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Abstract. Most of the recent studies modeling fluvial erosion in the context of tectonic geomorphology focus
on the detachment-limited regime. One reason for this simplification is the simple relationship of the constitu-
tive law used here – often called stream-power law – to empirical results on longitudinal river profiles. Another
no less important reason lies in the numerical effort that is much higher for transport-limited models than for
detachment-limited models. This study proposes a formulation of transport-limited erosion where the relation-
ship to empirical results on river profiles is almost as simple as it is for the stream-power law. As a central point,
a direct solver for the fully implicit scheme is presented. This solver requires no iteration for the linear version
of the model, allows for arbitrarily large time increments, and is almost as efficient as the established implicit
solver for detachment-limited erosion. The numerical scheme can also be applied to linear hybrid models that
cover the range between the two end-members of detachment-limited and transport-limited erosion.

1 Introduction

Rivers play a major if not dominant part in large-scale land-
form evolution. If horizontal displacement of the crust is not
taken into account, models describing the evolution of a to-
pography H (x1,x2, t) are typically written in the form

∂H

∂t
= U −E, (1)

where U and E are the rates of uplift of crustal material rel-
ative to a given datum and of erosion, respectively.

Two end-members – detachment-limited and transport-
limited erosion – are widely considered in the context of flu-
vial landform evolution. The term “detachment-limited ero-
sion” was presumably coined by Howard (1994). The idea
behind this concept is that all particles entrained by the river
are immediately removed from the system. The erosion rate
E can be considered as a function of local properties at each
point. In the simplest approach, these are catchment size and
channel slope (slope in the direction of steepest descent),
while all other influences are subsumed in a lumped parame-
ter often called erodibility.

In all scenarios other than the detachment-limited case, a
sediment balance must be considered. If no material is di-
rectly removed, the erosion rate is

E = divq, (2)

where q is the sediment flux per unit width (volume per time
and cross section length) and div is the 2-D divergence oper-
ator. It is usually assumed that q follows the direction of the
channel slope, so only its absolute value q varies between
different models.

The concept of transport-limited erosion assumes that the
rate of bed erosion is limited by the ability of the flow to
transport the eroded material, rather than by the availabil-
ity of potentially mobile sediment. The implementation of
this concept in fluvial landform evolution models presum-
ably dates back to Willgoose et al. (1991b). Transport-limited
models directly define the sediment flux per unit width q in-
stead of the erosion rate E at each point as a function of local
properties such as catchment size and channel slope.

Mathematically, both concepts differ fundamentally.
Equation (1) only involves derivatives of first order with re-
gard to time and with regard to the spatial coordinates (aris-
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ing from the channel slope) in the detachment-limited sce-
nario. So it is a hyperbolic differential equation of the advec-
tion type. Propagation of information in one direction only
– upstream here – is a characteristic property of this type.
Anything that happens at a given point and a given time only
affects the region upstream of this point in the future. In con-
trast, Eq. (1) contains spatial derivatives of second order in
the transport-limited regime since q inside the divergence op-
erator depends on the channel slope. Equation (1) combined
with Eq. (2) is a parabolic differential equation of the dif-
fusion type then, where information propagates in both up-
stream and downstream direction.

Several comprehensive numerical models of fluvial land-
form evolution have been developed since the 1990s. All
models reviewed by Coulthard (2001), Willgoose (2005), and
van der Beek (2013) involve a sediment balance. In recent
years, however, using the detachment-limited model has be-
come a popular choice, although the idea that all particles
are immediately excavated is limited and has been ques-
tioned (e.g., Turowski, 2012). All types of bedload trans-
port are obviously not captured by this concept. Neverthe-
less, even some recent studies using models that are able to
simulate sediment transport focus on the detachment-limited
case (e.g., Duvall and Tucker, 2015; Theodoratos et al., 2018;
Eizenhöfer et al., 2019).

At least three aspects make the detachment-limited ap-
proach appealing. First, the relationship to empirical stud-
ies of longitudinal channel profiles is particularly simple
here. Hack (1957) observed a power-law relationship be-
tween channel slope S and upstream catchment sizeA in sev-
eral rivers. This relationship is nowadays often called Flint’s
law (Flint, 1974) and written in the form

S = ksA
−θ , (3)

where θ is the concavity index and ks the steepness index.
Assuming that Eq. (3) is the fingerprint of a spatially constant
erosion rate under uniform conditions, it can be assumed that

E = f (ks)= f (AθS), (4)

where f is an arbitrary function. A power-law function

f (ks)=Kkns =K(AθS)n, (5)

where the parameter K is denoted erodibility, is a common
choice in this context. The fluvial erosion rate is often written
in the form

E =KAmSn, (6)

with m= θn. Equation (6) is often called stream-power law
or stream-power incision model since it can be interpreted
in terms of energy dissipation of the water per channel bed
area if an empirical relationship between channel width and
catchment size is used (e.g., Whipple and Tucker, 1999).

The concavity index θ = m
n

appears to be well constrained,
so most modeling studies either use the value θ = 0.5 orig-
inally found by Hack (1957) or a slightly lower reference
value θ = 0.45 (e.g., Whipple et al., 2013; Lague, 2014). In
turn, the value of the exponent n is less well constrained since
it cannot be determined from the shape of equilibrium pro-
files under uniform conditions. The model is linear with re-
gard to H (if the flow pattern is given) for n= 1, which sim-
plifies both theoretical considerations and the numerical im-
plementation. Thus, the remaining uncertainty in the effec-
tive value of n often serves as a reason for choosing n= 1,
although the results compiled by Lague (2014) rather sug-
gest n > 1, for example. If θ is well constrained and n= 1
is accepted as a convenient choice, the erodibility K remains
as the only parameter. It is a lumped parameter subsuming
all influences on erosion other than channel slope and catch-
ment size. So it is not only a property of the rock, but also
depends on climate in a nontrivial way (e.g., Ferrier et al.,
2013; Harel et al., 2016). However, it just defines how steep
rivers will become at a given uplift rate, so reasonable values
can be found, e.g., by analyzing river profiles in situations
where estimates of the uplift rate are available.

