for Adp by computing
the quantiles corresponding to /2 and 1 — /2, where
« is the desired significance level for the test (e.g., ¢ =
0.05).

6. If the confidence interval determined in step 5 does not
overlap 0, then one can reject the null hypothesis that
the sampled populations have the same value of Dp.

This analysis is implemented with the function
CompareRAWs in the GSDtools package. The re-
quired inputs are two vectors listing the measured b axis
diameters for each sample.

3.2 When only binned data are available and sample
size is known

For situations in which only the cumulative frequency distri-
bution is available, an approach similar to parametric boot-
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strapping can be applied, which employs the inverse trans-
form approach (see chap. 7 in Wicklin, 2013) to convert a
set of random uniform numbers in the interval (0, 1) to a
random sample of grain diameters by interpolating from the
binned cumulative frequency distribution, similar to the pro-
cedure described above for determining confidence intervals
for binned data.
The approach involves the following steps:

1. Generate a set of n, uniform random numbers, u;,i = 1
to n,. Generate a bootstrap sample, x, by transforming
these values of u; into a corresponding set of grain di-
ameters x; by using the cumulative frequency distribu-
tion for the sample.

2. Generate a set of n, uniform random numbers, u;,
J =1 to ny. Generate a bootstrap sample, y, by trans-
forming these values of u; into a corresponding set of
grain diameters y; by using the cumulative frequency
distribution for the second sample.

3. Determine the desired grain size percentile from each
bootstrap sample, (dp), and (dp),, and compute the dif-
ference, Adp = (dp)x — (dp)y.

4. Repeat steps 1 to 3 n, times (e.g., n, = 1000), each time
storing the value of Adp.

5. Determine a confidence interval for Adp by computing
the quantiles corresponding to /2 and 1 — «/2, where
«a is the desired significance level for the test (e.g., @ =
0.05).

6. If the confidence interval determined in step 5 does not
overlap 0, then one can reject the null hypothesis that
the sampled populations have the same value of Dp.

This analysis is implemented in the CompareCFDs func-
tion. It requires that the user to provide the cumulative fre-
quency distribution for each sample (as a data frame), as well
as the number of measurements upon which each distribution
is based.

4 Confidence interval testing

We can test whether or not our approach successfully pre-
dicts the uncertainty associated with a given sample size us-
ing our known population of 3411 measurements from the
lab. The effect of sample size on the spread of the data is
demonstrated graphically in Fig. 5. In Fig. 5a, 25 random
samples of 100 stones selected from the population are plot-
ted along with the 95 % grain size confidence interval brack-
eting the true grain size population, calculated using our bi-
nomial approach and assuming a sample size of 100 stones.
In Fig. 5b, random samples of 400 stones are plotted along
with the corresponding binomial confidence interval, calcu-
lated assuming a sample size of 400 stones. In both plots, the

Earth Surf. Dynam., 7, 789-806, 2019



796 B. C. Eaton et al.: Confidence intervals for grain size distributions

calculated confidence intervals are only plotted for the 5th
percentile to the 95th percentile (a convention we use on all
subsequent plots, as well) since few researchers ever make
use of percentile estimates outside this range.

A comparison of the two plots shows that sample size (i.e.,
100 vs. 400 stones) has a strong effect on variability in the
sampled distributions. It is also clear that the variability in the
sample data is well predicted by the binomial approach since
the sample data generally fall within the confidence interval
for the population.

In order to test more formally the binomial approach, we
generated 10000 random samples (with replacement) from
our population of 3411 observations, calculated sample per-
centiles ranging from the ds to the dys for each sample, and
used the distribution of estimates to determine the grain size
confidence interval. This resampling analysis was conducted
twice: once for samples of 100 stones and then again for sam-
ples of 400 stones. This empirical approximation of the grain
size confidence interval is the same technique used by Rice
and Church (1996). The advantage of a resampling approach
is that it replicates the act of sampling, and therefore does
not introduce any additional assumptions or approximations.
The accuracy of the resampling approach is limited only by
the number of samples collected, and the degree to which
the individual estimates of a given percentile reproduce the
distribution that would be produced by an infinite number of
samples. The only draw back of this approach is that the re-
sults are only strictly applicable to the population to which
the resampling analysis has been applied (Petrie and Diplas,
2000). While it is an ideal way to assess the effect of sample
size on variability for a known population, resampling con-
fidence intervals cannot be calculated for individual samples
drawn from an unknown grain size population.

In Fig. 6, the resampling estimates of the 95 % grain size
confidence intervals for D5 to Dgs based on samples of 100
stones are plotted as red circles, and those based on samples
of 400 stones are plotted as blue circles. For comparison, the
confidence intervals predicted using our binomial approach
are plotted using dashed lines. There is a close agreement be-
tween the resampling confidence intervals and the binomial
confidence intervals, indicating that our implementation of
binomial sampling theory captures the effects of sample size
that we have numerically simulated using the resampling ap-
proach.

