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Abstract. The way in which sediment is transported (creep, saltation, suspension), is traditionally interpreted
from grain size distribution characteristics. However, the grain size range associated with transitions from one
transport mode to the other is highly variable because it depends on the amount of transport energy available. In
this study we present a novel methodology for determination of the sediment transport mode based on grain size
and shape data from dynamic image analysis. The data are integrated into grain size—shape distributions, and
primary components are determined using endmember modelling. In real-world datasets, primary components
can be interpreted in terms of different transport mechanisms and/or sediment sources. Accuracy of the method
is assessed using artificial datasets with known primary components that are mixed in known proportions. The
results show that the proposed technique accurately identifies primary components, with the exception of those
primary components that only form minor contributions to the samples (highly mixed components).

The new method is tested on sediment samples from an active aeolian system in the Dutch coastal dunes.
Aeolian transport processes and geomorphology of these type of systems are well known and can therefore
be linked to the spatial distribution of endmembers to assess the physical significance of the method’s output.
The grain size—shape distributions of the aeolian dune dataset are unmixed into three primary components. The
spatial distribution of these components is constrained by geomorphology and reflects the three dominant aeolian
transport processes known to occur along a beach—dune transect: bedload on the beach and in notches that were
dug by man through the shore-parallel foredune ridge, modified saltation on the windward and leeward slope
of the intact foredune, and suspension in the vegetated hinterland. The three transport modes are characterised
by distinctly different trends in grain shape with grain size: with increasing size, bedload shows a constant
grain regularity, modified saltation a minor decrease in grain regularity, and suspension a strong decrease in
grain regularity. These trends, or in other words, the shape of the grain size—shape distributions, can be used to
determine the transport mode responsible for an aeolian sediment deposit. Results of the method are therefore
less ambiguous than those of traditional grain size distribution endmember modelling, especially if multiple
transport modes occur or if primary components overlap in terms of grain size but differ in grain shape.
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1 Introduction

Clastic sediment records are generally complex mixtures of
grains due to variability in provenance; conditions in the
source and sink areas (climate, tectonics); and sorting during
entrainment, transport, and deposition. One of the greatest
challenges in sedimentology is to reconstruct signals of cli-
mate, tectonics, and provenance from the sedimentary record
(e.g. Garzanti et al., 2007; Métivier et al., 1998; Prins and
Weltje, 1999a; Zhang et al., 2016). These reconstructions are
improved when the mixed sedimentary record is unmixed
into its primary constituent components (Weltje and Prins,
2007), a procedure which is also termed endmember mod-
elling. Various endmember modelling algorithms are used in
sedimentology (e.g. Dietze et al., 2012; Heslop et al., 2007,
Paterson and Heslop, 2015; Weltje, 1997; Yu et al., 2016;
Zhang et al., 2018). Although the algorithms are capable of
unmixing different types of data, they are commonly used on
grain size distribution data (e.g. Dietze et al., 2014; Liu et
al., 2016; Stuut et al., 2002) and mineralogical data (Itambi
et al., 2009; Weltje, 1995).

There are, however, at least two issues that complicate in-
ferences based on single-property (size or mineralogy) end-
member modelling. First, sediment behaviour during uptake,
transport, and deposition is dictated by three grain properties:
size, shape, and density (mineralogy) (Winkelmolen, 1971).
Therefore, single-property endmember modelling results are
prone to noise from variability in the other two grain proper-
ties. The second issue is that the characterisation of sediment
transport modes by their grain size distribution alone pro-
duces ambiguous results: the grain size range associated with
the transitions between transport modes (surface creep, salta-
tion, and suspension) depends on the amount of transport en-
ergy available and is therefore highly variable (Visher, 1969).
However, accurate identification of the transport mode is es-
sential to a valid interpretation of sedimentary records, since
the transport modes sort sediment grains differently during
transport and are associated with different transport veloci-
ties and distances.

In addition to sorting on grain size, sediment transport
modes also sort shape in different ways. The role of particle
shape in aeolian transport is highlighted because the method
presented in the current paper is tested on an aeolian system.
Studies on the influence of particle shape on surface creep
are sparse. Eisma (1965) inferred that it is likely that surface
creep favours spherical grains because these roll more easily.
There are contradicting views regarding shape sorting dur-
ing saltation: spherical grains bounce higher (Eisma, 1965)
and further (MacCarthy and Huddle, 1938) and thus travel
faster than non-spherical grains. However, they are also more
difficult to entrain (Winkelmolen, 1971). Likewise, studies
on shape sorting in saltating transport under natural condi-
tions obtained contradictive results: some publications ob-
served an increase in sphericity with transport distance (Mac-
Carthy and Huddle, 1938; Mazzullo et al., 1986), and oth-
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ers observed a decrease (Eisma, 1965; Winkelmolen, 1971).
This is further complicated by the fact that inter-grain colli-
sion during (aeolian) saltation effectively rounds grains over
longer distances (Kuenen, 1960). During transport in suspen-
sion, settling velocity is the dominant sorting parameter (Mc-
Cave, 2008; Pye, 1994). Settling velocity is higher for more
spherical and regularly shaped grains (e.g. Dietrich, 1982;
Komar and Reimers, 1978; Wadell, 1934). Hence, in a sus-
pended population of grains, larger grains are expected to be
more irregularly shaped than smaller ones to remain below
the fall velocity threshold for suspended transport. For ex-
ample, Shang et al. (2018) observed that elongation increases
with increasing size in Chinese loess. This decrease in grain
regularity with increasing size should lead to a characteristic
size—shape trend of suspended sediment that is different from
that of sediment transported as bedload; using grain shape in
addition to grain size is therefore a promising approach to
determine transport modes with less ambiguity.

In this study we outline a new method for determination of
sediment transport processes involving (1) the integration of
grain size and shape data into size—shape distributions (e.g.
Itoh and Wanibe, 1991) and (2) endmember modelling on
these distributions. To determine the accuracy of the method,
it is first tested on artificial grain size—shape datasets with
known endmembers and known endmember mixing propor-
tions. Subsequently, the method is applied to an active ae-
olian system in the Dutch coastal dunes (Ruessink et al.,
2018). Aeolian transport processes and geomorphology of
these type of systems are relatively well constrained (Arens
et al., 2002) and can therefore be linked to the spatial dis-
tribution of endmembers to assess the physical significance
of the method’s output. The real-world dataset is also used
to compare results of unmixing of size—shape distributions to
results of traditional unmixing based on grain size distribu-
tions.

