
Supplement of Earth Surf. Dynam., 7, 87–95, 2019
https://doi.org/10.5194/esurf-7-87-2019-supplement
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Supplement of

Short communication: The Topographic Analysis Kit (TAK) for
TopoToolbox
Adam M. Forte and Kelin X. Whipple

Correspondence to: Adam M. Forte (aforte8@lsu.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Topographic Analysis Kit (TAK) Manual v1.0

Adam M. Forte1 and Kelin X. Whipple2

1Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA
2School of Earth and Space Exploration, Arizona State University, Tempe, AZ

TAK Release Version 1.0.2

Contents
1 Attribution 4

2 Download and Install 4
2.1 Matlab Functions . 4
2.2 Compiled Functions . 4

3 Error Reporting 6

4 Preparing Datasets for TAK 6

5 Workflow 8

6 Matlab and TopoToolbox Crash Course 9
6.1 Matlab Data Types . 9

6.1.1 Arrays . 10
6.1.2 Cell Arrays . 10
6.1.3 Tables . 11
6.1.4 Structures . 12

6.2 Using Matlab Functions . 13
6.3 Loading and Outputting Data . 15
6.4 TopoToolbox Classes . 16

6.4.1 GRIDobj . 16
6.4.2 FLOWobj . 16
6.4.3 STREAMobj . 17
6.4.4 SWATHobj . 17

7 Initial Data Processing 17
7.1 CheckTAKDependencies . 17
7.2 MakeStreams . 17
7.3 ConditionDEM . 20
7.4 RemoveFlats . 21
7.5 FindThreshold . 21

8 Stream Selection and Projection 22
8.1 SegmentPicker . 22
8.2 SegmentPlotter . 22
8.3 SegmentProjector . 22

9 Channel Steepness and χ Maps 24
9.1 KsnChiBatch . 24
9.2 KsnProfiler . 27

9.2.1 Stream Selection . 27
9.2.2 Dealing with Stream Junctions . 28
9.2.3 Defining the Minimum Threshold Area . 29
9.2.4 Restarting and Recovering from Errors . 30
9.2.5 General Use . 31

1

9.2.6 Outputs . 33
9.3 ClassifyKnicks . 34

10 Basin Selection 34
10.1 BasinPicker . 34

11 Basin Average Maps and Plots 35
11.1 ProcessRiverBasins . 35

11.1.1 Basic Operation . 35
11.1.2 Extra Grids . 37
11.1.3 Categorical Grids . 37
11.1.4 Understanding Outputs . 38

11.2 CatPoly2GRIDobj . 40
11.3 SubDivideBigBasins . 40
11.4 FindBasinKnicks . 42
11.5 PlotIndividualBasins . 43
11.6 Basin2Shape . 43
11.7 Basin2Raster . 45
11.8 CompileBasinStats . 45

11.8.1 Recalculating Means Based on Categories . 45
11.8.2 Populating Categories . 46
11.8.3 Means by Category . 46

11.9 BasinStatsPlots . 47
11.9.1 Basic Options . 47
11.9.2 Mean Gradient vs Mean ksn - ’grd ksn’ . 48
11.9.3 Mean Gradient vs Mean Relief - ’grd rlf’ . 50
11.9.4 Mean Relief vs Mean ksn - ’rlf ksn’ . 51
11.9.5 Comparing Filtered and Non-Filtered Means - ’compare filtered’ 51
11.9.6 Histograms of Category Means - ’category mean hist’ . 52
11.9.7 Comparisons of Category Means - ’category mean compare’ 53
11.9.8 Basin Hypsometry - ’stacked hypsometry’ . 54
11.9.9 Comparing Distribution of Basin Means vs All Nodes -’compare mean and dist’ 55
11.9.10 Grid of Bi-Plots of Means - ’scatterplot matrix’ . 56
11.9.11 Generic X-Y plot - ’xy’ . 57

12 Swath Profiles with Projected Data 57
12.1 MakeTopoSwath . 58
12.2 MakeCombinedSwath . 60
12.3 ProjectOntoSwath . 62

13 Miscellaneous 62
13.1 ksncolor . 62
13.2 PlotKsn . 62
13.3 DippingBedFinder . 62
13.4 Mat2Arc . 63

2

A Headers for Compiled Functions 64
A.1 Basin2Raster . 64
A.2 Basin2Shape . 65
A.3 BasinPicker . 66
A.4 BasinStatsPlots . 68
A.5 ClassifyKnicks . 70
A.6 CompileBasinStats . 71
A.7 ConditionDEM . 73
A.8 DippingBedFinder . 75
A.9 FindBasinKnicks . 76
A.10 FindThreshold . 77
A.11 KsnChiBatch . 77
A.12 KsnProfiler . 79
A.13 MakeCombinedSwath . 83
A.14 MakeStreams . 85
A.15 MakeTopoSwath . 86
A.16 Mat2Arc . 87
A.17 PlotIndividualBasins . 88
A.18 PlotKsn . 88
A.19 PrepareAddGrids . 89
A.20 PrepareCatAddGrids . 89
A.21 ProcessRiverBasins . 90
A.22 RemoveFlats . 91
A.23 SegmentPicker . 92
A.24 SegmentPlotter . 94
A.25 SegmentProjector . 95
A.26 SubDivideBigBasins . 96

3

1 Attribution
If you use or modify TAK functions for use in a publication, please cite the main TAK publication:

• Adam M. Forte and Kelin X. Whipple. Short Communication: The Topographic Analysis Kit (TAK) for Topo-
Toolbox. Earth Surface Dynamics, 2019. doi: 10.5194/esurf-2018-57

Also, please cite the original TopoToolbox publications as TAK could not function without TopoToolbox:

• Wolfgang Schwanghart and Nikolaus J. Kuhn. TopoToolbox: A set of Matlab functions for topographic analysis.
Environmental Modelling and Software, 25(6):770–781, 2010. ISSN 13648152. doi: 10.1016/j.envsoft.2009.12.
002

• Wolfgang Schwanghart and Dirk Scherler. Short Communication: TopoToolbox 2 - MATLAB based software
for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2:1–7, 2014. doi:
10.5194/esurf-2-1-2014

2 Download and Install

2.1 Matlab Functions
The TAK functions were written (and periodically updated) to work with the most up to date version of TopoToolbox,

this can be downloaded from Wolfgang Schwanghart’s GitHub page. The TAK functions are available from Adam
Forte’s GitHub page. Both the TopoToolbox and TAK functions (and all of their subfolders) must be on your matlab
path for the functions to work properly.

The easiest way to use TAK is to just download a copy of the GitHub repository to your computer and work from
that. The disadvantage is that to update you need to delete the old version and replace with a complete download of the
new version (even if just a single function was updated). To avoid this, a suggested strategy for more advanced users for
both the TopoToolbox and TAK functions is to ’fork’ copies of these repositories and use these forked versions on your
local machine. Periodically, you can sync your fork with the master of the original repository to merge in any changes
that have been made to either TopoToolbox or TAK. If you are uncomfortable with the command line, this can also be
done on the web version of GitHub by ’comparing’ branches (for updating TopoToolbox, make sure the ’head fork’ is
wschwanghart/topotoolbox and the ’base fork’ is your forked version of TopoToolbox, follow a similar procedure for
TAK), click on the ’Create pull request’ button, give the pull request a name in the ’Title’ box (the new ’Create pull
request’ button will be grayed out until you provide a name) click ’Create pull request’, click ’Merge pull request’,
and then finally click ’Confirm merge’. Your forked version will now be up to date with the master of TopoToolbox or
TAK.

2.2 Compiled Functions
In attempt to make these functions accessible to a wider range of users, we have also produced compiled ver-

sions of these functions that do not require Matlab to run. Within the main repository, there is a folder called ’Com-
piled Versions’ that contains three folders associated with the compiled versions, ’cmpMfiles’, ’Windows’, and ’Ma-
cOSx’. The ’cmpMfiles’ folder contains modified versions of all the matlab functions that were compiled, for reference
(you will likely need to look at these to understand the inputs to the compiled functions). The compiled versions all
have a ’cmp’ prefix on them to differentiate them from the main functions (these are all functional in Matlab on their

4

https://github.com/wschwanghart/topotoolbox
https://github.com/amforte/Topographic-Analysis-Kit
https://help.github.com/articles/syncing-a-fork/

own, though it’s not generally recommended that you use these in Matlab over their main counterparts), but as de-
scribed below, when calling a function from the command line of the compiled TAK, you use the name of the desired
function without the ’cmp’ prefix. The master function is ’TAK.m’ (for which there is not a comparable function in
the non-compiled versions). This master function will not successfully run in Matlab as it is designed to translate
inputs from the command line to the other functions in a way that works only when used in a deployed (i.e. compiled)
mode. The ’Windows’ and ’MacOSX’ folders each contain an executable named InstallTAKandMatlabRuntime (with
either an .exe or .app extension depending on the OS). Double clicking this executable will install the Matlab runtime
environment that is necessary to run compiled matlab code and the executable for TAK. To keep the size of this install
file manageable, this executable needs to access the internet to download the Matlab Runtime. Additionally, you will
likely need to have administrator privileges on your local machine in order to successfully install Matlab Runtime. If
you have previously installed the Matlab runtime environment, versions of just the TAK executable can be found in the
’Files Only’ folder.

Compiled TAK functions are designed to be run from the command line (i.e. cmd prompt on Windows, terminal
on Mac OS X). This means that after you have installed the compiled TAK functions, double clicking on the
TAK.exe file or a shortcut to it will result in an error indicating that it is missing required arguments. You
must run it from the command line as described below! The procedure for running the compiled TAK functions
differs between Windows and Mac OS X and is described in the readme that appears along with the executables. After
installing Matlab Runtime, on Windows, open a command prompt and navigate to the location of the TAK executable
and then simply call TAK:

TAK arguments

The procedure is a little more complicated on Mac OS X, here there is a shell script to run the application but it requires
that you specify the location of the Matlab Runtime environment. For example, after installing Matlab Runtime and
navigating to the location of the TAK executable and this shell script (with a .sh file extension) in a terminal window:

. / run TAK . sh / l o c a t i o n / o f / runt ime arguments

As described in the readme associated with the Mac version, you can avoid having to give the location of the Matlab
Runtime environment every time you run TAK by permanently setting the DYLD LIBRARY PATH location in your
path.

Compiled TAK expects that the first argument (after whatever is required to call the main TAK function depending
on the operating system you are using) will be the name of the function you wish to use and the second argument will
be the full path (it really does need to be the full path) to your working directory. TAK expects that all input data
that you reference are stored in this working directory and it will store all output data in this working directory (or
folders created within this working directory). Generally, the compiled versions of the functions take the same input
as the matlab functions described in detail in later sections, but in some cases, because of the limitations of the style of
inputs allowed, these inputs are slightly different (e.g. functions require a text file input instead of a cell array input,
etc). To understand the inputs to the compiled functions, please refer to the headers of the relevant codes stored in the
cmpMfiles folder and Section A of the Appendix.

It is important to note that the form of inputs are also different at the command line. In short, no input should be
included in quotes regardless of the input type and each input should be separated by a single space. For example to
call the compiled version of MakeStreams on Mac OS X:

. / run TAK . sh / l o c a t i o n / o f / runt ime MakeStreams / l o c a t i o n / o f /work ing / d i r e c t o r y
dem . t i f 1 e6 t o p o f i l e s no da ta exp auto

5

where ’MakeStreams’ is the name of the function you want to use, ’/location/of/working/directory’ is the working
directory where input data will be read from and output data will be stored, ’dem.tif’ is the first required input of
MakeStreams and is the name of the dem file to import, ’1e6’ is the second required input of MakeStreams and is
the threshold accumulation area to use, ’topo files’ is the third required input of MakeStreams and is the name for
output files (note that this is NOT a required input for the standard Matlab version of MakeStreams), ’no data exp’ is
the name of an optional parameter for MakeStreams, and ’auto’ is the value being passed to that optional parameter.
Some standards for the inputs; 1) when the function requires that you provide a name of an input file, it expects that
the file includes the file extension (e.g. .txt, .mat, .shp, etc) because it will use this file extension to make sure you’re
providing the correct kind of file, 2) any text file input is expected to have a .txt extension, 3) theoretically comma or
tab delimited data are both fine for text file inputs, but in practice, comma delimited files are preferred, and 4) when the
function requires (or allows as an optional input) the name of an output file, DO NOT include a file extension as this
name will likely be used for several different files with different extensions and the function will handle appending the
proper file extensions. The header of ’cmp*.m’ files for each function contain example inputs to the command line to
run that function.

The compiled versions are designed to mostly behave exactly the same as the non-compiled functions running Matlab
with a few minor exceptions (e.g. the compiled versions of KsnProfiler and BasinPicker do not allow for you to zoom
into a location on the DEM before you start picking). All function names described in later sections are valid functions
to invoke in the compiled version of TAK except ksncolor, CatPoly2GRIDobj, or ProjectOntoSwath. Also note that
two functions exist in compiled TAK which do not exist in the regular Matlab version. These functions, called as
PrepareAddGrids and PrepareCatAddGrids at the command lines, are designed to prepare inputs for additional grids
and additional categorical grids, respectively, for use in the compiled version of ProcessRiverBasins. Refer to the
’cmp’ files for these two functions (’cmpPrepareAddGrids.m’ and ’cmpPrepareCatAddGrids.m’) for instructions for
use.

3 Error Reporting
We have tried to ensure that all options work properly within both the Matlab and compiled versions of TAK, but

unexpected errors may occur. The preferred method of error reporting is to use the built in ’Issues’ function on the
GitHub page for TAK so that there is a record of user encountered errors. If you have forked a version of the code
and think you can fix an error, issue a pull request with the change, collaboration is welcome! If all else fails, you can
email Adam Forte as well. Before submitting an issue or contacting Adam, please check both open and closed issues
to see if the bug has already been reported or fixed in an updated version. Whether submitting an issue or emailing
Adam, please provide as much information as possible on the error (e.g. cut and paste the error message you received)
and what you were doing when it occurred.

4 Preparing Datasets for TAK
TopoToolbox and TAK functions are designed assuming that data is supplied to them are in a projected coordinate

system with meters as linear units (e.g. UTM) with square pixels (i.e. dx = dy) and will produce unexpected results (or
may error out) if you do not reproject your data into a suitable projection and coordinate system. Similarly, for functions
that take multiple datasets as inputs (e.g. ProcessRiverBasins) it is expected that all of the datasets you provide are
in the same projection system. We would generally recommend doing the reprojections in a GIS environment (e.g.
ArcGIS, QGIS, GDAL, etc), but TopoToolbox does include some functions to reproject data (e.g. reproject2utm,
projectGRIDobj).

6

https://github.com/amforte/Topographic-Analysis-Kit/issues
mailto:aforte8@lsu.edu

TAK relies on either TopoToolbox or Matlab functions for importing geographic data and thus is limited to the data
types supported by these. Specifically, for raster data (e.g. digital elevation models, other gridded data), TAK can
interpret and/or export data that are GeoTiffs or ESRI ArcGIS ASCII files (both of which are readable by a variety
of GIS programs including ArcGIS, QGIS, and GDAL). For importing or exporting vector data, TAK uses shapefiles
(which are again readable and writable by a variety of GIS programs including ArcGIS, QGIS, or OGR).

It’s important to note that projected data (e.g. geotiffs, ascii grids, shapefiles, etc) exported from Matlab will not
include georeferencing information. The data is still projected (in the same projection as the original input data), but
you will need to define the projection in the GIS program you are using.

In this this manual, we use an example dataset from Southern California to demonstrate outputs of some of the
functions included as part of TAK (Figure 1). The example data is available within the released version of the TAK
code on GitHub and is contained within a tarball called ’ExampleData.tar.gz’. Within this tarball, you’ll find:

• SoCal UTM DEM.tif - GeoTiff of the example data area shown in Figure 1 from Open Topography and repro-
jected into UTM 11N

• prism precip.tif - GeoTiff of 30 year normals of precipitation from PRISM, data was cropped and reprojected
into UTM 11N

• geo polygons.shp - Polygon shapefile of Geology of California from California Department of Conservation,
data was reprojected into UTM 11N

• river mouths.txt - text file containing the river mouths used to generate basins in the example using Process-
RiverBasins

7

http://opentopography.org/
http://www.prism.oregonstate.edu/normals/
https://maps.conservation.ca.gov/cgs/#datalist

Figure 1: Example dataset area used in this manual.

Matlab, and thus TopoToolbox and TAK, generally require that an entire dataset be loaded into active memory before
it can be used. This means that the size of DEM you can successfully process and use in TAK will be dependent on the
available memory (i.e. RAM) of the computer on which you’re running TAK along with the operating system (Mac OS
X, Windows, and Linux versions of Matlab deal with memory in slightly different ways). It’s also not as straightforward
as looking at the size of the input DEM as you need to account for all the datasets that need to be in active memory for
many TAK functions, e.g. a GRIDobj, a FLOWobj, and a STREAMobj. If you are encountering memory issues, there
aren’t too many simple solutions, but the best bets are to either spit your data into smaller segments (though you must
be careful to not introduce errors by truncating portions of drainage basins of interest) or use a dataset with a larger
cellsize.

5 Workflow
Possible workflows through the functions provided as a part of TAK are outlined in Figure 2. In the sections that

follow, descriptions of each function are provided and in some cases, possible outputs are included as figures using
the example dataset. In later sections we assume that you have a basic familiarity with Matlab data types (e.g. arrays,
cell arrays, structures, tables, etc) and the four main TopoToolbox classes (i.e. GRIDobj, FLOWobj, STREAMobj, and
SWATHobj), but we provide a brief primer in Section 6. This manual does not include all options for all functions; we
refer users to the headers of each relevant function for a complete list of required and optional parameters. Instead, this
manual is designed to highlight the basic utility of the functions along with some underlying rationale / methodology

8

employed within some of the functions and to provide examples of some recommended use cases.

Figure 2: Suggested workflows through TAK functions depending on desired outcome and purpose of analysis. Also
highlighted are the nature of the outputs produced by different functions. Definitions of inputs and outputs: shp - a
shapefile containing vector data, the geometry of which, e.g. points, lines, polygons, depends on the tool in question;
array - a Matlab array, i.e. a matrix of numbers; ascii grid - an ESRI Ascii text file that is interpretable as gridded raster
data with projection information by many GIS programs; pdf - a figure output as a PDF.

6 Matlab and TopoToolbox Crash Course
The following sections are written for people who have never used Matlab (Sections 6.1, 6.2, 6.3) or TopoToolbox

(Section 6.4). If you are familiar with basic manipulations of Matlab datatypes, general procedure for using Matlab
functions, how to load and save variables in matfiles, and the four primary TopoToolbox classes, feel free to skip these
sections and get right into Initial Data Processing with TAK.

6.1 Matlab Data Types
There are four Matlab data types that appear commonly in TAK functions as either inputs or ouptuts (in addition

to TopoToolbox specific classes, described in section 6.4), arrays, cell arrays, tables, and structures/geographic data

9

structures.

6.1.1 Arrays

Arrays are the most basic data type in Matlab and are essentially a matrix of numeric values. They have some
specific rules associated with them, most importantly that they can only contain numbers and that there can be no
empty elements in an array:

% To make an a r ray , v a l u e s s e p a r a t e d by s em i c o l o n s i n d i c a t e rows and v a l u e s
s e p a r a t e d by commas i n d i c a t e columns , and en ca s i n g them i n b r a c k e t s
i n d i c a t e s t ha t i t i s an a r ray , so

a = [1 ; 2 ; 3] ;
% Wi l l make an a r r a y wi th 3 rows and 1 column , whereas
a = [1 , 2 , 3] ;
% Wi l l make an a r r a y wi th 1 row and 3 columns , and
a = [1 , 2 , 3 ; 4 , 5 , 6] ;
% Wi l l make an a r r a y wi th 2 rows and 3 columns
% The sem i co l on at the end o f the p r e v i o u s commands s u p p r e s s e s any output to

the command prompt
% Po s i t i o n s w i t h i n a matlab a r r a y can be s p e c i f i e d by t h e i r row and column

p o s i t i o n (note tha t the f i r s t i nd ex i n Matlab i s 1 , not 0 l i k e i n C , Java ,
Python , e t c) , so c a l l i n g

a (1 , 2)
% Wi l l p r i n t 2 at the command prompt as t h i s i s the number i n the f i r s t row

and second column .
% Po s i t i o n s can a l s o be s p e c i f i e d by t h e i r ’ l i n e a r index ’ , which i s a s i n g l e

number t ha t s t a r t s coun t i ng from p o s i t i o n (1 , 1) and p roce ed s down columns
and then a c r o s s rows , so

a (5)
% Wi l l p r i n t 5 at the command prompt , t h i s i s e q u i v a l e n t to c a l l i n g a (1 , 3)

6.1.2 Cell Arrays

Cell arrays are versatile data types that can be thought of as an array of containers. Cell arrays are primarily used
in TAK in ProcessRiverBasins. Each ’cell’ in a cell array can contain pretty much any other data type, e.g. a single
number, and entire array, another cell array, etc:

% Making a c e l l a r r a y i s s i m i l a r to making an a r ray , e x c ep t you use c u r l y
b r a c k e t s i n s t e a d o f squa r e b r a c k e t s

c ={1 ,2 ,3} ;
% Wi l l p roduce a 1 x 3 c e l l a r r a y
% C e l l a r r a y s can con t a i n d i f f e r e n t t yp e s o f data wi th d i f f e r e n t d imens i on s i n

each c e l l
a = [1 , 2 , 3 ; 4 , 5 , 6] ;
c={a , 5 , ’ c e l l s can con t a i n s t r i n g s too ’ } ;
% Wi l l a l s o produce a 1 x 3 c e l l a r r a y but t h i s t ime wi th v e r y d i f f e r e n t data

s t o r e d i n each c e l l
% To r e f e r e n c e a p a r t i c u l a r c e l l , you need to use c u r l y b r a c k e t s aga in

10

c {1 ,2}
% Would p r i n t 5 to the comman prompt , where as
c {1}
% Would p r i n t the e n t i r e a r r a y s t o r e d i n a to the command prompt
% You can a l s o use p a r an t h e s e s to i ndex a c e l l a r r ay , but i n t h i s ca s e the

r e s u l t i s a new c e l l a r r a y j u s t c o n t a i n i n g the c e l l s you s p e c i f i e d
new c=c (2) ;
% Would produce a 1 x 1 c e l l a r r a y c o n t a i n i n g the number 5 i n the c e l l ,

whereas
new c=c (1 , 2 : 3) ;
% Would produce a 1 x 2 c e l l a r r a y wi th the number 5 i n the f i r s t c e l l , and

the s t r i n g ’ c e l l s can con t a i n s t r i n g s too ’ i n the second c e l l

There are some useful functions to be aware of for converting between arrays and cell arrays, specifically mat2cell,
cell2mat, and num2cell. These may be useful in preparing inputs for TAK functions, so we would suggest looking at
the help files on these functions if you are having problems generating some of the required inputs for particular TAK
functions.

6.1.3 Tables

Tables are similar to cell arrays in that elements within a table can contain a variety of different types of data, but they
differ primarily in that they also allow you to specify column and row names and thus the way you access data within
tables is different. Tables are primarily used in TAK in the CompileBasinStats, CatPoly2GRIDobj, and BasinStatsPlots
functions. As an example, consider extracting information from the table output from MakeCombinedSwath:

% You can que r r y the s i z e o f a t a b l e w i th s i z e
s i z e (T)
% The e n t i r e c on t en t s o f a p a r t i c u l a r column can be s t o r e d as a new v a r i a b l e

by c a l l i n g the name o f the t ab l e , e . g . to e x t r a c t the c on t en t s o f the ’
mean ksn ’ column which c o n t a i n s b a s i n ave raged no rma l i z ed channe l s t e e p n e s s
data i n the t a b l e output from the Comp i l eBa s i nS ta t s

a l l k s n=T. mean ksn ;
% You can a l s o e x t r a c t the c on t en t s o f a s i n g l e e l ement w i t h i n a column , e . g . ,

to e x t r a c t the 10 th e l ement o f the ’ mean ksn ’ column
ksn10=T. mean ksn (10 ,1) ;
% I n d i v i d u a l e l ement s i n a t a b l e can con t a i n data o f v a r i a b l e s i z e s and types ,

e . g . i n the t a b l e output from Comp i l eBas inSta t s , each e l ement o f the ’
mean ksn ’ column w i l l have one numer ic va lue , where as each e l ement o f the
’ hyps ’ column w i l l have a n x 2 a r r a y c o n t a i n i n g the hypsometry i n f o rma t i o n
f o r a p a r t i c u l a r b a s i n

Tables can also be a useful way to load in data for use in other functions, though generally you will need to convert
to other Matlab data types to be valid input for TAK functions:

% To read i n a f i l e c o n t a i n i n g mixed data , e . g . a t e x t f i l e w i th columns named
’ sample names ’ , ’ s amp l e l a t ’ , and ’ samp l e l on ’ and c o n t a i n i n g the names o f
samples as c h a r a c t e r s , the l a t i t u d e o f samples , and the l o n g i t u d e o f

samples r e s p e c t i v e l y

11

T=r e a d t a b l e (’ samples . t x t ’) ;
% P a r t i c u l a r columns can be e a s i l y e x t r a c t e d to a r r a y s or c e l l a r r a y s
l a t=T. s amp l e l a t ; % Wi l l p roduce an a r r a y named l a t
l on=T. s amp l e l on ; % Wi l l p roduce an a r r a y named l on
samples=T. sample names ; % Wi l l p roduce a c e l l a r r a y named samples because the

sample names column c on t a i n s c h a r a c t e r s
% You can a l s o r e f e r e n c e p a r t i c u l a r rows o f p a r t i c u l a r columns , f o r columns

c o n t a i n i n g numbers you r e f e r e n c e t h e s e l i k e a r r a y s , f o r columns c o n t a i n i n g
c h a r a c t e r s you r e f e r e n c e t h e s e l i k e c e l l a r r a y s

% Grabb ing the 10 th row o f each column
l a t 1 0=T. s amp l e l a t (10 ,1) ;
l on10=T. s amp l e l on (10 ,1) ;
name10=T. sample names {10 ,1} ;

6.1.4 Structures

Structures allow you to group similar data and store them in containers referred to as fields. Structures can also have
multiple dimensions like an array. In TAK, structures are used within the context of geographic data structures, which
are a special subset of structures that contain specific fields and can be written out as shapefiles using the shapewrite
command. Geographic data structures must have fields named, Geometry, X and Y (or Lon and Lat), and BoundingBox
(unless the Geometry is Point). We refer interested readers to the Matlab Help documents for the specific requirements
of the data stored in these fields if you wish to generate a valid geographic data structure that can be output as a shapefile
on your own. Geographic information structures can also have additional fields which will be interpreted as fields in
the output shapefile. Several functions produce geographic data structures, e.g. ProcessRiverBasins or KsnChiBatch.
Consider the example of interacting with the ’MSNc’ geographic information structure stored within the outputs of
ProcessRiverBasins that contains information related to ksn:

% You can que r r y the d imens i on s o f a s t r u c t u r e w i th s i z e
s i z e (MSNc)
% Which i n the ca se o f ’MSNc’ w i l l be n x 1 depend ing on the s i z e o f the

st ream network
% You can a l s o que r r y which f i e l d s a r e s t o r e d i n ’MSNc’ w i th f i e l d n ame s
f i e l d n ame s (MSNc)
% You can e x t r a c t the c on t en t s o f a g i v en f i e l d from a p a r t i c u l a r d imens ion ,

f o r example to e x t r a c t what ’ s s t o r e d i n the ’ ksn ’ f i e l d i n the 10 th e l ement
ksn10=MSNc(10 ,1) . ksn ;
% Examining t h e s e f i e l d s , you can see tha t they have v a r i a b l e s i z e s , f o r

example the ’ Geometry ’ f i e l d has a s i n g l e e n t r y pe r e l ement tha t i s ’ L ine ’ ,
i n d i c a t i n g tha t the s h a p e f i l e Geometry type i s L ine , where as the X and Y

f i e l d s w i l l have n x 1 a r r a y s s p e c i f y i n g the X and Y c o o r d i n a t e s o f l i n e
segments

% You may wish to e x t r a c t a l l the v a l u e s from a s p e c i f i c f i e l d , e . g . a l l the
no rma l i z ed s t e e p n e s s v a l u e s s t o r e d i n the ksn f i e l d , but u n l i k e w i th a
t a b l e i f you s imp l y c a l l a f i e l d w i thout s p e c i f y i n g a d imens ion , you w i l l
ge t the f i r s t e lement , not the e n t i r e l i s t o f e l ement s

MSNc . ksn % Wi l l p r i n t whateve r ksn v a l u e i s i n the MSNc(1 , 1) . ksn
% To e x t r a c t a l l the ksn v a l u e s s t o r e d i n the ksn f i e l d , you must conca t ena t e

the f i e l d v a l u e s

12

a l l k s n =[MSNc. ksn] % w i l l p roduce a row vec to r , 1 x m o f ksn v a l u e s
a l l k s n=ho r z c a t (MSNc . ksn) % w i l l p roduce a row vec to r , 1 x m o f ksn v a l u e s
a l l k s n=v e r t c a t (MSNc . ksn) % w i l l p roduce a column v e c t o r n x 1 o f ksn v a l u e s
% Va l i d g eog r aph i c i n f o rma t i o n s t r u c t u r e s can be output as s h a p e f i l e s
s h ap ew r i t e (MSNc, ’ ksn . shp ’) ;
% You can a l s o impor t s h a p e f i l e s i n t o Matlab as g eog r aph i c i n f o rma t i o n

s t r u c t u r e s
MS=shape read (’ shape name . shp ’) ;

6.2 Using Matlab Functions
All of the files included in TAK are written as Matlab functions. A Matlab function is stored in a ’.m’ file and is

called by the name of that file:

% For a f u n c t i o n f i l e named Tes tFunc t i on .m, you would c a l l i t l i k e t h i s a t the
command prompt i n Matlab

Tes tFunc t i on (my ar ray) ;
% In t h i s example , the Tes tFunc t i on has one i npu t tha t i s an a r r a y

All of the TAK functions have extensive ’headers’, i.e. commented text that appears at the top of the .m file that
contains a description of the use of the function along with lists of inputs and outputs. You can always open an .m file
in Matlab or a text editor to view these, but you can also access them directly from the command line:

% S t a r t i n g the c a l l f o r a f u n c t i o n l i k e t h i s
Tes tFunc t i on (
% Wi l l d i s p l a y a pop up showing the r e q u i r e d i n p u t s f o r the f u n c t i o n and

i n c l u e a l i n k l a b e l e d ’More Help . . . ’ t h a t i f c l i c k e d w i l l open the heade r
i n f o rma t i o n f o r the f u n c t i o n i n a new window .