We have also calculated the statistics of a 1:1 linear fit
between the upper and lower bounds of the confidence inter-
vals predicted by binomial theory and those calculated us-
ing the resampling approach for sample sizes of 100 and
400. For a sample size of 100 stones, the 1:1 fit had a
Nash—Sutcliffe model efficiency (NSE) of 0.998, a root mean
standard error (RMSE) of 0.0353¢ units, and a mean bias
(MB) of —0.0035¢ units. Since NSE =1 indicates perfect
model agreement (see Nash and Sutcliffe, 1970), and con-
sidering that MB is small relative to the RMSE, these fit pa-
rameters indicate a good 1 : 1 agreement between the resam-
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pling estimates and binomial predictions of the upper and
lower confidence interval bounds. The results for a sample
size of 400 stones were essentially the same (NSE = 0.999,
RMSE = 0.0262¢, and MB = 7 x 10~%¢).

In order to confirm that the size of the original popula-
tion did not affect our comparison of the resampling and bi-
nomial confidence bounds estimates, we repeated the entire
analysis using a simulated lognormal grain size distribution
of 1000 000 measurements. The graphical comparison of the
binomial and resampling confidence intervals for the simu-
lated distributions (not shown) was essentially the same as
that shown in Fig. 6, and the 1:1 model fit was similar to
the fits reported above (NSE = 0.998, RMSE = 0.043¢, and
MB = —0.0013¢).

The close match between the grain size confidence inter-
vals predicted using binomial theory and those estimated us-
ing the resampling analysis supports the validity of the pro-
posed approach for computing confidence intervals.

5 Reassessing previous analyses

In order to demonstrate the importance of understanding the
uncertainty associated with estimated grain size percentiles,
we have reanalyzed the results of previous papers that have
compared bed surface texture distributions but which have
not considered uncertainty associated with sampling vari-
ability. In some cases, these reanalyses confirm the authors’
interpretations, and strengthen them by highlighting which
parts of the distributions are different and which are similar,
thus allowing for a more nuanced understanding. In others,
they demonstrate that the observed differences do not appear
to be statistically significant and suggest that the interpreta-
tions and explanations of those differences are not supported
by the authors’ data. In either case, we believe that adding in-
formation about the grain size confidence intervals is a valu-
able step that should be included in every surface grain size
distribution analysis.

The data published by Bunte et al. (2009) include pebble
counts of about 400 stones for different channel units in two
mountain streams (see Fig. 7). Adding the grain size con-
fidence intervals to the distributions emphasizes the differ-
ences and similarities between the distributions. The plot-
ted confidence intervals for the exposed channel bars do not
overlap the confidence intervals for the other two units: we
can therefore conclude that bars are significantly finer than
the pool units and the run/riffle units in both streams. Dif-
ferences between the pools and the run/riffle units are less
obvious.

Based on a visual inspection of the data in Fig. 7, it seems
that clear differences in bed texture exist when comparing
pool units and run/riffle units for the fraction of sediment less
than about 22.6 mm; the distributions of sediment coarser
than this are similar. Using the CompareCFDs function to
statistically compare percentiles ranging from Ds to Dos (in
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Figure 5. Effect of sample size on uncertainty. In panel (a), 25 samples of 100 stones drawn from a known population are plotted along with
the 95 % grain size confidence interval calculated for D5 to Dgs using the binomial method. In panel (b) samples of 400 stones are plotted

along with the predicted grain size confidence interval.
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Figure 6. Comparing calculated resampling grain size confidence
intervals to predicted intervals using the binomial approach. The
grain size confidence intervals for samples of 100 stones are shown
in red and those for samples of 400 stones are shown in blue.

increments of 5), we found that the differences between pools
and run/riffle units in Willow Creek for percentiles greater
than Dgs are significant for « = 0.05, but not for o = 0.01
(i.e., for a 99 % confidence interval). For North St. Vrain
Creek, there are significant differences between pool and
run/riffle units at &« = 0.05 for percentiles finer than D, and
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Figure 7. Comparing pebble counts from different channel units.
Panel (a) presents data reported by Bunte et al. (2009) for Willow
Creek. Panel (b) presents data for North St. Vrain Creek. Shaded
polygons represent the 95 % confidence intervals about the sample
distribution, based on estimates ranging from D5 to Dgs. A dashed
horizontal line indicate the approximate grain size at which pool
distributions tend to diverge from run/riffle distributions for the two
streams.

for the Dgp and Dgs, though none of the differences for the
coarser part of the distribution are significant for « = 0.01.
The relative similarity of pool and run/riffle sediment tex-
tures for the coarser part of the distribution suggests that the
most noticeable differences in bed surface texture are likely
due to the deposition of finer bed-load sediment in pools
on the waning limb of the previous flood hydrograph (as
suggested by Beschta and Jackson, 1979; Lisle and Hilton,
1992, 1999) and that the bed surface texture of both units
could be similar during flood events. From these plots we can
conclude that the bed roughness (which is typically indexed
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by the bed surface D5y or by sediment coarser than that) is
similar for the pool and run/riffle units but that exposed bar
surfaces in these two streams are systematically less rough.
These kinds of inferences could have important implications
for decisions about the spatial resolution of roughness esti-
mates required to build 2-D or 3-D flow models; it is also
possible to reach the same conclusions based on the original
data plots in Bunte et al. (2009) but the addition of confidence
bands supports the robustness of the inference.

