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Abstract. Models of detachment-limited fluvial erosion have a long history in landform evolution modeling in
mountain ranges. However, they suffer from a scaling problem when coupled to models of hillslope processes
due to the flux of material from the hillslopes into the rivers. This scaling problem causes a strong dependence of
the resulting topographies on the spatial resolution of the grid. A few attempts based on the river width have been
made in order to avoid the scaling problem, but none of them appear to be completely satisfying. Here a new
scaling approach is introduced that is based on the size of the hillslope areas in relation to the river network. An
analysis of several simulated drainage networks yields a power-law scaling relation for the fluvial incision term
involving the threshold catchment size where fluvial erosion starts and the mesh width. The obtained scaling
relation is consistent with the concept of the steepness index and does not rely on any specific properties of the
model for the hillslope processes.

1 Introduction

Fluvial incision is a major if not dominant component of
long-term landform evolution in orogens. When modeling
fluvial erosion, restriction to the detachment-limited regime
considerably simplifies the equations. Here it is assumed that
the erosion rate at any point of a river can be predicted from
local properties such as discharge and slope, while sediment
transport is not considered. The generic differential equa-
tion for the topography H (x1,x2, t) of a landform evolution
model with detachment-limited fluvial erosion reads

∂H

∂t
= U −E− divq, (1)

where U is the uplift rate and E the rate of fluvial incision.
The third term describes a local transport process at the hill-
slopes, where q is the flux density and div the 2-D divergence
operator. Linear diffusion is the simplest model here; it was
considered in the context of landform evolution by Culling
(1960) even before models of fluvial erosion came into play.
However, there are also more sophisticated models for q that
take the nonlinear dependencies of hillslope processes on to-
pography into account (e.g., Andrews and Bucknam, 1987;
Howard, 1994; Roering et al., 1999).

Concerning the fluvial incision termE, assuming a power-
law function of the catchment size A and the channel slope
S,

E =KAmSn, (2)

has become some kind of paradigm. The parameter K is de-
noted erodibility. It is a lumped parameter subsuming all in-
fluences on erosion other than channel slope and catchment
size, so it is not only a property of the rock but also depends
on climate in a nontrivial way (e.g., Ferrier et al., 2013; Harel
et al., 2016).

Equation (2) is often called the stream-power approach,
since it can be interpreted in terms of energy dissipation of
the water per channel bed area if an empirical relationship be-
tween channel width and catchment size is used (e.g., Whip-
ple and Tucker, 1999). However, the idea behind this ap-
proach even dates back to the empirical study of longitudinal
channel profiles by Hack (1957). In this study, a power-law
relationship between channel slope and drainage area was
found, often called Flint’s law (Flint, 1974). This relation-
ship is nowadays usually written in the form

S = ksA
−θ , (3)

where θ is the concavity index and ks the steepness index.
Assuming that Eq. (3) is the fingerprint of spatially uniform
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steady-state conditions, it predicts m
n
= θ and allows for a

convenient interpretation of the erodibility. If local transport
(last term in Eq. 1) is neglected, the steepness index follows
the relation

kns =
E

K
. (4)

This relation allows for a simple adjustment of the lumped
parameter K in such a way that a given channel steepness is
achieved at a given erosion rate.

2 The scaling problem

While widely used and in principle simple, all models of
the type described by Eqs. (1) and (2) suffer from a scal-
ing problem. Mathematically, the problem is that catchment
sizes are not well-defined in the continuum limit as the catch-
ment of each point degenerates to a line. When considered on
a discrete grid, rivers are represented as linear objects with a
width of one pixel. Thus, the total surface area of the pix-
els covering the network of the large rivers decreases with
decreasing mesh width.

If local transport is not considered, the scaling problem
leads to a canyon-like topography, where the width of the val-
leys decreases with mesh width. This behavior is illustrated
in Figs. 1 and 2, where two steady-state topographies with
mesh widths of δ = 0.01 (100× 100 nodes) and δ = 0.002
(500× 500 nodes) are considered. All parameter values are
set to unity except for m= 0.5 so that θ = 0.5. The north-
ern and southern boundaries are held at zero elevation, while
the western and eastern boundaries are periodic. The to-
pographies were obtained from the landform evolution model
OpenLEM that was used in some previous studies (e.g., Robl
et al., 2017; Wulf et al., 2019) but has not been published
explicitly. It uses the D8 flow-routing scheme (O’Callaghan
and Mark, 1984) and a fully implicit scheme (Hergarten and
Neugebauer, 2001; Hergarten, 2002) so that large time steps
can be performed in order to ensure that a steady state is
achieved. The simulation on the fine grid was started from
a flat topography with a small random disturbance, while the
simulation on the coarse grid was started from a downsam-
pled version of the finer topography.