2 Material and methods

2.1 Aeolian dune dataset

The fieldwork area for our dataset is situated south of the
town IJmuiden in a coastal dune region named Nation-
aal Park Zuid-Kennemerland (Fig. 1a and b). In 2013, five
notches were dug through the shore-parallel foredune ridge
to promote aeolian activity and dune migration (Fig. 1b). The
notches are roughly orientated along the dominant wind di-
rection: west—southwest to east—northeast. Parabolic dunes
have developed at the downwind end of the notches, and
large volumes of sand have been blown land-inward. From
2013 to 2016, approximately 87 x 10°> m? of sand was trans-
ported land-inward, 55 % of which was derived from the
beach and 45 % from erosion of the notches (Ruessink et
al., 2018). Further land-inward, vegetation has been removed
from fossil parabolic dunes to stimulate reactivation of dunes
(Fig. 1b).
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Sample location[__] Notches [ Unvegetated dunes
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Figure 1. Fieldwork area in the coastal dunes of the Nationaal Park
Zuid-Kennemerland. Panel (a) shows the general location of the
study area. Panel (b) displays the locations of surface samples and
sediment traps. Panel (c) covers the same area and shows subregions
based on geomorphologic features. Aerial photograph © PDOK.nl,
2017.

In order to assess the physical meaning of results from the
new method, we divided the study area into its five main ge-
omorphologic features (Fig. 1c): (1) the beach, which acts
as a sediment source for aeolian transport when dry, (2) the
foredune, on which marram grass (partly) impedes aeolian
bedload transport (near the crest, aeolian suspension and
modified saltation are stimulated through increased wind ve-
locities and high turbulence; Arens et al., 2002), (3) the
notches, which enable bedload transport towards the sand
lobes that prograde into the vegetated hinterland (Ruessink
et al., 2018), (4) the vegetated hinterland, where lower wind
velocities and vegetation prevent bedload transport (Arens et
al., 2002), and (5) the parabolic dunes that were reactivated
by removal of the vegetation cover. These dunes may form
an additional source for the sediment flux in the hinterland
(Arens et al., 2013).
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In April 2017, shallow surface samples were obtained
from one of the bare notches (n = 12) and from an undis-
turbed part of the foredune ridge (n = 18) (Fig. 1b). Based
on available flux data from sediment traps (not shown here),
deposition rates landward from sediment-trap row A (or per-
haps B) are insufficient to sample recently transported mate-
rial from the surface (Fig. 1b). Samples from sediment traps
(n = 23) are therefore used to study the inland area. The traps
are based on a design by Leatherman (1978) and consist of
an 80cm PVC pipe with a middle height of approximately
1.5ma.g.l. (Fig. Al in the Appendix). Their opening is ori-
ented into the dominant southwestern wind direction. At the
back of the pipe a mesh with openings of 106 um lets air
and smaller particles through while trapping particles larger
than 106 um. Three time intervals characterised by high flux
rates (“storm events”) were sampled from the sediment traps
(Table 1). Together, the sediment-trap samples and surface
samples form the aeolian dune dataset (Van Hateren, 2019).

2.2 Dynamic image analysis

Sediment samples of approximately 2 g are pre-treated with
5mL H,O» to remove organics, SmL HCI (10mL if shell
fragments are abundant) to remove carbonates, and 300 mg
NaysP>07-10H;0 to disperse charged particles (Konert and
Vandenberghe, 1997). Size and shape data are based on im-
ages of the grains obtained using a Sympatec QICPIC dy-
namic image analyser (Fig. 2a). The image analyser is set
up using a cuvette with 2 mm aperture. Pre-treated samples
are sieved through a 1.6 mm mesh to protect the glass walls
of this cuvette, thus limiting the maximum measurable grain
size to 1600 um. This is not of concern for the dune sands
studied here, which show a maximum grain size of approxi-
mately 700 um. The sediment samples are subsequently sus-
pended in degassed water using a stirrer and pumped repeat-
edly through the cuvette for 10 min while being filmed at 25
frames per second, resulting in 15 thousand frames per sam-
ple. The frames measure 1024 pixels x 1024 pixels, with a
pixel size of approximately 5 um.

Image processing is carried out using a MATLAB script
written by the first author, for which Fig. A2 shows a work-
flow diagram. The particle size and shape characteristics that
form the output of this script are described in Table 2, and an
example is given in Fig. 2b. In the first step of the script some
limitations and conditions are set. Subsequently, the script it-
erates over each video, over each frame in the video, and
over each particle found in the frames. For each particle, the
length of its outer edge (perimeter) is computed as well as
its area and the length of its convex hull (a polygon drawn
around the particle without taking into account the concave
areas). These basic parameters are stored for each particle.
Particle size, volume, aspect ratio, convexity, and Cox circu-
larity are subsequently computed from these basic parame-
ters. It is important to note that the major and minor grain
diameters, which are used to compute the aspect ratio, are
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Table 1. Wind conditions and sampling periods of the sediment-trap samples. Sediment-trap names are in reference to Fig. 1b. Meteorological

data were obtained from weather station IJmuiden, 3.5 km north of the fieldwork area. Dates are listed in the format dd/mm/yyyy.

Sampling period Number of ~ Sediment traps that Mean daily wind Maximum daily Vector-averaged

samples  were sampled speed (m s~)  wind speed (m s™1)  wind direction ®)

27/10/2015-17/11/2015 4 Al,B1,C3,D3 8.5 15.5 214

17/11/2015-01/12/2015 15 Al 11.8 17.1 255

01/12/2015-15/12/2015 4 Al,B1,C3,D2 10.2 17.5 215
1 mm P ° S/ (NTR0V Y B Perimeter of the particle (Pp)

Grain size — 125 177

Grain size (um)

B Perimeter of the convex hull (Pch)
Fitted ellipse for diameters

st ]
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L /
6 88 125 177 250 354 500 707
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2 —40
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2 5 g 301
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Figure 2. (a) Binary image of sediment grains. (b) Computation of particle characteristics (note inversed black—white scale). (¢) Assign-
ment of grains to size—shape classes. (d) Grain size—shape distribution (ConD2d in the example; star marker designates the mode of the
distribution). (e) Grain size (upper panel) and grain shape (lower panel) cross sections through the SSD along respectively A—A” and B-B’.

based on the diameters of a fitted ellipse. These diameters
are less sensitive to small-scale particle roughness than the
traditional Feret diameters (Feret, 1930). “The” grain size of
the particle is given in the form of an area-equivalent diam-
eter (D2d; Table 2), essentially the average particle diame-
ter of the two-dimensional image of the grain. Because the
two-dimensional shape of the particle is known, grain size
obtained by image analysis is more robust than traditional
size measurements (e.g. sieving, laser diffraction, and set-
tling) where an assumption has to be made of particle shape
before computing size (Konert and Vandenberghe, 1997). We
use ranges of interest in the graphs of size and shape distri-
butions to focus on those size and shape classes that contain
significant amounts of volume for the given dataset (Table 2).