The majority of TAK functions have both required and optional inputs. As the names imply, required inputs are data
or information the function must have to run, where as optional inputs are inputs that can be omitted and the function
will still run.If you open a ’.m’ file in a text editor or the Matlab editor, the first line, which defines how the function is
called, will list the required inputs, e.g.:

% A fun c t i o n d e f i n i t i o n wi th one r e q u i r e d i npu t
f u n c t i o n Tes tFunc t i on (my ar ray)

If there optional inputs, there will simply be an apparent input named ’varargin’, meaning that the function is capable
of accepting variable arguments:

% A fun c t i o n d e f i n i t i o n wi th one r e q u i r e d i npu t and an a r b i t r a r y number o f
o p t i o n a l i n p u t s

f u n c t i o n Tes tFunc t i on (my array , v a r a r g i n)

In many cases, values for optional inputs are required for the function to run, but they have a default value that will be
used if the user does not supply a value to the optional input (e.g. many TAK functions require a reference concavity,
this is always specified as an optional parameter that will be set to 0.5 if you do not provide a different number).
Required inputs for TAK functions will generally will take one of three forms:

1. The name of a variable stored in the workspace

13

% The header o f Tes tFunc t i on t e l l s you tha t i t has one r e q u i r e d i npu t tha t
i s a Matlab a r r a y named INPUT , t h i s means you can p r o v i d e any Matlab

a r r a y (w i th any name) to Tes tFunc t i on
Tes tFunc t i on (my ar ray) ;
% A l t e r n a t i v e l y , i f Te s tFunc t i on s a y s i t r e q u i r e s two inpu t s , INPUT1 and

INPUT2 , i . e . the he l p pop up l o o k s l i k e Tes tFunc t i on (INPUT1 , INPUT2) ,
and the f i r s t i n pu t i s supposed to be a Matlab a r r a y and the second i s
supposed to be a Matlab c e l l a r r ay , then a v a l i d i n pu t would be

Tes tFunc t i on (my array , m y c e l l a r r a y) ;
% Always c o n s u l t the heade r f o r s p e c i f i c r equ i r emen t s , some a r r a y s have

r e s t r i c t i o n s on t h e i r d imens ions , e . g . they must be an n x 2 a r r a y .
I n pu t s to TAK f u n c t i o n s w i l l be ’ parsed ’ so i f they do not meet the
r equ i r emen t s , you w i l l be in fo rmed o f t h i s and the f u n c t i o n w i l l e r r o r
out

2. A character string defining an option or giving the name of a file or folder

% The header o f Tes tFunc t i on t e l l s you i t r e q u i r e s one i npu t Method tha t
d e f i n e s a method and tha t the v a l i d i n p u t s to method a r e ’ s p l i t ’ o r ’
j o i n ’ , so

Tes tFunc t i on (’ s p l i t ’) ;
% Would be a v a l i d c a l l to the f un c t i o n , where as
Tes tFunc t i on (s p l i t)
% Would not be a v a l i d c a l l
% S im i l a r l y , i f a r e q u i r e d i npu t i s the name o f a f i l e , you would g i v e

t h e s e i n s i n g l e quote s
Tes tFunc t i on (’ m y f i l e . t x t ’) ;

3. A logical value

% The header o f Tes tFunc t i on t e l l s you tha t i t has one r e q u i r e d input ,
Do X and tha t t h i s e x p e c t s a l o g i c a l va lue , then you cou ld c a l l i t l i k e
t h i s

Tes tFunc t i on (t r u e) ;
% Or l i k e t h i s
Tes tFunc t i on (1) ;
% As 0 and 1 a r e e q u i v a l e n t to f a l s e and t rue , r e s p e c t i v e l y

Optional inputs follow many of the same rules, but they importantly differ in that they require that they are proceeded
by the name of the optional parameter:

% From the heade r o f TestFunct ion , you l e a r n tha t i t has t h r e e r e q u i r e d i npu t s
, 1) data , which e xp e c t s a Matlab a r ray , 2) method , which s p e c i f i e s a
method to use on the data tha t i s e i t h e r ’ s p l i t ’ o r ’ j o i n ’ , and 3)
save ou tpu t , which e xp e c t s a l o g i c a l v a l u e . Tes tFunc t i on a l s o has two
o p t i o n a l parameter s , 1) f i l e n ame , which e xp e c t s the name o f the f i l e to be
output and 2) e x t r a d a t a , which e xp e c t s ano the r Matlab a r r a y . A l l o f the

f o l l o w i n g a r e v a l i d c a l l s to Tes tFunc t i on

14

Tes tFunc t i on (my array , ’ s p l i t ’ , t r u e) ; % Running f u n c t i o n wi th no o p t i o n a l
i n p u t s

Tes tFunc t i on (my array , ’ j o i n ’ , t rue , ’ f i l e n ame ’ , ’ m y f i l e . t x t ’) ;
Tes tFunc t i on (my array , ’ s p l i t ’ , f a l s e , ’ e x t r a d a t a ’ , my o t h e r a r r a y) ;
Tes tFunc t i on (my array , ’ j o i n ’ , t rue , ’ e x t r a d a t a ’ , my o the r a r r a y , ’ f i l e n ame ’ , ’

m y f i l e . t x t ’) ;
% Note tha t the o r d e r i n which you s p e c i f y o p t i o n a l pa ramete r s doesn ’ t matter ,

but the argument pas sed to an o p t i o n a l paramete r must a lways immed i a t e l y
f o l l o w the name o f the a p p r o p r i a t e o p t i o n a l paramete r

Many of the TAK functions also have outputs that will be stored as variables in the Matlab workspace after a
successful run of the function. Outputs are specified like so:

% The header i n d i c a t e s t ha t Tes tFunc t i on from the p r e v i o u s example has two
outputs , s p l i t d a t a and j o i n e d d a t a , you can s p e c i f y the name o f the
v a r i a b l e s f o r t h e s e ou tpu t s

[my s p l i t s , my j o i n s]=Tes tFunc t i on (my array , ’ s p l i t ’ , t r u e) ;
% Now v a r i a b l e s m y s p l i t s and my j o i n s w i l l appear i n your Matlab workspace
% I f you don ’ t a c t u a l l y c a r e about one o f the outputs , e . g . you on l y want

my jo in s , you can supp l y a ˜ to any output you don ’ t want to be output to
the workspace

[˜ , my j o i n s]=Tes tFunc t i on (my array , ’ s p l i t ’ , t r u e) ;

6.3 Loading and Outputting Data
The outputs of many TAK functions are automatically saved as ’matfiles’, which are versatile matlab files that can

contain multiple variables and will have a ’.mat’ suffix. Some basic operations with matfiles:

% You can que r r y the c on t en t s o f a m a t f i l e
whos (’− f i l e ’ , ’ Bas in 1 Data . mat ’)
% Which w i l l p r i n t out the l i s t o f v a r i a b l e names , t h e i r s i z e s , and the type

o f data s t o r e d i n tha t v a r i a b l e to the workspace
% A l t e r n a t i v e l y , h i g h l i g h t i n g a m a t f i l e i n the ’ Cu r r en t Fo lde r ’ window w i l l

d i s p l a y the con t en t s i n the bottom l e f t o f the Matlab s c r e e n
% I f you want to l oad i n a p a r t i c u l a r v a r i a b l e , you can use l oad
l oad (’ Bas in 1 Data . mat ’ , ’DEMcc ’) ; % Wi l l l o ad the DEMcc v a r i a b l e i n t o the

workspace
% You can l oad a l l v a r i a b l e s c on t a i n ed i n a m a t f i l e by not s p e c i f y i n g any

v a r i a b l e s w i th the l oad command
load (’ Bas in 1 Data . mat ’) ;
% The syn tax f o r s a v i n g data i n t o a m a t f i l e i s s i m i l a r
save (’MyMat . mat ’ , ’DEMcc ’) ;
% I f the s p e c i f i e d mat f i l e name a l r e a d y e x i s t s , the p r e v i o u s a c t i o n w i l l

o v e rw r i t e the m a t f i l e . I f you i n s t e a d want to add the v a r i a b l e to the
v a r i a b l e s a l r e a d y s t o r e d i n the ma t f i l e , you can use ’−append ’

save (’MyMat . mat ’ , ’DEMcc ’ , ’−append ’) ;

15

6.4 TopoToolbox Classes
There are four primary TopoToolbox classes, GRIDobj, FLOWobj, STREAMobj, and SWATHobj. We refer interested

users to the TopoToolbox documentation or Wolfgang Schwanghart’s excellent blog for detailed discussions of these
data classes, but below we provide a very brief description of these different classes. A general point to be aware of
when using TopoToolbox classes is that many functions require several of these different classes and, unless otherwise
stated, it is assumed that these are datasets that were generated together and from each other (e.g. the STREAMobj
generated from a particular FLOWobj which in turn was generated from a particular GRIDobj). You generally don’t
need to worry about this if you are using the TAK functions exclusively, but if you ever get an error regarding datasets
not aligning, check to make sure you are not mixing different TopoToolbox datasets that did not derive from the same
DEM.

The TopoToolbox dataclasses are unique, but in terms of other Matlab data types, they are the most similar to a 1
dimensional structure, i.e. they contain a series of ’fields’ that contain a variety of different data types:

% To e x t r a c t the data a r r a y w i t h i n a GRIDobj named DEM
e l e v a t i o n s=DEM.Z ; % Wi l l be a n x m a r r a y o f numer ic v a l u e s
% To e x t r a c t the c e l l s i z e o f a GRIDobj named DEM
c e l l s i z e=DEM. c e l l s i z e ; % Wi l l be a s i n g l e v a l u e
% The con t en t s o f a TopoToolbox o b j e c t can be q u e r r i e d wi th the ’ f i e l dnames ’

f un c t i o n , j u s t l i k e a s t r u c t u r e
f i e l d n ame s (DEM)
% Wi l l output a c e l l a r r a y w i th the names o f the f i e l d s con t a i n ed w i t h i n DEM

6.4.1 GRIDobj

GRIDobjs are for storing raster data. In TAK, they are how DEMs, flow accumulation rasters, and other additional
gridded data is stored. It is very simple to generate a GRIDobj:

% GRIDobjs can be c r e a t e d from a s c i i g r i d s o r g e o t i f f s
DEM=GRIDobj (’ / path / to / g r i d d e d e l e v a t i o n d a t a . t x t ’) ;
GRID=GRIDobj (’ / path / to / o t h e r g r i d d e d d a t a . t i f ’) ;

It is important to note that it is recommended that you project data into a projected coordinate system (e.g. UTM)
before turning it into a GRIDobj, failure to do so will result in errors in various TAK functions.
If you want to plot a GRIDobj

% To p l o t a s i n g l e GRIDobj
imagesc (GRID) ;
% To p l o t a h i l l s h a d e c o l o r e d by ano the r GRIDobj (can p r o v i d e the DEM as the

second i npu t to c o l o r by e l e v a t i o n)
imageschs (DEM, GRID) ;

6.4.2 FLOWobj

FLOWobjs are special data classes for storing flow routing information. Unlike a flow direction raster in ArcGIS,
this is not something that can be easily visualized, but it is a crucial dataset used for almost all TAK functions.

16

https://topotoolbox.wordpress.com/

6.4.3 STREAMobj

STREAMobjs are data classes for storing stream networks. To plot a STREAMobj,

%To p l o t a map o f a STREAMobj
p l o t (S) ;
% To p l o t a l o n g i t u d i n a l p r o f i l e o f the s t r eams i n a STREAMobj
p l o t d z (S ,DEM) ;

6.4.4 SWATHobj

SWATHobjs are data classes for storing swath data extracted from GRIDobj. To create a basic plot of a SWATHobj,

%To p l o t swath p r o f i l e o f a SWATHobj
p l o t d z (SW) ;

7 Initial Data Processing

7.1 CheckTAKDependencies
TopoToolbox and TAK require several different Matlab toolboxes. CheckTAKDependencies is a simple function that

checks to see if you have licensed versions of all the required toolboxes.

% CheckTAKDependencies t a k e s no i n p u t s and has no fo rma l ou tpu t s
% I f runn ing
CheckTAKDependencies
% Produces no warn ings , then a l l o f the TAK f u n c t i o n s shou l d work (or at l e a s t

, they shou ldn ’ t f a i l because o f m i s s i n g dependenc i e s !)
% A l t e r n a t i v e l y you may see t e x t l i k e :
’ Warning : F a t a l e r r o r : You do not have a l i c e n s e f o r the Mapping Toolbox ,

TopoToolbox w i l l not f u n c t i o n p r o p e r l y ’
% I f you a r e m i s s i n g a c r u c i a l TopoToolbox , o r t h i s :
’ Warning : You do not have a l i c e n s e f o r the S t a t i s t i c s and Machine Lea rn i ng

Toolbox , some f u n c t i o n s w i l l not work p r o p e r l y ’
% I f you a r e m i s s i n g a Toolbox tha t a r e on l y used by some TAK f u n c t i o n s

TAK requires licenses for the Image Processing Toolbox, Mapping Toolbox, Optimization Toolbox, and Statistics
and Machine Learning Toolbox. If you do not have all licenses for all of these, you may need to use the Compiled
Functions.

7.2 MakeStreams
MakeStreams is a simple wrapper around creating the basic TopoToolbox objects needed for the majority of other

TAK functions, specifically a digital elevation model (DEM) as a GRIDobj, a flow direction dataset as a FLOWobj,
a flow accumulation grid as a GRIDobj, and a stream network as a STREAMobj. It should be noted that while, as
described in more detail in Schwanghart and Scherler [2014], TopoToolbox supports flow routing using either D8 or
D∞ algorithms, TAK functions use the simpler D8 flow routing scheme. The minimum inputs to MakeStreams are the
location of a valid DEM as either a geotiff or ascii grid and a minimum threshold drainage area (in square map units)
for beginning stream network definition:

17

[DEM,FD,A, S]=MakeStreams (’ / Use r s / a f o r t e /GISdata /SoCal UTM DEM . t x t ’ ,1 e6) ;

The basic usage of MakeStreams will produce stream networks, that depending on the nature of your DEM, may
include areas that are not of interest or should not be included in stream definition (Figure 3).

Figure 3: Result of running MakeStreams without any control for flat areas.

MakeStreams includes various simple options to filter the input DEM. This can be done through a logical expression,
for example, if you wanted to set any portions of the DEM at or below 0 m elevation to no data (and thus suppress
stream definition), you could use the following:

[DEM,FD,A, S]=MakeStreams (’ / Use r s / a f o r t e /GISdata /SoCal UTM DEM . t x t ’ ,1 e6 , ’
no da ta exp ’ , ’DEM<=0 ’) ;

There is also a built in auto filter that will identify true flats (i.e. areas of constant elevation) and set these to no data:

[DEM,FD,A, S]=MakeStreams (’ / Use r s / a f o r t e /GISdata /SoCal UTM DEM . t x t ’ ,1 e6 , ’
no da ta exp ’ , ’ auto ’) ;

18

Figure 4: Result of running MakeStreams with auto removal of flat areas and min flat area set to 1e8.

Using this auto filter produces a more reasonable stream network and removes the Pacific Ocean and Salton Sea from
the areas where streams are defined. (Figure 4). The auto filter considers an area ’flat’ if the log of the gradient is
undefined and then looks for connected pixels that are identified as ’flat.’ The number of connected pixels which will
subsequently be treated as a flat area, and set to ’NaN’ in the resulting DEM, is controlled by setting a minimum area
with the ’min flat area’ in m2. This is set to a default minimum area of 1e8 m2. Setting this minimum flat area to small
values may result in a discontinuous stream network (Figure 5).

19

(a) Minimum flat area of 1e6 (b) Minimum flat area of 1e7

Figure 5: Difference in output of MakeStreams depending on value used for min flat area when auto removing flat areas
in the area around Big Bear lake (outline of lake is shown in thin dotted black line) in the San Bernadino Mountains.
When min flat area is 1e6 (5a), the lake is identified as a flat and removed, but when min flat area is 1e7 (5b) the lake
is not identified as a flat and thus streams are routed through the lake.

MakeStreams also has controls for resampling the input DEM. This can be useful (and is sometimes necessary),
because after reprojecting georeferenced data in a GIS program, the cellsize of the DEM can end up as a number
with a lot of decimal places. This can cause problems in some TopoToolbox and TAK functions because of different
rounding behaviors and thus cause the codes to think that two datasets do not line up, even when they do. To avoid
this, MakeStreams will warn you if the provided DEM does not have a whole number cellsize and suggest that you use
the resample option to fix this for later processing.

MakeStreams also has an options to provide a precipitation dataset (with or without a comparable runoff ratio grid)
to automatically produce a weighted flow accumulation raster:

PRECIP=GRIDobj (’ / Use r s / a f o r t e /GISdata / p r i sm p r e c i p . t i f ’) ;
[DEM,FD,A, S]=MakeStreams (’ / Use r s / a f o r t e /GISdata /SoCal UTM DEM . t x t ’ ,1 e6 , ’

p r e c i p g r i d ’ ,PRECIP) ;

Finally, for large DEMs, the flow routing can take a long time. To speed this up, you can call upon the ’mex’ files
associated with the flow routing routines by setting the ’mex’ parameter to true. This will only work if you have precom-
piled the appropriate mex files from TopoToolbox on your machine, see the TopoToolbox function ’compilemexfiles.m’
for more information.

7.3 ConditionDEM
DEMs can be extremely noisy and thus can produce very jagged stream profiles. This is both visually unappeal-

ing, but more importantly is problematic for calculations that use stream gradient (e.g. normalized channel steepness).
TopoToolbox includes a variety of different algorithms to condition or smooth DEMs, either as an entire grid or specifi-
cally along specified stream networks. The ConditionDEM function is a wrapper around all of these different routines.
We refer readers to the TopoToolbox documentation for detailed discussions of these smoothing routines, including
Schwanghart and Scherler [2017] for consideration of the ’crs’ algorithm. Some are very computationally intensive

20

and require several parameters, so you are advised to spend some time ’playing’ with the parameters and choices to see
the outcome. ConditionDEM produces example stream profiles comparing the unconditioned and conditioned result
along with a map showing where elevations were changed to aid you in understanding what the chosen algorithm has
done.

It is not strictly required to use the ConditionDEM function. All TAK functions that need smoothed channel profiles
have built in conditioning, using the mincosthydrocon algorithm with an interpolation value of 0.1. If you want to use a
different conditioning algorithm, you can use ConditionDEM to produce a conditioned DEM that you can then supply
as an optional input to TAK functions that need a conditioned DEM.

7.4 RemoveFlats
For topographic analysis, standard stream routing algorithms will usually route streams through lakes and playas,

which in some circumstances is inappropriate and could produce misleading results, so it can be helpful to remove
these from DEMs or set them to no data to restrict stream definition. Some of this can be accomplished with the simple
controls built into MakeStreams, but when these flat areas are not perfectly flat or occur at multiple elevations, they
can be problematic to remove without manual clipping of DEMs. The RemoveFlats function is an attempt to partially
automate this process. It allows you to graphically identify areas (with a single click for each connected flat area) that
you consider flats and the function will attempt to find contiguous areas. The function first fills all sinks in the DEM
and then performs a morhpological erosion on the filled DEM with a 3x3 neighborhood. This means that any pixel will
be set to the lowest elevation in a 3x3 neighborhood centered on that pixel. The eroded DEM is then morphologically
dilated, with a neighborhood of between 3x3 to 9x9 depending on the users selection for the ’strength’ parameter. This
dilation sets pixels within the neighborhood to the maximum value. When the user then selects a location on the DEM,
all pixels which are connected (using the dilated DEM) are identified as a flat and set to NaN.

This function can sometimes be overly aggressive and remove areas of interest, so it is always best to inspect the
results of the function before using it for subsequent processing (e.g. providing the filtered DEM produced here to
MakeStreams to regenerate a stream network) and compare it with the basic output of MakeStreams to determine
whether the results of RemoveFlats are suitable for use.

7.5 FindThreshold
Stream definition is commonly controlled by a minimum threshold accumulation area, i.e. streams are defined as

anywhere within a DEM where the upslope drainage area exceeds a threshold value. The FindThreshold function is
designed to aid you in choosing an appropriate minimum threshold area or, alternatively, manually setting this threshold
area on a stream by stream basis. It requires that you run MakeStreams initially, though the threshold area you use when
running MakeStreams is not critical (though this will dictate the initial drainage density and thus the number of channel
heads with which to work).

FindThreshold can be run in one of two ways. In the first way, when you provide a numeric input to the ’num streams’
parameter, the function displays this user specified number of streams extracted all the way to the drainage divide and
allows you to choose, on either a χ-elevation or slope-area plot where you think the hillslope to channel transition
might be. In this mode, the function will produce a new stream network based on the average of your minimum thresh-
old area choices, and will also give you the population of minimum threshold areas and associated distances from the
drainage divide to the channel head for the streams you choose. Alternatively, FindThreshold if ’num streams’ is set
to ’all’, it runs in a mode where the function iterates through all channel heads in the provided stream network and
uses the same picking protocol as above to manually set the minimum threshold area for each stream. In this mode

21

each stream will have a variable minimum threshold area, but the total number of streams (i.e. channel heads) will still
be dictated by the drainage density of the input stream network. Running FindThreshold with ’num streams’ set to
’all’ on a large stream network may be very labor intensive, for example, the southern California dataset with an initial
threshold area of 1e6 m2 has > 120,000 channel heads so if you were to in ’all’ mode, you would have to manually
identify the hillslope-channel transition on ALL of those channel heads.

8 Stream Selection and Projection
The three functions for stream selection and projection have some overlap with similar functions in TopoToolbox,

but are slightly different in implementation or style of outputs. Exploring both to see which set better fits your needs is
advisable.

8.1 SegmentPicker
SegmentPicker is a function designed to select portions of larger stream networks. In terms of stream selection, the

function has two primary modes, either ’down’, i.e. you select individual streams based on a channel head location, or
’up’, i.e. you select portions of networks above a given pour point. If selecting on the basis of channel head location,
the function will interpret your selection to be the channel head that is the minimum euclidean distance between your
selection and the actual channel heads. Channel selection can be done interactively within Matlab or by providing
coordinates of channel heads or pour points as an array or a point shapefile. SegmentPicker shares some similarity to
the TopoToolbox function flowpathapp or functionality available in topoapp.

8.2 SegmentPlotter
SegmentPlotter takes the output of SegmentPicker and plots each selected stream individually. The stream network

is plotted as χ-elevation, longitudinal profile, and slope-area plots. With the logical ’separate’ flag, you can produce
individual figures for each segment. Alternatively, you can provide a list of identifying numbers (i.e. the ID number in
the third column of the SegmentPicker output) to the ’subset’ parameter to only plot specific segments. You can also
initiate and control labeling of stream segments with the ’label’ and ’names’ parameters.

8.3 SegmentProjector
SegmentProjector allows you to interactively select a portion of a stream to project along the length of the entire

stream (i.e. from the mouth to the channel head of the provided stream). This can be useful for a variety of questions,
e.g. estimating the amount of uplift of a low relief portion of a landscape (Figure 6) or identifying portions of a
stream profile that may be tectonically deformed or otherwise disturbed (Figure 7). In detail, the function clips out the
portion of the stream you select and performs a least squares linear fit on the χ-elevation relationship along with a 95%
confidence interval on this fit.

22

(a) Projected stream (b) Residual on projected stream

Figure 6: Example of SegmentProjector outputs for a stream within Basin 402 (northeastern San Jacinto Mountains)
with a low relief upper portion.

23

(a) Projected stream (b) Residual on projected stream

Figure 7: Example of SegmentProjector outputs for a stream within Basin 313 (northwestern San Jacinto Mountains)
with possible localized deformation or landslide deposit within the profile.

SegmentProjector will iterate through all channel heads within a provided stream network, so it is suggested that
you use SegmentPicker or some other means of selecting streams of interest before running SegmentProjector. Note
that if you are using the output of SegmentPicker, you will need to load the PickedSegments *.mat file and provide
the STREAMobj Sc stored within this file as the required STREAMobj input to SegmentProjector. SegmentProjector is
similar to the TopoToolbox streamproj function.

