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SUPPLEMENTARIES 1 

Methods and metrics 2 

We aim at producing statistically robust information on the position of the landslides with regards to their respective distance 3 

to rivers and crests in a given portion of the landscape. This cannot be achieved by constructing a simple distribution of 4 

distances of the landslides cells (or centroids) to rivers and crests without normalizing for the relative frequency of crest  and 5 

river in the area of interest. Indeed variations in the relative proportion of crests and rivers within a given area will strongly 6 

bias the resulting distribution of distance of any objects (landslides or others) randomly distributed in this area. Such bias 7 

may appear because of variable crest (or river) frequency caused by either landscape natural shape or methodological effects.  8 

For example, Fig. S1a-c illustrates the reduction of the crest network density with changing criterion of crest tagging. A given 9 

set of landslides will appear to be much closer to crests in the landscape represented in Fig. S1.a than in the one represented 10 

in Fig. S1.c, simply because crests are less frequent in the latter case. Note that a similar bias would appear with a variable 11 

frequency of river channels. 12 

 Thus, to be able to discuss physical control on the statistical location of landslides relative to rivers and ridges across large 13 

regions, it is necessary to find an adequate normalization for biases emerging from the definition of crests and rivers and for 14 

comparing areas with variable landscape shape. 15 

 First, we define, for each cell of the landscape, its normalized distance to the river network |dst| expressed as (Meunier et al., 16 

2008):  17 
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where dst and dtp are its flow distances to the nearest river and the nearest crest respectively. |dst| ranges from 0 for cells 19 

located in the floodplains (i.e., with drainage area above a threshold defined following Montgomery, 2001) to 1 for cells 20 

located on the crests (with a zero drainage area). The thresholds of drainage area we use to define channel heads vary from 21 

0.02 to 0.5 km2 in this study. Crests are mapped using a double criterion of null flow accumulation and a threshold of positive 22 

curvature (Fig. S1b). By definition, cells with |dst|>0.75 stand in the upper quarter of the hillslopes, whereas cells with 23 

|dst|<0.25 are in the lower quarter. A given portion of the landscape is characterized by its probability density function of 24 

occurrence of |dst| values, PDFtopo . In our analysis, we only consider this distribution over the interval (0,1), i.e. we exclude 25 

all cells located on crests and in the floodplains, making PDFtopo independent of variations of floodplain or crest width. 26 

Figure S2.e shows examples of PDFtopo for 3 synthetic catchments with straight, concave and convex hillslopes respectively. 27 

Whatever the hillslope curvature, PDFtopo is a monotonic function with no asymptotic behavior toward zero and can therefore 28 

be used for normalization. Landslide locations along hillslope are characterized by PDFls, the probability density function of 29 

|dst| derived only from cells affected by landslides. Then within portions of the epicentral areas (macrocells) we compute both 30 

PDFtopo and PDFls and define the ratio of probability Rp as: 31 
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In this way, the distribution of locations of the landsliding cells along hillslopes (here expressed in |dst|) is normalized by the 33 

distribution of occurrence of locations in the landscape of the macrocell, effectively removing physical or methodological 34 

biases (Fig. S2.f). If the landscape into the macrocell is uniformly sampled by landsliding, Rp=1 over (0,1). High values of 35 

Rp (>>1) for |dst|>0.75 indicate a significant crest oversampling by landslides. Inversely, low values of Rp express 36 

undersampling. Similarly, large values of Rp for |dst|<0.25 indicate hillslope toe oversampling. In our analysis, we have 37 

defined           |   |      and         |   |      as the mean value of Rp over the upper and the lower quarter of the 38 

hillslope respectively. Figure S1.f shows three plots of Rp computed from a given distribution of landslides (visible in Fig. 39 

S1.e) in a macrocell of varying density of crests, only due to methodological choice in the definition of ridges. In contrast to 40 

non-normalized landslide locations distribution plots (Fig. S1.e), the Rp curves appear almost identical for the three ridge 41 

definitions, demonstrating that Rp is independent of the mapping methods of crests and rivers. 42 

Statistical robustness 43 

The use of Rp to remove potential physical (due to landscape shape) or mapping biases but may still suffer from statistical 44 

bias. For example a macrocell with only one landslide would allow to define Rp, but would intuitively be suspected of not 45 

being representative. More generally, we want to quantify the probability for a given topography and landslides within it that 46 

the observed Rp could differ from one because of statistical fluctuations rather than for physical reasons. In other words we 47 

want to quantify the null hypothesis that Rp>1 (or Rp<1) is due to random fluctuations around PDFtopo and hense insure that   48 

we retain only statistically robust cases (macrocells) of landslide clustering.     49 