Relief increases with decreasing grid spacing because
the smallest catchment size that can be resolved is Amin =

δ2, and the maximum equilibrium slope is proportional to
A−θmin = δ

−2θ according to Eq. (3). As nodes with small catch-
ment sizes can drain directly into large rivers, this increase
is not restricted to major drainage divides but also results
in steep valley flanks. The heights of the valley floors are,
however, hardly affected by the spatial resolution. Catchment
sizes of large rivers even converge in the limit δ→ 0 so that
longitudinal profiles of large rivers become stable for δ→ 0
according to Eq. (3). Thus, relief and also mean elevation de-
pend on the spatial resolution for the simplest model without
local transport, while large rivers are hardly affected.

Figure 1. Fluvial equilibrium topographies computed for identical
parameter values on grids with different spacing (δ = 0.01, 100×
100 nodes, and δ = 0.002, 500× 500 nodes). The horizontal lines
refer to the profiles analyzed in Fig. 2 and the rectangle to the region
shown in Fig. 4.

Figure 2. Profiles through the topographies shown in Fig. 1.

The independence of river steepness of resolution is, how-
ever, lost as soon as local transport comes into play. Figure 3
shows the example of short, parallel river segments with unit
spacing (periodic in x2 direction) in equilibrium with con-
stant uplift. Linear diffusion,

q =−D∇H, (5)

was assumed as the simplest model for local transport. As
in the previous example, all parameters except for m= 0.5
were set to unity. A catchment size of A= 106 was assumed
for each river segment so that the channel slope should the-
oretically be S = 10−3 in equilibrium with U = 1. While the
topography of the hillslopes is in principle independent of
the grid spacing δ, the river segment becomes steeper if δ
decreases.

The reason for the increasing channel steepness is that the
local transport is conservative, so the river not only has to
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Figure 3. River segments in equilibrium with uplift for different
mesh widths δ.

incise into the rock at its bed but also has to remove the ma-
terial coming from the hillslopes. Regardless of the model
used for local transport, a flux of (d − δ)U per river length
enters the site that contains the river in equilibrium, where d
is the valley spacing. Then the discretized divergence of the
flux density is

divq =−
(d − δ)U

δ
. (6)

Inserting this result into the steady-state version of Eq. (1)
yields

E = U − divq =
d

δ
U, (7)

so the fluvial erosion rate required for compensating uplift is
higher than it would be without local transport by a factor d

δ
.

This requires an increase in the channel slope by a factor of(
d
δ

) 1
n according to Eq. (2).

This scaling issue has been known for more than 25 years,
and two approaches have been suggested to overcome the
problem. Howard (1994) suggested a subpixel representation
of the rivers, where a river segment only covers a fraction of
a grid cell. It was assumed that this fraction is w

δ
, where w

is the river width, and then the fluvial incision term E was
multiplied by this factor. Perron et al. (2008) transferred this
concept to the detachment-limited case. According to Eq. (7),
rescaling E by the factor w

δ
yields

E =
d

w
U, (8)

so the dependency on δ indeed vanishes.
While straightforward at first sight, this scaling approach

is not free of problems. The channel width in general in-
creases in the downstream direction so that equilibrium river
profiles are no longer consistent with Eq. (3). Perron et al.
(2008) avoided this problem by assuming a constant channel
width and postponing it to subsequent studies. As discussed

by Pelletier (2010), taking an increase in channel width in the
downstream direction into account would require a reduction
of the exponentm in Eq. (2) in order to keep it consistent with
Eq. (3). However, the unit and meaning of the erodibility K
would change then.