9 Channel Steepness and χ Maps

9.1 KsnChiBatch
KsnChiBatch is designed to be similar to the original ’batch’ mode in Profiler51 for creating normalized channel

steepness (ksn) maps, but has many more options. KsnChiBatch can be used to produce stream networks with values of
ksn or χ or continuous grids of either ksn or χ. There are options to produce outputs as either shapefiles or ascii grids
for use in a GIS program or matlab outputs for display (e.g. using PlotKsn) or for analysis. There are also options

24

to remove incomplete portions of stream networks (which can be problematic for both χ and ksn calculations) and
control outlet elevation (which can be important for correctly interpreting χ anomalies). The methodology employed
for dealing with χ in KsnChiBatch is identical to that as in the companion DivideTools GitHub repository, the details
of which are described in Forte and Whipple [2018] [Link to Journal Site] .

The outputs of the KsnChiBatch function differ depending on the type of map being calculated. If the required
’product’ input is set to ’ksn’, then the function will save a polyline shapefile, but if the ’product’ is ’chi’, ’chigrid’,
or ’ksngrid’ the function will save an ascii grid. χ maps are output as grids to avoid averaging of chi values along a
stream network during the production of a shapefile. If you wish to create a shapefile of a χ map, you can use a GIS
program to create a shapefile from the ascii grid (e.g. in ArcGIS, convert the ascii to a raster and then use the raster to
polyline function).

You can also specify that you want the function to produce outputs to the workspace with the optional ’output’
parameter. The number of outputs will again vary with the product:

% When ’ ksn ’ i s the ’ product ’ , two ou tpu t s w i l l be produced , a GRIDobj w i th
ave raged ksn v a l u e s s t o r e d i n nodes a long the st ream network (
KSN STREAM GRID) and a geog r aph i c i n f o rma t i o n s t r u c t u r e o f ksn v a l u e s (
ksn ms)

[KSN STREAM GRID , ksn ms]=KsnChiBatch (DEM,FD,A, S , ’ ksn ’) ;
% When ’ k sng r i d ’ i s the product , a GRIDobj o f i n t e r p o l a t e d ksn v a l u e s w i l l be

produced
[KSN GRID]=KsnChiBatch (DEM,FD,A, S , ’ k s n g r i d ’) ;
% When ’ chimap ’ i s the product , a GRIDobj w i th c h i v a l u e s s t o r e d i n nodes

a l ong the st ream network w i l l be produced
[CHI MAP]=KsnChiBatch (DEM,FD,A, S , ’ chimap ’) ;
% When ’ c h i g r i d ’ i s the product , a GRIDobj w i th c h i v a l u e s i n a l l nodes not

e x c l uded by o u t l e t c o n d i t i o n s w i l l be produced
[CHI GRID]=KsnChiBatch (DEM,FD,A, S , ’ c h i g r i d ’) ;
% When ’ ch i ’ i s the product , the c h i map output w i l l come f i r s t
[CHI MAP , CHI GRID]=KsnChiBatch (DEM,FD,A, S , ’ c h i ’) ;
% When ’ a l l ’ i s the product , a l l o f the p r e v i o u s ou tpu t s w i l l be produced i n

the f o l l o w i n g o r d e r
[KSN STREAM GRID , ksn ms , KSN GRID , CHI MAP , CHI GRID]=KsnChiBatch (DEM,FD,A, S , ’ a l l

’) ;

Values of ksn can be calculated in three primary ways. The default ’ksn method’ (and the same method used in
the original Profiler51 or the TopoToolbox ksn function) is denoted ’quick’ and calculates ksn across the entire stream
network simultaneously by solving the equation,

S = ksn ∗A−θ (1)

where S is the gradient, A is the drainage area, and θ is a reference concavity. This result will typically be extremely
noisy because of small variations in gradient, so ksn values are usually averaged over some length, depending on the
resolution of the data, [e.g., Wobus et al., 2006]. This ’smooth distance’ is a user controlled parameter in KsnChiBatch.

25

https://github.com/amforte/DivideTools
https://www.sciencedirect.com/science/article/pii/S0012821X18302292

Because of the way the averaging is done over a given smoothing distance by the underlying TopoToolbox STREAMobj2mapstruct
function, sometimes portions of trunk streams can end up with anomalously high ksn values as their values are influ-
enced by smaller, steeper side tributaries. To partially control for this, we include an additional method of ksn cal-
culation where averaged ksn values for trunk streams are calculated separately. This option can be used by setting
’ksn method’ to ’trunk’. The determination of whether a stream is a trunk stream or not is based on stream order,
which is controllable with the optional ’min order’ parameter. By default, the ’min order’ is set to 4, meaning that any
stream of order 4 or greater is considered a trunk stream.

Both the default ’quick’ and ’trunk’ methods described above are rapid to calculate, but can sometimes smear out
true abrupt changes in ksn at confluences. For this reason, by setting ’ksn method’ to ’trib’, ksn can also be calculated
with KsnChiBatch where network segments (i.e. stream segments between confluences) are selected, divided into sub-
segments determined by the ’smooth distance’, and then the average ksn of each sub-segment is calculated by finding
the best fit slope on the χ-elevation relationship for this sub-segment (ksn is equivalent to the slope of the χ-elevation
relationship when the reference drainage area is set to 1). The ’quick’ and ’trib’ methods do produce different ksn

patterns, though while subtle, do show some systematic behavior (Figure 8).

Figure 8: Comparison of the regular ’quick’ method vs the ’tributary’ method of calculating ksn using KsnChiBatch.

While we have not conducted a full study of the differences of the basic ’quick’ vs ’trib’ methods, the southern
California example suggests that generally the regular ’quick’ method of ksn calculation may be slightly biased towards
higher ksn values, though 90% of ksn values of the two methods are within ±50 of each other (this is with a reference
concavity of 0.50, so absolute magnitudes of ksn and thus magnitudes of deviations between these two methods will
scale with choice of reference concavity). The ksn values from the regular method are generally systematically larger

26

than the tributary method values in low relief areas, where as generally ksn values from the tributary method tend to be
higher than regular values in higher relief portions of the landscape (Figure 8).

The geographic information structure (and shapefile) produced from both methods for each segment (controlled by
the ’smooth distance’) will have fields containing values for ksn (’ksn’), mean drainage area (’uparea’), mean gra-
dient (’gradient’), and the difference between the conditioned stream elevation and non-conditioned stream elevation
(’cut fill’) to inform the user whether an anomalous ksn value may because of an overly aggressive conditioning scheme.
If the ’trib’ method is used, the geographic information structure and shapefile will include an extra field, ’chi r2’,
which is the R2 value on the χ-elevation fit and can be interpreted as a measure of the linearity of each sub-segment.

9.2 KsnProfiler
For detailed analysis of streams, it is often necessary to manually select knickpoint bounded steam segments for

which you wish to calculate average ksn values. This was the primary purpose of the original Profiler51 code and we
have produced the KsnProfiler function to replicate and improve upon the original Profiler51 methodology. In detail,
KsnProfiler calculates ksn of user selected segments by finding the best fit linear slope of the χ-elevation relationship
for the segment in question. It should be noted that 1) calculation of ksn via this method will produce identical results
to finding the intercept of a fit in slope-area space (providing that the reference area in the χ calculation is set to 1, as it
is in KsnProfiler) so there is no need to distinguish between ksn values calculated by a χ-elevation slope or a slope-area
intercept and 2) though the publication associated with the original Profiler51 codes discussed ksn calculation in terms
of slope intercepts [Wobus et al., 2006], internally, the code used the slope of a linear fit on a χ-elevation relationship
to calculate ksn. KsnProfiler has a large number of optional inputs, so you should familiarize yourself with all of the
ways in which it can be run by reading through the header of the function. We highlight some of the main options in
the following sections.

9.2.1 Stream Selection

There are four different ways in which you can define which streams you would like to fit. The default is an
interactive channel selection method where you choose streams (from all of the streams in the provided STREAMobj)
manually by clicking near a channel head of interest. In this case, the call of KsnProfiler is relatively simple:

[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S) ;

While this can be nice especially as it will update the map with ksn values as you continue to pick and fit streams, it
can be unstable or slow if you are trying to analyze a very large area (though you can use the ’plot type’ parameter to
switch to a map plot that is more optimized for larger datasets). The three other selection methods do not involve a
map of streams, so is generally more stable for large datasets. The other options are called like:

% To i t e r a t e through a l l s t r eams i n the p r o v i d ed STREAMobj :
[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ input method ’ , ’ a l l s t r e am s ’) ;
% To i t e r a t e through a l l s t r eams and f i t any st ream ove r 50 km i n t o t a l

l e n g t h :
[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ input method ’ , ’ s t r e am l e n g t h ’ , ’

m i n l e n g t h t o e x t r a c t ’ ,50000) ;
% To f i t s t r eams based on a d e f i n e d l i s t o f channe l head l o c a t i o n s p r o v i d ed

as an a r r a y o f channe l head l o c a t i o n s (c h l i n the example below) :
[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ input method ’ , ’ c h anne l h ead s ’ , ’

c h a n n e l h e a d l i s t ’ , c h l) ;

27

% To f i t s t r eams based on a d e f i n e d l i s t o f channe l head l o c a t i o n s p r o v i d ed
as an a r r a y o f channe l head l o c a t i o n s from a po i n t s h a p e f i l e o f channe l
heads :

[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ input method ’ , ’ c h anne l h ead s ’ , ’
c h a n n e l h e a d l i s t ’ , ’ c hanne l h ead s . shp ’) ;

9.2.2 Dealing with Stream Junctions

Similar to the methodology employed in KsnChiBatch, KsnProfiler gives you the option to fit across stream junctions
or only fit portions of streams upstream of junctions. This is controlled with the optional parameter, ’junction method’,
which by default is set to ’check’.

% To run K s nP r o f i l e r i n d e f a u l t mode where f i t s do not occu r a c r o s s s t ream
j u n c t i o n s , no argument i s r e q u i r e d f o r ’ j unc t i on method ’ :

[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S) ;
% I f you s t i l l want to s p e c i f y i t so tha t t h e r e i s a r e c o r d i n the workspace :
[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ j unc t i on method ’ , ’ check ’) ;

In this mode, the first time a particular stream segment within a given connected network is chosen, the entire stream
profile will be displayed (i.e. from the channel head to the outlet) and used during the fitting process. For any sub-
sequent chosen streams that share a portion of a previously fit stream, only the unique (i.e. the portion of the stream
upstream of junctions) will be displayed and fit. This allows you to analyze portions of streams independently to
avoid fitting across confluences and also avoids the stacking effect downstream of confluences where shared portions
of picked streams are fit multiple times. By setting ’junction method’ to ’ignore’, you can operate KsnProfiler similar
to the original Profiler51 [Wobus et al., 2006] where all stream chosen stream segments are displayed in their entirety
and stream junctions are ignored.

% To run K s nP r o f i l e r s i m i l a r to how P r o f i l e r 5 1 ope ra t ed and f i t a l l s e l e c t e d
s t r eams i n t h e i r e n t i r e t y :

[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ j unc t i on method ’ , ’ i g n o r e ’) ;

There is a related optional parameter, ’stack method’ that deals with the overlapping portions of streams allowing you
to either generate multiple polylines (one for each fit) that will be stacked on top of each other in the resulting shapefile
or to average values node by node in any overlapping segments.

% Ig n o r i n g st ream j u n c t i o n s and s t a c k i n g p o l y l i n e s i n output s h a p e f i l e :
[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ j unc t i on method ’ , ’ i g n o r e ’ , ’ s tack method ’ , ’

s t a c k ’) ;
% I g n o r i n g st ream j u n c t i o n s and a v e r a g i n g v a l u e s i n o v e r l a p p i n g segments

b e f o r e p roduc i ng output s h a p e f i l e :
[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ j unc t i on method ’ , ’ i g n o r e ’ , ’ s tack method ’ , ’

a v e r age ’) ;

The two different junction methods (i.e. ’check’ vs ’ignore’) will produce slightly different results, but are generally
more similar to each other than when compared to ksn values calculated via batch processing using KsnChiBatch (Figure
9).

28

Figure 9: Comparison of ksn values for Basin 56, calculated using the batch method (using KsnChiBatch) or KsnProfiler
either ignoring or checking stream junctions.

9.2.3 Defining the Minimum Threshold Area

By default, the KsnProfiler function will use the stream network exactly as supplied, but there are several options
for more precisely controlling the minimum threshold area for streams. The first option is to use FindThreshold to

29

regenerate the stream network and use this new STREAMobj as the input to KsnProfiler. Alternatively, you can use a
built in function of KsnProfiler via the optional ’redefine threshold’ parameter to choose the minimum threshold area
on either a slope-area or χ-elevation plot (Figure 10).

% To r e d e f i n e minimum t h r e s h o l d a r ea f o r each st ream chosen st ream segment
i n d i v i d u a l l y :

[˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ r e d e f i n e t h r e s h o l d ’ , t r u e) ;

(a) Before threshold area selection (b) After threshold area selection

Figure 10: Example of defining minimum threshold area on a slope-area plot using KsnProfiler, black dots are portions
of the stream network that will be excluded from channel definition.

9.2.4 Restarting and Recovering from Errors

The KsnProfiler function is designed to be very robust in case of errors (both actual errors and user error). Through-
out the normal operation of the function, the user is able to redo any step in the stream selection or fitting processes.
While the function is running, a temporary mat file is also saved that stores all the values necessary to restart if the
code fails for some reason. A failed run can be restart by using the ’restart’ optional parameter. The ’restart’ option
can also be used to pick up where you left off from a user terminated session (i.e. you indicated to the function that you
were done, but subsequently decided you wanted to keep fitting streams). Whether you are restarting a run because of
failure or simply picking up where you left off, you do not need to recreate the exact call to the function as the function
also saves a record of all parameter values and uses these saved values during a restart run (note though that you still
need to provide the required datasets).

30

9.2.5 General Use

KsnProfiler can be run either with a user provided reference concavity or in a mode where the best-fit concavity
is found for each selected stream individually. Note that ksn values can only be compared between streams if the
same reference concavity is used, so it is generally recommended that unless you are explicitly only interested in the
concavity of streams, that you leave the concavity method set to the default ref mode. Regardless of your choice for
concavity method, a best-fit concavity is calculated for each stream segment and is recorded in the outputs. Finding
the best-fit concavity relies on the TopoToolbox chiplot function, where this function searches for the concavity value
that minimizes the difference between the true χ-elevation relationship of the stream segment and a linear χ-elevation
relationship. During general use of KsnProfiler, for any stream that is selected, you will be prompted to select segment
boundaries on a plot (Figure 11a). These manually selected segment boundaries will be output as both a matlab array
and a point shapefile. It should be noted that because the selection of these segments is manual, individual selections
are not strictly reproducible. However, because the code restricts segment boundaries to stream nodes, there are a
limited number of options for segment boundaries so in practice, while tedious, results for a given stream can be
mostly reproduced (i.e. if you were trying to reproduce previous segment location choices).

The exact construction of the plot will depend on a variety of optional input parameters. You can choose segment
boundaries on either a χ-elevation plot, a longitudinal profile plot, or a slope-area plot. In detail, regardless of the plot
on which you choose to select segments, the calculation of best fit ksn is performed on the χ-elevation relationship for
that segment. To ensure that the fit is not biased by the spacing of χ values that vary as a function of drainage area,
the fit is performed on a spline interpolated version of the χ-elevation relationship for the segment with equal point
spacing in χ. The function also produces a residual plot to aid in your assessment of the goodness of fit (Figure 12).

31

(a) Main channel display before segment selection
(b) Main channel display after segment selection showing fit seg-
ments

Figure 11: Segment selection and fitting in KsnProfiler
.

For all options, a plot of the batch ksn vs a relevant quantity (i.e. either χ, distance, or log area) will be displayed to
aid you in picking out potential segments. The plot on which you need to make your selection will be highlighted with
red axes, though for all options, the choice is recorded internally based on the position of the cursor in the x coordinate,
so in the example (Figure 11a) you could click on segment boundaries based on values of χ on either the χ-elevation
or χ-Auto ksn plots and produce an accurate choice. The order in which you select segment boundaries doesn’t matter
and the outlet and channel head are automatically considered segment boundaries (i.e. you don’t need to define these
as segment boundaries). If you do not click anywhere in the plot, the function will treat the selected stream as one
segment and fit a single ksn value to the entire stream segment. Once you are done selecting segment boundaries, the
function will find the best fit ksn for each segment and display these (Figure 11b).

32

Figure 12: Residuals on ksn fit. Note that uncertainty values on the ksn fits are calculated and plotted, but in this
example, the uncertainties are small enough that they are not distinguishable from the main ksn lines.

9.2.6 Outputs

The KsnProfiler function produces four outputs to the workspace:

[kn l , k sn maste r , b n d l i s t , Sc]= K s nP r o f i l e r (DEM,FD,A, S) ;

where knl is an array of all stream locations with best fit ksn, uncertainty values on this fit, concavity values, gradient,
drainage area information, and reference ID numbers for the streams. This same output is also provided as a cell array,
ksn master, where individual streams are separated into cells. The segment boundaries are provided as an array of x, y,
and z, locations in bnd list and a STREAMobj of the selected streams is provided as Sc. Two shapefiles are produced,
one as a polyline of the selected streams and containing all the information in the knl output and a point shapefile of
segment boundaries (i.e. knickpoints) is also produced (assuming segment boundaries were selected for any stream).

33

Depending on the setup of your KsnProfiler run, all of the plots generated during the fitting process may also be saved
automatically.

9.3 ClassifyKnicks
The ClassifyKnicks is a companion function to KsnProfiler that allows you to iterate through all segment boundaries
selected during a KsnProfiler run and provide a classification. This classification can either be numeric (e.g. 1, 2, 3,
etc) or a character string (e.g., ’bound’, ’slopebreak’, ’knick’, etc). If using character strings, these should be short (the
shapefile format restricts entries in fields to 254 characters). The function will generate a new version of the knickpoint
shapefile with this classification appended.

10 Basin Selection

10.1 BasinPicker
The BasinPicker function was originally designed to aid in the selection of sample locations for catchment averaged

erosion rates (i.e. sand samples for 10Be analysis), but can also be used as an interactive gateway to the ProcessRiver-
Basins function. BasinPicker takes the standard inputs:

[Ou t l e t s]= Ba s i nP i c k e r (DEM,FD,A, S) ;

and displays the DEM along with a map of local relief (radius of relief can be specified with optional ’rlf radius’
parameter) and the provided stream network and prompts the user to choose a pour point / river mouth. The function
will first confirm that you choose the correct portion of the stream network and then, if you answer in the affirmative,
will display the plot of the χ-elevation and longitudinal profile for the streams within the selected basin and will also
print out the mean local relief, mean channel steepness, and drainage area of the selected basin. The function will
then ask if you wish to keep or discard this basin from the running list of outlets. The rationale being that if you are
using this for sample site selection, you may not want to include basins that have major knickpoints, are below/above
a particular drainage area, or do not meet some user defined morphometric criteria.

After each confirmed selection, BasinPicker will append this to an ’Outlets.mat’ file. If you run BasinPicker when
an ’Outlets.mat’ file is in the active directory (or on your path), the code will attempt to populate the map with previous
outlet selections. If you have already calculated local relief for your area of interest, you can skip the recalculation by
providing a GRIDobj of local relief to the optional ’rlf grid’ parameter. You can also provide an additional GRIDobj if
you wish to consider an additional gridded dataset in selecting basin outlet locations:

% Prov i d i n g a precomputed r e l i e f g r i d
[Ou t l e t s]= Ba s i nP i c k e r (DEM,FD,A, S , ’ r l f g r i d ’ ,RLF) ;
% P ro v i d i n g an e x t r a g r i d
PRECIP=GRIDobj (’ / Use r s / a f o r t e /GISdata / p r e c i p . t i f ’) ;
[Ou t l e t s]= Ba s i nP i c k e r (DEM,FD,A, S , ’ e x t r a g r i d ’ ,PRECIP) ;

The provided extra grid does not need to the same dimensions as the input DEM, etc, but it does need to be in the same
projection. If you provide an extra grid, the mean values of this grid within the selected basin(s) will also be displayed
in the plots.

34

In some instances, you may be selecting basins that are upstream of specific locations, e.g. if you want to calculate
basin averaged statistics for watersheds above detrital sample sites for which you have GPS coordinates. Very often,
the true location of streams, and samples from them, will be slightly different than the location of the stream that
results from flow routing, such that just using the GPS location of a sample site will result in incorrect basin selection,
requiring a laborious process of nudging true locations to lie on stream lines. This process can be sped by providing
the list of coordinates to the optional ’refine positions’ argument in BasinPicker. After providing these locations, the
code will iterate through each position and show its location on the main map but also the location of the sample and
the stream network in a separate zoomed in window, allowing you to precisely reposition the river mouth. The amount
of zoom is controlled by the ’window size’ parameter, where you can specify the size of the zoomed in window in
kilometers. For example:

% Load a s h a p e f i l e c o n t a i n i n g your GPS c o o r d i n a t e s
ms=shape r ead (’ my gp s po i n t s . shp ’) ;
% Ex t r a c t the X and Y c o o r d i n a t e s and put them i n t o a m x 2 a r r a y
gp s pn t s =[[ms .X] [ms .Y]]
% Run Ba s i nP i c k e r w i th window s i z e o f the zoomed window s e t to 2 km
[Ou t l e t s]= Ba s i nP i c k e r (DEM,FD,A, S , ’ r e f i n e p o s i t i o n s ’ , gps pnt s , ’ w i ndow s i z e ’ , 2) ;

11 Basin Average Maps and Plots
A major part of the Topographic Analysis Kit are tools designed for efficient selection and analysis of basin averaged

data.

11.1 ProcessRiverBasins
11.1.1 Basic Operation

The workhorse function within the broader basin averaging set of tools is ProcessRiverBasins. ProcessRiverBasins
was initially designed to efficiently clip out a series of watersheds from a larger DEM for use in ArcGIS, but has
expanded much beyond that capability. The basic operation of ProcessRiverBasins requires the standard inputs along
with a list of river mouths above which watersheds will be extracted. This list of river mouths can be provided as a
Matlab array, e.g. the list of outlets output from BasinPicker is a valid input for ProcessRiverBasins:

% Using output o f Ba s i nP i c k e r to run P r o c e s sR i v e rBa s i n s
l oad (’ Ou t l e t s . mat ’ , ’ Ou t l e t s ’) ;
P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’) ;

where ’basin dir’ is the name of a folder (or full path of a folder) in which to store all of the datafiles that will be
produced during a ProcessRiverBasins run. If the provided folder name does not exist, the function will create the
folder. You do not have to use BasinPicker to generate the river mouth input, you only need to provide an array of x
and y locations with ID numbers. Alternatively, you can provide a point shapefile where individual points are placed in
locations where you wish there to be river mouth and each point has an identifying number (you can use the default ID
number that ArcGIS will generate, but it is recommended that you make a separate field in your shapefile and manually
provide ID numbers) :

% Using a po i n t s h a p e f i l e to run P r o c e s sR i v e rBa s i n s
P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , ’ p o i n t s s h a p e . shp ’ , ’ b a s i n d i r ’) ;

35

As a caution, if you are going to use a GIS program (e.g. ArcGIS or QGIS) to select river mouth locations, it is strongly
recommended that you use the stream shapefile output from MakeStreams as opposed to a stream network generated
using flow routing in the GIS program of your choice. This is because flow routing algorithms vary slightly and thus
absolute stream locations vary. Prior to the clipping process, ProcessRiverBasins will snap the provided river mouths
to the provided stream network, so accidental selection of the wrong basin is possible if the selection of river mouths
was done on an alternative stream network shapefile. Similarly, if you are using ProcessRiverBasins to clip out and
calculate statistics on true sample locations (e.g. locations of detrital sediment samples as recorded by a GPS), it is
again recommended that you ensure that these locations lie on the correct portion of the stream network generated by
MakeStreams or incorrect basins may be clipped. This may require moving true locations to lie on the correct flow
routed stream! For an easy way to do this, see the ’refine positions’ option in BasinPicker.

A final option for fully automated selection of river mouths allows you to provide an elevation as the river mouth
parameter. This will place river mouths on the stream network at every location the stream network drops below this
provided elevation:

% To c r e a t e b a s i n s w i th o u t l e t s above 1000 mete r s e l e v a t i o n
P r o c e s sR i v e rBa s i n s (DEM,FD,A, S ,1000 , ’ b a s i n d i r ’) ;

River mouths provided to ProcessRiverBasins can be non-nested or nested as each basin is processed independently
of all other basins. If your goal is to simply to generate a large dataset of arbitrary small basins within a landscape, we
recommend placing river mouths at strategic locations (e.g. where streams exit a mountain range, Figure 13) and use
ProcessRiverBasins to process these large basins and then use SubDivideBigBasins to automatically subdivide basins
as opposed to manually selecting large numbers of nested, sub-basins.

The ProcessRiverBasins function will use the river mouth locations to extract basins. For each basin there will
be a Matlab .mat file which will contain its own basic TopoToolbox files along with various derived quantities, e.g.
geographic data structure of ksn using a reference concavity, geographic data structure of ksn using a best-fit concavity
for that watershed (remember that ksn values calculated with different concavities are not comparable when considering
these outputs!), hypsometry and hypsometric integral for the basin, slope map, and statistics (mean, standard deviation
or standard errors) on the majority of these quantities. See the Understanding Outputs for a complete list of outputs
stored within the .mat file. Because it is time consuming, local relief is not calculated by default, but you can specify
that you wish to calculate relief at a variety of radii using the ’calc relief’ and ’relief radii’ parameters:

% Ca l c u l a t e r e l i e f w i th a r a d i u s o f 2500 m f o r a l l b a s i n s
P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’ , ’ c a l c r e l i e f ’ , t rue , ’

r e l i e f r a d i i ’ ,2500) ;
% Ca l c u l a t e r e l i e f w i th at 1000 , 2500 , and 5000 m r a d i i f o r a l l b a s i n s
P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’ , ’ c a l c r e l i e f ’ , t rue , ’

r e l i e f r a d i i ’ , [1000 2500 5000]) ;

If relief is calculated, statistics on these relief grids are also calculated. For each basin, a single .mat file is saved in
the specified directory. The naming convention for these files is ’Basin # Data.mat’ where # is the ID number in the
river mouth input for a given basin. It is important that you do not change the names of these files as this will break
other functions that use these as inputs. By default, files suitable for use in a GIS program are not generated for each
basin. You can have the function do this automatically for all basins by setting the optional ’write arc files’ to true or
manually by using Mat2Arc for the desired basins.