A more fundamental motivation for plotting the binomial
confidence bands is illustrated in Fig. 8, which compares the
bed surface texture estimated by two different operators us-
ing the standard heel-to-toe technique to sample more than
400 stones from the same sedimentological unit. These data
were published by Bunte and Abt (2001a) (see their Fig. 7).
Based on their original representation of the two distributions
(Fig. 8a), Bunte and Abt (2001a) concluded that

“operators produced quite different sampling re-
sults ... operator B sampled more fine particles and
fewer cobbles ... than operator A and produced
thus a generally finer distribution”.

However, once the grain size confidence intervals are plot-
ted (Fig.8b), it is clear that the differences are not gener-
ally statistically significant. Using the CompareCFDs func-
tion to compare each percentile from D5 to Dys, we found
no statistically significant differences for any percentile at
o =0.01; at o =0.05, only differences for the Dgp, Dgs,
and Dgs are significant. When comparing multiple percentile
values, the risk of incorrectly rejecting the null hypothesis
for at least one of the comparisons will be higher than the
significance level («) specified by the analyst. One approach
to avoid this problem is to apply a Bonferroni correction in
which « is replaced by «/m, where m is the number of met-
rics being compared. Applying this correction, there is no
statistically significant difference between the two samples
for « = 0.05. The value in considering sampling variability
in the analysis is that it supports a more nuanced interpreta-
tion of differences in grain size distributions.

A similar analysis of the heel-to-toe sampling method
and the sampling frame method advocated by Bunte and
Abt (2001a) shows that the distributions produced by the
two methods are not generally statistically different, either
(Fig. 9). The CompareCFDs function only found signifi-
cant differences for grain size percentiles coarser than D7q
for o = 0.05 and between D75 and Dgg for o« = 0.01. Once
the Bonferroni correction is applied, none of the differences
between the two samples would be considered significant at
o = 0.05. However, while the Bonferroni correction protects
against making Type I errors (i.e., rejecting the null hypoth-
esis when it is in fact false), it reduces the power of the
test (i.e., the ability of the test to reject the null hypothesis
when it is false) (e.g., Nakagawa, 2004). The topic of multi-
ple comparisons in hypothesis testing is complex and beyond
the scope of the current paper.
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Figure 8. Comparing pebble counts of the same bed surface by dif-
ferent operators. The data plotted were published by Bunte and Abt
(2001a). Panel (a) shows the traditional grain size distribution rep-
resentation. Panel (b) uses the 95 % grain size confidence intervals
calculated for the pebble count to demonstrate that the two distribu-
tions are not statistically different.
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Figure 9. Comparing sampling methods for the same bed surface
and operator. The data plotted were published by Bunte and Abt
(2001a) and were collected by operator B. Panel (a) shows the tradi-
tional grain size distribution representation. Panel (b) uses the 95 %
grain size confidence intervals calculated for the pebble count to
demonstrate that the two distributions are not statistically different.

In both cases, the uncertainty associated with sampling
variability appears to be greater than the difference between
operators or between sampling methods, and thus one can-
not claim these differences as evidence for statistically sig-
nificant effects. It is likely the case that there are systematic
differences among operators or between sampling methods
but larger sample sizes would be required to reduce the mag-
nitude of sampling variability in order to identify those dif-
ferences.

Indeed, Hey and Thorne (1983) found that operator errors
were difficult to detect for small sample sizes (wherein the
sampling uncertainties were comparatively large) but became
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evident as sample size increased, so the issue at hand is not
whether there are differences between operators but whether
the differences in Fig. 8 are statistically significant. Inter-
estingly, Hey and Thorne (1983) were able to detect oper-
ator differences at sample sizes of about 300 stones, whereas
Bunte and Abt (2001a) did not detect statistical differences
for samples of about 400 stones, indicating either that Hey
and Thorne (1983) had larger operator differences than did
Bunte and Abt (2001a) or smaller sample uncertainties due
to the nature of the sediment size distribution.