In order to overcome this problem, Pelletier (2010) sug-
gested leaving the fluvial incision term as is and rescaling the
local transport term divq by the inverse factor δ

w
at sites con-

taining rivers. Practically, this rescaling means that the flux
of material coming from the hillslopes is not distributed over
the entire grid cell but only over the part of the area covered
by the river. Thus it can be seen as the inverse of the subpixel
approach of Howard (1994) and Perron et al. (2008) applied
to the local transport instead of the fluvial erosion. For the
steady-state example considered above, this rescaling leads
to

divq =−
(d − δ)U

w
, (9)

instead of Eq. (6), so that

E = U − divq =
(d +w− δ)

w
U. (10)

For w� d and δ� d, however, this relation approaches
Eq. (8), so this concept suffers from the same problem as
the approach of Howard (1994) and Perron et al. (2008).

Thus there seems to be no completely satisfactory solution
of the scaling problem so far. Several contemporary model-
ing studies (e.g., Duvall and Tucker, 2015; Gray et al., 2018;
Wulf et al., 2019; Reitman et al., 2019) use neither of the two
approaches but implement Eq. (1) as is without taking its de-
pendence on the grid scale into account. This is not a crucial
problem as long as simulations with different spatial resolu-
tions are not compared and as long as we are aware that the
erodibilityK has a limited meaning. As soon as the relevance
of fluvial erosion and hillslope processes is assessed quanti-
tatively or scaling relations are developed (e.g., Theodoratos
et al., 2018), the problem may become crucial. A further dis-
cussion is given in Sect. 5.

Other recent approaches navigate around the scaling prob-
lem by neglecting the flux of material from the hillslopes
into the rivers. The recently presented landform evolution
model TTLEM (Campforts et al., 2017) makes a distinction
by catchment size in such a way that fluvial erosion only acts
on sites with a catchment size above a given threshold Ac,
while hillslope processes only act at smaller catchment sizes.
It is assumed that all hillslope material entering the rivers
is immediately excavated without any further effect so that
fluxes from hillslopes into rivers can be disregarded and the
scaling problem does not occur. This approach reduces the
interaction between rivers and hillslopes to a one-way cou-
pling, where only the rivers have an influence on the evolu-
tion of the hillslopes and can be seen as an implementation of
bedrock incision in the strict sense. While it seems that the
terms detachment-limited erosion and bedrock incision are
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sometimes used synonymously, it should be clarified that the
applicability of the concept of pure bedrock incision is prob-
ably much narrower than that of detachment-limited erosion,
in particular if highly resistant material is brought into the
channels (Shobe et al., 2016). The same in principle holds
for the model most widely used in the context of drainage
divide migration (Goren et al., 2014), where analytical solu-
tions for hillslope processes are used on the subpixel scale.

3 A new scaling approach

The simple example considered in the previous section in-
volves a dependence on grid spacing δ according to the fac-
tor d

δ
without rescaling (Eq. 7). Both approaches for rescaling

replace the dependence on δ by a dependence on the channel
width w so that a factor d

w
remains (Eq. 8). This is, how-

ever, still a problem if w is not constant. The occurrence of
the factor d

w
suggests that the valley spacing d would be a

more suitable characteristic length scale for rescaling than w
if we want to preserve the form of the erosion law (Eq. 2)
without changing the exponents m and n. In the following, a
concept that generalizes the simple example of parallel rivers
to dendritic networks is developed.

Let us start from the simplest approach to distinguish
channel sites from hillslopes by defining a threshold catch-
ment size Ac in such a way that all sites with A≥ Ac are
river segments, while all sites with A<Ac belong to hill-
slopes. As local transport is conservative, all material eroded
anywhere has to be removed by the river sites so that we
have to determine how much material each river site receives
from the hillslopes. The area of the respective hillslopes can
be determined for a given topography without any specific
assumptions on the transport process except for the direction
of transport. The simplest model is to assume that local trans-
port follows the hypothetic channel network at the hillslopes,
i.e., the direction of steepest descent on a purely fluvial to-
pography. Figure 4 illustrates this concept. Each colored area
consists of one channel site and the hillslope area that deliv-
ers its eroded material to this site, i.e, of those sites that drain
into the considered site without passing any other upstream
channel site.