36

11.1.2 Extra Grids

You can also provide an arbitrary number of extra grids to have ProcessRiverBasins clip and calculate basin averaged
statistics for these grids. These extra grids do not need to be the same dimensions or cellsize as the input DEM, but they
do need to be in the same coordinate system and projection. Also, if any provided extra grids are smaller than the DEM
and any selected basin includes areas that are not covered by the extra grid, this will produce biased statistics. Extra
grids are provided to the ProcessRiverBasins function as a 2 column Matlab cell array where the first column contains
the GRIDobj and the second column includes a name for this grid in conjunction with the ’add grids’ parameter:

% To run P r o c e s sR i v e rBa s i n s and i n c l u d e two e x t r a g r i d s
% Crea te the two GRIDobjs from data o f i n t e r e s t
PRECIP=GRIDobj (’ / Use r s / a f o r t e /GISdata / p r e c i p . t i f ’) ;
NDVI=GRIDobj (’ / Use r s / a f o r t e /GISdata / n d v i g r i d . t i f ’) ;
% Make an empty c e l l a r r a y
AG=c e l l (2 , 2) ;
% Popu la te c e l l a r r a y w i th n e c e s s a r y data
% Note tha t l o c a t i o n i n c e l l a r r a y s a r e r e f e r e n c e d wi th c u r l y b r a c k e t s
AG{1 ,1}=PRECIP ;
AG{1 ,2}= ’ p r e c i p ’ ;
AG{2 ,1}=NDVI ;
AG{2 ,2}= ’ n d v i v a l ’ ;
% Run P r o c e s sR i v e rBa s i n s
P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’ , ’ a d d g r i d s ’ ,AG) ;

As a note, it is not recommended that you provide a local relief grid as an extra grid, but rather use the ’calc relief’
option. The reason for this is twofold, 1) because local relief is calculated with a moving window, simply clipping out
watersheds from a larger local relief raster will bias the statistics within the clipped watersheds as edge pixels will be
influenced by neighboring basins and 2) subsequent codes explicitly look for the relief datasets in ProcessRiverBasins
outputs to determine behaviors.

Note for Compiled Versions: If you are running the compiled version of ProcessRiverBasins, the procedure for
adding extra grids is slightly different. Instead of directly providing the extra grids to ProcessRiverBasins, you must
first use the PrepareAddGrids function to prepare a .mat file containing these extra grids, the name of which is then
provided to the compiled ProcessRiverBasins function.

11.1.3 Categorical Grids

Some data that you may want to include in ProcessRiverBasins is not natively supported as a GRIDobj, specifically
non-numeric data stored in polygonal shapefiles, e.g. units from a geologic map or vegetation types. You can provide
this data as a usable input to ProcessRiverBasins via the optional ’add cat grids’ parameter and with the help of
the CatPoly2GRIDobj function. The input to the ’add cat grids’ parameter is expected as a 3 column Matlab cell
array, where the first column is the GRIDobj, the second column is the lookup table (both of these are generated by
CatPoly2GRIDobj), and a name for the grid:

% To run P r o c e s sR i v e rBa s i n s an a d d i t i o n a l c a t e g o r i c a l g r i d
% Genera te the c a t e g o r i c a l g r i d and lookup t a b l e w i th CatPoly2GRIDobj
[GEO, g e o t a b l e]=CatPoly2GRIDobj (DEM, ’ g eo po l ygon s . shp ’ , ’PTYPE ’) ;
% Make an empty c e l l a r r a y
ACG=c e l l (1 , 3) ;

37

% Popu la te c e l l a r r a y w i th n e c e s s a r y data
ACG{1 ,1}=GEO;
ACG{1 ,2}= geo t a b l e ;
ACG{1 ,3}= ’ r o c k t y p e ’ ;
% Run P r o c e s sR i v e rBa s i n s
P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’ , ’ a d d c a t g r i d s ’ ,ACG) ;
% For s imp l e i n p u t s l i k e above , you can do most o f t h i s i n one l i n e a f t e r

g e n e r a t i n g GEO and g e o t a b l e w i th CatPoly2GRIDobj
P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’ , ’ a d d c a t g r i d s ’ ,{GEO

ge o t a b l e ’ g eo l ogy ’ }) ;

As with extra grids, more than one categorical grid can be provided, simply add additional rows to the input cell array.
The remaining functions in this section all are either designed to operate on the products of ProcessRiverBasins or
serve as helper functions for ProcessRiverBasins, e.g. CatPoly2GRIDobj. Because it is assumed that mean values of
a category are not meaningful, the mode category value for each basin is found and used as the statistic. The function
also calculates the number of pixels of each basin that belong to each category and saves this within the outputs.

Note for Compiled Versions: If you are running the compiled version of ProcessRiverBasins, the procedure for
adding categorical grids is slightly different. Instead of running CatPoly2GRIDobj and providing the result directly
to ProcessRiverBasins, you must instead use the PrepareCatAddGrids function to prepare a .mat file containing these
categorical grids, the name of which is then provided to the compiled ProcessRiverBasins function.

11.1.4 Understanding Outputs

Each basin .mat file (or sub-basin file if considering the outputs of the related SubDivideBigBasins) contains a lot of
outputs. For the most part, subsequent functions are designed to use and process these basin files, but in some cases
you may wish to use products directly so we provide a list of all the outputs and a brief description of each below.

1. Default outputs regardless of optional parameters or datasets:

• RiverMouth - array storing the x and y coordinate and ID number of the outlet of the basin

• DEMcc - clipped GRIDobj of the hydrologically conditioned DEM of the basin

• DEMoc - clipped GRIDobj of the original DEM of the basin

• out el - scalar value of elevation of the outlet of the basin in map units

• drainage area - scalar value of the drainage area of the basin in square kilometers

• hyps - two column array of the hypsometry of the basin, first column is relative frequencies, second column
is elevation

• FDc - clipped FLOWobj of the basin

• Ac - clipped GRIDobj of the flow accumulation raster of the basin

• Sc - STREAMobj containing the full stream network of the basin

• SLc - STREAMobj containing the largest connected full stream network of the basin (should be identical to
Sc in almost all cases).

• Chic - structure containing information regarding chi, direct output of the TopoToolbox function chiplot.

• Goc - clipped GRIDobj of the gradient of the basin

• MSc - geographic data structure of the stream network containing ksn information using a best-fit concavity

38

• MSNc - geographic data structure of the stream network containing ksn information using the user supplied
reference concavity

• KSNc stats - 5 column array containing the mean ksn, standard error on the mean ksn, standard deviation on
the mean ksn, minimum ksn, and maximum ksn of the clipped basin.

• Gc stats - 5 column array containing the mean gradient, standard error on the mean gradient, standard
deviation on the mean gradient, minimum gradient, and maximum gradient of the clipped basin.

• Zc stats - 5 column array containing the mean elevation, standard error on the mean elevation, standard
deviation on the mean elevation, minimum elevation, and maximum elevation of the clipped basin.

• Centroid - two column array containing the weighted x and y coordinate of the center of the basin.

• ChiOBJc - clipped GRIDobj with χ values along the stream network as defined by Sc.

• ksn method - character array indicating whether ksn was calculated with the quick or tributary method

• gradient method - character array indicating whether the gradient was calculated using gradient8 or arcs-
lope.

• KsnOBJc - clipped GRIDobj with interpolated ksn values for the entire watershed, note construction of this
can sometimes fail for small basins so this may not appear in all basin files, but the user will be warned that
particular basins do not included this output if that is the case.

• theta ref - scalar value recording the reference concavity used for calculating ksn and χ.

2. Outputs included if relief is calculated using the optional ’calc relief’ parameter:

• rlf - 2 column cell array where the first column contains a GRIDobj of local relief calculated for the clipped
basin and the second column contains a scalar recording the relief radius used. This cell array will have the
same number of rows as the number or relief radii provided to ProcessRiverBasins.

• rlf stats - a 5 column array containing the mean local relief, standard error on the local relief, standard
deviation on the local relief, minimum local relief, and maximum local relief of the clipped basin. This
array will have the same number of rows as the number of relief radii provided to ProcessRiverBasins and
will be in the same order as the rlf output.

3. Outputs included if extra grids are provided with the optional ’add grids’ parameter:

• AGc - 2 colum cell array where the first column contains a clipped GRIDobj of the additional grid(s)
provided to ProcessRiverBasins and the second column is the character string that is the name of the
additional grid provided by the user in argument for the ’add grids’ parameter. The cell array will have the
same number of rows as the numer of additional grids provided to ProcessRiverBasins.

• AGc stats - 5 column array containing the mean of the additional grid, the standard error on the mean of the
additional grid, the standard deviation on the mean of the additional grid, the minimum of the additional
grid, and the maximum of the additional grid of the clipped basin. This array will have the same number
of rows as the number of additional grids provided to ProcessRiverBasins and will be in the same order as
the AGc output.

4. Outputs inlcuded if categorical grids are provided with the optional ’add cat grids’ parameter:

• ACGc - 3 column cell array where the first column contains a clipped GRIDobj of the additional categorical
grid(s) provided to ProcessRiverBasins, the second column is the look up table for the relevant categorical
grid provided to ProcessRiverBasins, and the third column is the name of the categorical grid provided by
the user in argument for the ’add cat grids’ parameter. The look up table included in the ACGc output

39

will have an extra column named ’Counts’ which will include the number of pixels within the clipped
categorical grid that below to each category. The cell array will have the same number of rows as the
number of additional categorial grids provided to ProcessRiverBasins.

• ACGc stats - one column array containing the mode of the clipped categorical grid. This array will have
the same number of rows as the number of additional categorical grids provided to ProcessRiverBasins and
will be in the same order as the ACGc output.

Note for Compiled Versions: The compiled version of ProcessRiverBasins (and the related SubDivideBigBasins
function) will still produce the .mat file described above for use in other functions. However, if you wish to directly
access the contents of each .mat file, there are several options available to you. For accessing the raster and vector data
stored for each basin, you can run ProcessRiverBasins with the optional ’write arc files’ parameter set to true or alter-
natively use the compiled version of Mat2Arc after the completion of ProcessRiverBasins to extract and save versions
of these files usable in a GIS program. For accessing the statistics, running the compiled version of CompileBasinStats
will produce a table (that is output as a text file) that contains the majority of these statistics. As an alternative, you can
also read the individual .mat files directly using the scipy.io module of python.

11.2 CatPoly2GRIDobj
As discussed in section 11.1.3, sometimes it is helpful to have categorical data stored as a GRIDobj, but GRIDobjs

do not natively support non numeric values for cells. CatPoly2GRIDobj is designed to get around that by generating a
valid GRIDobj with numeric values replacing categorical values and bundling this with a lookup table that serves as a
key for the numeric values in the GRIDobj. CatPoly2GRIDobj requires a DEM input along with the name of a valid
polygonal shapefile that contains the categorical data of interest and the name of the field within that shapefile that
contains the specific data.

% Genera te a c a t e g o r i c a l g r i d and lookup t a b l e f o r a g e o l o g i c map f o r the rock
type f i e l d w i th the name ’PTYPE’ i n the i npu t s h a p e f i l e

[GEO, g e o t a b l e]=CatPoly2GRIDobj (DEM, ’ g eo po l ygon s . shp ’ , ’PTYPE ’) ;

The output GRIDobj will have the same dimensions as the input DEM. The provided shapefile does not need to have
the same dimensions (it can be larger or smaller than the input DEM), but it does need to be in the same coordinate
system and projection. CatPoly2GRIDobj can only handle one field within a shapefile, so if you have a shapefile that
has multiple fields you wish to convert to GRIDobjs, you will need to run CatPoly2GRIDobj multiple times. Any node
of the input DEM that does not have categorical values associated with it will be set to ’0’ in the GRIDobj, which
will correspond to a value of ’undef’ in the lookup table. As a note, this function relies heavily on the underlying
TopoToolbox function polygon2GRIDobj. At the time of writing, polygon2GRIDobj sometimes has issues dealing
with nested or overlapping polygons that will result in areas being set to ’0’ and ’undef’.

Note for Compiled Versions: There is no compiled version of CatPoly2GRIDobj. The PrepareCatAddGrids function
replaces it and prepares inputs directly for the compiled version of ProcessRiverBasins.

11.3 SubDivideBigBasins
The SubDivideBigBasins function is designed to automatically divide up basins output from ProcessRiverBasins

greater than a user specified drainage area. There are a variety of different methods for subdividing basins, including
on the basis of stream order (i.e. outlets of streams of a user specified order within a basin are used as new river mouths
above which to extract new sub-basins), confluences or upstream confluences (i.e. the former using the confluence as
a river mouth, the latter using points immediately upstream of a confluences as river mouths), filtered confluences (i.e.

40

https://docs.scipy.org/doc/scipy/reference/tutorial/io.html

using confluences as river mouths if those confluence points are above a user defined drainage area or percentage of the
input basin drainage area), confluence points with trunk stream (i.e. river mouths will be points immediately upstream
of every confluence with the main trunk within each specified basin), or filtered confluences with the trunk stream.
Some examples:

% Subd i v i d e b a s i n s s t o r e d i n the ’ b a s i n d i r ’ f o l d e r t ha t a r e g r e a t e r than 100
squa r e k i l om e t e r s i n d r a i n ag e on the b a s i s o f s t ream o rd e r w i th o u t l e t s o f
second o r d e r s t r eams s e r v i n g as r i v e r mouths

SubD iv i d eB igBas i n s (’ b a s i n d i r ’ ,100 , ’ o r d e r ’ , ’ s o r d e r ’ , 2) ;
% Subd i v i d e b a s i n s on the b a s i s o f c o n f l u e n c e s where c o n f l u e n c e s a r e a r e a s

w i th d r a i a ng e a r e a s g r e a t e r than 5 squa r e k i l om e t e r s i n d r a i n ag e a r ea
SubD iv i d eB igBas i n s (’ b a s i n d i r ’ ,100 , ’ f i l t e r e d c o n f l u e n c e s ’ , ’ m i n b a s i n s i z e ’ , 5) ;
% Subd i v i d e b a s i n s on the b a s i s o f t runk c o n f l u e n c e s g r e a t e r than 5 squa r e

k i l om e t e r s f o r any main ba s i n g r e a t e r than 50 squa r e k i l om e t e r s
SubD iv i d eB igBas i n s (’ b a s i n d i r ’ , 50 , ’ f i l t e r e d t r u n k ’ , ’ m i n b a s i n s i z e ’ , 5) ;

These different subdivision schemes will result in the selection of different sub-basins (Figure 13) which in turn will
result in different populations of basin statistics (Figure 15). Identical statistics and operations are performed on each
sub-basin as were for the main basins produced by ProcessRiverBasins.

We refer you to the function header for a full list of optional parameters for running SubDivideBigBasins, but it is
important to highlight the ’SBFiles Dir’ optional parameter. This parameter allows the user to specify the name of
the folder that will contain the sub-basin mat files and is set to ’SubBasins’ by default. This folder will be placed
within the main basin directory (specified with required ’basin dir’ parameter). If you want to generate different sets
of sub-basins based on different subdivision schemes, it is important to provide unique folder names in which to place
your different sub-basin datasets, otherwise overwriting and mixing of different subdivision schemes may occur. Sub-
basin mat files are saved as ’Basin # DataSubset ##.mat’ where # is the original basin number that is being subdivided
and ## is a sequential number based on the number of sub-basins produced within that main basin. It is important
that you do not change these file names as this will cause other functions which use these as inputs to fail or behave
unexpectedly. River mouth IDs for sub-basins are assembled by appending the sequential number of the sub-basin as
at least a 3 digit number (i.e. with the appropriate number of leading zeros) to the main basin number. For example,
river mouth ID for the 7th sub-basin of basin number 50 will be 50007, where as the 14th sub-basin for basin number
156 will be 156014. If there are more than 999 sub-basins, the function will still work fine, e.g. the river ID number
for the 1200 sub-basin of basin number 156 would be 1561200.

41

Figure 13: Comparison of mean ksn values calculated for manually selected basins (upper left panel) from Process-
RiverBasins and for a variety of sub-basin division schemes using SubDivideBigBasins. Data is from the Southern
California sample dataset.

11.4 FindBasinKnicks
FindBasinKnicks allows you to find, mark, and optionally classify knickpoints within a basin file produced by

ProcessRiverBasins or SubDivideBigBasins. Function will iterate through each stream in a given basin and allow the
user to manually select knickpoint locations on a χ-elevation plot. If you set the optional ’classify knicks’ parameter
to true, you can also input a classification for each selected knickpoints. As with the ClassifyKnicks function for

42

use with KsnProfiler, classification can be numeric or short character strings. The FindBasinKnicks function will
output a Matlab table with location information for the selected knickpoints and optionally produce a shapefile by
providing a valid character string to the optional ’shape name’ parameter. Similar to other options in TAK where you
manually define the location of a feature (on the basis of clicking on a plot), choices of basin knickpoints are not strictly
reproducible, but because the code restricts the location of a knickpoint to being on a stream node, they are in practice
closer to being reproducible.

11.5 PlotIndividualBasins
PlotIndividualBasins will iterate through a directory containing basin files output from ProcessRiverBasins and

produce a three panel plot displaying the χ-elevation, longitudinal profile, and slope-area relationships for each basin.
Each plot will be titled with the basin number and the drainage area of the basin. If you wish to produce plots for sub-
basins, you must provide the location of the sub-basins of interest with the optional ’location of subbasins’ parameter.
Note that if a valid sub-basin directory is supplied, plots for a subdivided main basin will not be produced, i.e. if main
basin 100 was subdivided, a plot for this basin will not be produced, but plots for all of its subbasins will be produced.
If you want to produce plots for all main basins and sub-basins, you will need to run the code twice, one time providing
a folder name for ’location of subbasins’ that is either empty or doesn’t exist.

11.6 Basin2Shape
The Basin2Shape function will take the products of ProcessRiverBasins and SubDivideBigBasins and produce a

single polygon shapefile containing all the basins and a variety of fields. The only required inputs are the original DEM
provided to ProcessRiverBasins and the location of the outputs of ProcessRiverBasins. The function provides three
options for which basins are included in the shapefile (depending on whether you ran SubDivideBigBasins or not) via
the optional ’include’ parameter. Similar to other functions, if you wish to include subdivided basins, you must provide
the name of the sub-basin folder. Assuming you ran both ProcessRiverBasins and SubDivideBigBasins the options are:

% To i n c l u d e on l y the o r i g i n a l p r oduc t s o f P r o c e s sR i v e rBa s i n s
[MS]=Bas in2Shape (DEM, ’ b a s i n d i r ’ , ’ i n c l u d e ’ , ’ b i g o n l y ’) ;
% To i n c l u d e a l l b a s i n s , meaning tha t even the main b a s i n s t ha t were

s u bd i v i d e d w i l l be i n l c u d e d
[MS]=Bas in2Shape (DEM, ’ b a s i n d i r ’ , ’ i n c l u d e ’ , ’ a l l ’ , ’ l o c a t i o n o f s u b b a s i n s ’ , ’

my sub ba s i n s ’) ;
% To i n c l u d e non−s u bd i v i d e d b a s i n s and s u bd i v i d e d bas in , meaning tha t main

b a s i n s t ha t were s u bd i v i d e d w i l l NOT be i n c l u d e d
[MS]=Bas in2Shape (DEM, ’ b a s i n d i r ’ , ’ i n c l u d e ’ , ’ s u b d i v i d e d ’ , ’

l o c a t i o n o f s u b b a s i n s ’ , ’ my sub ba s i n s ’) ;

The function will include information from the various statistics (e.g. mean elevation, mean ksn, mean gradient) and
will also include uncertainty values of the users choice (i.e. either standard deviations, standard errors, or both) on
these statistics. The code detects whether statistics exist for relief or any extra grids and will include those as well.

If categorical grids were provided, the function will produce fields reporting the modal value for these but will
save the modal values as the original categories (e.g. if rock types from a geologic map were provided and the most
prevalent unit in a given basin is ’granite’ then within the relevant field for that basin). The function will also produce
a field to record what percentage of the basin is occupied by that modal category. There is also an optional parameter

43

’populate categories’ that if set to true will produce a field for each category in the original categorical grid and for
each basin will record the percentage of the basin occupied by that category.

You can also have the code do some limited extra calculations while producing the shapefile as well, specifically,
you can recalculate mean and standard deviations and/or standard errors of ksn using difference reference concavities
by providing an argument to the ’new concavity’ parameter:

% To r e c a c u l a t e mean no rma l i z ed channe l s t e e p n e s s w i th a r e f e r e n c e c o n c a v i t y
o f 0 .45

Bas in2Shape (DEM, ’ b a s i n d i r ’ , ’ n ew concav i t y ’ , 0 . 4 5) ;
% To r e c a l c u l a t e mean no rma l i z ed channe l s t e e p n e s s at r e f e r e n c e c o n c a v i t i e s o f

0 . 45 , 0 . 55 , and 0 .60
Bas in2Shape (DEM, ’ b a s i n d i r ’ , ’ n ew concav i t y ’ , [0 . 4 5 0 .55 0 . 6 0]) ;

With the optional ’extra field values’ and ’extra field names’ parameters, you can add additional values to the shape-
file. The input to ’extra field values’ is expected as a cell array with a row for each basin (not an array within a cell
array row) with the first column being the ID number of that basin (i.e. the third column in the river mouth array) and
subsequent columns containing the values of interest you wish to add to the shapefile. Every basin must have a value
for all extra fields or the code will produce an error. The cell array containing IDs and values of interest does not need
to be in any particular order, the function will use the basin ID number to match the relevant data with the correct basin.
The ’extra field names’ parameter expects a cell array where the columns contain character strings that will serve as
the field names in the shapefile. These are expected to be in the same order as the columns in ’extra field values’
and should have one fewer column than the ’extra field values’ array (i.e. you do not include a field name for the ID
number). For example, if for each watershed you had a text file containing the river mouth ID numbers, sample names,
erosion rates, and uncertainty on erosion rates with the headers named ’ID’, ’sample’, ’E rates’, and ’E unc’ you could
add these to the shapefile via the following:

% Load i n your t e x t f i l e i n t o a t a b l e s p e c i f y i n g tha t i t has a heade r
c o n t a i n i n g the v a r i a b l e names , t h i s i s the e a s i e s t way to impor t mixed data
c o n t a i n i n g both c h a r a c t e r s and numbers

T=r e a d t a b l e (’ SampleTable . t x t ’ , ’ ReadVar iableNames ’ , t r u e) ;
% The ’ sample ’ column w i l l a l r e a d y be a c e l l a r r a y because i t c o n t a i n s

c h a r a c t e r s , but the o th e r columns w i l l be numer ic a r r a y s so you w i l l need
to conv e r t them to c e l l a r r a y s and then h o r i z o n t a l l y conca t ena t e them
tog e t h e r

EFVal=ho r z c a t (num2ce l l (T . ID) ,T . sample , num2ce l l (T . E r a t e s) , num2ce l l (T . E unc)) ;
% This shou ld produce a c e l l a r r a y wi th 4 columns and as many rows as t h e r e

a r e b a s i n s
% Crea te the names f o r the e x t r a f i e l d s
EFName{1 ,1}= ’ sample ’ ;
EFName{1 ,2}= ’ E r a t e ’ ;
EFName{1 ,3}= ’ E unc ’ ;
% Run Bas in2Shape
[MS]=Bas in2Shape (DEM, ’ b a s i n d i r ’ , ’ e x t r a f i e l d n am e s ’ ,EFName , ’

e x t r a f i e l d v a l u e s ’ , EFVal) ;

44

Basin2Shape will output a geographic data structure that is suitable for production of a shapefile:

[MS]=Bas in2Shape (DEM, ’ b a s i n d i r ’) ;
s h ap ew r i t e (MS, ’ shape name . shp ’) ;

but the function will automatically produce a shapefile saved in the active directory unless you suppress this with the
optional ’suppress shape write’ parameter.

Note for Compiled Versions: In the compiled version of Basin2Shape, extra field values are dealt with differently.
Instead of providing separate inputs for the values and names for those values, a text file is provided to the ’ex-
tra field values’ parameter and the names of columns in that text file are used as the names of the resulting categories.

11.7 Basin2Raster
The Basin2Raster is a simpler alternative to Basin2Shape that will output a GRIDobj and save out an ascii raster of

the basin extents filled with values specified by the user. Possible values are mean ksn, mean gradient, mean elevation,
mean relief (you must specify which radius you want to use), R2 value on the χ-elevation relationship (this can be a
useful metric for assessing how well adjusted a basin is, R2 values closer to 1 should have fewer significant deviations
from a linear χ-elevation relationship, though this will also be influenced by the reference concavity used for calculating
χ), drainage area in km2, hypsometric intergral, basin ID number, best-fit concavity, or the name of any additional grid
or additional categorical grid originally provided to ProcessRiverBasins. If the name of an additional grid is provided,
value will be the basin mean and if the name of a categorical grid is provided , value will be the basin mode.

If the basins provided to Basin2Raster were manually nested (i.e. you provided a list of river mouths to Process-
RiverBasins that included nested catchments and did not run SubDivideBigBasins), then you should set the optional
’method’ parameter to ’nested’ to ensure that all basins are visible in the output raster. If you did not manually nest any
basins or ran SubDivideBigBasins, then you do not need to provide an argument to ’method’.

11.8 CompileBasinStats
CompileBasinStats is desgined to aggregate information from a population of basins output from ProcessRiverBasins

and SubDivideBigBasins either for export or for use with BasinStatsPlots or MakeCombinedSwath. The output of
CompileBasinStats is a Matlab table, which can be exported easily as a textfile:

% Genera te b a s i n s t a t s t a b l e
[T]=Comp i l eBa s i nS ta t s (’ b a s i n d i r ’) ;
% Export t a b l e
w r i t e t a b l e (T, ’ b a s i n s t a t s . t x t ’) ;

The inputs for and behavior of several optional parameters for CompileBasinStats are identical to those for Basin2Shape
(e.g. including extra fields, controlling which basins are included in the output, specifying which type of uncertainty
to include, and recalculating mean ksn values at new concavities) and the Matlab table that CompileBasinStats outputs
shares some similarities with the geographic data structure output by Basin2Shape, but CompileBasinStats has several
additional options that Basin2Shape does not, mostly related to to categorical grids.

11.8.1 Recalculating Means Based on Categories

If categorical grids were provided to ProcessRiverBasins, then particular categories can be used to recalculate means
within the basins based on subsets of these categories. Specifically, means can be recalculated by either applying an

45

inclusive or an exclusive filter. For example, if you created a categorical grid for the rock type from a geologic map,
you could use this functionality to recalculate means only for parts the landscape occupied by particular units (i.e. an
inclusive filter) or recalculate means for the entire landscape except those covered by particular units (i.e. an exclusive
filter):

% To c a l c u l a t e means on l y from p o r t i o n s o f a b a s i n d e f i n e d by c e r t a i n rock
t yp e s

[T]=Comp i l eBa s i nS ta t s (’ b a s i n d i r ’ , ’ f i l t e r b y c a t e g o r y ’ , t rue , ’ f i l t e r t y p e ’ , ’
i n c l u d e ’ , ’ c a t g r i d ’ , ’ g eo l ogy ’ , ’ c a t v a l u e s ’ ,{ ’ pCc ’ , ’ grMz ’ , ’pC ’ , ’ gr−m’ , ’Pc ’ , ’
grPz ’ , ’ grpC ’ , ’ g r ’ }) ;

% To c a l c u l a t e means from a l l p o r t i o n s o f b a s i n s excep t where the rock t yp e s
a r e c e r t a i n t yp e s

[T]=Comp i l eBa s i nS ta t s (’ b a s i n d i r ’ , ’ f i l t e r b y c a t e g o r y ’ , t rue , ’ f i l t e r t y p e ’ , ’
e x c l ud e ’ , ’ c a t g r i d ’ , ’ g eo l ogy ’ , ’ c a t v a l u e s ’ ,{ ’Q ’ , ’Qpc ’ , ’Qg ’ , ’ Qls ’ , ’Qs ’ , ’Qv ’ ,
’ water ’ , ’ unde f ’ }) ;

where the argument provided to ’cat grid’ is the name of the additional categorical grid of interest as originally supplied
to ProcessRiverBasins, ’cat values’ is a cell array containing the list of categories to use in the filter, and ’filter type’
is either ’include’ or ’exclude’ depending on desired behavior.