Constitutive laws based on power-law relations, however,
have not only been employed in detachment-limited models.
Even the earliest numerical model of transport-limited ero-
sion (Willgoose et al., 1991b) used a power law for the sed-
iment flux density based on physical relations for the shear
stress at the bed. The empirical results on real rivers repre-
sented by Eq. (3) were also used to constrain the parameter
values before the detachment-limited concept became popu-
lar (Willgoose et al., 1991a). However, the transport-limited
approach never reached the simplicity of the detachment-
limited approach with regard to the small number of param-
eters and their quite direct relation to the properties of real
river profiles.

The simplicity of the differential equation itself serves as
a second argument in favor of the detachment-limited ap-
proach. In the linear case (n= 1), Eq. (1) combined with
Eq. (6) can be solved analytically for any given uplift pattern
and history. The term KAθ defines the velocity of advection
then, so disturbances propagate upstream at this velocity. The
treatment can be simplified by the χ transform introduced by
Perron and Royden (2013). It transforms the upstream coor-
dinate x to a new coordinate,

χ =

∫ (
A(x)
A0

)−θ
dx, (7)

where A0 is an arbitrary reference catchment size and the in-
tegration starts from an arbitrary reference point. This trans-
formation eliminates the inherent curvature of river profiles
arising from the upstream decrease in catchment size, so
equilibrium profiles under spatially uniform conditions turn
into straight lines. The solutions of this equation and their
potential for unraveling the uplift and erosion history were
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investigated by Royden and Perron (2013), and a formal in-
version procedure for the linear case (n= 1) was presented
by Goren et al. (2014). So the detachment-limited model can
be reconciled with real river profiles not only under steady-
state conditions, but also in the context of temporal changes.

As a third point, detachment-limited erosion can be imple-
mented in numerical models more efficiently than transport-
limited erosion. Here, even a fully implicit scheme that al-
lows for arbitrary time increments with linear time complex-
ity, also known as O(N ), is available. This means that the
computing effort increases only linearly with the total num-
ber of nodes N . The scheme was introduced in the context
of fluvial erosion by Hergarten and Neugebauer (2001), de-
scribed in detail for n= 1 and n= 2 by Hergarten (2002),
and made popular by Braun and Willett (2013).

So far there is no comparable implementation for
transport-limited erosion. As mentioned above, transport-
limited erosion corresponds to a diffusion-type equation.
The challenge is that the diffusivity depends on the catch-
ment size and thus varies over several orders of magnitude.
Multigrid methods (e.g., Hackbusch, 1985) are still the only
schemes for the diffusion equation in more than one di-
mension with linear time complexity. However, convergence
breaks down if the diffusivity varies by some orders of mag-
nitude, so multigrid methods have not been applied in the
context of fluvial erosion. So far none of the existing land-
form evolution models treat the transport-limited case with
a fully implicit scheme that allows for arbitrarily large time
increments.

The advantage of the detachment-limited model concern-
ing the numerical complexity persists if explicit schemes are
used here, too. The main reason for using explicit schemes
for detachment-limited erosion is the artificial smoothing
of knickpoints by the implicit discretization, while explicit
schemes that preserve the shape of knickpoints better are
available. A comparison was given by Campforts et al.
(2017). As already pointed out by Howard (1994), ex-
plicit schemes for the transport-limited case typically require
time steps 3 to 4 orders of magnitude shorter than for the
detachment-limited case.

Howard (1994) already developed an approximation that
makes the explicit scheme for the transport term numeri-
cally more stable. Kooi and Beaumont (1994) proposed an
approach that increases stability and also allows for a physi-
cal interpretation, often called an undercapacity model or – in
a more general context – linear decline model (Whipple and
Tucker, 2002). It defines an equilibrium flux per unit width
qe from local properties (channel slope, catchment size, etc.)
and assumes that the erosion rate is

E =
qe− q

l
. (8)

The parameter l defines a length scale and can be seen as in-
ertia of sediment detachment and deposition against changes
in fluvial conditions.

An alternative physical interpretation of the linear de-
cline model was developed by Davy and Lague (2009). The
detachment-limited model (Eq. 6) was extended by a sed-
iment deposition term proportional to the actual sediment
flux. As a main point, Davy and Lague (2009) found an
expression for the rate of deposition that keeps equilibrium
river profiles consistent with Eq. (3), which is not the case
for the original undercapacity model (Whipple and Tucker,
2002).

Yuan et al. (2019) implemented an implicit numerical
scheme for this model based on a Gauss–Seidel iteration in
the upstream direction. The rate of convergence was found
to be independent of the size of the grid, so the scheme
is indeed of linear time complexity. However, the conver-
gence slows down strongly for faster deposition, i.e., when
approaching the transport-limited end-member. The scheme
of Yuan et al. (2019) is therefore presumably the most ef-
ficient implementation of sediment transport in large-scale
fluvial erosion models but achieves its full power only if we
do not come too close to the transport-limited end-member.

In the following section, a formulation of transport-limited
erosion is proposed that can be directly reconciled with the
concept of the erodibility. Then, Sect. 3 presents a fully im-
plicit, direct scheme for solving the equation numerically.
After presenting a numerical example in Sect. 4, Sect. 6 pro-
vides a discussion of several versions of the linear decline
model and an extension of the numerical scheme for this
class of models.