If the size of this area was the same for each river site,
rescaling the fluvial erosion rate (Eq. 2) according to

E = AeKA
mSn, (11)

where Ae is the size of this area measured in DEM (digital
elevation model) pixels (i.e., the number of sites), would al-
ready solve the scaling problem. However, it is immediately
recognized in Fig. 4 that the sizes of these areas are highly
variable. A random variation in these sizes is not a problem.
If Ae in Eq. (11) is the mean size, channel steepness will just
vary randomly, which is also found in nature. A systematic
dependence of Ae on catchment size would, however, be a
problem. In this case, equilibrium river profiles would be no

Figure 4. Flow pattern of the central region of Fig. 1. Black lines
show rivers with A≥ Ac for Ac = 100 pixels. Gray lines are chan-
nels withA<Ac, considered to be hillslope sites. Each colored area
consists of one channel site plus the hillslope area that drains into
this site without passing another upstream channel site.

longer consistent with Eq. (3), so the problem would be basi-
cally the same as in the previous approach for a non-constant
channel width.

In the following, numerically obtained equilibrium
drainage networks are analyzed in order to find out how Ae
depends on A and on Ac. More precisely, Ae is the mean
size of all hillslope areas draining into channel sites with a
given catchment size A at a given fluvial threshold Ac (plus
the respective channel site). For simplicity, all areas are mea-
sured in DEM pixels in the following considerations, i.e.,
as a number of sites. The starting point of the analysis is
the drainage network of a fluvial equilibrium topography on
a square L×L grid with L= 10000. Boundary conditions
and parameter values except for the grid size are the same as
those in the smaller examples shown in Fig. 1.

Figure 5 reveals that the eroded area Ae increases with
the fluvial threshold Ac but becomes independent of A if
the catchment size A is sufficiently large. This means that
the hillslopes draining into large rivers are not systematically
larger than those draining into small rivers. It is the reason
why we will arrive at a scaling relation that preserves the
form of Eq. (2) and avoids the problem occurring if the river
width is used for scaling.

The increase in Ae if A approaches Ac can be explained
by distinguishing between river segments and channel heads.
Let us define channel heads as those sites without any tribu-
tary with A≥ Ac, i.e., as those sites that are only supplied by
hillslopes. All other sites with A≥ Ac are considered to be
river segments. All sites with A= Ac are channel heads and
thus follow the relation Ae = A so that all curves start at the
dotted line in Fig. 5. The resulting values Ae of the river seg-
ments (without the channel heads) are shown by the dashed
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Figure 5. Eroded area Ae as a function of the catchment size A for
different fluvial thresholds Ac. Raw data were used for the catch-
ment sizes that occurred at least 1000 times on the grid. Otherwise,
data were binned dynamically so that there are at least 1000 points
in each bin.

lines in Fig. 5. The increase in Ae if A approaches Ac even
turns into a decrease then. This decrease, which arises from
the limitation Ae ≤ A−Ac, holds for all river segments that
have at least one tributary cell contributing at least Ac. Thus
the contribution of the hillslopes must be small if A is only
slightly larger than Ac. However, the decrease is exaggerated
by the logarithmic scale and concerns only a small number
of sites, so it makes sense to assume that Ae is independent
of A for river segments.

Both the number of river segment sites and the number
of channel head sites decrease with an increasing threshold
Ac. The decrease in the latter is faster so that the ratio of
the numbers of head sites to river sites converges to zero for
largeAc values. This is, however, not true for the total contri-
butions. Figure 6 shows the ratio of the sum of the Ae values
of all river segments to the sum of the Ae values of the chan-
nel heads. It can also be interpreted as the ratio of the total
area that must be eroded by the river segments to the total
area that must be eroded by the channel heads. The results
shown for different grid sizes shown in Fig. 6 suggest that
this ratio becomes constant in the limit of large grid sizes. It
apparently approaches a value of about 2 here, which means
that the river segments contribute about two-thirds, and the
channel heads one-third, to total fluvial erosion.

