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S1. Additional Data Dimensions from Point Clouds

The results presented in the main manuscript are similar to other studies segmenting grains from 2D imagery (e.g., Detert
and Weitbrecht, 2012). This ignores the potential to exploit the third height dimension of the data from irregularly spaced
StM-MVS (or lidar) point clouds and associated DEMs. Many authors have already begun to look at patch-scale variance
or roughness (e.g., Rychkov et al., 2012; Brasington et al., 2012) from point clouds on gravel-bed rivers to determine bulk
characteristics, but this stops short of object detection and segmentation. Here, we briefly describe some of our own efforts to
incorporate this additional information into PebbleCounts.

Our simplest approach was including the gridded DEM information, resampled to the same resolution as the orthomosaic.
We inverted the elevation raster and flood-filled from the lowest points (tallest grains) using watershed approaches, similar to
lidar tree-detection algorithms (e.g., Chen et al., 2006; Alonzo et al., 2015). For large, prominent grains with semi-spherical
shapes, the flooded area was found to linearly increase until reaching the grain boundary, at which point the rate of area change
jumped. We explored this break point as a potential segmentation tool for larger grains, but found that in the complex natural
setting the shape of most grains is far from spherical, and furthermore, overlapping grains led to inconsistent behavior in the
area breaks.

In an additional approach, we calculated both roughness and curvature at a variety of scales (5, 10, 50, 100 mm) directly
from the point cloud using the open-source CloudCompare software (CloudCompare, 2018). This information was then gridded
into a raster of the same resolution of the orthomosaic. While roughness could at times identify the smoother sand patches, it
was difficult to discern between a sand patch and flat rock, and a color threshold on the orthoimagery was more successful.
Curvature showed some spikes at grain boundaries, with the potential to aid in edge detection, however, we found that curvature
was also high on intra-granular features.

In general, this analysis was complicated by vertical noise (scattering around a mean value) inherent to the SfM-MVS
technique in the generation of dense point cloud data. In the field, for ~9 near-nadir photos taken from a height of ~4.5 m, the
vertical standard deviation of points on a detrended flat surface (one of our coded targets) was found to be 1.7 mm for 13,014
points. On the other hand, in the perfect lab setting with 16 nadir+oblique photos from ~1.5 m, the detrended flat carpet around
the pebbles achieved a standard deviation of 0.2 mm (33,371 points), similar to other STM-MVS studies using large numbers
of carefully collected images (e.g., Cullen et al., 2018; Verma and Bourke, 2019). These standard deviations from detrended
flat surfaces represent a best-case scenario, whereas, in our field setting, the vertical uncertainty on the complex, overlapping
pebbles is likely higher. Such vertical noise is absent from the orthomosaics and limits the applicability of point clouds at these
scales.

Ultimately, as the point cloud actually has a lower resolution (since it is based only on matched points) and more verti-
cal noise than the orthomosaic (which exploits the full camera resolution), the imagery alone provided more detail. This is
particularly important around grain edges needed for segmentation, which are not captured in nadir imagery alone, as shown
in Figure S1. The lab setting resulted in point clouds with sufficient density and precision to identify individual grains with
point-cloud processing tools. Thus, achieving higher quality SIM-MVS point clouds is possible, but only through more intense
data collection during fieldwork.