Recalculated means will be produced for properties for which means were originally calculated (i.e. ksn, elevation,
gradient, relief (if it was calculated), and any additional grids (if provided)). Names for these recalculated means will
appear in the table with ’ f’ appended to the column name, e.g. ’mean ksn f’. The original mean values calculated for
the entirety of each basin will still appear in the table.

11.8.2 Populating Categories

Setting the optional ’populate categories’ parameter to true will result in a column for each category in the provided
categorical grids where the value in that column for a given basin is the percentage of pixels in that basin which belong
to that category. For example, if the categorical grid was a geologic map with rock types, this would mean that there
would be a column for each rock type and an entry for what percentage of each basin was covered by that rock type.

11.8.3 Means by Category

This functionality allows you to calculate means of particular metrics within each category. Using the rock type
example, this would allow you to calculate things like mean ksn within each rock type, within each basin. If a basin
is not covered by a particular category, then the value for that category mean will be ’NaN’. To calculate means by
category, you can use the ’means by category’ parameter:

% To c a l c u l a t e means u s i n g the geo l ogy a d d i t i o n a l g r i d f o r ksn and 2500 m
l o c a l r e l i e f

[T]=Comp i l eBa s i nS ta t s (’ b a s i n d i r ’ , ’ means by ca t ego r y ’ ,{ ’ g eo l ogy ’ , ’ ksn ’ , ’
r l f 2 5 0 0 ’ }) ;

where the first column in the cell array provided to ’means by category’ must be the name of the categorical grid
provided to ProcessRiverBasins (in the example, ’geology’) followed by valid names of particular quantities (see
header of the function for full list).

Note for Compiled Versions: If using the compiled version CompileBasinStats and you wish to supply extra fields,
the procedure is identical as described for the the compiled version of Basin2Shape.

46

11.9 BasinStatsPlots
Using the Matlab table output from CompileBasinStats, you can quickly plot a variety of basin averaged statistics,

but we have written the BasinStatsPlots function to aid in you producing some potentially useful plots. These plot
types are designed to allow you to explore populations of basins quickly and efficiently and are envisioned as primarily
data exploration tools (i.e. you will probably want to design your own functions to analyze and plot data output from
’CompileBasinStats’, with these plots as easy ways to guide further analysis). In the following sections, we describe the
different plotting options available to you in BasinStatsPlots and provide some examples of outputs using the example
dataset.

11.9.1 Basic Options

There are several options that span across multiple (or all) types of plots. If you wish to subset the basins by
their geographic location (i.e. you only want to generate a plot for basins within a specific area) you can use the
’define region’ parameter to either define a region based on input coordinates or, if you just set the ’define region’
parameter to true, interactively select a bounding box. Note that the function uses the basin centroid as the location for
determining whether a basin lies within or outside of the provided coordinates.

Many of the plots will attempt to plot uncertainty values as whiskers on points. You can control which estimation
of uncertainty (standard error or standard deviation) is used or suppress drawing uncertainty whiskers with the ’un-
certainty’ parameter. Some of the plots also allow you to color the points by a specified quantity using the ’color by’
parameter (e.g. Figure 14) which expects the valid name of a column in the input table as a string:

% To c o l o r a p l o t o f mean g r a d i e n t vs mean ksn by mean p r e c i p i t a t i o n , and
assuming the mean p r e c i p i t a t i o n i s s t o r e d i n a column named ’ mean prec ip ’
i n the i n pu t t ab l e , T

Ba s i n S t a t sP l o t s (T, ’ g r d k sn ’ , ’ c o l o r b y ’ , ’ mean prec ip ’) ;

The ’color by’ parameter is a valid input for Mean Gradient vs Mean ksn - ’grd ksn’, Mean Gradient vs Mean Relief
- ’grd rlf’, Mean Relief vs Mean ksn - ’rlf ksn’, and Generic X-Y plot - ’xy’ plot types. You can control the colormap
used for coloring points with the ’cmap’ parameter which expects the name of a valid colormap (e.g. ’jet’), the name
of a function that produces a valid colormap (e.g. ksncolor) or a nx3 array of RGB values usable as a colormap.

Figures created by the function can be automatically saved using the ’save figure’ parameter.

47

Figure 14: Selected outputs of BasinStatsPlots showing some options for plots using the ’color by’ optional parameter.
Data is from the Southern California sample dataset using the basins> 100 km2 filtered by trunk confluences> 5 km2.

11.9.2 Mean Gradient vs Mean ksn - ’grd ksn’

Both mean hillslope gradient and mean ksn have previously been shown to correlate to mean erosion rate and reflect
the morphologic response of hillslope and fluvial domains to the erosion rate, respectively. Thus, in the absence
of quantitative erosion rate data for a portions of basins, there can be utility in examining the relationship between
mean hillslope gradient and mean ksn, see Forte et al., 2016 for a full discussion of the nuances of interpreting these

48

https://www.sciencedirect.com/science/article/pii/S0012821X16303004

relationships. The ’grd ksn’ plot option will plot these two quantities against each other (Figure 15).

Figure 15: Comparisons of mean ksn vs mean basin gradient and associated fits for a variety of sub-basin division
schemes using SubDivideBigBasins using the ’grd ksn’ plot from BasinStatsPlots. See Figure 13 for a map view of
these different basin division schemes.

49

Via the optional ’fit grd ksn’ parameter, you can also use the relationship between mean hillslope gradient and
mean ksn to estimate some morphometric parameters for the populations of basins, specifically the erosional efficiency,
hillslope diffusivity, and limiting gradient. In detail, the analysis relies on the idea that the morphology of both the
hillslope and fluvial portions of a landscape vary as a function of erosion rate. We can use these relationships with
erosion rates, even if the erosion rates are unknown, to estimate these parameters. For the fluvial portion of the
landscape, we use:

E = K(ksn)
n (2)

where E is mean erosion rate, K is fluvial erosional efficiency, ksn is basin mean normalized channel steepness, and
n is the slope exponent from the stream power law [e.g., Snyder et al., 2003, Ouimet et al., 2009]. For the hillslope
portion of the basin, we use the combination of two equations from Roering et al. [2007], first an equation for variation
of hillslope elevation z as a function of distance x:

z(x) =
−Sc2

2βE

[√
D2 + (2βEx/Sc)2 −D ln

(√
D2 + (2βEx/Sc)2 +D

2βE/Sc

)]
(3)

where Sc is a limiting hillslope gradient where sediment flux becomes infinite, D is a diffusivity coefficient, β =
(ρr/ρs) and ρr and ρs are the densities of rock and sediment and β is set to 2. This equation is in turn used to
determine a mean hillslope gradient, Savg , (as a function of erosion rate):

Savg =
z(0)− z(LH)

LH
(4)

where LH is a characteristic hillslope length, which is found by numerically solving the following expression:

(
E

2KLH
2

) 1
n

=
DSc

2

βE|LH |

(√
1 +

(
βELH
DSc

)2

− 1

)
(5)

which is effectively finding the distance from the divide where the slope of the hillslope portion and fluvial portions
of the landscape are equal and that the contributions from erosion of the hillslope and fluvial portions of the landscape
are also equal [e.g., Howard, 1997, Perron et al., 2008]. The fits are done via a constrained minimization of least
absolute deviation on the above set of equations, and to successfully run the fits, you need access to the Optimization
Toolbox in Matlab. The fits are sensitive to the choice of initial parameters, which you can control with the optional
’start diffusivity’, ’start erodibility’, and ’start threshold gradient’ parameters, which are starting values forD,K, and
Sc respectively. Also important is the optional ’n val’ parameter (i.e. n) which is not a free parameter (i.e. you must
provide a value for ’n val’ are use the default value of 2) in the fits, but will control the shape of the fluvial portion of
the relationship. We refer readers who are more interested in the nuances of this fit and the (large) assumptions that
go into it to Forte et al., 2016 and references therein. Exploring the shape of this relationship (and thus the estimated
values for the parameters that control it) also highlights that choosing different methods of subdivision of basins using
SubDivideBigBasins can produce statistically different populations of basins (e.g. Figure 15). It should be emphasized
that the values for the limiting gradient, fluvial erodibility, and hillslope diffusivity extracted from this fit should be
considered with some level of skepticism. If quantitative erosion rates are available for a region of interest, using these
erosion rates to estimate the referenced parameters will always yield a more reliable result. The purpose of using the
relationships here is mostly for relative comparison between basins within a study region.

11.9.3 Mean Gradient vs Mean Relief - ’grd rlf’

You can also plot mean gradient vs. mean local relief via the ’grd rlf’ plot option. This should be similar to the result
of Mean Gradient vs Mean ksn - ’grd ksn’ plot as mean local relief and mean ksn are typically linearly related (depending

50

https://www.sciencedirect.com/science/article/pii/S0012821X16303004

on the relief radius). You can test the nature of the relationship between mean local relief and mean ksn with the Mean
Relief vs Mean ksn - ’rlf ksn’ plot option. The ’grd rlf’ plot will use the relief radius specified with the optional
’rlf radius’ parameter. If this specifies a relief radius that you did not calculate when running ProcessRiverBasins, this
will result in an error.

11.9.4 Mean Relief vs Mean ksn - ’rlf ksn’

Depending on the relief radius, the relationship between mean local relief and mean ksn should be linear, but you can
quickly test this with the ’rlf ksn’ option which will plot these two quantities against each other. The ’rlf ksn’ plot will
use the relief radius specified with the optional ’rlf radius’ parameter. If this specifies a relief radius that you did not
calculate when running ProcessRiverBasins, this will result in an error.

11.9.5 Comparing Filtered and Non-Filtered Means - ’compare filtered’

If you calculated filtered means when running CompileBasinStats, the ’compare filtered’ option will plot the filtered
means against the unfiltered means and visually highlight basins that imply higher filtered values compared to non-
filtered with red dots and basins that imply lower filtered values compared to non-filtered with blue dots (e.g. Figure
16). This plot option will produce an individual plot for any quantity for which a mean and a filtered mean was
calculated (obviously, if filtered means were not calculated, this option will produce an error). In the example, we
present examples of mean ksn and mean gradient in the case of a filter excluding quaternary units from the means and
an inclusive filter calculating means from granites, metamorphic rocks, and other ’basement’ rocks (Figure 16). This
allows you to assess relatively quickly that removing areas covered by quaternary units shifts means toward higher
values, where as only calculating means based on ’hard rocks’ also shifts many basins to higher means values, but not
in all cases. This will of course depend on the nature of the filter and like the majority of the plots, this is designed as
a data exploration tool to determine what aspects warrant deeper analysis.

51

Figure 16: Selected outputs of ’compare filtered’ plot from BasinStatsPlots comparing results of an excluding qua-
ternary, water, and undefined areas vs including basement rocks. Data is from the Southern California sample dataset
using the basins > 100 km2 filtered by trunk confluences > 5 km2.

11.9.6 Histograms of Category Means - ’category mean hist’

If you calculate means by categories when running CompileBasinStats, you can use the ’category mean hist’ option
to plot histograms of the means across all basins within given categories for a statistic of interest. Using this option
requires providing an argument to the optional ’cat mean1’ parameter to specify which statistic (e.g. mean ksn) for
which you wish to produce histograms.

52

11.9.7 Comparisons of Category Means - ’category mean compare’

If you calculate means by categories when running CompileBasinStats, you can use the ’category mean compare’
option to compare two statistics of interest within the categories (e.g. plots of mean basin ksn vs mean gradient as a
function of rock type). Using this option requires providing arguments to the optional ’cat mean1’ and cat mean2’
parameters to specify which statistics you want to compare.

53

Figure 17: Selected output of ’stacked hypsometry’ plots from BasinStatsPlots. Data is from the Southern California
sample dataset using the basins > 100 km2 filtered by trunk confluences > 5 km2.

11.9.8 Basin Hypsometry - ’stacked hypsometry’

The hypsometry of a basin (e.g. the empirical cumulative distribution of elevations in that basin) and the hypsometric
integral (e.g. the area underneath a normalized version of this curve) are classic morphometric parameters, which while
simplistic, can still be useful in understanding first order characteristics of a landscape. The ’stacked hypsometry’ plot

54

option will produce a series of 5 plots, a subset of which are shown in Figure 17. This option will plot figures of stacked
normalized hypsometries (not included in Figure 17), a version of the stacked normalized hypsometries displayed
as heatmap (not included in Figure 17), stacked hypsometries with elevations vs percentage area (not included in
Figure 17), a grid of normalized hypsometries with the mean hypsometry binned by the hypsometric integral with
the percentages of the basins within that bin (top portion of Figure 17), and a plot of the mean hypsometries in each
hypsometric integral bin and colored by the percentage of basins within that bin (bottom portion of Figure 17).

11.9.9 Comparing Distribution of Basin Means vs All Nodes -’compare mean and dist’

The ’compare mean and dist’ is designed to explore the distributions of particular statistics within the basins. This
option can function in two ways. The first way is by comparing the distribution of a statistic of interest (e.g. mean
gradient) across all nodes in all basins compared to the basin means across all basins (Figure 18). This requires that
you specify a statistic to compare using the optional ’statistic of interest’ parameter.

Figure 18: Sample output of ’compare mean and dist’ plot from BasinStatsPlots comparing the distribution of gradient
across all nodes in all basins (blue) to the distribution of mean gradients across all basins (orange). Data is from the
Southern California sample dataset using the basins > 100 km2 filtered by trunk confluences > 5 km2.

The other way the ’compare mean and dist’ plot option can be used is to explore the distribution of the statistic
of interest of a particular basin compared to the mean value (Figure 19). This requires that you specify a statistic to
compare using the optional ’statistic of interest’ parameter and specify a basin of interest by the basin ID number with
the ’basin num’ parameter.

55

Figure 19: Sample output of ’compare mean and dist’ plot from BasinStatsPlots comparing the distribution of ksn

within Basin 56 (in the Southern California dataset) to the mean ksn within that basin (the thick black line).

11.9.10 Grid of Bi-Plots of Means - ’scatterplot matrix’

The ’scatterplot matrix’ plot is designed as a very quick data exploratory tool to look for potential relationships
between basin statistics (Figure 20). The function will produce a grid of bi-plots comparing the mean values of all
metrics for which means were calculated (though this will not include means by categories if calculated). The function
also displays a simple second order polynomial fit on the relationship. In positions where values would be compared
against each other, the function instead displays a histogram of the distribution of those mean values. For users familiar
with R, this is designed to be largely similar to plots produced by the ’lattice’ package.

As a note, if you calculated filtered means and leave the optional ’use filtered’ to false (which is the default) this
option will produce a very large matrix as it will include both the regular means and the filtered means. For an input
table with filtered means, if you set ’use filtered’ to true, the function will use the filtered means to populate the
scatterplot matrix. If you want to display the regular means without the filtered means, provide an input table for which
you did not calculate filtered means when running CompileBasinStats.

56

Figure 20: Sample output of ’scatterplot matrix’ plot from BasinStatsPlots. Data is from the Southern California
sample dataset using the basins > 100 km2 filtered by trunk confluences > 5 km2.

11.9.11 Generic X-Y plot - ’xy’

The final plot option for BasinStatsPlots is a generic option to plot any value against any other value. To use this
option you must specify the name of the columns to be used as the x and y values via the ’xval’ and ’yval’ parameters.
Using conjunction with the ’color by’ parameter can quickly produce plots to explore potential relationships within the
basin data (e.g. Figure 14).

12 Swath Profiles with Projected Data
TopoToolbox includes a robust and simple function to produce swath topographic profiles. We provide two functions

in TAK that build and expand upon this functionality and use some swath profiles through our example dataset to
illustrate the use of these functions (Figure 21).

57

Figure 21: Location of swaths used to demonstrate uses of MakeTopoSwath and MakeCombinedSwath.

12.1 MakeTopoSwath
The MakeTopoSwath function is a simple wrapper around the basic functionality of the SWATHobj class included

as a part of TopoToolbox. The main utility of MakeTopoSwath compared to simply using SWATHobj natively is more
control on the plots produced including different styles of displaying the data, direct control of the vertical exaggeration
via the optional ’vex’ parameter, and plotting the location of bends in a swath (Figure 22).

58

Figure 22: Basic swaths output from MakeTopoSwath highlighting the function of the ’vex’ parameter to control the
vertical exaggeration.

In addition to the basic swath figure, with MakeTopoSwath, you can also display the output swath as an array of
points (Figure 23) by setting ’plot as points’ to true or a heatmap (Figure 24) by setting ’plot as heatmap’ to true.

Figure 23: Swath output from MakeTopoSwath showing the result of plotting as points.

59

Figure 24: Swath output from MakeTopoSwath showing the result of plotting as a heatmap colored by the density of
points at a given elevation.

12.2 MakeCombinedSwath
It can be useful to visualize additional data projected onto a swath profile. The MakeCombinedSwath provides a

flexible framework within which to produce such plots. There are a variety of types of data that can be plotted onto a
swath profile:

• ’points3’ - generic point dataset with x, y, and z coordinates.

• ’points4’ - generic point dataset with x, y, and z coordinates with an additional value. The resulting plots will
color the points by this additional value.

• ’points5’ - generic point dataset with x, y, and z coordinates with two additional values. The resulting plots will
color the points by the first additional value and scale the points by the second value.

• ’eqs’ - plot optimized for earthquakes for data with x, y, depth, and magnitude. Points will be scaled by magni-
tude and colored by the distance from the center of the swath line (e.g. Figure 25).

• ’STREAMobj’ - will project portions of a provided STREAMobj onto the swath.

• ’ksn chandata’ - will project the ksn values from a ’chandata’ mat file produced by the old Profiler51 code (some
of us have A LOT of these sitting around).

• ’ksn batch’ - will project the ksn values contained in the geographic data structure output from the KsnChiBatch
function.

• ’ksn profiler’ - will project the ksn values contained in the ’knl’ array output from KsnProfiler.

• ’basin stats’ - will project basin data output from CompileBasinStats. You must specify a quantity to color basins
by with the ’basin value’ parameter and can optionally also scale point size by an additional quantity with the
’basin scale’ parameter (e.g. Figure 26).

• ’basin knicks’ - will project knickpoint locations as produced by FindBasinKnicks.

60

Figure 25: Swath output from MakeCombinedSwath projecting earthquake data

Figure 26: Swath output from MakeCombinedSwath projecting basin locations from CompileBasinStats and colored
by mean ksn and scaled by mean precipitation.

Importantly, the MakeCombinedSwath function is setup so that the width to sample the topography to produce the
topographic swath is decoupled from the width from which to sample the provided data (you can of course make these
equal if you want). By default the function will also plot a map displaying which data points are included in the
projected data on the swath figure, you can suppress the drawing of this map with the optional ’plot map’ parameter.

61

12.3 ProjectOntoSwath
The ProjectOntoSwath function is used in MakeCombinedSwath to do the data projection, but we include it as a

separate function as it may be useful for users. ProjectOntoSwath finds the distance of a list of x and y points along
and from the centerline of a provided SWATHobj based on a user defined width within which to sample the data.
Distances of points that lie beyond the extent of the swath or lie outside of the data sampling width will be set to
NaN. The function projects data onto each swath segment (i.e. if the swath line is bent) and finds the swath segment
that data are closest to in tangential distance to avoid duplication of points. Note that there is no compiled version of
ProjectOntoSwath.

13 Miscellaneous

13.1 ksncolor
Function to generate a colormap that roughly approximates the stereotypical green-yellow-red color progression

commonly used for ksn data in publications, see Figure 26 for an example of the color map. Note that there is no
compiled version of ksncolor.

13.2 PlotKsn
The PlotKsn function will quickly plot a stream network colored by ksn overlaying a hillshade colored by elevation.

Uses the ksncolor colormap. You can provide a valid geographic data structure output from KsnChiBatch or Process-
RiverBasins or a shapefile output from KsnChiBatch, KsnProfiler, or ProcessRiverBasins. Optionally can also include
a set of knickpoints output from ProcessRiverBasins or FindBasinKnicks to plot knickpoint locations.

13.3 DippingBedFinder
DippingBedFinder is a simple function to estimate where a planar dipping bed should occur within a landscape

based on a known occurrence and some information about the bed (Figure 27). Specifically, you need to provide a
location for the observation, a total thickness for the bed, an estimate of the height above the base of the bed at the
point of observation, the strike of the bed (it’s assumed you give this using the right hand rule), and the dip of the bed.

(a) Projection of a 100 meter thick bed, 50 meters up from the
base.

(b) Projection of a 500 meter thick bed, 250 meters up from the
base.

Figure 27: Example outputs from DippingBedFinder for a bed striking 280°and dipping 10°.

62

You can provide an empty array for the location of observation to choose a point on the provided DEM to use as the
location. The location of the observation is marked on the figure with a white dot.

13.4 Mat2Arc
Mat2Arc is a helper function that takes any matfile as an input and will search its contents and produce either ESRI

ascii grids or geotiffs and shapefiles from any valid datasets. Specifically, will make ascii grids or geotiffs of any
GRIDobj, will convert any FLOWobj to an Arc style flow raster an export as an ascii grid or geotiff, and output any
STREAMobj or recognizable geographic data structure as a shapefile. Whether rasters are saved as ESRI ascii grids or
geotiffs is controlled with the optional ’raster type’ parameter.

References
Adam M Forte and Kelin X. Whipple. Criteria and tools for determining drainage divide stability. Earth and Planetary

Science Letters, 493:102–117, 2018. doi: 10.1016/j.epsl.2018.04.026.

Adam M. Forte and Kelin X. Whipple. Short Communication: The Topographic Analysis Kit (TAK) for TopoToolbox.
Earth Surface Dynamics, 2019. doi: 10.5194/esurf-2018-57.

Alan D Howard. Badland morphology and evolution: Interpretation using a simulation model. Earth Surface Processes
and Landforms, 22:211–227, 1997.

William B Ouimet, Kelin X Whipple, and Darryl E Granger. Beyond threshold hillslopes: Channel adjustment to
base-level fall in tectonically active mountain ranges. Geology, 37(7):579–582, 2009.

J Taylor Perron, William E Dietrich, and James W Kirchner. Controls on the spacing of first-order valleys. Journal of
Geophysical Research, 113:F04016, 2008. doi: 10.1029/2007JF000977.

Joshua J Roering, J Taylor Perron, and James W Kirchner. Functional relationships between denudation and hillslope
form and relief. Earth and Planetary Science Letters, 264:245–258, 2007.

Wolfgang Schwanghart and Nikolaus J. Kuhn. TopoToolbox: A set of Matlab functions for topographic analysis.
Environmental Modelling and Software, 25(6):770–781, 2010. ISSN 13648152. doi: 10.1016/j.envsoft.2009.12.002.

Wolfgang Schwanghart and Dirk Scherler. Short Communication: TopoToolbox 2 - MATLAB based software for
topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2:1–7, 2014. doi: 10.5194/
esurf-2-1-2014.

Wolfgang Schwanghart and Dirk Scherler. Bumps in river profiles: Uncertainty assessment and smoothing using
quantile regression techniques. Earth Surface Dynamics, 5(4):821–839, 2017. ISSN 2196632X. doi: 10.5194/
esurf-5-821-2017.

Noah P Snyder, Kelin X Whipple, Gregory E Tucker, and Dorothy J Merrits. Importance of a stochastic distribution
of floods and erosion thresholds in the bedrock river incision problem. Journal of Geophysical Research, 108(B2),
2003. doi: 10.1029/2001JB001655.

Cameron W Wobus, Kelin X Whipple, Eric Kirby, Noah P Snyder, J Johnson, K Spyropolou, Benjamin T Crosby,
and D Sheehan. Tectonics from topography: Procedures, promise, and pitfalls. In Sean D Willett, N Hovius, M T
Brandon, and Donald Fisher, editors, Tectonics, climate, and landscape evolution, number 398, pages 55–74. The
Geological Society of America, Boulder, CO, 2006.

63

A Headers for Compiled Functions
The following section reproduces the headers of each compiled function. Please refer to the Compiled Functions

section of the user manual for additional information on how to use the compiled versions of the functions.

A.1 Basin2Raster
Description: Function takes outputs from ’ProcessRiverBasins’ function and produces a single GRIDobj with indi-
vidual drainage basins (as selected by ’ProcessRiverBasins’ and ’SubDivideBigBasins’) assinged various values

Required Inputs:

• wdir - full path of working directory

• MakeStreamsMat - full path of the matfile provided as an input to cmpProcessRiverBasins

• valueOI - value to assign to basins, acceptable inputs are:

– ’ksn’ - mean ksn value of basin
– ’gradient’ - mean gradient of basin
– ’elevation’ - mean elevation of basin
– ’relief’ - mean relief of basin (must specify the radius of interest with the ’relief radius’ parameter)
– ’chir2’ - R2 value of chi-z fit (proxy for disequilibrium)
– ’drainage area’ - drainage area in km2 of basin
– ’hypsometric integral’ - hypsometric integral of basin
– ’id’ - basin ID number (i.e third column RiverMouth output)
– ’theta’ - best-fit concavity resultant from the topo toolbox chiplot function
– ’NAME’ - where name is the name provided for an extra grid (i.e. entry to second column of ’add grid’

or entry to third column of ’add cat grid’), value input will be mean for additional grid names or mode for
additional categorical grid names

• location of data files - full path of folder which contains the mat files from ’ProcessRiverBasins’ as a string

Optional Inputs:

• file name prefix [’basins’] - prefix for outputs, will automatically append the type of output, i.e. ’ksn’, ’eleva-
tion’, etc

• location of subbasins [’SubBasins’] - name of folder that contains subbasins of interest (if you created subbasins
using ”SubDivideBigBasins”), expected to be within the main Basin folder provided with ”location of data files”.

• method [’subdivided’] - method used for subdividing watersheds. If you used ’ProcessRiversBasins’ and then
’SubDivideBigBasins’ or if you only used ’ProcessRiverBasins’ but did not pick any nested catchments, i.e. none
of the river mouths supplied to ’ProcessRiverBasins’ were within the catchment boundaries of other watersheds
for which you provided river mouths, then you should use use ’subdivided’ which is the default so you do not need
to specify a value for this property. If you picked nested catchments manually and then ran ’ProcessRiverBasins’
you should use ’nested’.

• relief radius [2500] - relief radius to use if ’valueOI’ is set to ’relief’

64

Examples if running for the command line, minus OS specific way of calling main TAK function:

Bas in2Rase r / path / to /wd i r MakeStreams . mat ksn MainBas ins
Ba s i n2Ras t e r / path / to /wd i r MakeStreams . mat ksn MainBas ins

l o c a t i o n o f s u b b a s i n s MySubbasins f i l e n am e p r e f i x Test

A.2 Basin2Shape
Description: Function to take the outputs from ’ProcessRiverBasins’ and ’SubDivideBigBasins’ and produce a single
shapefile showing the outlines of polygons and with commonly desired attributes from the results of ’ProcessRiver-
Basins’ etc. See below for a full list of fields that the output shapefile will include. If additional grids were provided
to ’ProcessRiverBasins’, mean and standard error values for those grids will be auto-populated in the shapefile and the
name of the fields will be the character array provided in the second column of additional grids input. This function
also allows you to input a list of additional fields you wish to include (see Optional Inputs below). If you would rather
create a GRIDobj with specified values, use ’Basin2Raster’.

Required Inputs:

• wdir - full path of working directory

• MakeStreamsMat - name of the matfile provided as an input to cmpProcessRiverBasins

• location of data files - name of folder which contains the mat files from ’ProcessRiverBasins’

Optional Inputs:

• location of subbasins [’SubBasins’] - name of folder that contains subbasins of interest (if you created subbasins
using ”SubDivideBigBasins”), expected to be within the main Basin folder provided with ”location of data files”.
Note that if you do not provide the correct directory name for the location of the subbasins, subbasin values will
not be included in the output regardless of your choice for the ”include” parameter.