2.3 Construction and unmixing of size—shape
distributions

We explore the applicability of three shape parameters that
are known to affect particle transport behaviour: convexity,
Cox circularity (Cox, 1927), and aspect ratio (Table 2; Beal
and Shepard, 1956; Dietrich, 1982; MacCarthy and Huddle,
1938; Winkelmolen, 1971; Shang et al., 2018). These param-
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eters relate to different aspects of a particle’s shape: aspect
ratio describes the overall shape of a particle. In contrast,
convexity is primarily affected by a particle’s surface irregu-
larity, whereas Cox circularity is affected by both.

Grain size—shape distributions (SSDs) are constructed
from grain size (D2d; Table 2) and the three shape vari-
ables, resulting in the distributions named ArD2d, ConD2d,
and CcD2d. The SSDs are created by assigning individual
particles to their respective size—shape classes (Fig. 2c; Ta-
ble 2). Next, the volume of the grains in each size—shape
class is summed, and the distribution is normalised to a sum
of 100 % using the total volume. This procedure gives rise
to three-dimensional distributions (X is size, Y is shape, Z
is volume) (Fig. 2d) that can be visualised as a combination
of a grain size (X—Z) and a grain shape (Y-Z) distribution
(Fig. 2e).

The endmember modelling algorithm AnalySize (Paterson
and Heslop, 2015) is used to unmix the SSD datasets be-
cause it produces the most accurate results of the algorithms
currently available (Van Hateren et al., 2017). The computed
endmembers are hereafter referred to as endmember EMx_,,
where x denotes the endmember number from coarse to fine
and y denotes the total number of endmembers in the given
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Table 2. Summary of particle size and shape variables. The table shows lower and upper limits for the variables as well as the size of the
respective size or shape classes. The range of interest designates the range over which the sediments studied here contain significant volume
for a given variable. The ¢ unit refers to Krumbein’s log base 2 grain size scale (Krumbein, 1938). The following letters were used in the
equations for the size—shape variables: Pp (perimeter, or length along the particle boundary), P (convex hull or length along the convex
points on the particle boundary), A (particle area), D g (minor diameter of ellipse fitted to particle), and D4 (corresponding minor diameter).

Variable Name Description Equation Lower Upper Size Number of Range of
limit limit classes interest
D2d Area- Diameter of circle with area 2@ 13um 2828 um %(p 62 105707 um
equivalent equal to A
diameter
Con Convexity Ratio between convex hull % 0 1 0.01 100 0.8-1
length and perimeter length ’
Cc Cox circularity ~ Ratio that describes extent 4 55 0 1 0.01 100 0.4-1
(Cox, 1927) to which the area of a
particle approximates that
of a circle with the same
perimeter
Ar Aspect ratio Ratio of the minor and major g—ﬁ 0 1 0.01 100 0.3-1
diameter
Va - Volume approximated from 2705415 - - - - -

A, assuming a spherical
particle shape

endmember modelling solution. For example, the coarsest
EM (endmember) of a dataset with four EMs is referred to
as EM1_4.

The fit of endmember modelling solutions to the data is
used to infer the most likely number of endmembers. The fit
is described by variance squared, also termed the coefficient
of determination (R?). We define two types of R?: (1) class-
wise R?, denoting the fit per grain size class (grain—size dis-
tributions) or grain size—shape class (SSDs), and (2) sample-
wise R2, denoting the fit per sample (Van Hateren et al.,
2017). By increasing the number of endmembers, R? will
increase. However, at a certain point the increase in fit is not
due to geologically significant endmembers but due to fitting
of noise. We therefore seek the minimum number of end-
members sufficient to explain most of the variation in the
dataset. In grain size data analysis, this minimum number of
endmembers is traditionally estimated by a flattening off of
the curve of average R? versus the number of endmembers,
also known as the inflection point (Prins and Weltje, 1999b;
Weltje, 1997). However, tests with artificial grain size data
have pointed out that this method sometimes yields an in-
correct number of endmembers (Van Hateren et al., 2017).
Rather than taking the average, we therefore use the full dis-
tribution of class-wise R? to obtain more detailed informa-
tion on the most likely number of endmembers (Prins and
Weltje, 1999b; Van Hateren et al., 2017). In addition, we use
the distribution of sample-wise R2.
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2.4 Artificial datasets for testing and validation of the
method

Artificial datasets with known endmembers and endmember
abundances (Van Hateren, 2019) are used to evaluate (1) the
accuracy of unmixing of SSDs under different mixing sce-
narios and (2) the potential of, and difference between, class-
wise and sample-wise R for identification of the most likely
number of endmembers in a SSD dataset. The known end-
members of the artificial datasets are hereafter referred to as
input endmembers IEMx_, similar to the notation for mod-
elled endmembers.

Following an approach similar to Van Hateren et
al. (2017), three datasets are created with increasingly
complex mixing scenarios: the least complex dataset,
3EM_nonoise, is created using, as IEMs (input endmem-
bers), three samples of the aeolian dune dataset with
markedly different size—shape distributions (Fig. A3). Two-
hundred sets of three random numbers are generated with a
uniform distribution between 0 and 1 using a random-number
generator. Each set of three numbers is subsequently nor-
malised to sum to 1. The 200 sets represent the contribu-
tions of the IEMs to each artificial sample (endmember abun-
dances). By multiplying each set of three random numbers
with the three IEM SSDs, 200 artificial samples are gener-
ated.

The second dataset, 4EM_noise, is used to test accuracy
of the method in the presence of noise and an additional end-
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member. Addition of noise decreases accuracy of unmixing
results in grain size distribution datasets (Van Hateren et al.,
2017). The IEMs of the 4EM_noise dataset are the same as
those of the 3EM_nonoise dataset except for an additional
endmember that, in terms of its grain size, is between the
coarsest and intermediate IEM of the 3EM_nonoise dataset
(Fig. A4). Noise is included in the dataset by multiplying the
volume in each size—shape class of the artificial samples by a
random number with a normal distribution characterised by
amean of 1 and a standard deviation of 0.05.