If we select a random subset of N cells within a macrocell, that represent less than 10% of the macrocell area, this draw can 50 

be considered as a sampling with replacement (SWR) and their probability to be at a given |dst|i follows a binomial law 51 

B(n=N, p=PDFtopo(|dst|=|dst|i)).  Under these conditions, the distribution PDFrd of a random sampling of cells within a given 52 

macrocell should converge toward PDFtopo for a large number of samples, i.e             (|   | )         (|   | ), 53 

with Ni  the number of cells equals to |   |  in the macrocell.  54 

Then, the Central Limit Theorem (CLT) gives the 90% prediction intervals of PDFrd(n,|dst|i) as 55 
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for a given value PDFtopo(|dst|i)=p and n independent random samples. The convergence towards a normal distribution 57 

centered on p also requires n>30, np>5 and n(1-p)>5 (CLT conditions). By construction, the 90% prediction intervals on 58 

Rp(rd) is defined as : 59 
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entailing            (|   | )   . Figure S2.f shows the 90% interval on Rp in the 3 synthetic catchments mentioned above 61 

for 500 cells randomly drawn in the DEM. Note than as PDFtopo monotonically grows with |dst|, the prediction interval is 62 

generally smaller in the right region of the plot, i.e near the crests. As a result, if Rp, computed from landslide cells in a 63 

macrocell, is contained within IRp, there is more than 10% chances that the difference between Rp and 1 is due to chance 64 

rather than any physical effects, and we will refrain from interpreting this macrocell. In contrast, regions where Rp is found to 65 

be beyond the interval Irp have less than 10% chance to be due to chance and can therefore be interpreted as resulting from 66 

physical processes. Figure S1.f shows an example of Rp computed in a macrocell affected by 500 landsliding cells (red) and 67 

exhibiting crest oversampling. By contrast, Fig. S2.g shows an example of Rp plot computed from a draw of 100 failing cells. 68 

The peak observed at |dst|=0.8 cannot be interpreted as it remains confined within the interval of fluctuation of random draws 69 

of 100 cells.  70 

Note that as the probability ratio Rp is built from the ratio of the normalized distributions of area of given |dst|, n should be the 71 

number of cells affected by landsliding in the macrocell. But this method introduces a bias: as a landslide is composed of 72 

several cells, for any cell i affected by landsliding of given |dst|i, its neighboring cell j has a higher probability of being at 73 

|dst|j≈|dst|i. In this approach, the draws are not independent anymore and the sampling with replacement hypothesis is not met. 74 

We can bypass this problem by defining n as the number of landslides included in the macrocell. Because the number of 75 

landslides per macrocell is much lower than the number of cells composing them, n is usually rather small, resulting in larger 76 

intervals, and more conservative interpretation (as the criterion for statistical significance is stricter).  77 

In the epicentral area, crest-clustering is defined as macrocells where                     while toe-clustering 78 

corresponds to macrocells where                . In contrast, macrocells where                                  79 

or where n is insufficient for the convergence criteria of the Central Limit Theorem (i.e., n<30, np<5 or n(1-p)<5) are not 80 

represented in Fig. 2 and should not be interpreted. Maps containing all Rpcrest values, statistically robust or not, are 81 

represented on Fig. S3 for comparison. 82 

 Figure S4 shows that crest clustering is generally equivalent to toe undersampling and vice versa. As a consequence, regions 83 

of toe-clustering are represented on Fig. 2 by macrocells where                     and where the CLT criteria are valid. 84 

The size of the macrocell is chosen in order to image the clustering with the best resolution as possible within the epicentral 85 

area. There is too many areas not defined if the macrocells are too small and the special resolution is too low if the macrocells 86 

are too big (Fig. S5). The average value of Rpcrest over the whole epicentral area is converging with the macrocell size toward 87 

1.22. 88 

Validity of the metrics 89 



 

 

The method we introduce aims at defining the landslide position independently of the distribution of area with |dst| in the 90 

landscape. This condition is satisfied since         is uncorrelated to both                   (|   |      )  and  91 