• shape name [’basins’] - name for the shapefile to be export, must have no spaces to be a valid name for ArcGIS
and should NOT include the ’.shp’

• include [’all’] - parameter to specify which basins to include in building the shapfile. The default ’all’ will
include all basin mat files in the folder you specify. Providing ’subdivided’ will check to see if a given main
basin was subdivided using ’SubdivideBigBasins’ and then only include the subdivided versions of that basin
(i.e. the original main basin for those subbasins will not be included in the shapefile). Providing ’bigonly’ will
only include the original basins produced by ’ProcessRiverBasins’ even if ’SubDivideBigBasins’ was run. If
’SubDivideBigBasins’ was never run, result of ’all’ and ’bigonly’ will be the same.

• extra field values [] - name text file of extra field values you wish to include. The first column in this file
must be the river basin number (i.e. the identifying number in the third column of the RiverMouth input to
ProcessRiverBasins or the number generated for the basin in SubDivideBigBasins). Only one row per river basin
number is allowed and ALL river basin numbers in the basins being processed must have a value associated with
them. Additional columns are interpreted as the values with which you wish to populate the extra fields. These
can either be character arrays or numbers, other values will results in an error. The function will use the header
names within this file to name fields in the output shapefile

65

• new concavity [] - a 1 x m array of concavity values to recalculate normalized channel steepness statistics (mean,
standard error and/or standard deviation) using the provided concavities.

• uncertainty [’se’] - parameter to control which measure of uncertainty is included, expects ’se’ for standard error
(default), ’std’ for standard deviation, or ’both’ to include both standard error and deviation.

• populate categories [false] - logical flag to add entries that indicate the percentage of a watershed occupied by
each category from a categorical grid, e.g. if you provided an entry for ’add cat grids’ to ProcessRiverBasins
that was a geologic map that had three units, ’Q’, ’Mz’, and ’Pz’ and you set ’populate categories’ to true there
will be field names in the resulting shapefile named ’Q’, ’Mz’, and ’Pz’ and the values stored in those columns
will correspond to the percentage of each basin covered by each unit for each basin. Setting populate categories
to true will not have any effect if no entry was provided to ’add cat grids’ when running ProcessRiverBasins.

Output:

• Saves a shapefile with the following default fields:

– river mouth - river mouth number provided to ProcessRiverBasins

– drainage area - drainage area of basin in km2

– center x - x coordinate of basin in projected coordinates

– center y - y coordinate of basin in projected coordinates

– outlet elevation - elevation of pour point in m

– mean el - mean elevation of basin in meters

– max el - maximum elevation of basin in meters

– mean ksn - mean channel steepenss

– mean gradient - mean gradient

• Either standard errors, standard deviations or both will be populated for elevation, ksn, and gradient depending
on value of ’uncertainty’

• Mean and standard error / standard deviation / both values will be populated for any additional grids

Examples if running for the command line, minus OS specific way of calling main TAK function:

Bas in2Shape / path / to /wd i r MakeStreams . mat MainBas ins
Bas in2Shape / path / to /wd i r MakeStreams . mat MainBas ins l o c a t i o n o f s u b b a s i n s

MySubbasins i n c l u d e s u bd i v i d e d

A.3 BasinPicker
Description: Function takes results of makes streams and allows for interactive picking of basins (watersheds). Func-
tion was designed intially for choosing basins suitable for detrital analyses (e.g. Be-10 cosmo). Displays two panel
figure with topography colored by elevation and local relief on which to pick individual basins. After the figure dis-
plays, it will wait until you press enter to begin the watershed picking process. This is to allow you to zoom, pan, etc
to find a stream you are interested in. When you click enter, cross hairs will appear in the elevation map so you can
select a pour point. Once you select a pour point, a new figure will display this basin and stream to confirm that’s the

66

watershed you wanted (it will also display the drainage area). You can either accept this basin or reject it if it was
misclick. If you accept it will then display a new figure with the chi-z and longitudinal profiles for that basin. It will
then give you a choice to either save the choice or discard it. Finally it will ask if you want to keep picking streams,
if you choose yes (the default) it will start the process over. Note that any selected (and saved) pour point will be
displayed on the main figure. As you pick basins the funciton saves a file called ’Outlets.mat’ that contains the outlets
you’ve picked so far. If you exit out of the function and restart it later, it looks for this Outlets file in the current working
directory so you can pick up where you left off.

Required Inputs:

• wdir - full path of working directory

• MatFile - Full path of matfile output from either ’cmpMakeStreams’ or the name of a single basin mat file from
’cmpProcessRiverBasins’

Optional Inputs:

• ref concavity [0.50]- reference concavity for chi-Z plots

• rlf radius [2500] - radius in map units for calculating local relief

• extra grid [] - sometimes it can be useful to also view an additional grid (e.g. georeferenced road map, precipi-
tation grid, etc) along with the DEM and relief. The arugment provided should be the name of the extra grid of
interest. This grid can be a different size or have a different cellsize than the underlying dem (but still must be
the same projection and coordinates system!), it will be resampled to match the provided DEM.

• cmap [’landcolor’] - colormap to use for the displayed maps. Input can be the name of a standard Matlab
colormap

• conditioned DEM [] - option to provide a hydrologically conditioned DEM for use in this function, expects the
mat file as saved by ’cmpConditionDEM’ See ’cmpConditionDEM’ function for options for making a hydrolog-
ical conditioned DEM. If no input is provided the code defaults to using the mincosthydrocon function.

• interp value [0.1] - value (between 0 and 1) used for interpolation parameter in mincosthydrocon (not used if
user provides a conditioned DEM)

• plot type [’vector’] - expects either ’vector’ or ’grid’, default is ’vector’. Controls whether all streams are drawn
as individual lines (’vector’) or if the stream network is plotted as a grid and downsampled (’grid’). The ’grid’
option is much faster for large datasets, but can result in inaccurate site selections. The ’vector’ option is easier
to see, but can be very slow to load and interact with.

• threshold area [1e6] - used to redraw downsampled stream network if ’plot type’ is set to ’grid’

• refine positions [] - expects the name of a text file containing a m x 2 array of x y positions that are near stream
networks that you want to manually snap to the appropriate stream network. An example would be a series of
GPS positions of river samples that don’t quite lie on the stream network as determined by flow routing. If you
provide an entry for ’refine positions’, the code will iteratively work through the provided points, displaying
their location one point at a time along with a zoomed inset window (size controlled by ’window size’) on which
you can precisely position the river mouth location.

• window size [1] - size of inset window (in km) if you have provided an entry for ’refine positions’

67

Outputs:

• Outlets - n x 3 matrix of sample locations with x coordinate, y coordinate, and basin ID number (valid input
to ’ProcessRiverBasins’ as ’river mouths’ parameter) saved as a mat file (for continuing a cmpBasinPicker run)
and a text file

Examples if running for the command line, minus OS specific way of calling main TAK function:

Bas i nP i c k e r / path / to /wd i r Topo . mat
Ba s i nP i c k e r / path / to /wd i r Topo . mat condit ioned DEM CondDem . mat e x t r a g r i d

p r e c i p . t i f

A.4 BasinStatsPlots
Description: Function to take the complied outputs from ’ProcessRiverBasins’ and ’SubDivideBigBasins’ and pro-
duce various plots of aggregated basin values.

Required inputs:

• wdir - full path of working directory

• basin table - name of the BasinTable.mat file output from ’cmpCompileBasinStats’

• plots - Type of plot you want to produce, valid inputs are:

– ’grd ksn’ - plot of mean basin gradient vs mean basin channel steepness (e.g. see Forte et al, 2016, Earth
and Planetary Science Letters for discussion of use of these plots)

– ’grd rlf’ - similar to ’grd ksn’ but uses local relief instead of ksn, requires that relief was calculated when
running ProcessRiverBasins. Assumes relief radius is 2500 (can set alternative radii with ’rlf radius’ op-
tional parameter)

– ’rlf ksn’ - plot of mean basin relief vs mean basin channel steepness

– ’compare filtered’ - plot comparing mean values vs filtered mean values if you ran ’CompileBasinStats’
and filtered by a category

– ’category mean hist’ - if you calculated ’means by category’ when running ’CompileBasinStats’, you
can plot distributions of the means by category as histograms using this option. Requires an input to
’cat mean1’

– ’category mean compare’ -if you calculated ’means by category’ for more than one value (e.g. both gra-
dient and ksn), you can compare the mean values by category using this plot. Requires inputs to both
’cat mean1’ (value that will be plotted on x axis) and ’cat mean2’ (value that will be plotted on y axis)

– ’stacked hypsometry’ - plot hypsometries for the basins

– ’compare mean and dist’ - plots a histogram of values within a selected basin or across all basins for a
statistic of interest to compare to the mean value, accepts an input for ’statistic of interest’ and ’basin num’.

– ’scatterplot matrix’ - matrix of scatterplots and histograms, designed to be sort of similar to ’lattice’ plots
in R. Providing a table for which you calculated filtered means and leaving ’use filtered’ set to false may
produce a large matrix

– ’xy’ - generic plot, requires entries to optional ’xval’ and ’yval’ inputs

68

Optional Inputs:

General Parameters

• uncertianty [’se’] - uncertainty to value use for plots, valid options are ’se’ (standard error), ’std’ (standard
deviation), or ’none’. Providing ’none’ indicates you do not want to plot errorbars. Behavior of this option
will depend on how you ran ProcessRiverBasins, e.g. if you only calculated standard deviations when running
ProcessRiverBasins but supply ’se’ here, the code will ignore your choice and use the standard deviation values.

• use filtered [false] - logical flag to use filtered values for ’grd ksn’, ’grd rlf’, ’rlf ksn’, or ’scatterplot matrix’.
Will only work if you calculated filtered values when running ’CompileBasinStats’.

• color by [] - value to color points by, valid for ’grd ksn’,’grd rlf’,’rlf ksn’, and ’xy’, either the name of a column
in the provided table or a m x 1 array of numeric values the same length as the provided table

• cmap [] - colormap to use if an entry is provided to ’color by’, can be the name of a standard colormap or a nx3
array of rgb values to use as a colormap.

• define region [] - set of coordinates to define a rectangular region to draw data from, expects a four element
matrix (row or column) that define the minimum x, maximum x, minimum y, and maximum y coordinate to
include OR define as true to bring up a plot of all basin centers for you to select a region by drawing a rectangle.
Works with all plots.

• rlf radius [2500] - radius of relief used when plotting relief related values

• save figure [false] - logical flag to save pdfs of all figures produced

xy plot

• xval [] - value to plot on x axis for plot type ’xy’ provided as name of column as it appears in the provided table
or a a m x 1 array of numeric values the same length as the provided table

• yval [] - value to plot on y axis for plot type ’xy’ provided as name of column as it appears in the provided table
or a a m x 1 array of numeric values the same length as the provided table

compare mean and dist plot

• statistic of interest [’ksn’] - statistic of interest for plotting histogram to compare with mean value. Valid inputs
are ’ksn’, ’gradient’, ’elevation’, ’relief’ (if you provide relief, the code will look for relief calculated at the
radius specified with the optional ’rlf radius’ parameter), or the name of an additional grid provided to ’Pro-
cessRiverBasins’, e.g. if you provided a precipitation grid and provided the name ’precip’ and a column named
’mean precip’ exists in the table, then ’precip’ would be a valid input to this parameter.

• basin num [] - number of basin (as it appears in the ID column of the table) to use for ’compare mean and dist’,
if empty, ’compare mean and dist’ will use all basins.

category mean hist OR category mean compare

• cat mean1 [] - category to use for plotting, see ’category mean hist’ or ’category mean compare’, valid inputs
are ’ksn’, ’rlf’, ’gradient’, or the name of an additional grid provided to ProcessRiverMeans.

• cat mean2 [] - category to use for plotting, ’category mean compare’ , valid inputs are ’ksn’, ’rlf’, ’gradient’, or
the name of an additional grid provided to ProcessRiverMeans.

69

Fit Gradient-Ksn Relationship

• fit grd ksn [false] - logical flag to initiate fitting of gradient - ksn relationship. Setting this flag to true only
produces a result if the plot type is set to ’grd ksn’. The relationship is a fit using a power law relationship
between erosion rate and channel steepness and erosion rate and mean hillslope gradient. See Forte et al, 2016,
Earth and Planetary Science Letters for further discussion. The fit optimizes values of hillslope diffusivity (D),
fluvial erodibility (K), and threshold gradient (Sc). The best fit values for these will be printed to the console.

• start diffusivity [0.01] - starting value for optimization of hillslope diffusivity parameter.

• start erodibility [1e-7] - starting value for optimization of fluvial erodibility parameter.

• start threshold gradient [0.8] - starting value for optimzation of threshold hillslope gradient parameter.

• n val [2] - n value on slope parameter, this is not a free parameter in the fit.

Fit Relief-Ksn Relationship

• fit rlf ksn [false] - logical flag to initiate simple linear fit of relief-ksn relationship (expectation is a linear rela-
tionship). Setting this flag to true only produces a result if the plot type is set to ’rlf ksn’.

Fit Filtered Data

• fit filtered [false] - logical flat to initiate a simple linear fit to filtered data. Setting this to true only produces a
result if plot type is set to ’compare filtered’.

Examples if running for the command line, minus OS specific way of calling main TAK function:

Ba s i n S t a t sP l o t s / path / to /wd i r Bas inTab le . mat g rd k sn
Ba s i n S t a t sP l o t s / path / to /wd i r Bas inTab le . mat xy x v a l mean ksn y v a l c e n t e r x

A.5 ClassifyKnicks
Description: Function to iterate through a set of bounds (i.e. knickpoints) selected while running ’KsnProfiler’. The
function will display a long profile and chi - elevation plot for individual stream segments and will iterate through
each bound point you selected in KsnProfiler. The code expects you to input a number or character (at the command
prompt) to categorize the knickpoint higlighted in red. You must be consistent in your choice (i.e. you must either use
numbers for all of the classifications or characters for all the classifications within a given run), mixing numbers and
characters will result in an error at the end of the run. For entering characters, it’s recommended you keep these short
strings without spaces (i.e. entries supported into a shapefile a attribute table), e.g. knick or bound

Required Inputs:

• wdir - full path of working directory

• MatFile - Full path of matfile output from either ’cmpMakeStreams’ or the name of a single basin mat file from
’cmpProcessRiverBasins’ that was used to run ’cmpKsnProfiler’

• KsnProfilerMat - Full path of matfile output from ’cmpKsnProfiler’

70

Optional Inputs:

• shape name [’ksn’] - name for the shapefile to be export, must have no spaces to be a valid name for ArcGIS and
should NOT include the ’.shp’

Outputs: saves a shapfile of knickpoints including the classification you assign using this tool

Examples if running for the command line, minus OS specific way of calling main TAK function:

C l a s s i f y K n i c k s / path / to /wd i r Topo . mat K s nP r o f i l e r . mat
C l a s s i f y K n i c k s / path / to /wd i r Topo . mat K s nP r o f i l e r . mat shape name my kn icks

A.6 CompileBasinStats
Description: Function to take the outputs from ’ProcessRiverBasins’ and ’SubDivideBigBasins’ and produce a Mat-
lab table that summarizes the results of ProcessRiverBasins and optionally SubDivideBigBasins. This table is a re-
quired input for ’BasinStatsPlots’. If additional grids were provided to ’ProcessRiverBasins’, mean and standard error
values for those grids will be included in the table. This function also allows you to input a list of additional fields you
wish to include (see Optional Inputs below). There are also a variety of additional parameters / quantities that can be
calculated if you provided a categorical grid to ’ProcessRiverBasins’.

Required Inputs:

• wdir - full path of working directory

• location of data files - full path of folder which contains the mat files from ’ProcessRiverBasins’

Optional Inputs:

• location of subbasins [’SubBasins’] - name of folder that contains subbasins of interest (if you created subbasins
using ”SubDivideBigBasins”), expected to be within the main Basin folder provided with ”location of data files”.
Note that if you do not provide the correct directory name for the location of the subbasins, subbasin values will
not be included in the output regardless of your choice for the ”include” parameter.

• include [’all’] - parameter to specify which basins to include in building the shapfile. The default ’all’ will
include all basin mat files in the folder you specify. Providing ’subdivided’ will check to see if a given main
basin was subdivided using ’SubdivideBigBasins’ and then only include the subdivided versions of that basin
(i.e. the original main basin for those subbasins will not be included in the table). Providing ’bigonly’ will
only include the original basins produced by ’ProcessRiverBasins’ even if ’SubDivideBigBasins’ was run. If
’SubDivideBigBasins’ was never run, result of ’all’ and ’bigonly’ will be the same.

• file name prefix [’Basins’] - parameter to specify a file name prefix for the output tables

• extra field values [] - name of text file of extra field values you wish to include. The first column in this file
must be the river basin number (i.e. the identifying number in the third column of the RiverMouth input to
ProcessRiverBasins or the number generated for the basin in SubDivideBigBasins). Only one row per river basin
number is allowed and ALL river basin numbers in the basins being processed must have a value associated with
them. Additional columns are interpreted as the values with which you wish to populate the extra fields. These
can either be character arrays or numbers, other values will results in an error. The function will use the header
names within this file to name fields in the output shapefile

71

• new concavity [] - a 1 x m array of concavity values to recalculate normalized channel steepness statistics (mean,
standard error and/or standard deviation) using the provided concavities.

• uncertainty [’se’] - parameter to control which measure of uncertainty is included, expects ’se’ for standard error
(default), ’std’ for standard deviation, or ’both’ to include both standard error and deviation.

• dist along azimuth [] - option to calculate distances along a given azimuth for all basins. Expects an single
numeric input, interpreted as an azimuth in degrees

• filter by category [false] - logical flag to recalculate selected mean values based on filtering by particular cat-
egories within a categorical grid (provided to ProcessRiverBasins as ’add cat grids’). Requires entries to ’fil-
ter type’, ’cat grid’, and ’cat values’. Will produce filtered values for channel steepness, gradient, and mean
elevation by default along with any additonal grids present (i.e. grids provided with ’add grids’ to ProcessRiver-
Basins).

• filter type [’exclude’] - behavior of filter, if ’filter by categories’ is set to true. Valid inputs are ’exclude’, ’in-
clude’, or ’mode’. If set to ’exclude’, the filtered means will be calculated excluding any portions of grids have
the values of ’cat values’ in the ’cat grid’. If set to ’include’, filtered means will only be calculated for portions
of grids that are within specified categories. If set to ’mode’, filtered means will be calculated based on the modal
value of the categorical grid by basin, e.g. if the mode of basin 1 is ’grMz’ and the mode of basin 2 is ’T’, then
the filtered mean will be calculated based on nodes that are ’grMz’ in basin 1 and are ’T’ in basin 2. The idea
behind this filter is if you wish to find characteristic stats for particular categories. If filter type is ’mode’ then an
entry for ’cat values’ is not required.

• cat grid [] - name of categorical grid to use as filter, must be the same as the name provided to ProcessRiverBasins
(i.e. third column in the cell array provided to ’add cat grids’).

• cat values [] - name of text file containing single row of comma separated categorical values of interest to use in
filter. These must match valid categories in the field of interest in the shapefile provided to PrepareAddCatGrids
to prepare the grid name in the ’cat grid’ function

• populate categories [false] - logical flag to add entries that indicate the percentage of a watershed occupied by
each category from a categorical grid, e.g. if you provided an entry for ’add cat grids’ to ProcessRiverBasins
that was a geologic map that had three units, ’Q’, ’Mz’, and ’Pz’ and you set ’populate categories’ to true there
will be field names in the resulting shapefile named ’Q’, ’Mz’, and ’Pz’ and the values stored in those columns
will correspond to the percentage of each basin covered by each unit for each basin. Setting populate categories
to true will not have any effect if no entry was provided to ’add cat grids’ when running ProcessRiverBasins.

• means by category [] - method to calculate means of various continuous values within by categories. Requires
that a categorical grid(s) was input to ProcessRiverBasins. Expects a text file containing a single row with
comma separated entries, where the first entry is the name of the category to use (i.e. name for categorical grid
you provided to PrepareAddCatGrids) following entries are names of grids you wish to use to find means by
categories, e.g. an example single row in an input table would be ’geology,ksn,rlf2500,gradient’ (without the
quotes) if you were interested in looking for patterns in channel steepness, 2.5 km2 relief, and gradient as a
function of rock type/age. Valid inputs for the grid names are:

– ksn - uses channel steepness map structure with user provided reference concavity

– gradient - uses gradient grid

– rlf#### - where #### is the radius you provided to ProcessRiverBasins (requires that ’calc relief’ was set
to true when running ProcessRiverBasins

72

– NAME - where NAME is the name of an additional grid provided with the ’add grids’ option to Process-
RiverBasins

Output:

• Outputs a table as a text with the following default fields:

– river mouth - river mouth number provided to ProcessRiverBasins

– drainage area - drainage area of basin in km2

– out x - x coordinate of basin mouth

– out y - y coordinate of basin mouth

– center x - x coordinate of basin in projected coordinates

– center y - y coordinate of basin in projected coordinates

– outlet elevation - elevation of pour point in m

– mean el - mean elevation of basin in meters

– max el - maximum elevation of basin in meters

– mean ksn - mean channel steepenss

– mean gradient - mean gradient

• Either standard errors, standard deviations or both will be populated for elevation, ksn, and gradient depending
on value of ’uncertainty’

• Mean and standard error / standard deviation / both values will be populated for any additional grids

Also saves a matfile for use in ’cmpBasinStatsPlots’ or ’cmpMakeCombinedSwath’

Notes If you use ’filter by category’ to create filtered means and uncertainites, note that the filtered value for channel
steepness is calcuated using the interpolated ’KsnOBJc’, not the stream values like the the value reported in mean ksn
in the output table.

Examples if running for the command line, minus OS specific way of calling main TAK function:

Comp i l eBas i nS ta t s / path / to /wd i r b a s i n d i r
Comp i l eBa s i nS ta t s / path / to /wd i r b a s i n d i r l o c a t i o n o f s u b b a s i n s s ubba s i n s v 1

i n c l u d e s u bd i v i d e d

A.7 ConditionDEM
Description: Wrapper around the variety of methods provided by TopoToolbox for smoothing a stream profile. With
the exception of ’quantc grid’ and ’mingrad’ these methods will only modify elevations along the stream network
provided to the code. See the relevant parent functions for a more in depth description of the behavior of these
individual methods. Produces one figure that compares the long profile of the longest stream within the dataset using
the uncondtioned and conditioned DEM to provide a quick method of evaluating the result. These methods vary in
their complexity and processing times so it is recommended you understand your choice. Using the ’mincost’ method
is a good starting place before exploring some of the more complicated methods. Outputs the resulting DEM as an
ascii file for use in other ’cmp*’ codes our outside GIS applications.

73

Required Inputs:

• wdir - full path of working directory

• MatFile - Name of matfile output from ’cmpMakeStreams’

• method - method of conditioning, valid inputs are as follows:

– ’mincost’ - uses the ’mincosthydrocon’ function, valid optional inputs are ’mc method’ and ’fillp’.

– ’mingrad’ - uses the ’imposemin’ function, valid optional inputs are ’ming’. Note that providing a large
minimum gradient to this code can carve the stream well below the topography.

– ’quantc’ - uses the ’quantcarve’ function (for STREAMobjs), valid optional inputs are ’tau’,’ming’, and
’split’. Requires the Optimization Toolbox and if ’split’ is set to true, requires Parallel Processing Toolbox.

– ’quantc grid’ - uses the ’quantcarve’ function for (GRIDobjs), valid optional inputs are ’tau’. Requires the
Optimization Toolbox. This is a computationally expensive calculation and because it operates it on the
whole grid, it can take a long time and/or fail on large grids. The ’quantc’ method which only operates on
the stream network is significantly fasters and less prone to failure.

– ’smooth’ - uses the ’smooth’ function, valid optional inputs are ’sm method’,’split’,’stiffness’,’stiff tribs’,
and ’positive’ depending on inputs to optional parameters may require Optimization Toolbox (’sm method’=’regularization’
and ’positive’=true) and Parallel Processing Toolbox (’split’=true).

– ’crs’ - uses the ’crs’ function, valid optional inputs are ’stiffness’, ’tau’, ’ming’, ’stiff tribs’, ’knicks’, and
’split’. Requires Optimization Toolbox.

– ’crslin’ - uses the ’crslin’ function, valid optional inputs are ’stiffness’, ’stiff tribs’, ’ming’, ’imposemin’,
’attachtomin’, ’attachheads’, ’discardflats’,’precisecoords’

Optional Inputs:

• file name [’cond DEM’] - name for output ascii file containing conditioned DEM

• new stream net [] - option to provide name of a matfile containing a new stream network as as output from
another function (e.g. cmpFindThreshold) to use instead of the stream network saved in the MatFile provided to
the function. This new stream network must have been generated from the DEM stored in the provided MatFile

• mc method [interp] - method for ’mincost’, valid inputs are ’minmax’ or ’interp’

• fillp [0.1] - scalar value between 0 and 1 controlling the ratio of carving to filling for ’mincost’

• ming [0] - minimum gradient [m/m] in downslope direction, used in ’mingrad’,’quantc’,’crs’,’crslin’

• tau [0.5] - quantile for carving, used in ’quantc’, ’quantc grid’, ’crs’.

• split [true] - logical flag to utilized parallel processing to independently process tributaries, used in ’quantc grid’,
’smooth’, and ’crs’

• sm method [’regularization’] - method for ’smooth’, valid inputs are ’regularization’ and ’movmean’.