2 Simple formulation of transport-limited erosion

Let us start from the interpretation of Hack’s empirical re-
lation (Eq. 3) as the fingerprint of uniform erosion under
spatially constant conditions, regardless of the mechanism of
erosion. This implies that the erosion rate is a function of the
steepness index (Eq. 4). Then the sediment flux Q (volume
per time, not per unit width) through any cross section of a
river is

Q=

∫
E dA, (9)

where the integral extends over the upstream catchment. For
uniform erosion, the integral reduces to the product of the
erosion rate and the catchment size,

Q= AE = Af (AθS). (10)

If a power-law function (Eq. 6) is used as it is in the
detachment-limited model, the sediment flux becomes

Q=KAm+1Sn. (11)

In contrast to the more common formalism based on the flux
per unit width q (Eq. 2), these relations use the total sediment
fluxQ (volume per time) passing the entire cross section of a
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channel segment. This total flux cannot be inserted formally
into the divergence operator in Eq. (2) to form a continu-
ous differential equation. Practically, however, this is not a
problem for a discrete channel network. If any pixel of the
considered topography has a unique drainage direction to-
wards a single neighbor and sediment transport follows flow
direction, the respective discrete version of the divergence
operator at the node i is

divqi =
Qi −

∑
jQj

si
, (12)

where Qi is the flux from the node i to its flow target. The
sum extends over all neighbors that deliver their discharge
und thus their sediment flux to the node i, called donors in the
following. Finally, si is the area of the considered node, i.e.,
the pixel size for a regular mesh or the area of the respective
cell in a general finite-volume discretization. As the model
describes the total sediment flux and not flux per unit width,
an integration over the edges of the cell is not necessary.

Inserting Eqs. (2) and (12) into Eq. (1) then yields the sim-
plest form of a transport-limited fluvial erosion model,

si
∂Hi

∂t
= siUi −Qi +

∑
j

Qj , (13)

where Qi is defined by Eqs. (10) or (11).
As mentioned above, using power-law functions for sedi-

ment transport is not new. In combination with empirical re-
lations for the channel width, physically-based relations for
the sediment flux density (e.g., Willgoose et al., 1991b) sup-
port the hypothesis of a power-law dependence of Q on A
and S (Eq. 11). However, the relations where never written
in such a simple form as in Eq. (11) with parameters that
are related so closely to the concepts of concavity index and
steepness index (Eq. 3). Equation (11) was discussed in the
literature (e.g., Whipple and Tucker, 2002) in the context of
equilibrium river profiles, but apparently never used directly
for defining a transport-limited erosion model. In view of
Hack’s findings this is, however, as straightforward as de-
scribing detachment-limited erosion by Eqs. (4) or (6). Even
the physical unit of the erodibilityK is the same in both mod-
els, and the same values of K yield the same erosion rate at
the same topography for spatially uniform erosion.

The two models are, however, not equivalent for nonuni-
form erosion. According to Eqs. (4) and (5), the steepness
index ks directly reflects the erosion rate at the considered
point in the form

Kkns = E (14)

for the detachment-limited model. In turn, Eq. (11) of the
transport-limited model can be combined with Eq. (9) to be-
come

Kkns =
Q

A
=

1
A

∫
E dA. (15)

This relation is basically the same as Eq. (14) except that
the right-hand side is the mean erosion rate of the upstream
catchment instead of the local erosion rate at the considered
point. So channel steepness directly reflects the local erosion
rate in the detachment-limited model, but the mean erosion
rate of the catchment for the transport-limited model.

The same holds for the interpretation of the erodibility K .
In the detachment-limited model, it describes how much ma-
terial is eroded at the considered location for a given steep-
ness index. In turn, it describes how much material is eroded
on average in the upstream catchment in the transport-limited
model. From a process-oriented point of view, K would
rather be considered a transport coefficient than an erodibil-
ity here. However, this is just a matter of terminology.

3 A fully implicit numerical algorithm for
transport-limited erosion

The model proposed in the previous section can be treated
with an efficient, fully implicit numerical scheme in the lin-
ear case (n= 1). The reason why this is possible in contrast
to the 2-D diffusion equation lies in the tree structure of the
flow and sediment transport pattern.

The fully implicit discretization of Eq. (13) reads

si
Hi(t)−Hi(t0)

δt
= siUi −Qi(t)+

∑
j

Qj (t), (16)

where the time step extends from t0 to t and δt = t − t0. The
solution at t0 is known, and the solution at t is computed.

Let the node b be the flow target of the node i, soHb serves
as a base level for the node i. As the entire problem is linear,
the height Hi responds linearly to base level changes. Fig-
ure 1 illustrates this behavior in a simple numerical example
of a river (solid lines) with one tributary (dashed lines). The
initial state (t = 0, blue) was a steady state under constant up-
lift. The red curves (t = 1) show the result of an implicit time
step without uplift and with the same base level (Hb = 0)
as for t = 0, while the orange curves correspond to different
base levels Hb. The four red and orange curves of each river
are equidistant at each point x for equal increments in Hb,
so the change in height Hi(t) due to changes in base level is
proportional to the change in base level Hb(t).

Due to the linearity, the sediment fluxQi to the node b also
responds linearly to base level changes and can therefore be
written in the form

Qi(t)=Q0
i +Q

′

i (Hb(t)−Hb(t0)) . (17)

Here, Q0
i is the flux that occurs if the base level Hb remains

constant (Hb(t)=Hb(t0)), and Q′i is the derivative of Qi(t)
with regard to base level changes. Inserting Eq. (17) for the
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Figure 1. River profiles obtained from one implicit time step, where
all parameters (K , δt , grid spacing) are set to unity. The blue line
describes a steady state with U = 1, and it is assumed that U = 0
for t > 0.

donors into Eq. (16) yields

si
Hi(t)−Hi(t0)

δt
= siUi −Qi(t)+

∑
j

Q0
j

+

∑
j

Q′j (Hi(t)−Hi(t0)) (18)

and thus

Qi(t)+
αi

δt
(Hi(t)−Hi(t0))= βi (19)

with the terms

αi = si − δt
∑
j

Q′j and βi = siUi +
∑
j

Q0
j (20)

introduced in order to keep the equations short. Similarly
to the detachment-limited model, nodes without any donors
act as boundaries within the domain. These nodes do not re-
quire any specific treatment except that the respective sums
in Eqs. (18) and (20) are empty.