                (|   |      )   (Fig. S6). 92 

The patterns presented in Fig. 2 can be biased by the landslide mapping technique. The inventories we use do not distinguish 93 

between landslide deposits and scars. As landslides move downslope, by definition they preferentially affect the lower  parts 94 

of hillslopes. To test the robustness of our results, we have run the same analysis with the data from Taiwan, using the 95 

landslide centroids and estimated landslide scars. To do this, we  determined the length and the width of individual 96 

landslides, and used the finding of Domej et al. (2017) that earthquake-triggered landslides scars have a stable width to length 97 

ratio of Ar=0.6. The length of a landslide is equal to the difference between its maximum and minimum distance to river. The 98 

width is calculated using the landslide length and area, assuming a rectangular shape. Then, the lower part of the landslide 99 

polygon is progressively removed until Ar=0.6. The Northridge and Wenchuan inventories contain too many instances of 100 

landslide amalgamation to perform a systematic, accurate scar extraction. For the Taiwanese case, the values of Rpcrest 101 

obtained from centroids and scars are plotted against the values obtained using the whole landslides in Fig. S7. The results 102 

from these three methods have a nearly 1:1 correlation. Therefore, the regional pattern of Rpcrest seems to be preserved, 103 

irrespective of whether we consider whole landslides or landslide scars. 104 

Extraction of topographic features 105 

In order to extract geometric features of the ridges, we simplify them considering they have triangular sections (Fig. S8).  106 

The slope height hri, is defined as:  107 

            (  ) ,    (5) 108 

where Hri is the elevation of the crest cell ri and Hj is the elevation of a river cell j distant of dstri from ri. The half-base width 109 

of a hill for the section Si through ri, Lri , is calculated as: 110 

    
   √             , (6)  111 

The shape ratio at a given ridge point Sri is defined as the ratio of ridge relief hri to the half-width Lri.  112 

Dependence on the dataset 113 

Three landslide databases are available for the Wenchuan earthquake. The catalog produced by Xu et al, 2014 has a higher 114 

number of landslides and covers a larger area (Fig. S10 and Table 1). Furthermore, we notice that the number of landslides 115 

tends to converge to a maximum value for landslide densities above 10-2 in the Parker et al. 2015, and Gorum et al. 2011 116 

inventories, while it still increases in the one from Xu et al. 2014  (Fig. S10).  This difference is likely caused by landslide 117 

amalgations in the Parker et al. 2015, and Gorum et al. 2011 datasets (Marc and Hovius, 2015).  118 



 

 

Figure S11 shows the Rpcrest maps obtained using these three inventories. The one resulting from the Xu et al, 2014 covers a 119 

larger area than the maps obtained from the two others catalogs. As a consequence of these two observations, we choose to 120 

use for our analysis the catalog produced by Xu et al. 2014.  121 

Topographic amplification 122 

We notice that in certain areas, topographic ground-motion amplification might explain the landslides crest-clustering. The 123 

topographic amplification can be approach by the smoothed curvature or the relative elevation (Maufroy et al, 2014, Rai et 124 

al, 2017, 2016).  125 

Both of these parameters are computed from a 30m digital elevation model (DEM) resolution. The curvature is the second 126 

derivative of the topographic elevation, it is calculated using ArcGIS software (ESRI, 2011).  The smoothed curvature matrix 127 

(Cs) is calculated as (Maufroy et al, 2015):   128 
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Where the curvature matrix C is convolved by a n x n unit matrix. The characteristic smoothing length is defined as LS = 129 

2.n.h where h is the resolution of the DEM in meter.  The best correlation between smoothed curvature and amplification has 130 

been found for LS equal to the half of the seismic wavelength.  131 

The relative elevation (topographic position index) at a DEM cell i (Hdi) is calculated as: 132 

Hdi = hi - Mhd 133 

where hi is the elevation of the cell i and Mhd is the mean of the topographic elevation of the cells distant from d/2 of the cell 134 

i.  135 

Both methods show that finer features are visible at smaller scales Ls or d. As Cs and Hd are positively correlated (Fig. S17.b 136 

and Rai et al, 2015) we choose here to represent only the smoothed curvature as an example.  137 

The distribution of the topographic half width (Fig. S17.c) in the area surrounded in white (Fig. S17.a) gives us an idea 138 

wavelength ranges at which ridges in that area may resonate and amplify ground-motion. Following Paolucci 2002, the 139 

resonance of those ridges should occur theoretically for a median wavelength slightly higher than 800m.  140 

We compare the distribution of smoothed curvature of the upper slopes (Cs) of the topography to the Cs where the landslides 141 

are different scales (Ls=200m, Ls = 300m and Ls=500m) that would correspond to possible wavelengths at which 142 

topographic resonance could occurs (Fig. S17.e and S17.d). In the particular areas surrounded in white, the landslides seems 143 

to oversample areas with high smoothed curvature. Hence, topographic amplification may be an explanation for slope failures 144 

in that areas as the expected ground-motion should be stronger on high Cs (or Hd). 145 