The third and most complex dataset, 4EM_noise_highmix,
is similar to 4EM_noise (Fig. AS) but has different endmem-
ber abundances. This dataset is used to test the accuracy of
the output for highly mixed datasets. In such datasets, one
or more of the primary components do not form a dominant
contribution to any of the samples. Highly mixed data signif-
icantly deteriorate accuracy of unmixing (Heslop, 2015; Van
Hateren et al., 2017). We use the following mixing scenario:
IEM1_4 occurs in only five samples at abundances between
0.2 and 1 (20 % and 100 %). IEM2_4, the highly mixed end-
member, occurs in 100 samples at low abundance between
0.05 and 0.2 (5 % and 20 %). IEM3_4 and IEM4_4 occur in
all 200 samples at randomly varying abundance.

Because the number of endmembers, the endmember
abundances, and the endmember SSDs are known, the pre-
cision of the unmixing procedure can be determined from
(1) the correlation between IEM SSDs and modelled end-
member SSDs, (2) the correlation between the input and
modelled endmember abundances, and (3) the correlation be-
tween the input and modelled data expressed as class-wise
and sample-wise R”. Furthermore, the applicability can be
assessed of class-wise and sample-wise R? for identification
of the most likely number of endmembers, which is an un-
known in real-world datasets.

3 Results

3.1 Endmember modelling results for the artificial
datasets

3.1.1  Endmember modelling results for the 3EM_
nonoise dataset

Due to absence of noise in the 3EM_nonoise dataset, ex-
plained variance of the endmember modelling outcome
reaches 100 % at three endmembers. Because model fit can-
not be improved further, the AnalySize algorithm aborts at
three endmembers (the algorithm fits a maximum of 10 end-
members for real-world datasets that naturally include noise).
Figure 3 therefore displays class-wise R? distributions for
results with one to three endmembers (1EM to 3EM solu-
tions). The “average” SSD of the dataset as well as the mod-
elled endmembers are shown as contours to indicate the rel-
evant size—shape classes. The 1EM solution fits the input
data poorly, while the 2EM output increases model fit signif-
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icantly but lacks explanatory power in the size—shape region
that coincides with the missing third endmember (Figs. 3,
A3). Using three endmembers increases goodness of fit of all
size—shape classes to an R? of 1. Figure A6a shows median
sample-wise and class-wise R? versus the number of end-
members. Class-wise R? shows a near-linear increase from
one to three endmembers, whereas the curve of sample-wise
R? inflects at two endmembers. In other words, the improve-
ment in sample-wise R? is significantly higher from one to
two endmembers than it is from two to three endmembers.

Since the 3EM_nonoise dataset is noise-free and consists
of three IEMs, an accurate 3EM solution should be identi-
cal to the input data, which is nearly the case (Fig. 4). The
abundances show 100 % explained variance; however, lin-
ear trends between the original and determined abundances
reveal a slope slightly higher than 1, meaning that high in-
put abundances are calculated too high and that low input
abundances are calculated too low (below input abundances
of approximately 3 %, determined abundances go to zero)
(Fig. A7a). Thus, the computed endmembers are, to a minor
degree, still mixtures of the IEMs.

3.1.2 Endmember modelling results for the 4EM_noise
dataset

Figure 5 shows class-wise R’ distributions of solutions
for the 4EM_noise dataset. Similar to results for the
3EM_nonoise dataset, a 1EM solution fits the data poorly
and a 2EM solution increases the fit significantly but lacks
explanatory power in the intermediate and coarse size—shape
regions. A 3EM solution fits the intermediate region signif-
icantly better but still lacks explanatory power in the coarse
region. Compared to that of the 3EM solution, the class-wise
R? distribution of the 4EM solution displays an increase in
R? in the coarse range because EM1_4 more closely re-
sembles IEM1_,4 than EM1_3 resembles IEM1_4 (Figs. 5,
A4). The increase in median class-wise R? is small because
the improvement occurs in relatively few size—shape classes
(Fig. A6b, ¢). Median sample-wise R? similarly increases by
a low amount. The increase in sample-wise R> diminishes
from four endmembers onwards (Fig. A6c). Class-wise RZ
even displays a minor decrease in fit. In contrast to results
for the 3EM_nonoise dataset, the explained variance does not
reach 100 %.

Figure 6 compares the input and determined endmember
SSDs. In spite of the noise added to this dataset, the deter-
mined endmembers are very similar to the [EMs. Calculated
abundances fit the input abundances well, although minor
scattering is present (Fig. A7b). Similar to the results for the
noise-free dataset, linear trends have a slope higher than 1,
indicating that the determined endmembers are, to a minor
extent, mixtures of the IEMs.
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3.1.3 Endmember modelling results for the 4EM_noise_
highmix dataset

Similar to the results in Sect. 3.1.1 and 3.1.2, the 1EM so-
lution modelled for the 4EM_noise_highmix dataset fits the
dataset poorly (Fig. 7). The 2EM class-wise R? distribution
is notably different from that of the 4EM_noise dataset: the
entire coarse range (> 350 um) is not well reproduced. The
reason for this disparity is that IEM1_4 and IEM2_4 are not
represented in this solution, and thus the coarse range is un-
derrepresented (Figs. AS, 7).

A 3EM solution covers the coarser range, invoking a
strong increase in class-wise R to a level comparable to that
of the 4EM solution of the 4EM_noise dataset (Fig. 6d, e). In
contrast to the results for the 4EM_noise dataset, addition of
a fourth endmember does not result in a significant improve-
ment of class-wise and sample-wise RZ.

Size—shape distributions of the endmembers and IEMs
are shown in Fig. 8. The 4EM solution computed for the
4EM_noise_highmix dataset differs in one notable aspect
from that calculated for the 4EM_noise dataset: IEM2_4 is
not identified as a primary component of the dataset. Rather,

https://doi.org/10.5194/esurf-8-527-2020

the SSD of EM2_4 more closely resembles IEM3_4, leading
to overestimated abundances of EM2_4 and underestimated
abundances of EM3_4 in the 4EM solution (Fig. A7c). How-
ever, the SSDs and the relative abundances of the 3EM solu-
tion show a good fit to the SSDs and abundances of the three
non-highly mixed IEMs (Figs. AS, 7d).

3.2 Results for the aeolian dune dataset

Endmember modelling results for the aeolian dune dataset
are presented in three subsections: statistics for the ConD2d
dataset are shown first to derive the number of endmembers
necessary to explain grain size—shape variability occurring
in the aeolian deposits. Endmember SSDs and abundances
of the robust solution are presented in the second subsection.
The third subsection compares results of unmixing based on
SSDs to results of unmixing based on grain size distributions
(D2d).