The channel slope at the node i is

Si(t)=
Hi(t)−Hb(t)

di
, (21)

where di is the distance between the nodes i and b. So the
sediment flux is

Qi(t)=KAm+1
i

Hi(t)−Hb(t)
di

(22)

according to Eq. (11) for n= 1. This leads to

Hi(t)=Hb(t)+
di

KAm+1
i

Qi(t). (23)

Inserting this relation into Eq. (19) yields

Qi(t)+
αi

δt

(
di

KAm+1
i

Qi(t)+Hb(t)−Hi(t0)

)
= βi, (24)

which can be rearranged in the form

Qi(t)=
αi (Hi(t0)−Hb(t))+βiδt

αi
di

KAm+1
i

+ δt
. (25)

Comparing this expression with Eq. (17) yields

Q0
i =

αi (Hi(t0)−Hb(t0))+βiδt

αi
di

KAm+1
i

+ δt
(26)

and

Q′i =−
αi

αi
di

KAm+1
i

+ δt
. (27)

Equations (26) and (27) allow for the computation ofQ0
i and

Q′i from the respective values of the donors (because αi and
βi depend on these) and from known elevation values at the
time t0. All values Q0

i and Q′i can thus be computed succes-
sively in the downstream direction. As the required order of
the nodes is the same as for computing the catchment sizes
Ai , it is most efficient to calculate Q0

i and Q′i in the same
sweep over the nodes where the catchment sizes are com-
puted.

Once the values Q0
i and Q′i have been computed for

all nodes, the sediment flux Qi(t) can be computed using
Eq. (17). This sediment flux is then used for computing the
elevation Hi(t) from Eq. (23). As these steps require the el-
evation of the flow target Hb(t), they have to be performed
successively in upstream order. This order is the same as that
used in the implicit scheme for detachment-limited erosion.

So the numerical scheme consists of three sweeps over the
grid:

Sweep 1: Compute the flow directions b of all nodes. The
nodes can be processed in any order.

Sweep 2: Compute the catchment size A and the properties
Q0 (Eq. 26) and Q′ (Eq. 27) of all nodes. The nodes
have to be processed in downstream order. This is im-
plemented most conveniently in a recursive scheme with
a function that computes the three above properties for
each node. Before computing these values, the function
checks which of the donors have already been treated
and invokes itself for those donors that have not been
considered before.

Sweep 3: Compute Q(t) according to Eq. (17) and H (t)
from Eq. (23) for all nodes. The nodes must be pro-
cessed in upstream order, which is also performed con-
veniently by a recursive implementation. The principle
is the same as in sweep 2 except that the flow target has
to be considered instead of the donors.
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Table 1. Time complexity of the scheme for transport-limited ero-
sion compared to the implicit scheme for detachment-limited ero-
sion. CPU time was normalized to the total effort of one time step
for detachment-limited erosion.

Detachment limited Transport limited

Properties CPU time Properties CPU time
(%) (%)

Sweep 1 b 38 b 38
Sweep 2 A 49 A, Q0, Q′ 54
Sweep 3 H 13 Q, H 20
Total 100 112

The scheme is a direct scheme without any iterative com-
ponent. The derivatives Q′ are always negative (lower base
level leads to a higher sediment flux), so that the properties
α and thus the denominator in Eqs. (26) and (27) are always
positive. So the scheme is unconditionally stable, and its time
complexity is linear (O(N )) under all conditions.

The workflow with the three sweeps is basically the same
as in the implicit scheme for detachment-limited erosion. The
structure is the same without any extra loops, conditions, or
functions to be invoked. Additional effort only arises from
floating-point operations. Table 1 provides an estimate of the
time complexity compared to detachment-limited erosion.
All results were obtained using the landform evolution model
OpenLEM that was used in some previous studies (e.g., Robl
et al., 2017; Wulf et al., 2019; Hergarten, 2020a) but has not
been published explicitly. A regular 5000× 5000 grid was
used, and the results of several runs involving 100 to 1000
time steps were checked for consistency. The CPU time was
normalized to the total effort of one time step for detachment-
limited erosion. The difference in time complexity between
both models is marginal.

With regard to memory complexity, the scheme presented
here requires two additional variables per node, Q0 and Q′.
When performing the third sweep, one of them can be re-
cycled for storing the original surface height H (t0) that is
needed later when Eq. (17) is applied to the donors. The re-
maining variable can be used for storing the actual sediment
flux Q(t) in case it is needed later.

4 A numerical example

The transport-limited model proposed in Sect. 2 is equivalent
to the detachment-limited model only for uniform erosion.
Transient states are typically characterized by spatially vari-
able erosion, so the two end-members cannot yield the same
transient behavior. This result is, however, already clear from
more general arguments since both end-members are de-
scribed by differential equations of different types (parabolic
vs. hyperbolic) as discussed in Sect. 1.

This section presents a numerical example showing that
nonuniform conditions result in strong differences between
the two models even in a steady state. The example uses
a square domain of 5000× 5000 nodes. The northern and
southern boundaries are kept at H = 0, while the two other
boundaries are periodic. All horizontal lengths and areas are
measured in terms of pixels. An exponent m= 0.5 was as-
sumed, so that equilibrium rivers have a concavity index of
θ = 0.5 for the linear model (n= 1). The erodibility was set
to K = 1.

An equilibrium topography obtained for uniform uplift
U = 1 was used as a reference. This topography (Fig. 2, left)
was generated by starting from a flat initial topography with
a small random disturbance. As the transport-limited and the
detachment-limited models are equivalent for uniform ero-
sion, this topography is an equilibrium topography for both
models.