Alternatively, lidar point clouds with distance measurements based on phase shifts have a lower standard deviation of ~1
mm in multiple settings and distances (up to ~300 m) and could allow more precise delineation using roughness and curvature
calculations directly on the point cloud, however, such devices remain costly. Additionally, the development of affordable
hyperspectral cameras with additional wavelengths will help in image segmentation in the spectral domain. To conclude, the
potential for additional data dimension integration into pebble counting may be possible using higher dimensional object
detection schemes, but, for the time-being, the orthoimagery alone provides satisfying results.
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Figure S1. (a) Slope distribution in field (near-nadir) and experimental (nadir+oblique) point cloud clips. The point cloud slope was calculated
in CloudCompare (CloudCompare, 2018) by first calculating the normals at each point using the 6 nearest neighbors and then extracting the
dip of each normal. (b) Map-view of point density normalized by the maximum for the 9 near-nadir field images and (c) the same for the
16 nadir+oblique experimental images. Point density was calculated as the number of points in a radius of 3 mm. The clips were from a
0.2x0.2 m area, visually selected to have similar grain sizes and numbers of grains, shown in the inset images in (b) and (c). The average
point density for the 16 nadir+oblique photo setting was 59 points/cm?, whereas, in the field using 9 near-nadir photos the density was 17
points/cm?. Note the higher point density on grain edges in (c) compared to (b), which are important for segmenting grains directly on the
point cloud.



S2. Command-line Variables and Example Screenshots for PebbleCounts

Table S1 shows the command-line variables for PebbleCounts (KMS approach) and Table S2 shows the command-line variables
for PebbleCountsAuto (AIF approach). Examples of the command-line interface and manual clicking steps are shown in Figure
S2 and Figure S3, respectively.



Table S1. Command-line variable flags in PebbleCounts and their meaning. The default values are effective for most images.

Variable Flag Meaning (units) Default Value(s) and Suggested Range
im Image to run, including path to folder No default
ortho Georeferenced orthoimagery flag No default, ‘y’ for orthoimagery, ‘n’ for nadir

input_resolution

Input resolution if not orthoimage (mm)

No default, calculate from eq. (3)

subset

Interactively subset image

Default no (‘n’)

sand_mask*

Name, including path, to a sand mask if one al-
ready exists

No default

otsu_threshold*

Percentage of Otsu value to threshold shadows
by (percentage of 100)

No default, suggested value of 50

maxGS*

Expected maximum a-axis grain size (m)

Default 0.3

cutoff*

Minimum b-axis length to be counted (pixels)

Default 20, can be raised

min_sz_factors*

Factors to multiply cutoff at each scale, used to
cleanup masks for easier clicking

Default [50, 5, 1] for three scales (large to small) for
~1 mm/pixel imagery, double for < 0.8 mm/pixel

win_sz_factors*

Factors to multiply maxGS by at each scale

Default [10, 3, 2] for three scales (large to small), can
be changed +£0.5-1.5 to get more or less windows

improvement_ths*

Improvement threshold values that tell k-means
when to halt (fraction of 1)

Default [0.01, 0.1, 0.1] for three scales (large to
small), can be varied from 0.01-0.2

coordinate_scales™

Fraction to scale x,y coordinates (fraction of 1)

Default [0.5, 0.5, 0.5] for three scales (large to
small), can be varied from 0.3-0.7

overlaps*

Fraction of overlap between windows (fraction
of 1)

Default [0.5, 0.3, 0.1] for three scales (large to
small), can be varied from 0-0.5 at each scale

first_nl_denoise*

Strength of first non-local means denoising

Default 5, can be varied +1

nl_means_chroma_filts*

Strength of windowed non-local means denois-
ing

Default [3, 2, 1] for three scales (large to small), can
be varied +1

bilat_filt_szs*

Size of bilateral filtering windows (pixels)

Default [9, 5, 3] for three scales (large to small), can
be varied from 3-9

tophat_th* Upper percentile threshold to take from top-hat | Default 0.9, can be varied from 0.8-0.95
filter for edge detection (fraction of 1)
sobel_th* Upper percentile threshold to take from sobel fil- | Default 0.9, can be varied from 0.8-0.95
ter for edge detection (fraction of 1)
canny_sig* Canny filtering sigma value for edge detection Default 2, can be varied from 1-2
resize Value to resize windows by (fraction of 1) Default 0.8, can be varied from 0.5-0.99 if you want

a smaller (0.5) or larger (0.99) pop-up window

*Influence on results




Table S2. Command-line variable flags in PebbleCountsAuto and their meaning. The default values are effective for most images.