This result suggests that the dependency of Ae on the
threshold Ac is determined by the cumulative distribution
P (A) of the catchment sizes in the drainage network. This
distribution describes the probability that a randomly se-
lected site has a catchment size ≥ A. The probability P (Ac)
evaluated at the fluvial threshold is the ratio of the area cov-
ered by all channel pixels to the total area. It can be inter-
preted as a drainage density (river length per total area) on
a discrete grid. Then a fraction P (Ac) of the considered do-
main must erode a given fraction (here about two-thirds) of

Figure 6. Ratio of total area eroded by all river segments to total
area eroded by all channel head sites as a function of the fluvial
threshold Ac.

the domain, leading to the relation

Ae =
γ

P (Ac)
, (12)

with γ ≈ 2
3 for this network. While Ae can be measured

directly for the considered drainage network, its relation
to P (A) (Eq. 12) is useful, as this distribution has already
been investigated in several studies on natural and modeled
drainage networks (Rodriguez-Iturbe et al., 1992a; Maritan
et al., 1996b; Rodriguez-Iturbe and Rinaldo, 1997; Rinaldo
et al., 1998; Hergarten and Neugebauer, 2001; Hergarten,
2002; Hergarten et al., 2014, 2016). It was found that P (A)
follows a power-law distribution,

P (A)∼ A−β , (13)

over a reasonable range, where a range β ∈ [0.41,0.46] was
found except for the two latest studies. In these studies, larger
networks were considered to be making use of increasing
data availability and computing capacities. An exponent very
close to 0.5 was found for both optimal channel networks
(OCNs; see below) (Hergarten et al., 2014) and a real river
pattern at the continental scale (Hergarten et al., 2016).

Equations (12) and (13) suggest a power-law relation,

Ae = αA
β
c , (14)

between the eroded area and the fluvial threshold. The va-
lidity of Eqs. (12), (13), and (14) is investigated in Fig. 7.
Comparing the two solid curves reveals that Eq. (12) does
not hold exactly, since the curves come closer to each other
for decreasing catchment sizes. The reason for this is that Ae
only refers to the river segments without the channel heads
so that P (Ac) in Eq. (12) should also exclude the channel
head sites. The dashed colored line in Fig. 7 showing the ac-
cordingly reduced distribution P (A) illustrates that Eq. (12)
indeed holds then and that the effect vanishes for large Ac
values.
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Figure 7. Black axes: eroded area as a function of the fluvial thresh-
old. Colored axes: cumulative distribution of the catchment sizes.

The black dashed line in Fig. 7 refers to the best-fit power-
law relation according to Eq. (14). It is based on all inte-
ger values of Ac from 1 to 10 000, assuming equal errors, so
that the large values of Ac practically have a high weight in
the fit. The power law with the obtained values α = 1.360
and β = 0.465 fits the data well, with a relative error of
less than 5 % for Ac ∈ [15,10000] and less than 1 % for
Ac ∈ [400,10000]. The deviations are larger for smaller flu-
vial thresholds due to the fact that dendritic networks cannot
be represented well on a regular lattice at small scales.

The relation to the catchment-size distribution (Eqs. 12
and 13) suggests that the power-law dependency of Ae on Ac
(Eq. 14) should be universal. For testing this hypothesis, a set
of equilibrium topographies with θ ∈ {0.25,0.45,0.5,0.75}
was analyzed. These values cover the range that has been
found so far under relatively homogeneous conditions (e.g.,
Robl et al., 2017). The value θ = 0.45 was added, as it is of-
ten used as a reference value instead of θ = 0.5 (e.g., Whip-
ple et al., 2013; Lague, 2014). Parameter values and bound-
ary conditions are the same as in the previous example. Since
the exponent n has no immediate effect on equilibrium to-
pographies, values n 6= 1 were not considered.

The power-law parameters α and β obtained from equi-
librium topographies on different lattice sizes L are given in
Table 1. In addition, the original data for the largest grids are
shown in Fig. 8. The results are overall similar, with a ten-
dency to lower exponents β for increasing θ . A notable devia-
tion is only found for the very high concavity index θ = 0.75.
Here the slopes become very steep at small catchment sizes,
resulting in a slower migration of drainage divides during the
simulation (Robl et al., 2017). As a result, the topography
reaches a steady state quite soon so that there is finally less
reorganization in the drainage network with regard to the ini-
tial random pattern. In this sense, the lower exponents found
for θ = 0.75 can be seen as a fingerprint of poorly organized
river patterns but are probably not relevant for the rivers that

Table 1. Parameter values of the power-law relation between eroded
area and fluvial threshold (Eq. 14) obtained from different simulated
drainage networks on regular lattices with L×L nodes.