As a simple nonuniform uplift pattern, tent-shaped uplift
is considered. The maximum uplift rate U = 1 is achieved
here in the middle between the northern and southern bound-
ary (x2 = 2500) and decreases linearly to zero towards the
boundaries. In order to get similar flow patterns (Fig. 2), the
equilibrium topography corresponding to constant uplift was
used as an initial condition.

All equilibrium topographies were computed by starting
with small increments δt that are increased through time
when the number of changes in the flow direction per time
step is sufficiently small. This procedure is useful for gener-
ating steady-state topographies with similar large-scale flow
patterns at a reasonable number of time steps. At large δt ,
smaller random values of δt were used in each second step
in order to avoid periodic oscillations between topographies
with different flow patterns that prevent the topography from
reaching a steady state.

The tent-shaped uplift pattern causes an overall increase
in uplift in upstream directions, at least for large rivers.
This increase results in an upstream increase in steepness.
As the steepness reflects the mean erosion rate of the up-
stream catchment (Eq. 15) instead of the local erosion rate
for transport-limited erosion, it varies more gently with the
uplift rate here than for detachment-limited erosion.

Figure 3 shows swath profiles through the three topogra-
phies. The maximum surface height (uppermost curve of the
respective color) is dominated by the steep slopes at small
catchment sizes. Since these depend on the local uplift rate
in equilibrium, the maximum elevation roughly follows the
tent-shaped uplift pattern with minor differences between
transport-limited and detachment-limited erosion. The abso-
lute difference between the two models is similar for maxi-
mum, mean, and minimum elevation, so it can be attributed
to the different heights of large valleys, while local relief is
similar.

The profiles of the large rivers marked in Fig. 2 are shown
in Fig. 4. For a clearer representation, the longitudinal coor-
dinate was χ transformed according to Eq. (7) with A0 = 1.
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Figure 2. Equilibrium topographies for uniform uplift (a) and for a tent-shaped uplift pattern (b, c). The color-coded rivers are the largest
stream and its five largest tributaries in the topography for uniform uplift. They are referred to in Fig. 4.

Figure 3. Swath profiles through the topographies shown in Fig. 2.
The three lines of each color describe maximum, mean, and mini-
mum elevation in east–west direction, i.e., over all values of x1.

With the value K = 1 used here, equilibrium profiles fol-
low a straight line H = χ at a uniform uplift rate U = 1.
In turn, χ -transformed equilibrium profiles are concave if
the uplift rate increases in the upstream direction. This con-
cavity is weaker for the transport-limited model than for the
detachment-limited model as the local slope reflects the mean
erosion rate of the upstream catchment, while it reflects the
local erosion rate for detachment-limited erosion. In the up-
per part of the catchment, however, both turn into parallel
straight lines. In the lower part of the catchment, the river
profiles of the transport-limited model are steeper than those
of the detachment-limited model because the river also has to
carry away the material from the upper part with high erosion
rates.

While the χ -transformed river profiles of the transport-
limited model are more straight than for detachment-
limited erosion, local collinearity of tributaries is lost. For

Figure 4. Longitudinal profiles of the rivers marked in Fig. 2 plot-
ted in χ representation.

detachment-limited erosion, profiles of tributaries start with
the same slope as the trunk stream and deviate more and
more with increasing distance. In contrast, tributaries and the
trunk stream may contribute different amounts of sediment
per catchment size due to different mean erosion rates in their
upstream catchments, which leads to different slopes imme-
diately above the point of confluence in the transport-limited
model. As a consequence, the capture of tributaries leads to
stable knickpoints in the trunk stream for transport-limited
erosion.

The most important lesson to be learned from this simple
example concerns the estimation of the exponent n. Figure 5
shows the relation between the steepness index ks and the
erosion rate E, which is the same as the uplift rate U in a
steady state. According to Eq. (14), the erosion rate is pro-
portional to kns in the detachment-limited regime. So com-
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Figure 5. Erosion rate E (= U ) vs. steepness index ks for the rivers
marked in Fig. 2.

paring ks at different locations exposed to different erosion is
a common approach to estimate n (e.g., Lague, 2014).

The detachment-limited model with K = 1 and n= 1 re-
produces the expected relation E = ks, while this is not the
case for the transport-limited model. Here the curve for the
trunk stream (blue line) rather looks like a straight line with
an offset. If we analyzed this curve without knowing that it
originated from the transport-limited model, we would find
that erosion starts at a threshold steepness index ks ≈ 0.7. If
only a few points from this line were available, we would ar-
rive at a nonlinear relation with n > 1. This is, however, an
extreme example as E = U = 0 at the boundary, while the
sediment flux from the domain requires a nonzero channel
steepness. Qualitatively, the result would be similar in any
situation where the uplift rate increases in an upstream direc-
tion. If we interpret a long transport-limited river profile in
terms of detachment-limited erosion, the exponent n would
be systematically overestimated.

In turn, comparing the three tributaries that are predomi-
nantly oriented in the east–west direction would yield an ex-
ponent close to the correct exponent n= 1 used here. The
reason is that these tributaries are not subject to strong vari-
ations in uplift rate. All estimates reviewed by Lague (2014)
suggest n > 1 except for one data set. This data set describes
strike-parallel tributaries originally investigated by Kirby and
Whipple (2001) where a re-analysis by Wobus et al. (2006)
resulted in n≈ 1. This finding sheds new light on the appar-
ent evidence for exponents n > 1 obtained from analyzing
river profiles under nonuniform conditions. An unrecognized
contribution of sediment transport may result in an overes-
timation of n here. This problem makes estimating the ef-
fective values of n even more difficult and deserves further
consideration in the future.

Figure 6. Change in sediment flux per change in uplift rate for dif-
ferent time increments δt obtained from the steady-state topography
with uniform uplift considered in Sect. 4.

5 Numerical accuracy

While fully implicit schemes for diffusion-type equations are
unconditionally stable for arbitrary δt , their numerical error
increases linearly with δt . This error is a systematic error in
the sense that the response of the system to temporal changes
(e.g., in uplift here) is always too slow.