• stiffness [10] - scalar positive value for stiffness penalty, used in ’smooth’, ’crs’, and ’crslin’

• stiff tribs [true] - logical flag to relax the stiffness penalty at tributary junctions, used in ’smooth’, ’crs’, and
’crslin’

74

• knicks [] - nx2 matrix of x and y locations of knickpoints where stiffness penalty should be relaxed, used in ’crs’
and ’crslin’

• imposemin [false] -logical flag to preprocess DEM with imposemin during crslin

• attachtomin [false] - logical flag to prevent elevations from going below profile minima, used in crslin

• attachheads [false] - logical flag to fix the channel head elevations, used in crslin

• discardflats [false] - logical flag to discard flat portions of profiles, used in crslin

• maxcurvature [] - maximum convex curvature at any vertices along profile, used in crslin

• precisecoords [] - nx3 matrix with x, y, and z coordinates of points that the smoothed profile must past through,
used in crslin

Outputs:

• georeferenced ascii file of the processed dem

Examples if running for the command line, minus OS specific way of calling main TAK function:

ConditionDEM /path / to /wd i r Topo . mat mincos t
ConditionDEM /path / to /wd i r Topo . mat mincos t f i l l p 0 . 5

A.8 DippingBedFinder
Description: Function to determine the expected location of a planar dipping bed within a landscape based on an
input coordinate

Required Inputs:

• wdir - full path of working directory

• MatFile - Full path of matfile output from either ’cmpMakeStreams’ or the name of a single basin mat file from
’cmpProcessRiverBasins’

• xy - 1 x 2 vector with the x and y coordinate (i.e. easting and northing) of the location of interest, if you provide
an empty vector you will be given the opportunity to pick a location on the DEM

• hght abv base - height of the outcrop of interest above the base of the bed of interest (i.e. positin of the outcrop
in the section)

• thickness - thickness of the bed (hght abv base must be smaller than total thickness)

• strike - strike of bed, report with right hand rule

• dip - dip of bed

Output: Code will produce a figure showing expected location of bed and will an ascii text file with expected location
of the bed (1 where the bed should appear, 0 where it should not)

75

Examples if running for the command line, minus OS specific way of calling main TAK function:

Dipp ingBedF inde r / path / to /wd i r Topo . mat [25600 234500] 250 500 100 10
Dipp ingBedF inde r / path / to /wd i r Topo . mat [] 250 500 100 10

A.9 FindBasinKnicks
Description: Function for manually selecting knickpoints within a Basin Data File (i.e. result of ProcessRiver-
Basins). Choose knickpoints on Chi-Elevation plot with mouse clicks and press return when you have selected all
the knickpoints for a given stream segment. As you progress through, knickpoints you have already picked (i.e. on
shared portions of river profiles) will be displayed as red dots. If you’re interested in trying out an automated method
of finding knickpoints, try ’knickpointfinder’ included with TopoToolbox. If you choose to classify knickpoints (’clas-
sify knicks’ = true) The code expects you to input a number or character to categorize the knickpoint higlighted in red.
You must be consistent in your choice (i.e. you must either use numbers for all of the classifications or characters for
all the classifications within a given run), mixing numbers and characters will result in an error at the end of the run.
For entering characters, it’s recommended you keep these short strings without spaces (i.e. entries supported into a
shapefile a attribute table), e.g. knick or bound

Required Inputs:

• wdir - full path of working directory

• basin dir - name of the folder containing the basin files

• Basin Data File - name of a basin file result from the ProcessRiverBasins script

• plot result - logical flag to either plot the results (true) or not (false)

Optional Inputs:

• classify knicks [false] - logical flag to provide a classification for each chosen knickpoint

• ref concavity [0.5] - reference concavity for chi calculation

• shape name [] - character string to name output shapefile (without .shp), if no input is provided then no shapefile
is output

Outputs: Saves a matfile containing the KnickTable - table with one row for each selected knickpoints. If clas-
sify knicks is false, will have with columns x coord, y coord, elevation, distance, and chi. If classify knicks is true,
will have a sixth column containing the classification of the knickpoints. Also saves the KnickTable as a text file Will
output a shapefile as well if an argument is provided for the ’shape name’ parameter

Examples if running for the command line, minus OS specific way of calling main TAK function:

F indBas i nKn i ck s / path / to /wd i r Ba s i n s Bas in 56 Data . mat t r u e
F indBas i nKn i ck s / path / to /wd i r Ba s i n s Bas in 56 Data . mat t r u e c l a s s i f y k n i c k s

t r u e

76

A.10 FindThreshold
Description: Function to interactively select an appopriate threshold area for a given stream network. Function will
either have you iterate through a number of single streams, controlled by the number passed to ’num streams’, extracted
from the drainage divide or all streams within the provided drainage network if you provide ’all’ to ’num streams’.
If ’num streams’ is numeric, then the function will use the average of the user selected minimum threshold areas to
define a new stream network. If ’num streams’ is set to ’all’, the function will use the user selected minimum threshold
areas to define a new stream network for each individual stream (i.e. the minimum threshold area will be different for
each stream base on your selections). You can use either chi-elevation or slope-area plots (the default), both plots will
be displayed regardless of choice, to visually select where channels begin. Function also outputs the lists of selected
threshold areas and distance from channel head to divide.

Required Inputs:

• wdir - full path of working directory

• MatFile - Name of matfile output from either ’cmpMakeStreams’ or the name of a single basin mat file from
’cmpProcessRiverBasins’

• num streams - Number of stream profiles to view and select threshold areas, if you wish to manually select
threshold areas for all streams in the provided network, provide ’all’ instead of a number

Optional Inputs:

• ref concavity [0.50] - refrence concavity used to generate the chi-elevation plot

• pick method [’slope area’]- Type of plot you wish to choose the threshold area on, valid options are:

– ’chi’ - Choose threshold areas on a chi elevation plot

– ’slope area’ - Choose threshold areas on slope-area plot

Outputs:

• thres table.txt - text file containing a list of the threshold areas and xds for each stream

• thresh streams.shp - shapfile of new stream network

• thresh streams.mat - mat file containing new stream network for use with other cmp* codes.

Examples if running for the command line, minus OS specific way of calling main TAK function:

F indThre sho ld / path / to /wd i r Topo . mat 25
F indThre sho ld / path / to /wd i r Topo . mat a l l
F i ndThre sho ld / path / to /wd i r Topo . mat 25 p ick method c h i

A.11 KsnChiBatch
Description: Function to produce channel steepness, chi maps or chi grids for all channels within a DEM

77

Reqiured Inputs:

• wdir - full path of working directory

• MatFile - Full path of matfile output from either ’cmpMakeStreams’ or the name of a single basin mat file from
’cmpProcessRiverBasins’

• product - switch to determine which products to produce:

– ’ksn’ - ksn map as a shapefile

– ’ksngrid’ - ascii file with ksn interpolated at all points in a grid

– ’chimap’ - ascii file with chi calculated in channel networks

– ’chigrid’ - ascii file with chi calculate at all points in a grid

– ’chi’ - results for both chimap and chigrid

– ’all’ - ksn, ksngrid, chimap, and chigrids

Optional Inputs:

• conditioned DEM [] - option to provide a hydrologically conditioned DEM for use in this function, expects the
mat file as saved by ’cmpConditionDEM’ See ’cmpConditionDEM’ function for options for making a hydrolog-
ical conditioned DEM. If no input is provided the code defaults to using the mincosthydrocon function.

• new stream net [] - option to provide full path of a matfile containing a new stream network as as output from
another function (e.g. cmpFindThreshold) to use instead of the stream network saved in the MatFile provided to
the function. This new stream network must have been generated from the DEM stored in the provided MatFile

• file name prefix [’batch’] - prefix for outputs, will append the type of output, i.e. ’ksn’, ’chimap’, etc

• smooth distance [1000] - distance in map units over which to smooth ksn measures when converting to shapefile

• ref concavity [0.50] - reference concavity (as a positive value) for calculating ksn

• ksn method [quick] - switch between method to calculate ksn values, options are ’quick’, ’trunk’, or ’trib’, the
’trib’ method takes 3-4 times longer than the ’quick’ method. In most cases, the ’quick’ method works well, but if
values near tributary junctions are important, then ’trib’ may be better as this calculates ksn values for individual
channel segments individually. The ’trunk’ option calculates steepness values of large streams independently
(streams considered as trunks are controlled by the stream order value supplied to ’min order’). The ’trunk’
option may be of use if you notice anomaoloulsy high channel steepness values on main trunk streams that can
result because of the way values are reach averaged.

• min order [4] - minimum stream order for a stream to be considered a trunk stream, only used if ’ksn method’
is set to ’trunk’

• output level method [] - parameter to control how stream network base level is adjusted. Options for control of
output elevation are:

– ’elevation’ - extract streams only above a given elevation (provided by the user using the ’min elevation’
parameter) to ensure that base level elevation for all streams is uniform. If the provided elevation is too
low (i.e. some outlets of the unaltered stream network are above this elevation) then a warning will be
displayed, but the code will still run.

78

– ’max out elevation’ - uses the maximum elevation of all stream outlets to extract streams only above this
elevation, only valid for options that operate on streamlines only (i.e. will not work with ’ksngrid’ or
’chigrid’).

• min elevation [] - parameter to set minimum elevation for base level, required if ’base level method’ is set to
’elevation’

• complete networks only [true] - if true (default) the code will only populate portions of the stream network that
are complete. Generally, this option should probably be left as true (i.e. chi will not be accurate if drainage area
is not accurate), but this can be overly agressive on certain DEMs and when used in tandem with ’min elevation’,
it can be slow to calculate as it requires recalculation of the FLOWobj.

• interp value [0.1] - value (between 0 and 1) used for interpolation parameter in mincosthydrocon (not used if
user provides a conditioned DEM)

Notes: Please be aware that the production of the chigrid can be time consuming, so be patient...

Examples if running for the command line, minus OS specific way of calling main TAK function:

KsnChiBatch / path / to /wd i r Topo . mat ksn
KsnChiBatch / path / to /wd i r Topo . mat ksn condit ioned DEM DEMcond . mat

smoo th d i s t anc e 500

A.12 KsnProfiler
Description: Function to interactively select channel heads and define segements over which to calculate channel
steepness values. This function is designed to be similar to the operation of Profiler 51, with some improvements.
Function will display map with the stream network and expects the user to select a location near a channel head of
interest. The user will be then prompted to confirm that the defined stream is the desired choice. Finally, displays of
the chi-z and longitudinal profile of the selected river will appear and the user is expected to define (with mouse clicks)
any obvious segments with different channel steepness (or concavity) on either the chi-z plot or the stream profile
(see ’pick method’ option). When done selecting press enter/return. The user will be prompted whether they wish
to continue picking streams or if they are done. When done picking streams, the function will output three different
products (see below) and produce a shapefile of the selected streams with ksn, concavity, area, and gradient.

Required Inputs:

• wdir - full path of working directory

• MatFile - Full path of matfile output from either ’cmpMakeStreams’ or the name of a single basin mat file from
’cmpProcessRiverBasins’

Optional Inputs:

79

Restart Picking

• restart [] - providing an entry to this parameter allows the user to restart a run, either a run that you succesfully
completed but want to restart or a run that failed part way through either because of an error or because you
aborted out. While the code is running, it will save data necessary to restart in a mat file called ’* restart.mat’. If
the code succesfully completes, this ’* restart.mat’ file will be deleted. DO NOT DELETE THIS FILE WHILE
THE CODE IS RUNNING OR IF THE CODE FAILS AND YOU WISH TO SALVAGE THE RUN. You can
also call use restart if you just wish to restart picking streams from a previously completed run. If you run
the code with an ’input method’ other than ’interactive’ and the code succesfully completes (i.e you fit all the
streams selected via the input method you choose and you did not stop the code early) then running with restart
will not do anything. If you wish to restart, you do not need to define any of the original parameters, these are
saved in the output files and will be loaded in, you only need to provide the four required inputs (see example)
along with the restart parameter. Valid inputs to restart are:

– ’continue’ - will restart the run. If used with a completed or failed ’interactive’ run will repopulate the map
with already picked streams and you can continue picking. If using with a non interactive input method
that either failed or you aborted, will start on the next stream in the sequence.

– ’skip’ - only a meaningful input for a non interactive run. This will skip the next stream segment in the
sequence. This would be useful if a particular stream segment causes the code to error, this way you can
skip that stream in a restart without having to modifying the stream network.

Main Options

• input method [’interactive’] - parameter which controls how streams of interest are supplied:

– ’interactive’ - user picks streams of interest by selecting channelheads on a map, this option will also
iteratively build a channel steepness map as the user picks more streams.

– ’all streams’ - will use the supplied STREAMobj and iterate through all channel heads. There is an internal
parameter to avoid selecting streams that are too short to properly fit (mostly relevant if ’junction method’
is set to ’check’). The default value is 4 * the DEM cellisze, the user can change this value by providing
an input for the optional parameter ’min channel length’, input should be in map units and greater than the
default. You can use a code like ’SegmentPicker’ to select portions of a STREAMobj

– ’stream length’ - will use supplied STREAMobj and entry to ’min length to extract’ to iterate through all
streams that are longer than the length provided to ’min length to extract’. There is an internal parameter
to avoid selecting streams that are too short to fit (mostly relevant if ’junction method’ is set to ’check’).
The default value is 4 * the DEM cellsize, the user can change this value by providing an input for the
optional parameter ’min channel length’, input should be in map units and greater than the default.

– ’channel heads’ - will use a supplied list of coordinates of channel heads to select and iterate through
streams of interest. If this option is used, the user must provide an input for the optional ’channel head list’
parameter.

• pick method [’chi’] - choice of how you want to pick stream segments. The diagram within which to pick based
on your selection will be outline in red. Valid inputs are:

– ’chi’ - select segments on a chi - z plot (recommended and default)

– ’stream’ - select segments on a longitudinal profile

– ’slope area’ - select segments on a slope area plot

80

• junction method [’check’] - choice of how to deal with stream junctions:

– ’check’ - after each choice, will check whether downstream portions of the selected stream have already
been fit, and if it has, the already fit portion of the stream will not be displayed or refit

– ’ignore’ - each stream will be displayed from its head to mouth independent of whether portions of the
same stream network have been fit

• concavity method [’ref’]- options for concavity:

– ’ref’ - uses a reference concavity, the user can specify this value with the reference concavity option (see
below)

– ’auto’ - function finds a best-fit concavity for each selected stream, if used in conjunction with ’junc-
tion method’,’check’ this means that short sections of streams picked will auto fit concavity that may differ
from downstream portions of the same streams

Input Method Options

• min channel length [] - minimum channel length for consideration when using the ’all streams’ method of input,
provide in map units.

• channel head list [] - m x 2 array of x and y coordinates of channel heads OR the name / location of a point
shapefile of channel heads, one of these is required when using ’channel heads’ method of input, must be in the
same coordinate system as the input DEM etc. The code will attempt to find the nearest channel head to the
coordinates you provided, so the closer the provided user coordinates are to channel heads, the more accurate
this selection method will be.

• min length to extract [] - minimum stream length (in map units) to extract streams if ’input method’ is set to
’stream length’.

Redefine Threshold Area Options

• redefine threshold [false] - logical flag to initiate an extra step for each stream where you manually define the
hillslope-fluvial transition (this will result in overriding the threshold area you used to generate the supplied
STREAMobj, and it will also produce a STREAMobj with a variable threshold area for channel definition). See
additional optional input ’rd pick method’.

• rd pick method [’slope area’] - plot to use to choose new threshold area if ’redefine threshold’ is set to true.
Valid inputs are ’slopearea’ and ’chi’.

Stream Network Modification Options

• complete networks only [false] - if true, the code will filter out portions of the stream network that are incomplete
prior to choosing streams

• min elev [] - minimum elevation below which the code stops extracting channel information (no action if left
empty)

• max area [] - maximum drainage area above which the code stops extracting channel information (in square map
units, no action if left empty)

81

Hydrological Conditioning Options

• conditioned DEM [] - option to provide a hydrologically conditioned DEM for use in this function (do not
provide a conditoned DEM for the main required DEM input!) which will be used for extracting elevations. See
’ConditionDEM’ function for options for making a hydrological conditioned DEM. If no input is provided the
code defaults to using the mincosthydrocon function.

• interp value [0.1] - value (between 0 and 1) used for interpolation parameter in mincosthydrocon (not used if
user provides a conditioned DEM). Values closer to 0 tend to ’carve’ more, whereas values closer to 1 tend to
fill. See info for ’mincosthydrocon’

Replace Stream Network

• new stream net [] - option to provide full path of a matfile containing a new stream network as as output from
another function (e.g. cmpFindThreshold) to use instead of the stream network saved in the MatFile provided to
the function. This new stream network must have been generated from the DEM stored in the provided MatFile

Display Options

• display slope area [false] - logical flag to display slope area plots. Some people love slope area plots (like one
of the authors of the supporting paper), some people hate slope area plots (like the other author of the supporting
paper), so you can either not draw them at all (false - default) or include them (true). This will automatically be
set to true if you select ’slope area’ as the ’pick method’.

• plot type [’vector’] - expects either ’vector’ or ’grid’, default is ’vector’. Controls whether all streams are drawn
as individual lines (’vector’) or if the stream network is plotted as a grid and downsampled (’grid’). The ’grid’
option is much faster on large datasets, but can result in inaccurate channel head selection. The ’vector’ option
is easier to see, but can be very slow to load and interact with on large datasets.

Constants

• ref concavity [0.50] - refrence concavity used if ’theta method’ is set to ’ref’

• smooth distance [1000] - distance in map units over which to smooth ksn measures when converting to shapefile

• max ksn [250] - maximum ksn used for the color scale, will not effect actual results, for display purposes only

• threshold area [1e6] - used to redraw downsampled stream network if ’plot type’ is set to ’grid’

Output Options

• stack method [’stack’] - if ’junction method’ is set to ’ignore’, this parameter will control how the function deals
with overlapping sections of stream networks when generating the shapefile. Valid inputs are ’stack’ (default)
and ’average’. If set to ’stack’, the output shapefile will have multiple stacked polylines in overlapping portions
of networks. This is similar to how Profiler51 worked. If set to ’average’, the function will average overlapping
portions of networks on a node by node basis. Note that if ’junction method’ is set to ’check’, then this parameter
is ignored.

• shape name [’ksn’] - name for the shapefile to be export, must have no spaces to be a valid name for ArcGIS and
should NOT include the ’.shp’

• save figures [false] - logical flag to either save figures showing ksn fits (true) or to not (false - default)

82

Outputs:

• * KsnFit.txt - n x 12 array of node list for selected stream segments, columns are x coordinate, y coordi-
nate, drainage area, ksn, negative ksn error, positive ksn error, reference concavity, best-fit concavity, min-
inum threshold area, gradient, fit residual, and an identifying number. Note that if using the code in ’concav-
ity method’,’auto’ mode then the reference concavity and best-fit concavity columns will be the same.

• * KsnBounds.txt - n x 4 array of selected bounds for fitting ksn, columns are x coordinate, y coordinate, ele-
vation, and the stream identifying number (this could be thought of as a list of knickpoints), also output as a
seperate shapefile. If x y and z values appear as NaN, this indicates that bounds for this stream were not selected.

• *.shp - shapefile of the stream network containing the KsnFit outputs as fields

• * knicks.shp - shapefile of ksn fit boundaries

* is controlled by ’shape name’

Notes

• If no boundaries/knickpoints are selected for any of the streams selected, then a ’* knicks.shp’ shapefile will not
be produced.

• The ’* profiler.mat’ that is saved out contains additional files besides the formal outputs of the code. These
additional variables are necessary to be able to restart a run using the ’restart’ option.

• f you have set ’save figures’ to true, DO NOT close figures manually as this will cause the code to error.

Examples if running for the command line, minus OS specific way of calling main TAK function:

K s nP r o f i l e r / path / to /wd i r Topo . mat
K s nP r o f i l e r / path / to /wd i r Topo . mat r e d e f i n e t h r e s h o l d t r u e
K s nP r o f i l e r / path / to /wd i r Topo . mat condit ioned DEM CondDEM. mat

A.13 MakeCombinedSwath
Description: Function to plot various additional data onto a swath profile.

Required Inputs:

• wdir - full path of working directory

• MatFile - Full path of matfile output from either ’cmpMakeStreams’ or the name of a single basin mat file from
’cmpProcessRiverBasins’ points - name of text file containing n x 2 matrix of x,y points for swath, minimum are
two points (start and end points). First row contains starting point and proceeds down rows, additional points
besides a start and end are treated as bends in the swath. Coordinates for points must be in the same coordinate
system as DEM and must lie within the DEM (cannot be coordinates on the very edge of the DEM).

• width - width of swath in map units

• data type - the type of additional data you are providing to plot along with the swath, supported inputs are:

83

– ’points3’ - generic point dataset, expects a n x 3 matrix with values of x, y, and z stored in a text file

– ’points4’ - generic point dataset, expects a n x 4 matrix with values of x, y, z, and extra value stored in a
text file. Dots will be colored by this extra value

– ’points5’ - generic point dataset, expects a n x 5 matrix with values of x, y, z, and two extra values stored
in a text file. Dots will colored by the first extra value (column 4) and scaled by the second extra value
(column 5).

– ’eqs’ - earthquakes, expects a n x 4 matrix with x, y, depth, and magnitude stored in a text file. Points will
be scaled by magnitude and colored by distance from swath line. Expects depth to be positive.

– ’STREAMobj’ - will project portions of selected stream profiles (as points) onto a swath. Expects a matfile
containing a STREAMobj that was generated from the provided DEM (can be the same input as MatFile,
but you must provide it again)

– ’ksn chandata’ - will plot swath through ksn values, expects full path of a *chandata.mat file as output from
old Profiler51 code (just in case you have some sitting around)

– ’ksn shape’ - will plot swath through ksn values, expects the shapefile output from ’cmpKsnChiBatch’ or
’cmpKsnProfiler’ function ’basin stats’ - will plot swath through selected mean basin values as calculated
from ’cmpProcessRiverBasins’, expects matfile output from ’cmpCompileBasinStats’ and requires an entry
to optional input ’basin value’ and accepts optional input to ’basin scale’. Will place point for basin at
mean elevation and projected location of the basin centroid, will color by value provided to ’basin value’
and will optionall scale the point by the value provided to ’basin scale’

– ’basin knicks’ - will plot swath through knickpoints as chosen by ’cmpFindBasinKnicks’. For ’data’ pro-
vide name of folder within working directory to find knickpoint files saved as a result of running ’Find-
BasinKnicks’ on a series of basins selected from ’ProcessRiverBasins’

• data - input data, form varies depending on choice of data type

• data width - width in map units of swath through provided data. Values greater than data width/2 from the center
line of the toposwath will not be plotted

Optional Inputs:

• sample [] - resampling distance along topographic swath in map units, if no input is provided, code will use the
cellsize of the DEM which results in no resampling.

• smooth [0] - smoothing distance, width of filter in map units over which to smooth values, default (0) results in
no smoothing

• vex [10] - vertical exaggeration for the topographic swath. Note that because matlabs controls on physical axis
dimensions are problematic, the vertical exaggeration controls don’t work on plots that have two panels (e.g.
’ksn batch’, ’ksn profiler’, ’ksn chandata’, and ’eqs’)

• basin value [] - required for option ’basin stats’, name (as it appears in the provided table provided to ’data’) of
the value you wish to color points by

• basin scale [] - optional input for option ’basin stats’, name (as it appears in the provided table provided to
’data’) of the value you wish to scale points by

• plot map [true] - logical flag to plot a map displaying the location of the topographic swath and the additional
data included in the swath (red dots) and those not (white dots) based on the provided data width parameter.

84

• cmap [’parula’] - valid name of colormap (e.g. ’jet’)

• save figure [false] - logical flag to save the swath figure as a pdf

Outputs:

• SwathArray.txt - n x 6 array containing x coordinate, y coordinates, distance along the swath, min elevation,
mean elevation, max elevation

• SwathBends.txt - distances along swath of any bends, 0 if no bends

• SwathBounds.shp - polyline shapefile showing outline of swath for both topo and data and center line of swath

• SwathProjectedData.txt - data for plotting the swath through the provided data, distances that area ’NaN’ indicate
those data do not fall on the swath line provided. Form of output depends on data type:

– ’points3’ - distances, elevation, distance from base line, x coordinate, y coordinate
– ’points4’ - distances, elevation, value, distance from base line, x coordinate, y coordinate
– ’eqs’ - distances, depth, magnitude, distance from base line, x coordinate, y coordinate
– ’STREAMobj’ - distances, elevation, distance from base line, x coordinate, y coordinate
– ’ksn chandata’ - distances, elevation, ksn, distance from base line, x coordinate, y coordinate
– ’ksn shape’ - distances, ksn, distance from base line, x coordinate, y coordinate
– ’basin stats’ - distances, mean basin elevation, ’basin value’, ’basin scale’ (if provided), distance from base

line, x coordinate, y coordinate

Examples if running for the command line, minus OS specific way of calling main TAK function:

MakeCombinedSwath / path / to /wd i r Topo . mat p o i n t s . t x t 10000 po i n t s 3 d a t a p o i n t s .
t x t 20000

MakeCombinedSwath / path / to /wd i r Topo . mat p o i n t s . t x t 10000 b a s i n s t a t s
Bas inTab le . mat 20000 b a s i n v a l u e mean ksn

A.14 MakeStreams
Description: Function takes a dem and outputs the necessary base datasets for use in other TopoToolbox functions.
Input DEMs with grid resolutions (i.e. cellsizes) that are not whole numbers sometimes cause issues in companion
functions. If the provided DEM has a non-whole number for a cellsize, the code will warn the user (but not do
anything). If you want to fix the cellsize issue, you can either reproject in a GIS program or you can use this code (with
’resample grid’ set to true) to do it for you.

Required Inputs:

• wdir - full path of working directory

• dem - name of dem file as either an ascii text file (recommended) or geotiff

• threshold area - minimum accumulation area to define streams in meters squared

• file name - name for matfile containing the DEM, FD, A, and S (for use in all the other compiled versions of the
TAK codes) and the shapfile of the stream network, do not include a file type suffix, this will be added by the
function.

85

Optional Inputs:

• precip grid [] - optional input of name of a precipitation raster (ascii or geotiff). If you provide an argument for
this, the code will use this to produce a weighted flow accumulation grid.

• rr grid [] - optional input of nameof a runoff ratio raster (ascii or geotiff). If you provide an argument for this,
the code will use this, along with the input to ’precip grid’ to produce a weighted flow accumulation grid.

• no data exp [] - input to define no data conditions. Expects a string that defines a valid equality using the variable
DEM OR ’auto’. E.g. if you wish to define that any elevation less that or equal to 0 should be set to no data, you
would provide ’DEM<=0’ or if you wanted to set elevations less than 500 and greater than 1000 ot no data, you
would provide ’DEM<500 | DEM>1000’. If the expression is not valid the user will be warned, but the code
will continue and ignore this continue. If you provide ’auto’ the code will use the log of the gradient to identify
true connected flats and set these to nan. If you want more control on removing flat ares that are at multiple
elevations (e.g. internally drained basins), consider using ’RemoveFlats’.

• min flat area [1e8] - minimum area (in m2) for a portion of the DEM to be identified as flat (and set to nan) if
’no data exp’ is set to ’auto’. If ’no data exp’ is not called or a valid logical expression is provided, the input to
’min flat area’ is ignored.

• resample grid [false] - flag to resample the grid. If no input is provided for new cellsize, then the grid will be
resampled to the nearest whole number of the native cellsize.

• new cellsize [] - value (in map units) for new cellsize.

Outputs:

• Saved matfile containing (for use with other ’cmp*’ codes):

– DEM - GRIDobj of the DEM

– FD - FLOWobj from the supplied DEM

– A - Flow accumulation grid (GRIDobj)

– S - STREAMobj derived from the DEM

• Shapefile of streams

Examples if running for the command line, minus OS specific way of calling main TAK function:

MakeStreams / path / to /wd i r dem . t x t 1 e6 Topo
MakeStreams / path / to /wd i r dem . t x t 1 e6 Topo no da ta exp auto m i n f l a t a r e a 1e6
MakeStreams / path / to /wd i r dem . t x t 1 e6 Topo no da ta exp DEM<=0

A.15 MakeTopoSwath
Description: Wrapper around TopoToolbox SWATHobj functionality

86

Required Inputs:

• wdir - full path of working directory

• MatFile - Full path of matfile output from either ’cmpMakeStreams’ or the name of a single basin mat file from
’cmpProcessRiverBasins’

• points - name of text file containing n x 2 matrix of x,y points for swath, minimum are two points (start and end
points). First row contains starting point and proceeds down rows, additional points besides a start and end are
treated as bends in the swath. Coordinates for points must be in the same coordinate system as DEM and must
lie within the DEM (cannot be coordinates on the very edge of the DEM).

• width - width of swath in map units

Optional Inputs:

• sample [] - resampling distance along swath in map units, if no input is provided, code will use the cellsize of
the DEM which results in no resampling.

• smooth [0] - smoothing distance, width of filter in map units over which to smooth values, default (0) results in
no smoothing

• vex [10] - vertical exaggeration for displaying plot.