6 Determining sample size

As we demonstrated in the previous section, grain size con-
fidence intervals can be constructed and plotted for virtually
all existing surface grain size distributions (provided that the
number of stones that were measured is known, which is al-
most always the case) and future sampling efforts need not
be modified in any way in order to take advantage of our
method. While the primary purpose of our paper is to demon-
strate the importance of calculating grain size confidence in-
tervals when analyzing grain size data, our method can also
be adapted to predict the sample size required to achieve a
desired level of sampling precision, prior to collecting the
sample.

While the percentile confidence interval for any percentile
of interest can be calculated based on the sample size, n, and
the desired confidence level, @ (see Appendix B, for exam-
ple), it cannot be mapped onto the grain size confidence in-
terval before the cumulative distribution has been generated.
This problem is well recognized and has been approached in
the past by making various assumptions about the distribu-
tion shape (Hey and Thorne, 1983; Church et al., 1987; Bunte
and Abt, 2001a, b), or using empirical approximations (Mar-
cus et al., 1995; Rice and Church, 1996; Green, 2003; Olsen
etal., 2005), but in all cases it is still necessary to know some-
thing about the spread of the distribution — regardless of its
assumed shape — in order to assess the implications of sam-
ple size for the precision of the resulting grain size estimates.
It is perhaps the difficulty of predicting sample precision that
has led to the persistent use of the standard 100-stone sample.
Here we provide a simple means of determining the appro-
priate sample size; first we use existing data to calculate the
uncertainty in estimates for dso and dg4; then we use simu-
lated lognormal grain size distributions to quantify the effect
of the spread of the distribution on uncertainty.

6.1 Uncertainty based on field data

Here, we demonstrate the effect of sample size on un-
certainty. We begin by calculating the uncertainty in esti-
mates for Dsy and Dgq for all the surface samples used
in this paper, for eight samples collected by BGC Engi-
neering from gravel bed channels in the Canadian Rocky
Mountains, and for samples from two locations on Cheaka-
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mus River, British Columbia, collected by undergraduate stu-
dents from the Department of Geography at The University
of British Columbia. The number of stones actually mea-
sured to create these distributions is irrelevant since it is the
shape of the cumulative distribution that determines how the
known percentile confidence interval maps onto the grain
size confidence interval. Since these distributions come from
a wide range of environments and have a range of distribu-
tion shapes, they are a reasonable representation of the range
grain size confidence intervals that could be associated with
a given percentile confidence interval.

Uncertainty (¢€) in the grain size estimate is calculated as
follows:

ep=0.5 (M)’ 3)
P

where dypper is the upper bound of the grain size confidence
interval, djower 1S the lower bound, and dp is the estimated
grain size of the percentile of interest. As a result, €50 rep-
resents the half-width of the grain size confidence interval
about the median grain size (normalized by d5¢) and €34 rep-
resents half-width of the normalized grain size confidence
interval for the dg4.

Figure 10 presents the calculated values of €50 and eg4 for
various gravel bed surface samples, including those shown
in Figs. 7 and 8. For a sample size of 100 stones, the un-
certainties are relatively large with a mean €5 value of 0.25
and a mean €g4 value of 0.21; for a sample of 200 stones, the
mean €50 value drops to 0.18 and the mean €g4 value drops
to 0.15; and for n =500, €50 = 0.11 and €g4 = 0.09, on av-
erage. This analysis transforms the predictable distribution-
free contraction of the percentile confidence interval as sam-
ple size increases into the distribution-dependent contraction
of the grain size confidence interval. Clearly there is a wide
range of cumulative frequency distribution shapes in our data
set, resulting in large differences in €59 and €g4 for the same
sample size (and therefore the same percentile confidence in-
terval).

6.2 Uncertainty for lognormal distributions

In order to quantify the effect of distribution shape on the
grain size confidence interval, we conducted a modeling
analysis using simulated lognormal bed surface texture dis-
tributions that have a wide range of sorting index values.
Here, sorting index (sig) is defined by the following equa-
tion.

Sig = g4 — P16 4

The term ¢g4 refers to the 84th percentile grain size (in ¢
units) and ¢ refers the 16th percentile. As a point of com-
parison, we estimated sig for the samples analyzed in the
previous section. For those samples, the sorting index ranges
from 1.5¢ to 5.6¢ with a median value of 2.5¢. The largest
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Figure 10. Estimated uncertainty for estimates of Dsq (a) and
Dg, (b) are plotted against sample size. Curves were generated for
bed surface samples collected by BGC Engineering and students
from The University of British Columbia (unpublished data) and
those published by Kondolf et al. (2003), Bunte and Abt (2001a),
and Bunte et al. (2009). Vertical lines highlight the range of uncer-
tainties for sample sizes of 200 and 500 stones.

values of siy were associated with samples from channels on
steep gravel bed fans and on bar top surfaces, while samples
characterizing the bed of typical gravel bed streams had val-
ues close to the median value.