 

 

Figures  146 

 147 

Figure S1: a-c Network of crests (white) and rivers (blue) in a 25km
2
 portion of landscape in Japan. Channel heads 148 

are evaluated after Montgomery, 2001, using a threshold of 0.07 km
2
 of drainage area. Crests are generated  with 149 

three different methods: Crest cells are mapped as a) cells of null flow accumulation (NFA) b) cells of NFA and above 150 

a positive curvature threshold (PCT) (used in this study) and c) cells of NFA, PCT and separating identified 151 

watershed (including a first order river). d- Map of the normalized distance to stream |dst| in the area for the 152 

landscape b. e- Plots of PDFtopo and PDFls computed in the three landscapes. Although PDFls is derived from the same 153 

set of landslides (mapped in red polygons), its distribution with |dst| co-varies with the distribution of the topography 154 



 

 

and is biased by the decreasing density of crests (from a to c). f) After normalization, the plots of Rp in the three 155 

landscapes are almost identical. 156 

 157 

Figure S2: e) Plots of the Probability Density Function PDFtopo computed in 3 synthetic catchments of varying 158 

hillslope convexity (a-c) and in a pair of real catchments in Taiwan (d). f) 90% Prediction interval Irp in the 4 159 

catchments associated with a random draw of 500 cells (black). Rp in a macrocell of the taiwanese foothills affected by 160 

500 landslide cells (red). Two cases Rp plots in a macrocell of the taiwanese foothills affected by 500 (red) and 100 161 

(black) landslide cells respectively. The peak observed in the second case is not interpreted as a cluster since it 162 

remains confined within the interval of fluctuation of random draws of 100 cells. 163 



 

 

 

Figure S3: Rpcrest values in the a. Wenchuan, b. Northridge and c. Chi-Chi epicentral areas. The 3 maps are at the same 164 

scale. All macrocells, including statistically meaningless ones, are represented. Main faults are represented by red lines 165 

and epicenters by red stars. WF: wenchuan fault; BF: Beichuan fault; GF Guanxian fault. b. SSF: Santa Susanna fault; SGF: 166 

San Gabriel fault .c. CHF Chelungpu thrust fault; SKF: Shuilikeng fault; LF: Lishan fault. 167 

 168 

Figure S4: Values of RPcrest-1 plotted along Values of RPtoe-1 in every macrocells of the 3 inventories. The inverse 169 

correlation shows the absence of double clustering.  170 



 

 

 171 

Figure S5: Rpcrest  map in the Wenchuan epicentral area with varying macrocell size. The black stars indicate the 172 

epicenter of the 2008 Wenchuan earthquake. Note that the clustering patterns remain similar. The mean value of 173 

Rpcrest over the whole epicentral area is 1.15, 1.17, and 1.23 (see table 2 for the other cases).  174 

 175 

Table 2: Mean value of Rpcrest with varying macrocell size. 176 

Macrocell 

size 
1.3 km

2 7.8 km
2 71 km

2 282 km
2 

Chi-Chi 

Earthquake 
0.82 0.87 0.86 0.84 

Typhoon 

Morakot  
0.37 0.5 0.54 0.51 

Wenchuan 

Earthquake 
1.15 1.17  1.23 1.22 

Northridge 

Earthquake 
1.68 1.61 1.47 1.6 
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1.3 km2 7.8 km2 71 km2 
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 182 

Figure S6: RPcrest plotted along a. Ptopocrest and b. Ptopocrest/Ptopotoe and c. landslide density for the three study areas. 183 

The plots a. and b. show no correlation, insuring that crest clustering is independent of the amount of landscape standing 184 

along crests/rivers in the landscape. The Rpcrest is converging toward one for high density of landslides, hense there is not 185 

macrocells with false clustering due to the landslide concentration.  186 

 187 

 188 

 189 

Figure S7: Comparison of the crest clustering values (RPcrest) in Chi-Chi obtained using the total landslide surface 190 

with the one obtained using the landslide centroid (light blue triangles), and the landslide scar (dark blue triangles) 191 

considering Domej et al, 2017 observations. A 1:1 linear relation is represented by the black dotted line. A quasi 1:1 192 

relation is observed between the methods.  193 
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 195 