In order to assess this error and to estimate a reasonable
maximum δt , the response of the steady-state topography
with unit uplift considered in Sect. 4 to changes in uplift rate
is investigated in the following. Due to the linearity of the
model, the response to changes in U is also linear as long
as the flow directions do not change, which is the case if the
change in U is sufficiently small. Technically, the uplift rate
can simply be set to U = 0 at t = 0, and the simulation is
performed without recomputing the flow directions.

Figure 6 shows the results for different values of δt in
terms of the total sediment fluxQ out of the domain or, more
precisely, in terms of the change in this flux per change in
uplift rate, δQ

δU
. The numerical error is in the order of magni-

tude of some percent for δt = 1. It should, however, be em-
phasized that this error is just some kind of time lag, while
the sediment balance itself is satisfied exactly. The curves for
δt ≤ 0.1 are hardly distinguishable in the diagram. If we as-
sume, for example,K = 2.5 Myr−1 (Robl et al., 2017), a unit
of nondimensional time corresponds to 400 000 years. So
time increments in the order of magnitude of 100 000 years
should be no problem concerning the accuracy of the implicit
scheme even for large grids (5000× 5000 nodes in this ex-
ample).

While the numerical error of the implicit scheme is even
smaller than for the detachment-limited model (Fig. 6), it
must be taken into account that all models in this field com-
pute flow directions and changes in topography in separate
steps. Changes in the flow directions introduce an additional
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numerical error. In the worst case, the implicit scheme acts
on a deprecated flow pattern over almost the entire time step.
So this error is formally also linear in δt , but strongly de-
pends on the topography. Regions with small relief are par-
ticularly susceptible to artifacts. Under erosion, unreasonable
river networks may deeply incise at large δt , and reorganiza-
tion may take a long time afterwards. In the aggradational
regime, large rivers may even turn into weird ridges within a
single, large time step.

In many situations, the limitation of the maximum δt aris-
ing from changes in the flow directions is more severe than
the numerical error of the implicit scheme itself. However, as
it strongly depends on the topography, it is difficult to provide
an estimate for a reasonable δt then. Practically, tracking the
number of changes in the flow direction and adjusting δt so
that the number of changes per time step does not exceed a
given threshold provides a feasible criterion.

6 Extension towards the linear decline model

Detachment-limited erosion and transport-limited erosion
can be seen as end-members of a more general framework.
In particular, the extension of the detachment-limited model
by sediment transport proposed by Davy and Lague (2009)
is receiving growing interest in this context. Recently, Guerit
et al. (2019) derived estimates of the sediment deposition pa-
rameter occurring in this model from analyzing natural and
experimental topographies. The authors concluded that “nat-
ural landscapes seem to describe a continuum between the
two modes with a preference for TL mode” (transport-limited
mode) as already suggested by Davy and Lague (2009).

Whipple and Tucker (2002) already proposed the generic
form of the model of Davy and Lague (2009) and coined
the term “linear decline model”. This concept starts from
the detachment-limited model and assumes that the sediment
flux reduces the ability of the river to erode. Assuming that
the decrease in erosion rate is linear, this leads to the expres-
sion

E = f (AθS)−ψ(A)Q (28)

(from Eq. 4), where ψ is an arbitrary function.
In addition to Eq. (28), the sediment balance (Eq. 2 or the

respective discrete form, Eq. 12) must be satisfied. Inserting
Eq. (28) and the sediment balance into Eq. (1) yields a system
of two coupled partial differential equations for the surface
height H and the sediment flux Q.

The sediment balance can be written conveniently in inte-
gral form (Eq. 9). Combining this expression with Eqs. (1)
and (28) yields a single integro-differential equation for the
surface height,

∂H

∂t
= U − f (AθS)+ψ(A)

∫ (
U −

∂H

∂t

)
dA, (29)

instead of a system of two differential equations.

The detachment-limited end-member corresponds to
ψ(A)= 0. In this case, the two differential equations are de-
coupled, so the equation for H can be solved without com-
puting Q. Approaching the detachment-limited end-member
is mathematically more complicated. This can be achieved by
increasing f and ψ in such a way that f →∞ and ψ→∞,
while the ratio f

ψ
converges to a finite, nonzero value. Then,

Eq. (28) turns into

Q=
f (AθS)
ψ(A)

. (30)

The resulting sediment flux Q defines the transport capacity.
If we request that equilibrium river profiles under uniform

conditions are still consistent with Hack’s findings (Eq. 3),
the entire erosion rate defined by Eq. (28) must be a function
of the product AθS. Inserting Eq. (10) into Eq. (28) yields

E =
f (AθS)

1+Aψ(A)
. (31)

So ψ(A) must be inversely proportional to A,

ψ(A)=
G

A
, (32)

with a nondimensional constant G. This is exactly the rela-
tion proposed by Davy and Lague (2009) (with 2 instead
of G there). The second term in Eq. (28) turns into GQ

A
,

which was interpreted as deposition of sediments by Davy
and Lague (2009).

The equilibrium erosion rate under uniform conditions is

E =
f (AθS)
1+G

=
KAmSn

1+G
(33)

in this model. So sediment deposition effectively reduces the
erosion rate by a factor of 1+G under uniform equilibrium
conditions, which makes equilibrium profiles by a factor of
1+G steeper in the linear model (n= 1) as already stated by
Yuan et al. (2019). This effect can be compensated by rescal-
ing the erodibilityK by a factor of 1+G, which modifies the
model of Davy and Lague (2009) to

E = (1+G)KAmSn−G
Q

A
. (34)

Both versions differ concerning the interpretation of the
erodibility K . While it characterizes the process of detach-
ment in the original model, it is interpreted as the finger-
print of spatially uniform erosion including sediment trans-
port in the rescaled version. In contrast to the original ver-
sion, the rescaled version also captures the transport-limited
end-member for G→∞ since

Q=
(1+G)KAmSn−E

G
A

→KAm+1Sn. (35)
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The linear decline model can be interpreted in several
ways. If we define an equilibrium sediment flux by

Qe =
f (AθS)
ψ(A)

, (36)

Eq. (28) turns into

E = ψ(A) (Qe−Q) . (37)

This is the undercapacity model (Kooi and Beaumont, 1994)
written in terms of sediment flux instead of flux per unit
width (Eq. 8).