θ L α β

St
ea

dy
-s

ta
te

to
po

gr
ap

hi
es

0.25
5000 1.264 0.492
2000 1.072 0.511
1000 1.587 0.470

0.45
5000 1.273 0.478
2000 1.586 0.451
1000 1.047 0.499

0.50

10 000 1.360 0.465
5000 1.434 0.459
2000 1.807 0.423
1000 1.579 0.440

0.75

10 000 1.653 0.393
5000 1.715 0.388
2000 1.433 0.412
1000 2.179 0.359

O
C

N
s 0.14

4096

1.487 0.480
0.33 1.626 0.473
0.50 1.508 0.478
0.60 1.521 0.475

Figure 8. Eroded area Ae as a function of the fluvial threshold Ac
for the considered drainage networks. For clarity, only the results
obtained from the largest domains are plotted.

were the empirical basis of the stream-power law. These find-
ings confirm that the concavity index θ has a minor effect on
the topology of the drainage networks, although it strongly
affects the shape of longitudinal river profiles and thus the
topography.

In addition, Table 1 and Fig. 8 also contain results ob-
tained from optimal channel networks (OCNs) on a grid
with L= 4096. Optimal channel networks are derived from
the principle of minimum energy dissipation and have been
widely used in the context of river networks (e.g., Howard,
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Table 2. Parameter values of the power-law relation between eroded
area and fluvial threshold (Eq. 14) obtained from different simulated
drainage networks on triangular lattices with N nodes for θ = 0.5.

N α β

2× 107 1.630 0.433
1× 107 1.611 0.435
5× 106 1.264 0.466
2× 106 1.332 0.454
1× 106 1.400 0.445
5× 105 1.432 0.450

1990; Rodriguez-Iturbe et al., 1992c, b; Rinaldo et al., 1992,
1998; Maritan et al., 1996a, b). The networks considered here
are those shown in Fig. 1 of Hergarten et al. (2014), where
θ is related to the parameter n used there by θ = n−1

n+1 . The
values of Ae of OCNs are overall slightly higher than those
of the equilibrium topographies, and the variation with θ is
lower. As OCNs are organized more strongly than drainage
networks of arbitrary equilibrium topographies, the lower
variability among OCNs is not surprising.

Table 2 provides additional results obtained from steady-
state topographies on triangulated irregular networks (TINs).
Numbers of neighbors, distances to neighbors, and areas of
pixels are variable here. Areas of pixels are defined by the
Voronoi diagram. Nondimensional areas (in DEM pixels) are
normalized to the mean pixel size given by δ2

=
Atot
N

, where
Atot is total area and N the number of nodes. The values
listed in Table 2 and the respective curve in Fig. 8 show that
the results obtained from TINs are close to those obtained
from regular meshes.

These results suggest defining the values α = 1.508 and
β = 0.478 obtained from the OCN with θ = 0.5 as reference
values. The question is, however, whether such precision is
useful for applications. In particular, β = 0.5 would be more
convenient than lower values. In the considerations made
above, all areas are measured in DEM pixels and are thus
nondimensional properties. Considering Ac to be a physical
(dimensional) area, Ac has to be replaced by Ac

δ2 in Eq. (14).
Then the fluvial erosion rate (Eq. 11) turns into

E = α

(
Ac

δ2

)β
KAmSn, (15)

so that the fluvial incision term scales like δ−2β . For β = 0.5,
the fluvial term scales like 1

δ
. This is not only convenient

but also leads to basically the same scaling relation assumed
by Perron et al. (2008). The only difference is that the term
α
√
Ac occurring here was interpreted as a channel width w

and then assumed to be constant for all rivers so that it lost
its physical meaning. Thus the new formulation of the fluvial
incision term also fixes the concern raised by Pelletier (2010)
that led to the alternative formulation where the hillslope
transport term was rescaled.