Earth Surf. Dynam., 8, 527-553, 2020
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3.2.1  Unmixing of the size—shape distributions

The trend of median class-wise and sample-wise R? against
the number of endmembers can be used as a primary indi-
cation of the number of primary components necessary for a
good representation of the aeolian dune dataset. Class-wise
R? reaches a plateau at three endmembers, whereas sample-
wise R? inflects gradually between two and four endmem-
bers (Fig. A8). This gives a first indication that the likely
number of endmembers is between two and four.

Two methods are employed to visualise the fit of the end-
member solutions to the dataset in more detail. Class-wise R>
distributions show the fit per size—shape class (Fig. 9). The
spatial distribution of sample-wise R? is shown by plotting it
on top of an aerial photograph of the study area (Fig. A9a).
The goodness of fit of the samples is compared to the subre-
gions based on geomorphology as shown in Fig. 1c, shown in
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simplified form in Fig. A9a, and described in Sect. 2.1. If the
unmixing result fits poorly to samples from a specific subre-
gion, it is likely that an additional endmember is needed to
explain the data in that region.

One endmember is insufficient to capture the size—shape
variability in the dataset: the class-wise R’ distribution
shows low values across all size—shape classes (Fig. 9). The
1EM solution does not fit well to the samples either, as ex-
pressed by low sample-wise R” (Fig. A8). The spatial dis-
tribution of sample-wise R? for the 2EM solution shows a
good fit to the sediment-trap samples of the hinterland. How-
ever, the fit to samples of the notch and foredune ridge is
poor. The 3EM solution greatly improves fit in these sub-
regions (Fig. A9a). Regarding the class-wise R? distribu-
tion, the 2EM solution performs poorly in the range where
its EM1_, and EM2_, overlap, indicating that an additional
endmember is required to fit these classes (Fig. 9). A 3EM

https://doi.org/10.5194/esurf-8-527-2020
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solution represents this intermediate size—shape range much
better. Furthermore, comparison of the class-wise R? distri-
bution to the median data contour shows that this unmixing
result performs well in the entire size—shape range where sig-
nificant volume is present in the data (Fig. 9).

Although the 3EM solution displays high and evenly
spread sample-wise RZ, there are two regions that stand out:
first, slightly lower explained variance occurs at those inland
samples that are positioned downwind of fossil dunes that
had their vegetation cover removed (Figs. A9a, 1b and c¢). A
4EM solution does not improve explained variance of these
samples significantly (Fig. A9a). Second, the 3EM solution
displays low sample-wise R? on the northern foredune sam-
pling transect, in a small region near the crest (Fig. A9a).
This is improved by component EM2_4 of the 4EM solution,
which occurs specifically in this region (Fig. A11). The spe-
cific geographical location of the component indicates that

https://doi.org/10.5194/esurf-8-527-2020

it has some geological significance. Furthermore, it is also
determined in the SEM and 6EM solutions (Fig. A10) and
therefore is a robust component. However, it is of minor im-
portance in terms of geographical extent and in terms of the
number of samples it represents. The class-wise R? distri-
bution of the 4EM solution shows amelioration of fit below
a convexity of 0.9 and above a size of 250 ym, but volume
in this range is insignificant (Fig. 9). Further increasing the
number of endmembers does not increase model fit signif-
icantly except that the 6EM solution increases sample-wise
R? for the inland samples downwind of unvegetated dunes
(Figs. A9a, 1b and c). In conclusion, a 3EM output appears
most robust, and it reproduces the bulk of spatial variability
in grain size and shape, although a four-endmember solution
locally improves sample-wise R.

Earth Surf. Dynam., 8, 527-553, 2020
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3.2.2 Endmember composition and abundances of the
three-endmember solution

The endmember SSDs of the 3EM solution computed for the
ConD2d distribution dataset differ markedly from one an-
other (Fig. 10): most volume of coarse-grained EM1_3 is
contained between 250 and 500 um. Its mode lies at a grain
size of 339 um and a convexity of 0.945. This convexity dom-
inates over the entire size range. The intermediate EM2_3
is finer-grained, with most of the volume between 160 and
350 um. Its mode is positioned at a size of 201 um and a con-
vexity of 0.945. In contrast to EM1_3, it shows a gradual
decline in convexity with increasing size. Most volume of
fine-grained EM3_3 lies between 150 and 250 pm. Its mode
is located at a size of 185 um and a convexity of 0.935. It
shows a strong decrease in convexity with increasing size.

The endmember abundances of the 3EM solution show a
strong spatial differentiation that corresponds with morpho-
logical features: EM1_3 dominates the unvegetated notch
that was dug through the foredune (average abundance
81 %). EM2_3 dominates most of the sparsely vegetated
foredune (average abundance 46 %) as well as the vegetated
area directly downwind of the sand lobe that progrades from
the notch (average abundance 80 %). EM3_3 dominates the
vegetated hinterland (trap rows B to D, average abundance
94 %) (Fig. 11). It is also noteworthy that samples from traps
Al, A2, and B2 contain significantly more of EM3_3 than
the surface samples taken at the same locations and thus
also lower the average abundance of EM2_3 for the foredune
(Figs. 11, 1b).

3.2.3 Comparison of results to traditional endmember
modelling on grain size distributions

Besides the size—shape variable ConD2d, we also tested
CcD2d and ArD2d. These variables make use of the shape
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variable Cox circularity and aspect ratio, respectively. In this
section we intercompare endmember modelling results of the
three size—shape variables. Furthermore, we compare the re-
sults using size—shape variables to results from traditional
endmember modelling on grain size distributions (D2d). To
enable direct comparison between grain size distributions
and SSDs, the latter are transformed into grain size distri-
butions by summation of the volumes of all shape classes per
size class and subsequent renormalisation to 100 % (Fig. 12).
The 3EM solution is used for the comparison. This number
of endmembers is also robust for traditional grain-size-based
endmember modelling: median R? values level off at three
endmembers (Fig. Al2a), grain size classes with significant
volume show high R?, indicating that class-to-class variabil-
ity is well resolved (Fig. A12b), and sample-wise R? is high
throughout the fieldwork area, indicating that spatial variabil-
ity is also well resolved (Fig. A9b).