The formulation of transport-limited erosion proposed in
Sect. 2 allows for an alternative definition of a hybrid model
that can also be interpreted as a linear decline model. Let us
write the detachment-limited end-member (Eq. 6) in the form

E

Kd
= AmSn, (38)

and the transport-limited end-member (Eq. 11) in the form

Q

KtA
= AmSn. (39)

In contrast to the previous considerations, different symbols
Kd and Kt are used here. As discussed above, their meaning
is in principle the same, but there is no reason why the values
should be the same under all conditions.

The simplest combination of both end-members is assum-
ing that the property AmSn that is responsible for both de-
tachment and transport is shared among the two processes,
i.e.,

E

Kd
+

Q

KtA
= AmSn. (40)

This model approaches the detachment-limited regime for
zero sediment flux and the transport-limited regime for high
sediment flux.

Equation (40) can also be written in the form

E =KdA
mSn−

Kd

Kt

Q

A
, (41)

so

ψ(A)=
Kd

KtA
(42)

and

G=
Kd

Kt
. (43)

The formulation defined by Eq. (40) could be called “shared
stream power model”. Compared to the concepts of detach-
ment and deposition and the undercapacity model, this is
rather a generic model. In turn, the formulation in terms of

Kd and Kt may help to understand rivers passing different
lithologies. Here we could expect that Kd shows a stronger
variation than Kt, although the ability to transport material
also depends on the characteristics of the sediments at the
river bed.

The numerical scheme described in Sect. 3 can be ex-
tended towards the linear version of the linear decline model,
i.e., if the first term in Eq. (28) is also linear in channel slope
S (n= 1 in Eq. 6). The general form of this model reads

E = φ(A)S−ψ(A)Q, (44)

with any functions φ and ψ . For the rescaled version of the
model proposed by Davy and Lague (2009) and the shared
stream power version, the two functions are

φ(A)= (1+G)KAm =KdA
m, (45)

ψ(A)=
G

A
=
Kd

KtA
, (46)

while the term 1+G would not occur in the original version.
Inserting Eq. (44) into the general landform evolution

model (Eq. 1) yields

∂Hi

∂t
+φiSi −ψiQi −Ui = 0, (47)

and after inserting difference quotients for time derivative
and channel slope

Hi(t)−Hi(t0)
δt

+φi
Hi(t)−Hb(t)

di
−ψiQi(t)−Ui = 0. (48)

This equation can be rearranged in the form

Hi(t)=
Hi(t0)+ δt

(
φi
di
Hb(t)+ψiQi +Ui

)
1+ δtφi

di

. (49)

Plugging this result into Eq. (19), rearranging the resulting
equation to yield Qi(t), and comparing the obtained expres-
sion to Eq. (17) finally yields

Q0
i =

αi

(
φi
di

(Hi(t0)−Hb(t0))−Ui
)
+βi

(
1+ δtφi

di

)
αiψi + 1+ δtφi

di

(50)

and

Q′i =−
αi
φi
di

αiψi + 1+ δtφi
di

. (51)

The scheme is very similar to that presented in Sect. 3 for
transport-limited erosion. Equations (50) and (51) have to be
used in sweep 2. Sweep 3 is now based on Eq. (49), while
Eq. (17) is still used in its original form.

Preliminary numerical tests revealed that the time com-
plexity of this version is very close to the transport-limited
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case, while that of the iterative scheme proposed by Yuan
et al. (2019) is close to the detachment-limited case in each
iteration step. In the first iteration, sweep 2 computes the
catchment sizes here, while it integrates the upstream ero-
sion rate to yield the sediment flux (Eq. 9) in subsequent it-
erations. Taking the values from Table 1, there would be a
slight advantage of the iterative scheme (100 % vs. 112 %)
if the iterative scheme could be applied with a single iter-
ation step. This is, however, not possible if the flow direc-
tion of any node has changed because the sediment flux Q
is not available for the actual flow pattern then. In the best
case, the iterative scheme requires two steps. According to
the numerical tests of Yuan et al. (2019), this is achieved for
small values ofG in the order of magnitude of 0.01 at n= 1.
This yields 112 % vs. 162 % effort, so the direct scheme is at
least 30 % faster than the iterative procedure. The advantage
of the direct scheme rapidly grows with increasing sediment
transport. The data repository of the recent study of Guerit
et al. (2019) found a median value of G= 1.6 for n= 1 by
analyzing several natural river profiles. The iterative scheme
requires about eight iterations at this value, resulting in an
effort of 112 % vs. 534 %. So the direct scheme is almost
5 times faster under these conditions. Guerit et al. (2019) also
reported on higher values ofG, where the convergence of the
iterative scheme would become very slow. In addition, the
direct scheme has the advantage of an exact solution without
the need for checking convergence.