In order to estimate α for β = 0.5, it is helpful to know
which region of Fig. 8 is occupied by typical model appli-
cations. A breakdown of Flint’s law (Eq. 3) was reported
at catchment sizes between between about 0.1 and 5 km2

(Montgomery and Foufoula-Georgiou, 1993; Stock and Di-
etrich, 2003; Wobus et al., 2006). However, channel steep-
ness declines at small catchment sizes, so this breakdown im-
plies that other erosion processes come into play rather than
that fluvial erosion is no longer active. In turn, many small
springs in mountain regions have discharges on the order of
magnitude of 0.1 L s−1 (e.g., Hergarten et al., 2016), corre-
sponding to catchment sizes A< 0.01 km2, but it is not clear
whether the erosive action of the resulting small streams fol-
lows Flint’s law. Reasonable estimates of Ac are probably
between these two ranges. Assuming a spatial resolution of
about 100 m or a bit less, Ac will be on the order of magni-
tude of a few to 100 DEM pixels. As illustrated by the black
line in Fig. 8, α =

√
2 provides a reasonable estimate for this

range with simple numbers as αAβc =
√

2Ac. With this esti-
mate, the scaling factor for the fluvial erosion rate is

√
2Ac
δ

,
and the modified stream-power law for fluvial erosion turns
into

E =

√
2Ac

δ
KAmSn. (16)

4 Numerical examples

Let us first return to the example of parallel rivers consid-
ered in Fig. 3. It was found in Sect. 2 that the topography of
the hillslopes was robust against the spatial resolution, while
the channel slope increases with decreasing grid spacing δ.
Both approaches previously published fix this problem, but
the channel slopes are too steep by a factor of d

w
compared

to what is expected from the erodibility.
It should be noted that this example is not related to the

approach to estimate Ae from Ac for dendritic networks
(Eqs. 15 and 16) but can only test the validity of the prin-
cipal scaling approach (Eq. 11). The size of the area Ae does
not follow Eq. (14) but is defined by the geometry as Ae =

d
δ

(measured in DEM pixels). Figure 9 shows the numerical re-
sults for the parameter values used in Fig. 3 for different val-
ues of δ. The simulation was started from a flat topography
where the flow paths of the parallel rivers are predefined. As
the problem is linear for n= 1, this example can also be seen
as the change in the river profile over time if uplift suddenly
increases at t = 0, while the base level remains constant. The
results show that the equilibrium profile achieved for long
times is reproduced correctly and that the time-dependent be-
havior is also robust against the resolution. This means that
the scaling approach itself (Eq. 11) yields both the correct
equilibrium behavior and the correct timescale.
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Figure 9. Numerical results for the scenario considered in Fig. 3.
The river profiles obtained for δ = 0.025 and δ = 0.01 cannot be
distinguished visually.

The second example refers to the scenario considered in
Fig. 1 but extended by a fluvial threshold Ac = 10−5 and
by linear diffusion with a diffusivity D = 10−5. The thresh-
old Ac is a property of the fluvial erosion process, while the
diffusive hillslope process is not related to it. It is thus as-
sumed that fluvial erosion acts only at sites where A≥ Ac,
while diffusion is active everywhere. A TIN representation is
used in order to avoid artifacts from the combination of the
eight-neighbor (D8) flow-routing scheme with the standard
four-neighbor diffusion scheme on a regular mesh. The sim-
ulations are started from an almost flat topography with unit
uplift. Uplift is switched off at t = 50 in order to observe the
decay of the topography.

The mean steepness index ks of the large rivers is plot-
ted as a function of time in Fig. 10. Large rivers are de-
fined by A≥ 10−3 here, which is considerably larger than
Ac but much smaller than the domain. As expected, the sim-
ulations performed without any rescaling of the erodibility
(dashed lines) are strongly affected by the spatial resolution.
The steepness index increases with an increasing number of
nodes N , i.e., with decreasing pixel size. In turn, the re-
sults obtained using the simple scaling relation (Eq. 16; solid
lines) have a much weaker dependence on resolution. There
is, however, a residual variation in channel steepness. The
mean value of ks varies between about 1.6 and 2.0 over the
considered range from N = 105 to N = 107. This result does
not change fundamentally if a higher or lower threshold than
A≥ 10−3 is used for defining large rivers.