ConD2d endmember grain size distributions show signif-
icant deviations from those determined for D2d: most no-
tably a finer modal size for EM2_3 but also a more extended
fine tail for EM1_3 and coarse tail for EM3_3 (Fig. 12a).
The grain size distributions of CcD2d show deviations at the
same grain size ranges. However, the deviations are weaker
than for ConD2d (Fig. 12b). In contrast, size distributions of
the ArD2d endmembers equal those of D2d (Fig. 12¢). Fur-
thermore, the SSDs of ArD2d endmembers lack the trend in
grain shape with grain size that was observed for ConD2d
and CcD2d (Figs. 10, A13).

Table 3 and Fig. A14 compare endmember abundances for
3EM solutions of ConD2d, D2d, CcD2d, and ArD2d. The
main trends of all variables correspond: EM1_3 prevails in
the notch, EM2_3 on the foredune and in the vegetated area
within 100 m downwind of the notch, and EM3_3 in the hin-
terland. However, differences exist between the variables:
ConD2d and CcD2d show higher proportions of EM1_3 in

https://doi.org/10.5194/esurf-8-527-2020
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the notch than ArD2d and D2d (Table 3). The four variables
show similar proportions of EM2_3 on the foredune, but
differences occur in the samples directly downwind of the
notch. Here, proportions are highest for ConD2d, followed
by CcD2d, D2d, and ArD2d (Table 3). Similarly, proportions
of EM3_3 in the hinterland are slightly higher for ConD2d,
followed by CcD2d, ArD2d, and D2d (Table 3). In summary,
unmixing outcomes of ConD2d are generally most extreme,
followed by CcD2d (they show the highest abundances of
the dominant endmember). Results from ArD2d and D2d are
generally less extreme. This clustering of results agrees with
what was observed for the endmember grain size distribu-
tions in Fig. 12: ArD2d distributions are highly similar to
those of D2d, whereas ConD2d and CcD2d distributions dif-
fer, respectively, strongly and weakly from the D2d distribu-
tions.

https://doi.org/10.5194/esurf-8-527-2020

Table 3. Average endmember abundances of the dominant end-
member per subregion as defined in Fig. 1c.

Area, prevalent ConD2d CcD2d ArD2d D2d
endmember (%) (%) (%) (%)
Notch, EM1_3 81 75 62 62
Foredune, EM2_3 46 47 52 53
< 100 m downwind 80 66 57 58
from notch, EM2_3

Hinterland, EM3_3 94 90 90 89

Earth Surf. Dynam., 8, 527-553, 2020
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4 Discussion

4.1 Accuracy of endmember modelling on size—shape
distributions
4.1.1 Accuracy of the unmixing methodology under

different mixing scenarios

The precise 3EM solution for the 3EM_nonoise dataset con-
firms that the method is highly accurate under the condi-
tion that no noise is present in the dataset. Results for the
4EM_noise dataset indicate that computed endmembers re-
main correct reproductions of the input endmembers in the
presence of noise. However, the noise induces minor devia-
tions in the endmember proportions. Two conclusions can be
drawn on the basis of the results for the 4EM_noise_highmix
dataset. First, primary components that occur in a limited
number of samples but at high proportions (IEM1_4) can be
accurately determined by AnalySize. Second, highly mixed
primary components (IEM2_4) cannot be determined accu-
rately by AnalySize. This outcome is similar to results for
highly mixed grain size distribution data (Van Hateren et al.,
2017). The implication for real-world datasets is that highly
mixed components will be overlooked during the endmem-
ber modelling procedure. However, our results indicate that
the remaining endmembers and their relative proportions are
computed accurately.

4.1.2 Methods for determination of the most likely
number of endmembers

In the current study we use artificial datasets with a known
number of endmembers. This allows us to test three meth-
ods for detection of the statistically feasible number of end-
members: median class-wise RZ, median sample-wise RZ,
and class-wise R? versus size and shape (a class-wise R>
distribution). The last is similar to a graph of class-wise R>
versus grain size for grain size data.

Our results for artificial datasets indicate that interpreta-
tion of the number of endmembers is straightforward in the
absence of noise but ambiguous when noise is present: the
noise-free dataset (3EM_nonoise) displays class and sample-
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wise R? values of 1 when the number of determined end-
members equals the number of endmembers present in the
dataset. In contrast, the R? values for the noise-containing
dataset (4EM_noise) never reach 1, which is more in line
with endmember modelling results for real-world datasets. In
this case, median R? can only be used as a rough indication
of the number of endmembers, since an “inflection point”
(Prins and Weltje, 1999b; Weltje, 1997) is ill-defined: me-
dian R? values for the dataset level off at three endmembers
rather than four. A class-wise R? distribution provides a bet-
ter estimation of the number of endmembers: the presence of
four endmembers is apparent from an increase in class-wise
R? in the coarser size range going from a 3EM to a 4EM so-
lution. The presence of the highly mixed endmember in the
dataset 4EM_noise_highmix is not apparent from the class-
wise R? distribution, indicating that such an endmember will
likely be ignored in the endmember modelling of real-world
data.

There are two additional conceivable methods for deter-
mination of the geologically feasible number of endmem-
bers: (1) a graph of sample-wise R? against depth (core or
outcrop) or against sample location (spatial data such as the
aeolian dune dataset) and (2) using samples of known ori-
gin to demonstrate the geological meaning of the endmem-
bers (Weltje and Prins, 2003). These two methods cannot be
tested with artificial data and thus will be discussed using the
acolian dune dataset.

Results for the aeolian dune dataset indicate that spatially
resolved sample-wise R can be used to determine the num-
ber of endmembers, especially when the spatial distribution
of model fit is compared to known geomorphology of the
area. For example, the 2EM solution fits poorly to the sam-
ples of the notch and foredune area. This indicates that two
primary components are insufficient to describe the aeolian
processes occurring in these subregions. The 3EM solution
satisfactorily fits all main subregions, indicating that it cap-
tures the main transport processes that are active in the study
area. The aeolian dune dataset also provides two examples
of modern-day samples of known transport processes that
can be used as reference material for palaeo-studies. Surface
samples from the notch area can be used as a reference for ae-

https://doi.org/10.5194/esurf-8-527-2020



J. A. van Hateren et al.: Identifying sediment transport mechanisms 539

olian bedload sediment because the surface of the notch area
was characterised by aeolian current ripples. Furthermore,
samples from sediment traps, especially from rows C and D,
which are furthest land-inward (Fig. 1b), can be used as a ref-
erence for aeolian suspension because (1) the distance from
the main source areas (beach and notches) excludes modified
saltation from reaching the traps, (2) land-inward from the
foredune ridge, denser vegetation rules out new entrainment
of sediment (Arens et al., 2002; Lancaster and Baas, 1998),
and (3) the height of the sediment traps further reduces the
chance of contamination by local saltation.