• plot as points [false] - logical flag to switch plot type to distributions of points

• plot as heatmap [false] - logical flag to switch plot type to a heat map

• save figure [false] - logical flag to save the swath figure as a pdf (this will also set ’plot figure’ to true)

Outputs:

• SwathArray.txt - n x 6 array containing x coordinate, y coordinates, distance along the swath, min elevation,
mean elevation, max elevation

• SwathBends.txt - distances along swath of any bends, 0 if no bends

• SwathBounds.shp - polyline shapefile showing outline of swath and center line of swath

Examples if running for the command line, minus OS specific way of calling main TAK function:

MakeTopoSwath / path / to /wd i r Topo . mat p o i n t s . t x t 10000
MakeTopoSwath / path / to /wd i r Topo . mat p o i n t s . t x t 10000 vex 5 p l o t a s h ea tmap

t r u e

A.16 Mat2Arc
Description: Function converts all valid topotoolbox files contained within a mat file to Arc compatible outputs.
Specifically converts any GRIDobjs to ascii files, any STREAMobjs to shapefiles, any FLOWobjs to ArcGIS flow
direction grids saved as an ascii file, and any valid mapstructures to shapefiles.

87

Required Inputs:

• wdir - full path of working directory

• MatFile - full path to matfile of interest

• file prefix - characters to add to the front of all output files

Optional Inputs:

• raster type [’ascii’] - option to specify the format of the raster export, valid inputs are ’tif’ or ’ascii’

Examples if running for the command line, minus OS specific way of calling main TAK function:

Mat2Arc / path / to /wd i r Topo . mat ou tpu t s
Mat2Arc / path / to /wd i r Topo . mat ou tpu t s r a s t e r t y p e t i f

A.17 PlotIndividualBasins
Description: Function takes outputs from ’ProcessRiverBasins’ function and makes and saves plots for each basin
with stream profiles, chi-z, and slope area

Required Inputs:

• wdir - full path of working directory

• location of data files - name folder within working directory that contains the mat files from ’ProcessRiver-
Basins’

Optional Inputs:

• location of subbasins [’SubBasins’] - name of folder that contains subbasins of interest (if you created subbasins
using ”SubDivideBigBasins”), expected to be within the main Basin folder provided with ”location of data files”

• bin size [500] - bin size (in map units) for binning slope area data.

Examples if running for the command line, minus OS specific way of calling main TAK function:

P l o t I n d i v i d u a l B a s i n s / path / to /wd i r Ba s i n s
P l o t I n d i v i d u a l B a s i n s / path / to /wd i r Ba s i n s l o c a t i o n s o f s u b b a s i n s MySubBasins

A.18 PlotKsn
Description: Function to plot a map of normalized channel steepness on a hillshade colored by elevation.

Required Inputs:

• MatFile - full path to matfile of interest from which the ksn shapefile was created

• ksn - ksn data as a shapefile (as ouput from KsnProfiler, ProcessRiverBasins KsnChiBatch)

88

Optional Inputs: Can provide name of shapefile (as output by FindBasinKnicks or KsnProfiler) containing knick-
point locations

Examples if running for the command line, minus OS specific way of calling main TAK function:

PlotKsn / path / to /wd i r Topo . mat ksn . shp
PlotKsn / path / to /wd i r Topo . mat ksn . shp kn i c k s . shp

A.19 PrepareAddGrids
Description: Function to prepare additional grids for use in ’cmpProcessRiverBasins’

Required Inputs:

• out file name - name for the mat file to be produced, do not include the ’.mat’

• Additional inputs must be given in groups of twos, and be in the order:

1. name of the ascii or geotiff of the extra raster data you want to include (must be in the same projection as
the original grid you provided to ’cmpMakeStreams’ and will use in ’cmpProcessRiverBasins’)

2. a reference name for the produced grid

Examples if running for the command line, minus OS specific way of calling main TAK function:

PrepareAddGr ids / path / to /wd i r AddGr ids p r e c i p . t i f p r e c i p
PrepareAddGr ids / path / to /wd i r AddGr ids p r e c i p . t i f p r e c i p ndv i . t x t ndv i

A.20 PrepareCatAddGrids
Description Function to prepare categorical grids for input to ’cmpProcessRiverBasins’

Required Inputs:

• out file name - name for the mat file to be produced, do not include the ’.mat’

• MakeStreamMat - full path of the output produced by ’cmpMakeStreams’ and that you will be using as an input
to ’cmpProcessRiverBasins’

• Additional inputs must be given in groups of threes, and be in the order:

1. name of the shapefile containing the field you want to convert into a categorical grid
2. the field name within the shapefile you want to convert into a categorical grid
3. a reference name for the produced grid

Examples if running for the command line, minus OS specific way of calling main TAK function:

PrepareAddCatGr ids / path / to /wd i r AddCatGr ids Topo . mat geo po l ygon s . shp RTYPE
r o c k t y p e

PrepareAddCatGr ids / path / to /wd i r AddCatGr ids Topo . mat geo po l ygon s . shp RTYPE
r o c k t y p e geo po l ygon s . shp UNIT un i t name

89

A.21 ProcessRiverBasins
Description: Function takes grid object outputs from MakeStreams script (DEM,FD,A,S), a series of x,y coordinates
of river mouths, and outputs clipped dem, stream network, various topographic metrics, and river values (ks, ksn, chi).
Saves mat files for use in other codes, if you want to produce files that are usable in an outside GIS program, be sure
to set ’write arc files’ to true.

Required Inputs:

• wdir - full path of working directory

• MakeStreamsMat - name or location of the mat file saved after running ’cmpMakeStreams’

• river mouths - locations of river mouths (i.e. pour points) above which you wish to extract basins, can take one
of three forms:

1. name of a text file containing a nx3 array of river mouths with x, y, and a number identifying the stream/basin
of interest (must be same projection as DEM) saved as a ’.txt’. No extra columns should be present, the
code should work with or without headers as long as headers are restricted to a single line. The text file of
Outlets saved by BasinPicker, can be used as the river mouths

2. a single value that will be interpreted as an elevation that the code will use this to autogenerate river mouths
at this elevation.

3. point shapefile with one numeric user input field (e.g. the default ’ID’ field generated by ArcGIS) that will
be used as the river mouth ID (must be same projection as DEM).

• basin dir - name of folder to store basin files (if specified folder does not exist in current directory, code will
create it)

Optional Inputs:

• conditioned DEM [] - option to provide a hydrologically conditioned DEM for use in this function, expects
an ascii grid as saved by ’cmpConditionDEM’ See ’cmpConditionDEM’ function for options for making a
hydrological conditioned DEM. If no input is provided the code defaults to using the mincosthydrocon function.

• interp value [0.1] - value (between 0 and 1) used for interpolation parameter in mincosthydrocon (not used if
user provides a conditioned DEM)

• threshold area [1e6] - minimum accumulation area to define streams in meters squared

• segment length [1000] - smoothing distance in meters for averaging along ksn, suggested value is 1000 meters

• ref concavity [0.5] - reference concavity for calculating ksn, suggested value is 0.45

• ksn method [quick] - switch between method to calculate ksn values, options are ’quick’, ’trunk’, or ’trib’, the
’trib’ method takes 3-4 times longer than the ’quick’ method. In most cases, the ’quick’ method works well, but if
values near tributary junctions are important, then ’trib’ may be better as this calculates ksn values for individual
channel segments individually. The ’trunk’ option calculates steepness values of large streams independently
(streams considered as trunks are controlled by the stream order value supplied to ’min order’). The ’trunk’
option may be of use if you notice anomaoloulsy high channel steepness values on main trunk streams that can
result because of the way values are reach averaged.

90

• min order [4] - minimum stream order for a stream to be considered a trunk stream, only used if ’ksn method’
is set to ’trunk’

• write arc files [false] - set value to true to output a ascii’s of various grids and a shapefile of the ksn, false to not
output arc files

• add grids [] - option to provide the name of the mat file produced by running ’cmpPrepareAddGrids’. Use this
function if you want this function to calculate statistics for additional grids (e.g. precipitation).

• add cat grids [] - option provide the name of the mat file produced by running ’cmpPrepareCatAddGrids’. Use
this if you want to calculate statisitcs related to categorical data stored in a shapefile (e.g. geologic map).

• resample method [’nearest’] - method to use in the resample function on additional grids (if required). Ac-
ceptable inputs are ’nearest’, ’bilinear’, or ’bicubic’. Method ’nearest’ is appropriate if you do not want the
resampling to interpolate between values (e.g. if an additinal grid has specific values that correlate to a property
like rock type) and either ’bilinear’ or ’bicubic’ is appropriate if you want smooth variations between nodes.

• gradient method [’arcslope’] - function used to calculate gradient, either ’arcslope’ (default) or ’gradient8’. The
’arcslope’ function calculates gradient the same way as ArcGIS by fitting a plane to the 8-connected neigh-
borhood and ’gradient8’ returns the steepest descent for the same 8-connected neighborhood. ’gradient8’ will
generally return higher values than ’arcslope’.

• calc relief [false] - option to calculate local relief. Can provide an array of radii to use with ’relief radii’ option.

• relief radii [2500] - a 1d vector (column or row) of radii to use for calculating local relief, values must be in map
units. If more than one value is provided the function assumes you wish to calculate relief at all of these radii.
Note, the local relief function is slow so providing multiple radii will slow code performance. Saved outputs will
be in a m x 2 cell array, with the columns of the cell array corresponding to the GRIDobj and the input radii.

Notes: The code will perform a check of the river mouths input to confirm that 1) there are no duplicate ID numbers
(it will dump your ID numbers and create new ID numbers if this is the case and output a text file containing the river
mouth locations with their new ID numbers) and 2) that no provided river mouths are outside the boundaries of the
DEM (it will remove these IDs if this the case).

Examples if running for the command line, minus OS specific way of calling main TAK function:

P r o c e s sR i v e rBa s i n s / path / to /wd i r Topo . mat r i v e r mou t h s . t x t Ba s i n s
P r o c e s sR i v e rBa s i n s / path / to /wd i r Topo . mat r i v e r mou t h s . shp Bas i n s
P r o c e s sR i v e rBa s i n s / path / to /wd i r Topo . mat 500 Bas i n s
P r o c e s sR i v e rBa s i n s / path / to /wd i r Topo . mat r i v e r mou t h s . t x t Ba s i n s

a d d c a t g r i d s AddCatGr ids . mat a d d g r i d s AddGrids . mat
P r o c e s sR i v e rBa s i n s / path / to /wd i r Topo . mat r i v e r mou t h s . shp Bas i n s c a l c r e l i e f

t r u e r e l i e f r a d i i [1000 2500 5000]

A.22 RemoveFlats
Description: Function takes DEM and attempts a semi-automated routine to remove flat areas with some input from
the user to select areas considred to be flat. This function sometimes works reliably, but will never produce as clean a
result as manually clipping out flat areas in gis software (but it’s a lot faster!)

91

Required Inputs:

• wdir - full path of working directory

• dem - either full path of dem file as either an ascii text file or geotiff

• strength - integer value between 1 and 4 that controls how aggressively the function defines flat areas, specifically
related to the size of the neighborhood the function uses to connect ares of similar elevation. A strength of 1 =
a 3x3 neighborhood, 2=5x5, 3=7x7, and 4=9x9. If the results of the function do not capture enough of the flat
areas in the MASK, increase the strength and rerun. Similarly, if the function erroneously includes areas that are
not part of what you consider the flats, try decreasing the strength.

• file name - name of output ascii file (without a file type suffix)

Outputs: georeferenced ascii file of the processed dem and mask (mask will have ’ mask’ appended to the file name
you provide).

Examples if running for the command line, minus OS specific way of calling main TAK function:

RemoveFlats / path / to /wd i r dem . t x t 1 dem rm f l a t

A.23 SegmentPicker
Description: Function to select a segment of a stream network from the top of the stream, and plot the long profile
and chi-Z relationship of that segment,also outputs the extraced portion of the stream network and chi structure (out of
’chiplot’). Allows user to iteratively select different parts of the stream network and display. Keeps running dataset of
all the streams you pick and accept.

Required Inputs:

• wdir - full path of working directory

• MatFile - Name of matfile output from either ’cmpMakeStreams’ or the name of a single basin mat file from
’cmpProcessRiverBasins’

• basin num - basin number from ProcessRiverBasins for output name or other identifying number for the set of
streams you will pick

Optional Inputs:

• conditioned DEM [] - option to provide full path of a hydrologically conditioned DEM for use in this function,
expects the mat file as saved by ’cmpConditionDEM’. See ’cmpConditionDEM’ function for options for making
a hydrological conditioned DEM. If no input is provided the code defaults to using the mincosthydrocon function.

• new stream net [] - option to provide name of a matfile containing a new stream network as as output from
another function (e.g. cmpFindThreshold) to use instead of the stream network saved in the MatFile provided to
the function. This new stream network must have been generated from the DEM stored in the provided MatFile

• direction [’down’] - expects either ’up’ or ’down’, default is ’down’, if ’up’ assumes individual selections are
points above which you wish to extract and view stream profiles (i.e. a pour point), if ’down’ assumes individual
selections are channel heads if specific streams you wish to extract and view stream profiles.

92

• method [’new picks’] - expects either ’new picks’ or ’prev picks’, default is ’new picks’ if no input is provided.
If ’prev picks’ is given, the user must also supply an input for the ’picks’ input (see below)

• plot style [’refresh’] - expects either ’refresh’ or ’keep’, default is ’refresh’ if no input is provided. If ’refresh’ is
given, the plots reset after each new stream pick, but if ’keep’ is given, all selected streams remain on both the
map (as thick red lines) and the chi-z/longitudinal profile/slope-area plots.

• plot type [’vector’] - expects either ’vector’ or ’grid’, default is ’vector’. Controls whether all streams are drawn
as individual lines (’vector’) or if the stream network is plotted as a grid and downsampled (’grid’). The ’grid’
option is much faster with large datasets, but can result in inaccurate choices. The ’vector’ option is easier to see,
but can be very slow to load and interact with.

• calc full slope area [false] - logical flag to either calculate and display the slope area data for just the trunk
stream in the network (false, default), or to calculate and display slope area data for all streams in the network
(true). If direction is set to ’up’ and you are choosing large stream networks, it is strongly recommended that
you leave this parameter set to false to speed code completion.

• complete networks only [false] - if true, the code will filter out portions of the stream network that are incomplete
prior to choosing streams

• picks - expects name of a textfile containing a n x 3 matrix with columns as x coordinates, y coordinates, and an
identifying number OR the name of a point shapefile with a single value column of identifying numbers. Will
interpret this input as a list of channel heads if ’direction’ is ’down’ and a list of channel outlets if ’direction’ is
’up’.

• ref concavity [0.50] - reference concavity for calculating Chi-Z, default is 0.50

• min elev [] - minimum elevation below which the code stops extracting channel information, only used if ’direc-
tion’ is ’down’

• max area [] - maximum drainage area above which the code stops extracting channel information, only used if
’direction’ is ’down’

• recalc [false] - only valid if either min elev or max area are specified. If recalc is false (default) then extraction
of streams stops downstream of the condition specified in either min elev or max area, but chi is not recalculated
and distances will remain tied to the original stream (i.e. distances from the outlet will be relative to the outlet
of the stream if it continued to the edge of the DEM, not where it stops extracting the stream profile). If recalc is
true, then chi and distance are recalculated (i.e. the outlet as determined by the min elev or max area condition
will have a chi value of zero and a distance from mouth value of zero).

• threshold area [1e6] - used to redraw downsampled stream network if ’plot type’ is set to ’grid’

• interp value [0.1] - value (between 0 and 1) used for interpolation parameter in mincosthydrocon (not used if
user provides a conditioned DEM)

• bin size [500] - bin size (in map units) for binning slope area data.

Outputs: Saves an output called ’PickedSegements *.mat’ with the provided basin number containing these results:

• StreamSgmnts - Cell array of selected stream segments as STREAMobj

• ChiSgmnts - Cell array of selected chi structures

93

• SlpAreaSgmnts - Cell array of slope area data

• Sc - Single STREAMobj containing all the streams chosen. and if ’down’ is selected:

• Heads - nx3 matrix of channel heads you picked with x cooord, y coordinate, and pick number as the columns
and if ’up’ is selected:

• Outlets - nx3 matrix of outlets you picked with x cooord, y coordinate, and pick number as the columns (valid
input to ’ProcessRiverBasins’ as ’river mouths’ parameter)

Also saves a shapefile of the selected stream network

Examples if running for the command line, minus OS specific way of calling main TAK function:

SegmentPicker / path / to /wd i r Topo . mat 1
SegmentPicker / path / to /wd i r Topo . mat 20 d i r e c t i o n up p i c k s Mouths . shp

A.24 SegmentPlotter
Description: Function to plot all of the chi-Z relationships, longitudinal profiles, and slope area plots from a series
of picked segments of river networks that result from the ’SegmentPicker’ function.

Required Input:

• wdir - full path of working directory

• basin nums - row or column vector of basin numbers used for the SegmentPicker you wish to plot together. Code
expects that the mat files saved from cmpSegmentPicker are in the present working directory.

Optionl Input:

• separate [false] - logical flag to plot all segments as separate figures

• subset [] - list of specific river numbers (i.e. the third column of either the ’Heads’ or the ’Outlets’ variable) that
you wish to include in the plot. Only valid if you have only provided a single basin number for ’basin nums’.

• label [false] - logical flag to either label individual streams with the river number (true) or not label them (false,
default). If ’separate’ flag is true then the input for label is ignored as the stream number will be in the title of
the plots

• names [] - option to add an identifying name for streams when ’label’ is set to true.

Outputs: saves pdfs of all figures produced

Examples if running for the command line, minus OS specific way of calling main TAK function:

SegmentP lo t t e r / path / to /wd i r 1
SegmentP lo t t e r / path / to /wd i r [1 2 3 6] s e p a r a t e t r u e

94

A.25 SegmentProjector
Description: Function to interactively select segments of a channel profile you wish to project (e.g. projecting a
portion of the profile with a different ksn). You can use the ’cmpSegmentPicker’ function to interactively choose
channels to provide to the StreamProjector function. If the STREAMobj has more than one channel head, this code
will iterate through all channel heads (i.e. make sure you’re only providing it stream you want to project, not an entire
network!). It calculates and will display 95 % confidence bounds on this fit.

Required Inputs:

• wdir - full path of working directory

• MatFile - Name of matfile output from either ’cmpMakeStreams’ or the name of a single basin mat file from
’cmpProcessRiverBasins’

Optional Inputs:

• conditioned DEM [] - option to provide name of a hydrologically conditioned DEM for use in this function,
expects the mat file as saved by ’cmpConditionDEM’. See ’cmpConditionDEM’ function for options for making
a hydrological conditioned DEM. If no input is provided the code defaults to using the mincosthydrocon function.

• new stream net [] - option to provide name of a matfile containing a new stream network as as output from
another function (e.g. cmpFindThreshold) to use instead of the stream network saved in the MatFile provided to
the function. This new stream network must have been generated from the DEM stored in the provided MatFile

• concavity method [’ref’]- options for concavity:

– ’ref’ - uses a reference concavity, the user can specify this value with the reference concavity option (see
below)

– ’auto’ - function finds a best-fit concavity for the provided stream

• pick method [’chi’] - choice of how you want to pick the stream segment to be projected:

– ’chi’ - select segments on a chi - z plot

– ’stream’ - select segments on a longitudinal profile

• ref concavity [0.50] - refrence concavity used if ’theta method’ is set to ’auto’

• refit streams [false] - option to recalculate chi based on the concavity of the picked segment (true), useful if you
want to try to precisely match the shape of the picked segment of the profile. Only used if ’concavity method’ is
set to ’auto’

• save figures [false] - option to save (if set to true) figures at the end of the projection process

• interp value [0.1] - value (between 0 and 1) used for interpolation parameter in mincosthydrocon (not used if
user provides a conditioned DEM)

95

Output:

• Projected Channel Heads.txt - 2 column text file containing the x and y coordinates of channel heads of projected
channels

• Projected Channel *.txt - 10 column text file for each projected channel containing the x coordinate, y coor-
dinate, drainage area, chi value, concavity, true elevation, projected elevation, postive uncertainty on projected
elevation, and negative uncertainty on projected elevation.

Examples if running for the command line, minus OS specific way of calling main TAK function:

SegmentPro j ec to r / path / to /wd i r Topo . mat
SegmentPro j ec to r / path / to /wd i r Topo . mat new s t r eam net Thresho ldSt reams . mat

p ick method st ream

A.26 SubDivideBigBasins
Description: Function takes outputs from ’ProcessRiverBasins’ function and subdvides any basin with a drainage
area above a specified size and outputs clipped dem, stream network, variout topographic metrics, and river values (ks,
ksn, chi)

Required Inputs:

• wdir - full path of working directory

• basin dir - full path of folder which contains the mat files from ’ProcessRiverBasins’

• max basin size - size above which drainage basins will be subdivided in square kilometers

• divide method - method for subdividing basins, options are (’confluences’ and ’up confluences’ is NOT recom-
mended large datasets):

– ’order’ - use the outlets of streams of a given order that the user can specify with the optional ’s order’
parameter

– ’confluences’ - use the locations of confluences (WILL PRODUCE A LOT OF SUB BASINS!). There is
an internal parameter to remove extremely short streams that would otherwise result in the code erroring
out.

– ’up confluences’ - use locations just upstream of confluences (WILL PRODUCE A LOT OF SUB BASINS!).
There is an internal parameter to remove extremely short streams that otherwise result in the code erroring
out.

– ’filtered confluences’ - use locations of confluences if drainage basin above confluence is of a specified
size that the user can specify with the optional ’min basin size’

– ’p filtered confluences’ - similar to filtered confluences, but the user defines a percentage of the main basin
area with the optional ’min basin size’

– ’trunk’ - uses the tributary junctions with the trunk stream within the main basin as pour points for subdi-
vided basins. There is an internal parameter to remove extremely short streams that would otherwise result
in the code erroring out.

– ’filtered trunk’ - same as ’trunk’ but will only include basins that are greater than the min basin size
– ’p filtered trunk’ - same as ’filtered trunk’ but ’min basin size’ is interpreted as a percentage of the main

basin area

96

Optional Inputs:

• SBFiles Dir [’SubBasins’] - name of folder (within the main Basins folder) to store the subbasin files. Subbasin
files are now stored in a separate folder to aid in the creation of different sets of subbasins based on different
requirements.

• recursive [true] - logical flag to ensure no that no subbasins in the outputs exceed the ’max basin size’ provided.
If ’divide method’ is one of the trunk varieties the code will continue redefining trunks and further split subbasins
until no extracted basins are greater than the ’max basin size’. If the ’divide method’ is one of the confluence
varities, subbasins greater than ’max basin size’ will simply no be included in the output. The ’recursive’ check
is not implemented for the ’order’ method.

• threshold area [1e6] - minimum accumulation area to define streams in meters squared

• segment length [1000] - smoothing distance in meters for averaging along ksn, suggested value is 1000 meters

• ref concavity [0.5] - reference concavity for calculating ksn

• write arc files [false] - set value to true to output a ascii’s of various grids and a shapefile of the ksn, false to not
output arc files

• s order [3] - stream order for defining stream outlets for subdividing if ’divide method’ is ’order’ (lower number
will result in more sub-basins)

• min basin size [10] - minimum basin size for auto-selecting sub basins. If ’divide method’ is ’filtered confluences’
this value is interpreted as a minimum drainage area in km2. If ’divide method’ is ’p filtered confluences’, this
value is interpreted as the percentage of the input basin drainage area to use as a minimum drainage area, enter
a value between 0 and 100 in this case.

• no nested [false] - logical flag that when used in conjunction with either ’filtered confluences’ or ’p filtered confluences’
will only extract subbasins if they are the lowest order basin that meets the drainage area requirements (this is to
avoid producing nested basins)

Notes:

• Only the ’order’, ’trunk’, ’filtered trunk’, and ’p filtered trunk’ divide methods will not produce nested sub-
basins.

• The interpolation necessary to produce a continuous ksn grid will fail on extremely small basins. This will not
cause the code to fail, but will result in no ’KsnOBJc’ being saved for these basins.

• Methods ’confluences’, ’up confluences’, and ’trunk’ can result in attempts to extract very small basins. There
is an internal check on this that attempts to remove these very small basins but it is not always effective and can
occasionally result in errors. If you are encountering errors try running the drainage area filtered versions

Examples if running for the command line, minus OS specific way of calling main TAK function:

SubD iv i d eB igBas i n s / path / to /wd i r Ba s i n s 100 t runk
SubD iv i d eB igBas i n s / path / to /wd i r Ba s i n s 100 o r d e r SBF i l e s D i r MySubBasins

o r d e r 4

97

	Attribution
	Download and Install
	Matlab Functions
	Compiled Functions

	Error Reporting
	Preparing Datasets for TAK
	Workflow
	Matlab and TopoToolbox Crash Course
	Matlab Data Types
	Arrays
	Cell Arrays
	Tables
	Structures

	Using Matlab Functions
	Loading and Outputting Data
	TopoToolbox Classes
	GRIDobj
	FLOWobj
	STREAMobj
	SWATHobj

	Initial Data Processing
	CheckTAKDependencies
	MakeStreams
	ConditionDEM
	RemoveFlats
	FindThreshold

	Stream Selection and Projection
	SegmentPicker
	SegmentPlotter
	SegmentProjector

	Channel Steepness and Maps
	KsnChiBatch
	KsnProfiler
	Stream Selection
	Dealing with Stream Junctions
	Defining the Minimum Threshold Area
	Restarting and Recovering from Errors
	General Use
	Outputs

	ClassifyKnicks

	Basin Selection
	BasinPicker

	Basin Average Maps and Plots
	ProcessRiverBasins
	Basic Operation
	Extra Grids
	Categorical Grids
	Understanding Outputs

	CatPoly2GRIDobj
	SubDivideBigBasins
	FindBasinKnicks
	PlotIndividualBasins
	Basin2Shape
	Basin2Raster
	CompileBasinStats
	Recalculating Means Based on Categories
	Populating Categories
	Means by Category

	BasinStatsPlots
	Basic Options
	Mean Gradient vs Mean ksn - 'grd_ksn'
	Mean Gradient vs Mean Relief - 'grd_rlf'
	Mean Relief vs Mean ksn - 'rlf_ksn'
	Comparing Filtered and Non-Filtered Means - 'compare_filtered'
	Histograms of Category Means - 'category_mean_hist'
	Comparisons of Category Means - 'category_mean_compare'
	Basin Hypsometry - 'stacked_hypsometry'
	Comparing Distribution of Basin Means vs All Nodes -'compare_mean_and_dist'
	Grid of Bi-Plots of Means - 'scatterplot_matrix'
	Generic X-Y plot - 'xy'

	Swath Profiles with Projected Data
	MakeTopoSwath
	MakeCombinedSwath
	ProjectOntoSwath

	Miscellaneous
	ksncolor
	PlotKsn
	DippingBedFinder
	Mat2Arc

	Headers for Compiled Functions
	Basin2Raster
	Basin2Shape
	BasinPicker
	BasinStatsPlots
	ClassifyKnicks
	CompileBasinStats
	ConditionDEM
	DippingBedFinder
	FindBasinKnicks
	FindThreshold
	KsnChiBatch
	KsnProfiler
	MakeCombinedSwath
	MakeStreams
	MakeTopoSwath
	Mat2Arc
	PlotIndividualBasins
	PlotKsn
	PrepareAddGrids
	PrepareCatAddGrids
	ProcessRiverBasins
	RemoveFlats
	SegmentPicker
	SegmentPlotter
	SegmentProjector
	SubDivideBigBasins