5 Discussion

It may be surprising that the example of fluvial incision and
hillslope diffusion considered in the previous section yields
a mean steepness index greater than 1, although the scaling
concept was developed in order to preserve channel steep-
ness. The concept is, however, based on a generic hillslope

Figure 10. Mean steepness index ks of the large rivers obtained
from simulations on TINs with different resolutions, defined by the
total number of nodes N . Solid lines refer to the simplified scaling
approach suggested in this paper (Eq. 16), while dashed lines re-
fer to simulations performed without any rescaling. The latter are
plotted only for N ≤ 106.

process where the direction of transport follows a hypothetic
fluvial equilibrium pattern and turns into fluvial erosion at a
given threshold catchment sizeAc. It is questionable whether
any hillslope process occurring in nature comes close to this
simple model. In the example considered here, the diffusion
process is characterized by a diffusivity D and is not related
to Ac. The fluvial domain is affected by diffusion more and
more with increasing diffusivity. As a consequence, slopes
of small channels decrease so that they erode less efficiently.
This has to be compensated by the larger rivers so that they
become steeper.

This is, however, a real property of the hillslope process
here, and it is not the goal of the scaling approach to remove
it. The concept presented here aims at removing the depen-
dence on the resolution and providing the way in which val-
ues of the erodibility should be interpreted. Here it is sug-
gested that they should be considered in combination with
a fluvial threshold Ac in such a way that they would yield
the expected channel steepness if the generic hillslope model
were valid.

In turn, the residual dependence of channel steepness on
resolution is a problem, in particular because it is not clear
whether it converges in the limit δ→ 0 (N→∞). The prob-
lem arises from network reorganization, which also affects
the fluvial region. Diffusion disturbs the dendritic topology
towards parallel flow where the model based on Hack’s find-
ings (Eq. 2) is not valid. Using an improved flow-routing
scheme that is able to distinguish channelized flow from par-
allel flow as suggested by Pelletier (2010) and letting Ac
self-adjust might reduce the problem. However, the aim of
this study is to develop a simple, quite universal rescaling
approach that avoids or at least reduces the dependence on
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resolution without modifying the applied model seriously. In
this sense, Eq. (16) should be a good trade-off.

Nevertheless it is important to keep the difference be-
tween detachment-limited erosion and pure bedrock incision
in mind. Here it is assumed that the ability of the river to take
up particles and carry them away concerns both the riverbed
and material coming from adjacent hillslopes. If we, con-
versely, assume that all material coming from the hillslopes
is instantaneously removed by the river without any conse-
quences, there is no feedback of the hillslopes to the rivers,
and Eq. (1) does not require any rescaling.

The results of this study have consequences for scaling re-
lations in coupled models of rivers and hillslopes. Theodor-
atos et al. (2018) conducted a comprehensive analysis of the
problem with linear diffusion without rescaling. The param-
eters they used were the same as in the previous example
(Fig. 10), so it is immediately clear that their numerical re-
sults strongly depend on resolution. The authors argued that,
following the approach of Pelletier (2010), both grid spac-
ing and channel width are rescaled so that the ratio δ

w
re-

mains constant, and the scaling issue is consistent through-
out all scales. However, the results presented here show that
the property relevant for compensating δ is not channel width
but Ae and thus Ac. These parameters are, however, physical
properties of the erosion process, so they do not scale with
the size of the domain. As a consequence, the characteristic
horizontal length scale of the coupled system should rather
be

lc =
D
√
AcK

, (17)

for m= 0.5 and n= 1 instead of lc =
√
D
K

used by Theodor-
atos et al. (2018). This problem also affects the recent ex-
tension by an erosion threshold (Theodoratos and Kirchner,
2020).

6 Conclusions

This study presents a simple scaling relation for the flu-
vial incision term in landform evolution models involving
detachment-limited fluvial erosion and hillslope processes.
In order to avoid a dependence of the simulated topographies
on the spatial resolution of the grid, the fluvial incision term
must be multiplied by a scaling factor depending on the ra-
tio of the threshold catchment size Ac where fluvial erosion
starts and the pixel size δ2 of the grid. The analysis of several
simulated drainage networks yields a power-law dependence
of the scaling factor in Eq. (15) with an exponent slightly
lower than 0.5. However, for application in numerical mod-
els, a simpler approximation where the fluvial erosion rate is
rescaled by a factor

√
2Ac
δ

is suggested. As this relation as-
sumes a simple, generic hillslope process, it cannot provide
an exact solution for all types of hillslope processes. In com-
bination with such processes, e.g., diffusion, the dependence

on the spatial resolution is not completely removed. Never-
theless, the simple scaling relation appears to be a reasonable
trade-off between accuracy and simplicity.
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