Variable Flag Meaning (units) Default Value(s) and Suggested Range
im Image to run, including path to folder No default
ortho Georeferenced orthoimagery flag No default, ‘y’ for orthoimagery, ‘n’ for nadir

input_resolution

Input resolution if not orthoimage (mm)

No default, calculate from eq. (3)

subset

Interactively subset image

Default no (‘n’)

sand_mask*

Name, including path, to a sand mask if one al-
ready exists

No default

otsu_threshold*

Percentage of Otsu value to threshold shadows
by (percentage of 100)

No default, suggested value of 50

cutoff*

Minimum b-axis length to be counted (pixels)

Default 20, can be raised

percent_overlap*

Maximum allowable overalp between neighbor-
ing ellipses for filtering suspect grains (percent-
age of 100)

Default 15, can be varied from 5-30

misfit_threshold*

Maximum allowable misfit between ellipse and
grain mask for filtering suspect grains (percent-
age of 100)

Default 30, can be varied from 10-50

min_size_threshold*

Minimum area of grain, used to clean the mask
(pixels)

Default 10 for ~1 mm/pixel imagery, 40 for < 0.8
mm/pixel

first_nl_denoise*

Strength of first non-local means denoising

Default 5, can be varied +1

tophat_th* Upper percentile threshold to take from top-hat | Default 0.9, can be varied from 0.8-0.95
filter for edge detection (fraction of 1)
sobel_th* Upper percentile threshold to take from sobel fil- | Default 0.9, can be varied from 0.8-0.95
ter for edge detection (fraction of 1)
canny_sig* Canny filtering sigma value for edge detection Default 2, can be varied from 1-2
resize Value to resize windows by (fraction of 1) Default 0.8, can be varied from 0.5-0.99 if you want

a smaller (0.5) or larger (0.99) pop-up window

*Influence on results
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Figure S2. Example of command-line and pop-up interface for PebbleCounts. (a) Interactive Otsu thresholding using percentage of Otsu
value and yes (‘y’) or no (‘n’) confirmation. (b) Interactive color masking by yes (‘y’) or no (‘n’) and resulting color mask after selection.

(c) K-means clustering and pop-up window for pebble selection by left clicking, with black arrows measured in final output and red arrows
ignored after right-click removal (see Fig. S3).
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Figure S3. Clicking tutorial continued from Figure S2c. Following k-means clustering at each scale a mask overlaid on the original image is
presented (a), and grains are selected by a left click anywhere in the segmented area, resulting in a black circle at the click location. When
clicking is finished the mask is closed by pressing ‘q’. To view the original unmasked image the user may press ‘r’ (b). Using this switching
the user can see which grains are poorly delineated and remove the last click with a right click on the mouse (c). The original black circle
selection turns to red to signify this grain is off and will not be measured in the final output (d).
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S3. Resampling and Parameter Selection in AIF Approach

Figure S4 demonstrates the percentage of grains with a match found in the AIF approach when increasing resampling from a
factor of 0.6-2.6 by 0.1 steps using Lanczos resampling (Lanczos, 1950). As the resampling factor increases, there is progres-
sive reduction in the number of found grains after filtering, therefore we selected the original resolution (resampling factor of
one). Figure S5 and Figure S6 demonstrate two cases where the resampling slightly improved the resulting grain-size distribu-
tion. Both images were of relatively low quality with significant blurring and the presence of many weak edges between grains
of similar color.

