
Earth Surf. Dynam., 8, 87–102, 2020
https://doi.org/10.5194/esurf-8-87-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Determining flow directions in river channel networks
using planform morphology and topology

Jon Schwenk, Anastasia Piliouras, and Joel C. Rowland
Los Alamos National Laboratory, Earth and Environmental Sciences Division, Los Alamos, USA

Correspondence: Jon Schwenk (jschwenk@lanl.gov)

Received: 13 April 2019 – Discussion started: 23 May 2019
Revised: 17 October 2019 – Accepted: 5 November 2019 – Published: 12 February 2020

Abstract. The abundance of global, remotely sensed surface water observations has accelerated efforts toward
characterizing and modeling how water moves across the Earth’s surface through complex channel networks.
In particular, deltas and braided river channel networks may contain thousands of links that route water, sed-
iment, and nutrients across landscapes. In order to model flows through channel networks and characterize
network structure, the direction of flow for each link within the network must be known. In this work, we
propose a rapid, automatic, and objective method to identify flow directions for all links of a channel network
using only remotely sensed imagery and knowledge of the network’s inlet and outlet locations. We designed a
suite of direction-predicting algorithms (DPAs), each of which exploits a particular morphologic characteristic
of the channel network to provide a prediction of a link’s flow direction. DPAs were chained together to create
“recipes”, or algorithms that set all the flow directions of a channel network. Separate recipes were built for deltas
and braided rivers and applied to seven delta and two braided river channel networks. Across all nine channel
networks, the recipe-predicted flow directions agreed with expert judgement for 97 % of all tested links, and
most disagreements were attributed to unusual channel network topologies that can easily be accounted for by
pre-seeding critical links with known flow directions. Our results highlight the (non)universality of process–form
relationships across deltas and braided rivers.

1 Introduction

River channel networks (CNs) sustain communities and
ecosystems across the globe by delivering and distributing
fluxes of water, sediment, and nutrients. Under a changing
climate and widespread anthropogenic influences, modeling
the transport of riverine fluxes has become vital for predict-
ing changes in flooding hazards (Hirabayashi et al., 2013;
Milly et al., 2002), habitat availability (Erős et al., 2011;
Gilvear et al., 2013), contaminant transport, and water re-
sources. CN structure affects both the spatial and tempo-
ral patterns of riverine fluxes that control changes in habitat
availability (Benda et al., 2004; Grant et al., 2007), flooding
and floodplain nourishment (Edmonds et al., 2011), and bio-
geochemical cycling (Czuba et al., 2018; Hiatt et al., 2018).
Flow directionality, defined as the direction of flow within
each channel of a network, is critically important for vector-
based models that route fluxes through CNs and are built atop

a graphical representation of the CN (Czuba and Foufoula-
Georgiou, 2014, 2015; Lehner and Grill, 2013). Additionally,
recent research seeking to characterize deltas and braided
rivers based on network structure relies on CN metrics that
require knowledge of flow directions for each link (Marra et
al., 2014; Tejedor et al., 2015a, b, 2017).

In reality, the flow direction of river discharge may not be
steady through time or may be in multiple directions simulta-
neously. Such bidirectional flows may result from large, irre-
versible perturbations to the channel network (e.g., Shugar
et al., 2017), fluid density differences within the channel
(e.g., Garcia et al., 2006), or most commonly tidal influence
(Fagherazzi et al., 2004). In these cases, local velocity mea-
surements are usually needed to reliably ascertain the flow
direction at a given time and location. Although delta CNs
often feature some tidally influenced bidirectional channels,
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we focus only on the long-time, steady-state flow direction
of discharge as it moves from the delta apex to its shoreline.

For watershed-scale (and larger) modeling of river tribu-
tary networks, flow directionality can often be ascertained
from knowledge of the CN structure and/or a digital elevation
model (DEM) (Czuba and Foufoula-Georgiou, 2014; Dottori
et al., 2016; Lehner et al., 2008). However, for dense CNs
like those of a delta or braided river, a DEM may be un-
available or too coarse to characterize the flow direction of
each link within the CN. Even when a DEM is available, the
low slopes characterizing most deltas require high vertical
precision for reliable estimates of flow directions. Addition-
ally, both deltas and braided river CNs may be dense with
short links that require high-spatial-resolution elevation data
to capture the elevation difference across their lengths. Even
when a high-resolution DEM is available, the presence of
shoals and bifurcations in multi-threaded CNs can result in
flows that travel upslope, requiring sophisticated techniques
to resolve flow directions (van Dijk et al., 2019; Kleinhans et
al., 2017). These challenges render popular DEM-based hy-
drologic processing algorithms (Schwanghart and Scherler,
2014; Tarboton, 1997) and related products (Lehner et al.,
2008; Yamazaki et al., 2019) ineffective. A method for esti-
mating the flow directions of links in a CN without auxiliary
data would overcome these shortcomings.

With the burgeoning availability of global remotely sensed
surface water products (Allen and Pavelsky, 2018; Pekel et
al., 2016; Yamazaki et al., 2015), mapping CN morpholo-
gies has become almost trivial. However, the ease of identi-
fying CNs is accompanied by a need for tools that can au-
tomatically abstract, model, and analyze CN imagery. Clas-
sically, river boundaries, channel networks, and flow direc-
tions were simply resolved by hand (Bevis, 2015; Leopold
and Wolman, 1957; Marra et al., 2014; Tejedor et al., 2015a),
a time-consuming process subject to the operator’s judge-
ment. In this work, we present a flexible framework for auto-
matically estimating flow directions in all links of a delta or
braided river CN objectively and rapidly that requires only
the CN’s planform morphology and knowledge of its inlet
and outlet locations. While this work focuses primarily on
the techniques developed for setting flow directions, analysis
of the most effective algorithms also provides clues toward
understanding how a dominant flow direction is expressed
through a CN’s morphologic and topological CN character-
istics.