4.2 The value of endmember modelling on size—shape
distributions: implications of the aeolian dune
dataset

4.2.1 Geological significance of the three-endmember
ConD2d model

The spatial distribution of endmembers of the 3EM solution
relates strongly to the geomorphology of the area: EM1_3
occurs mainly on the bare surfaces of the beach and notch,
EM2_3 occurs on the sparsely vegetated foredune and within
the vegetated area directly downwind of the notch, and
EM3_3 occurs in the vegetated hinterland. This geographi-
cal differentiation suggests that the endmembers are linked
to the three aeolian processes known to operate on a beach to
dune transect: (1) bedload, consisting of saltation, reptation,
and creep, the motions of which are predominantly affected
by gravity; (2) modified saltation, which is affected by both
gravity and turbulence; and (3) suspension, of which the mo-
tions are predominantly affected by turbulence (Arens et al.,
2002; Hunt and Nalpanis, 1985).

As mentioned in Sect. 4.1.2, aeolian current ripples on
the supratidal beach and in the notch confirm that EM1_3 is
linked to the bedload population. Component EM2_ 3 specif-
ically occurs on the windward and leeward slope of the fore-
dune. Several processes on the foredune increase the propor-
tion of grains travelling in modified saltation (Arens et al.,
2002). (1) On the windward slope of the foredune, relief and
marram grass induce turbulence, thereby increasing the pro-
portion of grains that travel in modified saltation and sus-
pension. (2) At the same time, the vegetation partly impedes
bedload transport. (3) At the foredune crest, flow separation
induces even stronger vertical air motion, forcing the grains
into short-term suspension. The grains that are less suscep-
tible to turbulence are deposited at the leeward side of the
foredune (modified saltation population), whereas the grains
that are more susceptible to turbulence (the true suspension
population) travel further land-inward, where EM3_3 dom-
inates. As stated in Sect. 4.1.2, the interpretation of EM3_3
as a suspension component is further corroborated by the dis-
tance from the source (beach and notches), the dense vegeta-
tion in the hinterland, and the fact that the sediment traps are
at approximately 1.5 ma.g.l. Sediment traps on the foredune
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also show a high contribution of EM3_3, which is on average
higher than that of the surface samples at the same location.
This is likely related to the height of the traps, causing them
to trap the sediment that is in transport (suspended load and
modified saltation) rather than the sediment that is deposited
(bedload and modified saltation).

The three endmembers were also set apart by a markedly
different shape of their size—shape distributions: the bedload
population was characterised by a constant grain regularity
with increasing size, the modified saltation population by a
minor decrease in grain regularity, and the suspended popu-
lation by a strong decrease in grain regularity. These differ-
ences are likely caused by differences in size—shape sorting
between the aeolian transport modes. Movements of grains
in saltation are driven mainly by gravity (Hunt and Nalpa-
nis, 1985), which is a function of particle mass. Because the
beach sediments in our fieldwork area are of uniform density
with negligible heavy mineral content (Eisma, 1968), particle
mass is mainly determined by particle size. Size, not shape,
is therefore the predominant sorting agent during saltation.
Eisma (1965) furthermore inferred that it is likely that sur-
face creep favours spherical grains because they roll more
easily. It therefore follows that the overall bedload popula-
tion should show relatively regularly shaped grains and no
significant trend of grain shape with grain size. This is in-
deed the case for EM1_3.

Settling of grains in suspension is driven by gravity and
restrained by aerodynamic drag of a particle. The latter fac-
tor also depends on grain shape: irregular grains have more
drag and thus settle slower (Komar and Reimers, 1978) and
are also more susceptible to turbulence. It therefore makes
sense that the SSD of suspension component EM3_3 shows
a strong decrease in grain regularity with increasing size:
the irregularity of the coarser grains compensates for their
larger weight. Chinese loess deposits are on the order of 2—
10 times finer-grained than EM3_3 and show a similar de-
crease in grain regularity with increasing size (Shang et al.,
2018). This indicates that (1) a decrease in grain regularity
with increasing size is characteristic of sediments transported
in aeolian suspension, and (2) for a given transport mode and
a similar grain shape range, the grain size of sediment de-
pends on, and is a reflection of, transport conditions (amount
of transport energy available and transport distance). SSDs
are therefore a good indication of the mode of transport; grain
size distributions are not.

Modified saltation is a process that is intermediate be-
tween saltation and suspension: grains are saltating (sorted
by susceptibility to gravity) but are also shortly suspended
(sorted by susceptibility to gravity and turbulence). The size—
shape distribution of EM2_3 is indeed intermediate between
EMI1_3 and EM3_3, both in terms of its grain size and its
minor decline in grain regularity with increasing grain size.
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4.2.2 A comparison of traditional grain-size-based and
novel size—shape-based endmember modelling

Endmember distributions obtained using size—shape variable
ArD2d are remarkably similar to those obtained using tra-
ditional size-based endmember modelling (D2d). This sug-
gests that grains are not sorted by their aspect ratio. However,
Shang et al. (2018) did observe sorting of aspect ratio during
aeolian transport. This incongruity may be explained by the
difference in how aspect ratio was defined in the two stud-
ies: we defined aspect ratio based on the major and minor
diameters of ellipses fitted to the particles. These diameters
represent the overall particle shape, since their length is not
sensitive to small-scale particle roughness: the ellipse fitting
procedure “averages out” small humps. In contrast, the major
and minor Feret diameters as used in Shang et al. (2018) are
affected by such small humps.

In contrast to ArD2d, endmember modelling results of
CcD2d and especially ConD2d differ from D2d (grain
size): the mode of their intermediate endmember is signifi-
cantly finer-grained, and it overlaps more substantially with
EM3_3. This overlap may actually be the cause of the ob-
served difference: endmember modelling on size—shape dis-
tributions would be more suitable for identification of an end-
member that strongly overlaps with another in terms of grain
size but differs in grain shape. Of the three studied size—shape
variables, results of ConD2d show the strongest unmixing
(highest abundances of the dominant endmember). This in-
dicates that ConD2d may be the most appropriate variable
for the identification of transport processes.