7 Further extensions

7.1 Adding transport-limited and detachment-limited
erosion

The models of the linear decline type discussed in Sect. 6 en-
force a strict balance for the sediment flux for any nonzero
function ψ(A). However, we could also assume that a part of
the eroded material is immediately excavated, while the rest
is transported. This could be seen as a first step towards con-
sidering different particle sizes where one class of particles
it so fine-grained that these will not be deposited. For sim-
plicity, this version is elaborated only as an extension of the
transport-limited model here, although a combination with
the linear decline model is also possible. The linear version
of this model reads

E = divq +0S, (52)

or inserted into Eq. (1) and discretized in fully implicit form

si
Hi(t)−Hi(t0)

δt
= siUi −Qi(t)+

∑
j

Qj (t)− si0iSi . (53)

Here, 0 is any function that describes the excavation of ma-
terial. Similarly to the functions φ and ψ used in the pre-
vious section, 0 may in principle depend on all properties

except for surface heights in order to maintain the linear-
ity. It may be tempting to use the expression 0 = K̃Am from
the detachment-limited model, where K̃ has the same mean-
ing and physical unit as K . However, Eq. (52) combines a
sediment balance with immediate excavation, which causes
a scaling problem if rivers are considered as linear objects
(Howard, 1994; Perron et al., 2008; Pelletier, 2010; Her-
garten, 2020a). As a consequence, an additional rescaling
factor depending on the pixel size must be introduced in the
definition of 0 in order to avoid an artificial dependence of
the results on the spatial resolution. Different approaches for
this scaling factor are discussed in the above references.

Apart from this scaling problem, the numerical implemen-
tation is straightforward. Using Eq. (11), the last term in
Eq. (53) can be expressed as

si0iSi =
si0

KAm+1
i

Qi(t). (54)

This results in a factor 1+ si0

KAm+1
i

in front ofQi(r) in Eq. (19).

This factor propagates to the denominator of Eqs. (26) and
(27), so that we finally arrive at

Q0
i =

αi (Hi(t0)−Hb(t0))+βiδt

αi
di

KAm+1
i

+

(
1+ si0

KAm+1
i

)
δt

(55)

and

Q′i =−
αi

αi
di

KAm+1
i

+

(
1+ si0

KAm+1
i

)
δt

. (56)

The further steps (Eqs. 17 and 23) remain the same.

7.2 Hillslope diffusion

Linear diffusion (e.g., Culling, 1960) as the simplest model
of hillslope erosion can be implemented more efficiently than
in the detachment-limited model because the flux compo-
nents in the direction of the channel network can be inte-
grated into the implicit scheme. If dij is the distance between
the node i and a neighbor j and lij is the length of the re-
spective edge in a finite-volume representation, the diffusive
flux in this direction is

Qdiff
ij =Dlij

Hi −Hj

dij
, (57)

where D is the diffusivity. In contrast to the discrete diver-
gence of the fluvial sediment flux density (Eq. 12), this sim-
ple expression is only valid if the edge is normal to the con-
necting line, as is the case, for example, in a Voronoi dis-
cretization.

An implicit scheme for the flux components in the di-
rection of the channel network combined with an explicit
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scheme for the other components requires an additional vari-
able Bi (where practically eitherQ0

i orQ′i might be used) for
the balance of the diffusive fluxes. For each node i, a loop
over all neighbors j with Hj <Hi except for the flow target
b is employed. The respective valuesQij are added toBj and
subtracted from Bi . After considering all nodes i, the values
Bi
si

are added to the uplift rates Ui . This part of the scheme
captures the diffusive fluxes except for those in the direction
of the channel network. Comparing Eq. (57) to Eq. (22), it is
easily recognized that the diffusive flux from each node i to
its flow target b can be included by replacing the termKAθ+1

i

by KAθ+1
i +Dlib throughout the calculations of Sect. 3.

As this scheme is not fully implicit, the maximum time
increment is still limited. However, as the flux component
in the flow direction is the largest among all, its partly im-
plicit treatment improves the stability of the diffusion term
and thus increases the maximum possible time increment.

8 Limitations

While the approach presented here is efficient and can be ap-
plied to a large class of problems, some limitations should
also be mentioned.

First, any kind of sediment transport that transfers material
from one site to more than one target site destroys the tree-
like topology of sediment fluxes. Such processes are thus not
compatible with the implicit scheme presented here. This ap-
plies to hillslope processes as well as to fluvial processes
with multiple flow directions as implemented, e.g., in the
model TTLEM (Campforts et al., 2017). However, the im-
plicit scheme for detachment-limited erosion is subject to the
same limitation.

Concerning numerics, nonlinearity is the only point where
the approach suggested here falls behind the implicit scheme
for detachment-limited erosion. The latter can be solved di-
rectly for n= 1 and for n= 2 (Hergarten, 2002) but can be
treated by finding the roots of a scalar nonlinear equation
at each point for any value of n. In contrast, nonlinearity
can only be included in the approach proposed here either
by treating the nonlinear terms in an explicit manner or to
employ an iteration.

Finally, the treatment of lakes, i.e., local depressions in the
topography, is a problem. In the detachment-limited model,
local depressions result in negative channel slopes and thus in
negative erosion rates without any specific treatment. How-
ever, these negative erosion rates can be cut off easily in the
implicit scheme. In the transport-limited model, local depres-
sions result in a sediment flux opposite to the flow direction.
Erosion of dams may be too fast then, so that the lifetime of
lakes may be too short. This effect cannot be fixed easily in
the fully implicit scheme.

9 Conclusions

This study proposes a simple formulation of transport-
limited fluvial erosion. This formulation can be immediately
reconciled with the empirical results of Hack (1957) on lon-
gitudinal river profiles. The interpretation of Hack’s findings
as the fingerprint of spatially uniform erosion is equivalent
for transport-limited erosion and for detachment-limited ero-
sion where it has been widely used. In turn, the behavior of
both models differs if erosion is nonuniform.

As a main point, a new numerical scheme for treating
transport-limited erosion with a fully implicit discretization
in time was presented. It is a direct solver without any iter-
ation and is unconditionally stable for arbitrarily large time
increments. It is of linear time complexity (O(N )) where the
computing effort is marginally higher than for detachment-
limited erosion. The scheme can also be applied to combined
linear models of detachment-limited erosion and sediment
transport such as the linear decline model. Here it also allows
for approaching the transport-limited end-member without
any loss of performance and provides a numerical efficiency
that is better than the iterative scheme suggested by Yuan
et al. (2019).

Code and data availability. All codes and computed data can be
downloaded from the FreiDok data repository (Hergarten, 2020b)
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