Figure S8: Extraction of geometric topographic features on each ridge point. The section of the ridge through the ridge 196 

point ri (Si) is simplified by a triangular shape (gray).  hri is the slope height, dstri is the distance to the stream and L2ri and 197 

L1ri are the half base widths measured at a given ridge point ri. The shape ratio S1ri is defined as the ratio of hri to L1ri .  198 
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 201 

Figure S9: Lithological unit maps superimposed by Rpcrest maps in the a. Wenchuan, b. Northridge, c. Chi-Chi 202 

epicentral areas. The main faults are represented by red lines (a. WF: Wenchuan fault; BF: Beichuan fault; GF 203 

Guanxian fault. b. SSF: Santa Susanna fault; SGF: San Gabriel fault .c. CHF Chelungpu thrust fault; SKF: 204 

Shuilikeng fault; LF: Lishan fault). The upper slope clustering 90% maps are represented in transparency (Rpcrest>1: 205 

crest-clustering, Rpcrest<1: toe-clustering). 206 



 

 

 207 

Figure S10: Number of individual landslides plotted with landslide density (ratio of surface covered) computed in each 208 

macrocell using the 3 landslide databases of the Wenchuan case: Gorum et al., 2011; Parker et al., 2015; Xu et al., 2014. 209 

The more precise is the catalog, the more small landslides there are. Amalgation and over mapping are observed in 210 

Parker et al., 2015 and Gorum et al., 2011 inventories. 211 

 212 

Figure S11: Rpcrest maps obtained using the a. Parker et al. 2015, b. Gorum et al. 2011 and c. Xu et al. 2014 landslide 213 

databases. The Wenchuan earthquake epicenter is represented by the black star. The Xu et al, 2014 one covers a larger 214 

area and has more statistically valid macrocells than obtained with the two others. 215 
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 217 

Figure S12: Rpcrest, PGV and PSA distributions plotted in a. lithological groups and b. Rpcrest map in the Chi-Chi epicentral 218 

area. TC: terrace and conglomerates SS: sandstones and shales SQA: shaly sandstones quartzite and argillites AS: 219 

argillites and slates. Both PGV and PSA 1s decrease with rock strength. Consequently, it is uneasy to dissociate ground 220 

motion control from lithological control on the reduction of Rpcrest toward the east.  221 

 222 

Figure S13: Rpcrest as a function of seismic features: a. Peak Ground Acceleration (PGA) (%g), b. Pseudo Spectral 223 

Acceleration at 3s (PSA 3s) (%g) for the Wenchuan, Northridge and Chi-Chi epicentral areas. Regional seismic parameters 224 

do not seem to explain landslide position along hillslope. 225 



 

 

226 
Figure S14: Snapshots of the landslide maps in a. the Sanjiang klippe and the b. foothills. The locations of a. and b. are 227 

reported in Fig. 7a.  In the lower unit of the central zone and the Sanjiang klippe the landslides cluster around the crests. 228 

In the upper unit of the central zone the landslides cluster downslope along the Beichuan Fault. BF: Beichuan fault; GF 229 

Guanxian Fault.  230 

 231 
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Figure S15: Cross sections of the South of the Tangwanzhai nappe (I-J) and of the Songjiang Klippe (K-L). Cross section 233 

locations are reported in Fig. 8a. BF: Beichuan fault; GF Guanxian Fault (after Robert 2011). 234 

 235 

Figure S16: Northridge earthquake-induced landslides in the Northern flank of the Santa Susana Mountain. Landslides 236 

are represented by red polygons. Most of the landslides are concentrated on the top of the scarp slopes in the north the 237 

Santa Susana Mountain 238 

   239 

 240 

Figure S17. Variation of ridge geometric features in areas of crest clustering that could be related to topographic 241 

ground motion amplification. A. Location of areas where crest clustering could be explained by topographic 242 

Lower Unit 



 

 

amplification. B. Smoothed curvature and relative elevation are positively correlated. C. Normalized distribution of 243 

ridge half-base width in the area surrounded by white line in a. d. Snapshot of curvature smoothed at a scale L=400 244 

superimposed by the landslides polygons (black lines). Most of the landslides seem to occur in area where CS400 is the 245 

highest. E. Probability density function (Pdf) of smoothed curvature at different scale (200m, 300m and 500m) of the 246 

upper slope (|dst|>0.75) of all the topography and only the smoothed curvature pdf of the upper slope cells covered by 247 

landslides. For each scale, the pdfs have been normalized by the maximum of the pdf of the landslides. The landslides 248 

tend to be located on area with higher CS.   249 

 250 
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