We simulated 3000 lognormal grain size distributions with
Ds( ranging from 22.6 to 90.5 mm, n ranging from 50 to
1000 stones, and sig ranging from 1¢ to 5¢. For each simu-
lated sample, we calculated uncertainty for D5y and Dg4 us-
ing Eq. (3). The calculated values of €59 and eg4 are plotted
in Fig. 11. Using the data shown in the figure, we fit least-
squares regression to fit models of the form

In(ep) =a-n+b-siy +c, (®)]

where a, b, and c are the estimated coefficients. The empir-
ical model predicting €50 has an adjusted R? value of 0.95
with the variable n explaining about 43 % of the total vari-
ance and sig explaining 51 % of the variance. The model for
€34 has an adjusted R? value of 0.91 with the variables n
and siy explaining similar proportions of the total variance
as they do in the €59 model (41 % and 50 %, respectively).

After back-transforming from logarithms, the equation de-
scribing the €5 can be expressed as

€0=A- n_0‘506, (6)
where the coefficient A is given by

A =exp(—0.171 4 0.359siy). @)
The equation for eg4 is

€ga =B ~n70'51, (®)
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Figure 11. Estimated uncertainty for estimates of Dsq (a) and
Dg4 (b) are plotted against sample size for a simulated set of log-
normal surface distributions with a range of sorting indices. The
markers are color-coded by sig. The bounding curves for sip = 1
and sip = 5.0 are shown for reference, calculated using Egs. (6) and

8).

Table 1. Coefficient values for estimating uncertainty in D5y and
Dgy4 as a function of siy using Egs. (6) and (8).

Coef. 15¢ 2.00p 25¢ 300 350 4.00p 4.504

A 1.444  1.728 2.068 2474 2961 3.543 4.240
B 1.768  2.123 2550 3.062 3.677 4.415 5.302

where B is given by

B =exp(0.021 + 0.366siy). ©))

Table provides values of A and B for a range of sorting
indices.

7 Practical implications of uncertainty

The implications of uncertainty can be important in a range
of practical applications. As an example, we translate grain
size confidence intervals into confidence intervals for the
critical discharge for significant morphologic change us-
ing data for Fishtrap Creek, a gravel bed stream in British
Columbia that has been studied by the authors (Phillips and
Eaton, 2009; Eaton et al., 2010a, b). The estimated bed sur-
face D5 for Fishtrap Creek is about 55 mm, which we es-
timate becomes entrained at a shear stress of 40 Pa, corre-
sponding to a discharge of about 2.5m>s~!(Eaton et al.,
2010b); the threshold discharge is based on visual observa-
tion of tracer stone movement and corresponds to a critical
dimensionless shear stress of approximately 0.045. If we as-
sume that significant channel change can be expected when
D5 becomes fully mobile (which occurs at about twice the
entrainment threshold, according to Wilcock and McArdell,

www.earth-surf-dynam.net/7/789/2019/



B. C. Eaton et al.: Confidence intervals for grain size distributions 801

1993), then we would expect channel change to occur at a
shear stress of 80Pa, which corresponds to a critical dis-
charge of 8.3m?s™!, based on the stage-discharge relations
published by Phillips and Eaton (2009).

Since we used the standard technique of sampling 100
stones to estimate Dsg and since the sorting index of the bed
surface is about 2.0¢, we can assume that the uncertainty
will be about +17 %, based on Eqgs. (6) and (7), which in
turn suggests that we can expect the actual surface Dsq to be
as small as 46 mm or as large as 64 mm. This range of Dsg
values translates to shear stresses that produce full mobility
that range from 67 to 94 Pa. This in turn translates to critical
discharge values for morphologic change ranging from 5.9
to 11.2m>s~!, which correspond to return periods of about
1.5 and 7.4 years, based on the flood frequency analysis pre-
sented in Eaton et al. (2010b). Specifying a critical discharge
for morphologic change that lies somewhere between a flood
that occurs virtually every year and one that occurs about
once a decade, on average, is of little practical use, and high-
lights the cost of relatively imprecise sampling techniques.

If we had taken a sample of 500 stones, we could as-
sert that the true value of Dso would likely fall between
51 and 59 mm, assuming an uncertainty of +7 %. The es-
timates of the critical discharge would range from 7.2 to
9.5m3 s~!, which in turn correspond to return periods of 2.0
and 4.1 years, respectively. This constrains the problem more
tightly, and is of much more practical use for managing the
potential geohazards associated with channel change.

Operationally, it takes about 20 min for a crew of two or
three people to sample 100 stones from a typical dry bar
in a gravel bed river and a bit over an hour to sample 500
stones, so the effort required to sample the larger number of
stones is often far from prohibitive. In less ideal conditions
or when working alone, it may take upwards of 5h to col-
lect a 500-stone sample but, as we have demonstrated, the
uncertainty in the data increases quickly as sample size de-
clines (see Figs. 10 and 11), which may make the extra effort
worthwhile in many situations. Furthermore, computer-based
analyses using photographs of the channel bed may be able
to identify virtually all of the particles on the bed surface
and generate even larger samples. The statistical advantages
of the potential increase in sample size are obvious, and jus-
tify further concerted development of these computer-based
methods, in our opinion.