5 Conclusions

We introduce a novel method that can be used to recon-
struct sediment transport processes from aeolian deposits.
The method makes use of endmember modelling on grain
size—shape distributions, which are constructed from grain
size and shape data obtained by dynamic image analysis.
Tests with artificial size—shape distribution datasets indicate
that the known endmembers and endmember mixing pro-
portions are accurately computed by the method, even when
noise is present in the data. Endmembers with limited occur-
rence are also identified; highly mixed components, however,
cannot be determined accurately. The tests also point out that
the distribution of the fit of unmixing results per size—shape
class (the class-wise R? distribution) can be used to indicate
the number of endmembers present.
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The size—shape distribution unmixing method is also ap-
plied to real-world data from an active aeolian system in the
Dutch coastal dunes. Results show that a comparison of the
spatial distribution of model fit (sample-wise R?) to local
geomorphology further increases insight into the number of
endmembers present. The geological meaning of endmem-
bers can be validated by comparing their size—shape distri-
butions to reference samples of different transport processes.

Three endmembers are determined for the aeolian dune
dataset. The spatial distribution of these endmembers is in
accordance with the local geomorphology and reflects the
three dominant aeolian transport processes known to occur
along a beach to dune transect: bedload, modified saltation,
and suspension. These processes are characterised by dis-
tinctly different endmember size—shape distributions, result-
ing from differential (size and) shape sorting: with increasing
size, bedload shows a constant grain shape, modified salta-
tion a minor decrease in grain regularity, and suspension a
strong decrease in grain regularity (when using convexity or
Cox circularity as shape parameter).

Compared to traditional endmember modelling on grain
size distributions, unmixing of SSDs gives rise to differ-
ent endmember grain size distributions due to shape sorting
effects. Results of the new method also show higher pro-
portions of the dominant endmembers, indicating a better
discrimination of the aeolian transport processes (especially
when using convexity as shape parameter). The principal ad-
vantage of the new method, however, is that the characteris-
tic shapes of the endmember size—shape distributions can be
used as a fingerprint of the transport mode. The new method
therefore resolves the ambiguity that arises when the trans-
port mode is reconstructed using grain size distributions.
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Figure A1. Sediment trap on a vegetated dune.
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1. Settings
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1.1. Maximum number of frames to analyse (1.5*10"4)
1.2. Maximum number of particles to analyse (1*10°6)

1.3. Specify pixel size (4.82 um)
1.4. Specify cut-off size (13 pm)

2. Loop per sample
2.1. Import video file

3. First loop per frame

3.1. Store frame as binary image (matrix of zeroes and ones)

3.2. Clear all particles connected to the image boundary

3.3. Fill empty pixels within particles by converting to ones all zeroes that are enclosed by

ones (MATLAB function imfill) (necessary for highly transparent quartz grains in the dune sands).

3.4. Save modified frame

4. Second loop per frame
4.1.For all particles in the
current frame, obtain major
axis D, and minor axis D_.

The directions and lengths
of these axes equal the
eigenvectors and
eigenvalues of the
covariance matrix of the
particle’s pixel locations
(MATLAB function
regionprops).

4.2. Create lists with X and
Y coordinates of the
particle’s boundary pixel
centres.

5. Store all particle data of
current frame in a large
matrix

4.3. Compute perimeter (loop per particle)

4.3.1. Compute absolute distances between boundary pixels in X and Y
direction using the lists of step 4.2.

4.3.2. Compute absolute distances between boundary pixels
(Pythagorean theorem)

4.3.3. Sum the absolute pixel distances to obtain the total perimeter of
the particle (Pp).

4.4. Compute area (loop per particle)
Compute the area within the boundary pixels using the lists of step 4.2.

4.5. Compute length of convex hull (loop per particle)

4.5.1. Obtain all convex points along the boundary of the particle using
MATLAB?’s function convhull on the lists of step 4.2.

4.5.2. From the convex hull points, compute the total length along the
convex hull similar to step 4.3.1. to 4.3.3.

6. Scale all particle properties computed thus far using the pixel size given in the settings

section

7. Compute D2d, volume, AR, Con, and CC based on the properties computed thus far (see

Table 1 for the equations).

8. Delete all particles with size smaller than the cut-off size given in the settings section.
9. Save the particle properties matrix to computer.

Figure A2. Flow diagram for the image processing script.
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Figure A3. Input and determined endmember SSDs for the 3EM_nonoise dataset.
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Figure A4. Input and determined endmember SSDs for the 4EM_noise dataset.
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Figure A5. Input and determined endmember SSDs for the 4EM_noise_highmix dataset.
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Figure A6. Median class- and sample-wise R? versus the number of endmembers for the artificial datasets: 3EM_nonoise (a),
4EM_noise (b, ¢), and 4EM_noise_highmix (d, e). Panels (¢) and (e) zoom in on panels (b) and (d).
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Figure A9. Sample-wise R2 plotted over the sample locations for variable ConD2d (a) and variable D2d (b). The first interval of the colour
scale is enlarged to elucidate the changes in R?, which mainly occur above a value of 0.9. Points with a black outline denote surface samples
and are plotted at the sampling location. Points with a white outline denote sediment-trap samples and are plotted near the sampling location.
The exact locations of sediment traps are marked by white dots. Two of the subregions defined in Fig. 1c are shown in simplified form. Aerial
photograph © PDOK.nl, 2017.
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Figure A10. Endmember distributions computed for the ConD2d dune dataset (1IEM to 8EM solutions).

https://doi.org/10.5194/esurf-8-527-2020 Earth Surf. Dynam., 8, 527-553, 2020



548

494000

493500

494000

493500

98500 v 99000 99500 v

J. A. van Hateren et al.: Identifying sediment transport mechanisms

99000 99500 100000

EM abundance =~ @ Sediment trap location
Finest EM Notch
Foredune

. Coarsest EM

100000

Figure A11. Endmember abundances for variable ConD2d determined for the dune dataset. Pie charts with a black outline denote surface
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sampling location. The exact locations of sediment traps are marked by black dots. Two of the subregions defined in Fig. 1c are shown in

simplified form. Aerial photograph © PDOK.nl, 2017.
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Figure A13. CcD2d (a—c) and ArD2d (d—f) 3EM solutions determined for the dune dataset.
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Figure A14. Pie charts showing abundances of the 3EM solution determined for the ConD2d (a), CcD2d (b), ArD2d (c), and D2d (d)
distributions of the dune dataset. Pie charts with a black outline denote surface samples and are plotted at the sampling location. Pie charts
with a white outline denote sediment-trap samples and are plotted near the sampling location. The exact location of sediment traps is marked
by black dots. Two of the subregions defined in Fig. 1c are shown in simplified form. Aerial photograph © PDOK.nl, 2017.
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