We selected a maximum percent misfit between the ellipse and grain of 30% as the 90" percentile of misfits for the KMS
approach was 30%. Furthermore, we allowed a maximum overlap between neighboring ellipses of 15%, visually selected to
minimize overlapping grain measurement and over-segmentation of discrete grains. For the higher resolution imagery it was
necessary to use a lower sobel and top-hat threshold (0.85), since we consider all the edges at once in the AIF approach, rather
than in a windowed subset as in the KMS approach, and many edges are not found when using the 0.9 threshold given the
increased number of pixels under consideration.
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Figure S4. Matching grains found in each filtered mask versus the resampling factor (where 1 is the original image) for the ~1.16 mm/pixel
resolution images. Matches are defined as an AIF grain within 5 pixels of the hand-clicked line or the KMS grain centroid and with a 1 cm
maximum b-axis difference between the AIF grain and the match.
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Figure S5. Slight improvement (increase in p and decrease in Agjy) in result using a 1.6-times resampling factor prior to running the AIF
algorithm for the difficult (somewhat blurry, weak edges) S10 orthoimage.
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Figure S6. Slight improvement (increase in p and decrease in Agjy) in result using a 1.6-times resampling factor prior to running the AIF
algorithm for the difficult (very blurry, weak edges) S34 orthoimage.
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S4. Agisoft Orthomosaic Generation

Agisoft (Agisoft, 2018) processing was carried out in the following steps for the indoor handheld imagery (with field-gathered
mast imagery differences in parentheses following the step):

1.

Image quality detection and the exclusion of photos with quality metric < 0.7. This step analyzes pixel contrast to
estimate sharpness with values ranging from O/blurred to 1/sharp. We found 0.7 to be a sufficient lower cutoff upon
visual inspection of results.

. Detection of 12-bit coded targets in the remaining photos, with two targets placed at each of the four corners of the area

and ensuring that the diameter of the printed targets’ center circle was limited to 10-30 pixels in image resolution for
successful automated detection.

. Input of scale for the orthomosaic output, provided by the distances between the targets at each corner, resulting in four

distance measurements, with 0.5 mm accuracy using a ruler with cm and mm demarcations. (For the field images: The
scale was provided by the XYZ coded target locations in UTM zone 19S, WGS84 ellipsoidal datum.)

Photo alignment at high quality with a 40,000 key-point and 2000 tie-point limit.

Dense cloud generation from the aligned photos at the medium output and with moderate depth filtering. Given the
high quality of the photos more aggressive options did not improve results. (For the field images: Given the increased
complexity of the setting and imperfect photo collection, the dense point cloud was generated at high quality with
aggressive depth filtering.)

. DEM building from the dense cloud with default settings in a local coordinate system. (For the field images: The

DEMs and orthomosaics were also output in UTM zone 19S projections, providing undistorted pixels with resolution in
m/pixel.)

. Generation of an orthomosaic using the DEM for orthorectification at the default settings.

Output of the orthomosaic to a GeoTiff file with resolution provided in m/pixel.

10



S5. KMS and AIF Results Separated by Site
Here we show all of the results (following 20-pixel truncation) for each of the 12 sites in Figure S7. These results are aggregated

in curves shown in the main manuscript Figure 11 and a comparison of the individual percentiles of interest is shown in the
main manuscript Figure 12.
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Figure S7. Comparison of 20-pixel truncated grain-size distributions between hand-clicked control (black line), KMS PebbleCounts (gray,
dashed line), and AIF Pebble CountsAuto (red, dotted line) for the 12 x ~1.16 mm/pixel control sites. In corresponding colors are the p-value
results of a KS-test and the A4y approximate integral between the curves for each approach versus the control data. The legend indicates the
number of grains (n) making up each curve. See Figure 6b in the main manuscript for sites.

12



S6. Misidentification in the AIF Approach

Figure S8 demonstrates remaining issues with the AIF approach in a few map-view examples. On a grain-by-grain basis, there
are many inaccuracies falling into three main categories: over-segmentation of grains with internal edges and the selection
of each segment as a separate grain, under-segmentation and merging of neighboring grains that have weak edges sometimes
caused by image blur, and misidentification of non-grain objects or clusters of small grains. It is clear from this analysis that
caution must be used when interpreting AIF results, particularly in complex or blurry images.

13
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Figure S8. Resulting delineated grains using the AIF Pebble CountsAuto function (top row) versus the same area from the KMS PebbleCounts
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