8 Conclusions

Based on the statistical approach presented in this paper, we
developed a suite of functions in the R language that can
be used to first calculate the percentile confidence interval
and then translate that into the grain size confidence inter-
val for typical pebble count samples (see the Supplement
for the source code). We also provide a spreadsheet which
uses the normal approximation to the binomial distribution
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to estimate the grain size confidence interval. The approach
presented in this paper uses binomial theory to calculate the
percentile confidence interval for any percentile of interest
(e.g., P =50 or P = 84) and then maps that confidence in-
terval onto the cumulative grain size distribution based on
pebble count data to estimate the grain size confidence in-
terval. As a result, the approach requires only that the total
number of stones used to generate the distribution is known
in order to generate grain size distribution plots that indicate
visually the precision of the sample distribution (e.g., Fig. 7).
We have developed statistical approaches that can be used for
samples in which individual grain sizes are known and for
samples in which data are binned (e.g., into ¢ classes).

By estimating the grain size confidence intervals for each
percentile in the distribution, the sample precision can be dis-
played graphically as a polygon surrounding the distribution
estimates. When comparing two different distributions, this
means of displaying grain size distribution data highlights
which distributions appear statistically different and which
do not.

Our analysis of various samples collected in the field
demonstrates that the grain size confidence interval depends
on the shape of the distribution, with more widely graded
sediments having wider grain size confidence intervals than
narrowly graded ones. Our analysis also suggests that typ-
ical gravel bed river channels have a similar gradation and
that the typical uncertainty in the Dsq varies from %25 % for
a sample size of 100 observations to about £11 % for 500
observations.

When designing a bed sampling program, it is useful to
estimate the precision of the sampling strategy and to select
the sample size accordingly; to do so, we must first assume
something about the spread of the data (assuming a lognor-
mal distribution) and then verify the uncertainty after collect-
ing the samples. Simple equations for predicting uncertainty
(as a percent of the estimate) are presented here to help work-
ers select the appropriate sample size for the intended pur-
pose of the data.

Code and data availability. The source code for the R
package, as well as the analysis code and the data used
to create all of the figures in this paper, is available on-
line (https://doi.org/10.5281/zenodo.3234121; Eaton et al,
2019). The R package used to estimate the confidence in-
tervals for grain size distributions is also available online
(https://doi.org/10.5281/zenodo.3229387, Eaton and Moore, 2019).
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Appendix A: Normal approximation

While it is difficult to determine the percentile confidence in-
terval using Eq. (1) without using a scripting approach sim-
ilar to the one we implement in the GSDtools package,
we can approximate the percentile confidence interval ana-
lytically and use the approximating equations in spreadsheet
calculations. As Fripp and Diplas (1993) point out, the per-
centile of interest (P) can be approximated by a normally
distributed variable with a standard deviation calculated as
follows:

o= 100—””’(2_”). (A1)

The term n refers to the number of stones being measured
and p refers to the probability of a single stone being finer
than the grain size for a percentile of interest, Dp (recall from
above that p = P /100 such that p = 0.84 for Dg4). The stan-
dard deviation for n = 100 and P = 84 would be 3.7. That
means that the true Dgq would be expected to fall between
sampled dgg3 and dg77 for a sample of 100 observations
approximately 68 % of the time and would fall outside that
range 32 % of the time.

More generally, we can use the normal approximation to
calculate the percentile confidence interval for any chosen
confidence level (). We simply need to find the appropriate
value of the z statistic for the chosen values of o and n and
calculate the percentile confidence interval using the follow-
ing confidence bounds:

Pupper =P+oz, (A2)
Power =P —oz. (A3)

The use of a normal distribution to approximate the bi-
nomial distribution is generally assumed to be valid for p
values in the range % <p<l-— % For a sample size of
100 stones, the limits correspond to Sth and 95th percentiles
of the distribution. However, some researchers have recom-
mended the more stringent range of 2n_0 <p<l-— 2n—0 (e.g.,
Fripp and Diplas, 1993).

For ease of reference, Table Al presents ¢ values for P
ranging from 10 (i.e., the D1g) to 90 (Dgp) and for n rang-
ing from 50 observations to 3200 observations. For « = 0.10,
z = 1.64; fora = 0.05, z = 1.96; and for « = 0.01, z = 2.58.
The table can be used to estimate the approximate percentile
confidence intervals for common values of o, P, and n. How-
ever, the user will have to manually translate the percentile
confidence intervals into grain size confidence intervals us-
ing the cumulative frequency distribution for their sample.
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Table A1. Percentile standard deviations for various sample sizes
(n) and percentiles (D p).

n Dy Die Dixs Dsgo Dis Dgsa Doy

50 42 52 6.1 7.1 6.1 52 42
100 30 37 43 50 43 37 3.0
200 2.1 26 3.1 35 3.1 26 21
400 1.5 1.8 22 25 22 1.8 1.5
800 1.1 1.3 1.5 1.8 1.5 1.3 1.1
1600 0.8 09 1.1 1.2 1.1 09 07
3200 05 06 08 09 08 06 05

A spreadsheet (see the Supplement) implementing these
calculations has also been developed. That spreadsheet maps
the percentile confidence interval onto the user’s grain size
distribution sample in order to estimate the grain size confi-
dence interval.

Appendix B: Binomial distribution reference tables

This appendix presents reference tables for the percentile
confidence interval calculations described above. The tables
present calculations for a range of percentiles (P) and sam-
ple sizes (n). The calculations presented were made using
the GSDtools package, hosted on Brett Eaton’s GitHub
page. It is freely accessible to download. You can also
find a demonstration showing how to install and use the
package at https://bceaton.github.io/GSDtools_demo_2019.
nb.html. The source code for the package can be found in
the online data repository associated with this paper.

These percentile confidence bounds do not depend on the
characteristics of the grain size distribution since they are de-
termined by binomial sampling theory. Estimating the corre-
sponding grain size confidence bounds requires the user to
map the percentile confidence interval onto the grain size
distribution in order to find the grain size confidence inter-
val. The GSDt ools package will automatically estimate the
grain size interval.

www.earth-surf-dynam.net/7/789/2019/
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Table B1. Upper and lower percentile confidence interval bounds for o = 0.05 (95 % confidence level).

n=100 | n=200 | =300 | a=400 | n=500

P Plower P, upper ‘ Plower P, upper ‘ Plower P, upper ‘ Plower P, upper ‘ Plower P, upper

10 4.0 15.8 5.8 14.1 6.6 133 7.0 12.9 7.3 12.6
15 7.8 21.8 10.0 19.9 10.9 19.0 11.5 18.5 11.8 18.1
20 12.0 27.6 14.3 254 15.4 245 16.0 239 16.4 23.5
25 16.2 332 18.9 30.9 20.0 29.8 20.7 29.2 21.2 28.7
30 20.7 38.7 235 36.2 24.7 35.1 254 344 259 34.0
35 25.3 44.0 28.2 41.4 29.5 40.3 30.2 39.6 30.7 39.1
40 30.0 49.2 33.0 46.6 343 45.4 35.1 44.7 35.6 442
45 34.8 54.3 37.9 51.7 39.2 50.5 40.0 49.8 40.5 49.3
50 39.7 59.3 42.8 56.7 44.2 55.5 45.0 54.8 45.5 54.3
55 44.7 64.2 47.8 61.6 49.2 60.5 50.0 59.7 50.5 59.3
60 49.8 69.0 529 66.5 543 65.3 55.0 64.7 55.6 64.2
65 55.0 73.7 58.1 71.3 59.4 70.2 60.2 69.5 60.7 69.1
70 60.3 78.3 63.3 76.0 64.6 75.0 65.3 74.3 65.8 73.9
75 65.8 82.8 68.6 80.6 69.8 79.7 70.6 79.1 71.1 78.6
80 71.4 87.0 74.1 85.2 75.2 84.3 75.9 83.7 76.3 83.4
85 71.2 91.2 79.6 89.5 80.7 88.8 81.3 88.3 81.7 88.0
90 83.2 95.0 854 93.7 86.3 93.1 86.8 92.7 87.2 92.5

Table B2. Upper and lower percentile confidence interval bounds for ¢ = 0.10 (90 % confidence level).

n=100 | n=200 | n~=300 | a=400 | n=500

P Plower P upper ‘ Plower P, upper ‘ Plower P upper ‘ Plower P upper ‘ Plower P upper

10 4.8 14.7 6.4 13.4 7.1 12.8 7.5 12.4 7.7 12.2
15 8.8 20.6 10.7 19.0 11.5 18.3 12.0 17.9 12.3 17.6
20 13.1 26.3 15.2 24.5 16.1 23.7 16.6 232 17.0 229
25 17.5 31.8 19.8 29.9 20.8 29.0 21.3 28.5 21.7 28.1
30 22.1 372 24.5 35.1 25.5 342 26.1 33.7 26.6 333
35 26.7 42.5 29.2 40.3 30.3 39.4 31.0 38.8 314 38.4
40 315 47.6 34.1 45.5 352 44.5 359 43.9 36.3 43.5
45 36.3 52.7 39.0 50.6 40.1 49.6 40.8 49.0 41.2 48.6
50 413 57.7 43.9 55.6 45.1 54.6 45.8 54.0 46.2 53.6
55 46.3 62.7 48.9 60.5 50.1 59.6 50.8 59.0 51.2 58.6
60 514 67.5 54.0 65.4 552 64.5 55.8 63.9 56.3 63.5
65 56.5 72.3 59.2 70.3 60.3 69.3 60.9 68.8 61.4 68.4
70 61.8 76.9 64.4 75.0 65.4 74.2 66.1 73.6 66.5 73.2
75 67.2 81.5 69.6 79.7 70.7 78.9 71.3 78.4 71.7 78.1
80 72.7 85.9 75.0 84.3 76.0 83.6 76.5 83.1 76.9 82.8
85 78.4 90.2 80.5 88.8 814 88.2 81.9 87.8 82.2 87.5
90 84.3 94.2 86.1 93.1 86.9 92.6 87.3 923 87.6 92.1
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Table B3. Upper and lower percentile confidence interval bounds for o = 0.20 (80 % confidence level).

n =100 n =200 n =300 n =400 n =500

P Plower P, upper ‘ Plower P, upper ‘ Plower P, upper ‘ Plower P, upper ‘ Plower P, upper

10 5.7 13.5 7.1 12.5 7.6 12.1 8.0 11.8 8.2 11.6
15 10.0 19.2 11.5 18.0 12.2 17.5 12.6 17.2 12.9 17.0
20 14.4 24.7 16.1 234 16.9 22.8 17.3 22.5 17.6 222
25 19.0 30.1 20.8 28.7 21.6 28.1 22.1 27.7 22.4 274
30 23.6 354 25.6 339 26.5 332 26.9 32.8 27.3 325
35 28.4 40.7 304 39.1 31.3 38.4 31.8 379 322 37.6
40 332 45.8 353 44.2 36.2 43.5 36.7 43.0 37.1 42.7
45 38.1 50.9 40.2 493 41.2 48.5 41.7 48.1 42.0 47.8
50 43.1 55.9 45.2 54.3 46.1 53.5 46.7 53.1 47.0 52.8
55 48.1 60.9 50.2 59.3 51.1 58.5 51.7 58.1 52.0 57.8
60 532 65.8 553 64.2 56.2 63.5 56.7 63.0 57.1 62.7
65 58.3 70.6 60.4 69.1 61.3 68.4 61.8 67.9 62.2 67.6
70 63.6 75.4 65.6 73.9 66.4 73.2 66.9 72.8 67.3 72.5
75 68.9 80.0 70.8 78.7 71.6 78.0 72.1 77.6 724 774
80 74.3 84.6 76.1 83.4 76.8 82.8 71.3 82.4 77.6 82.2
85 79.8 89.0 81.5 88.0 82.2 87.5 82.6 87.1 82.8 86.9
90 85.5 93.3 87.0 924 87.6 92.0 87.9 91.8 88.2 91.6

Table B4. Upper and lower percentile confidence interval bounds for o = 0.33 (67 % confidence level).

n=100 | n=200 | n~=300 | a=400 | n=500

P Plower P upper ‘ Plower P, upper ‘ Plower P upper ‘ Plower P upper ‘ Plower P upper

10 6.5 12.4 7.7 11.8 8.1 11.5 8.4 11.3 8.6 11.2
15 11.0 18.0 12.3 17.2 12.8 16.8 13.1 16.6 133 16.5
20 15.6 234 17.0 22.5 17.6 22.1 17.9 21.8 18.2 21.6
25 20.3 28.7 21.8 27.7 224 27.3 22.8 27.0 23.0 26.8
30 25.0 34.0 26.6 329 27.3 324 27.6 32.1 279 31.9
35 29.8 39.2 31.5 38.0 32.1 375 325 372 32.8 37.0
40 34.7 443 36.4 43.1 37.1 42.6 37.5 423 37.8 42.0
45 39.6 49.4 41.3 48.2 42.0 47.6 42.4 473 42.7 47.1
50 44.6 54.4 46.3 532 47.0 52.6 47.4 52.3 47.7 52.1
55 49.6 59.4 51.3 58.2 52.0 57.6 52.5 57.3 52.7 57.1
60 54.7 64.3 56.4 63.1 57.1 62.6 57.5 62.3 57.8 62.0
65 59.8 69.2 61.5 68.0 62.1 67.5 62.6 67.2 62.8 67.0
70 65.0 74.0 66.6 72.9 67.3 72.4 67.6 72.1 67.9 71.9
75 70.3 78.7 71.8 71.7 72.4 71.3 72.8 77.0 73.0 76.8
80 75.6 83.4 71.0 82.5 71.6 82.1 71.9 81.8 78.2 81.6
85 81.0 88.0 82.3 87.2 82.8 86.8 83.1 86.6 83.3 86.5
90 86.6 92.5 87.7 91.8 88.1 91.5 88.4 91.3 88.6 91.2
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