The remainder of the paper is structured as follows: Sect. 2
describes the datasets used to create channel network topolo-
gies. Section 3 describes the algorithms we designed to set
flow directions for all links of a CN. Section 4 assesses
the accuracy of our approach, highlights where our method
might fail, and discusses how particular characteristics of a
river or delta network relates to uncertainty in directionality.
Improvements to reduce errors in setting link directionalities
are also discussed.

2 Masks and networks

We tested our method on a variety of channel networks (CNs)
in order to sample a wide range of configurations and scales
(Fig. 1). In particular, we selected CNs for which network
outlets are clustered along disparate regions of the shore-
line (Niger, Yukon, Colville), for which many channels flow
roughly perpendicular to the apparent general flow direction
(Lena, Mackenzie, Brahmaputra, Indus), for which channel
widths span a wide range (Kolyma, Yenisei), and for which
channels are heavily tidally influenced (Niger). Only two
braided river CNs were selected because braided river CNs
exhibit less macro-morphologic variability than delta CNs,
and the total number of braided river links we analyzed sur-
passed that of the deltas. The algorithms presented herein re-
quire three independent but related data: (1) a binary image
of the channel network, (2) a vector representation (including
connectivity) of the channel network, and (3) the locations of
inlet and outlet nodes.

The binary image of a CN, or a “mask”, is simply a raster
wherein “on” pixels belong to the network (Fig. 1, blue).
In general, our masks include pixels identified as water or
connected-to-water, unvegetated bars. Channel masks for all
deltas except the Niger were created from Landsat imagery
classified using eCognition software (see Piliouras and Row-
land, 2020). The Niger CN mask was created from the Global
Surface Water monthly integrated maps, also based on Land-
sat imagery (Pekel et al., 2016). Both the Brahmaputra and
Indus River masks were taken from the “Global River Width
from Landsat” mask of Earth’s rivers at mean annual dis-
charge (Allen and Pavelsky, 2018). Islands with a size of
20 pixels or fewer were removed (filled) from all channel
networks. This infilling, though not strictly necessary, elimi-
nated smaller channels that play relatively unimportant roles
in the network structure. Georeferenced .tif files of the Niger,
Brahmaputra, and Indus CNs are provided in the Supple-
ment; other CN masks are downloadable from Piliouras and
Rowland (2019).

The topology of each channel network was resolved from
its mask into its constituent links and nodes (nodes shown
in Fig. 1) using the Python package RivGraph (Schwenk et
al., 2018). Given an input CN mask, RivGraph vectorizes
the skeletonized (Zhang and Suen, 1984) mask into links
and nodes and stores their connectivities. RivGraph also ap-
pends link morphologic properties including centerline co-
ordinates, channel width at each coordinate, average chan-
nel width, and length. RivGraph ensures that all connectiv-
ities present in the original masks are preserved in the vec-
tor representation. Finally, input and output nodes of each
channel network are identified either manually or by Riv-
Graph. Shapefiles of links and nodes and their associated
properties for each CN are provided in the Supplement.
While we used RivGraph to vectorize the network, a num-
ber of other tools are available for channel centerline ex-
tractions: RivMAP (Schwenk et al., 2017), RivWidth (Pavel-
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Figure 1. Study channel networks. Channel masks are blue, and nodes of the extracted networks are orange. Delta channel masks also
include a portion of the ocean along the delta front. For clarity, links are not displayed but may be assumed between each pair of adjacent
nodes. Locations of the (Yu) Yukon, (C) Colville, (M) Mackenzie, (Ye) Yenisei, (L) Lena, (K) Kolyma, and (N) Niger deltas as well as the
(B) Brahmaputra and (I) Indus rivers are shown on the map of continents. Arrows for each point north.

sky and Smith, 2008), Rivamap (Isikdogan et al., 2017), and
RivWidthCloud (Yang et al., 2019) are among these. How-
ever, these approaches would require manual construction of
the network’s connectivity.

3 Setting channel flow directions

We found no single method sufficient to accurately set all link
flow directions across the variety of tested CNs. We there-
fore developed a number of sub-algorithms to predict link
directionality, which here are deemed direction-predicting al-
gorithms (DPAs). Each DPA falls into one of three classes:
exact, exploitative, or heuristic. Exact DPAs are those that
enforce continuity by ensuring that flow at any point within

www.earth-surf-dynam.net/8/87/2020/ Earth Surf. Dynam., 8, 87–102, 2020



90 J. Schwenk et al.: Determining flow directions in river channel networks using planform morphology and topology

the CN has a path to an outlet. Sources and sinks are not
allowed within CNs, except for pre-identified inlets and out-
lets. Exploitative DPAs are those that exploit known relation-
ships between particular morphologic or topologic features
and dominant flow directions but may not hold for all links
within a CN. Finally, a heuristic DPA is one that assumes
an often-intuitive rule but has no strong or formal theoretical
basis. Heuristic DPAs were developed through a combina-
tion of trail and error and qualitative observations of many
CNs. With the exception of exact DPAs, each DPA has an as-
sociated uncertainty that is quantified uniquely depending on
the particular DPA. Each uncertainty quantity may be thresh-
olded (ωsubscript), where the subscript denotes the relevant un-
certainty quantity. These measures of uncertainty are vital for
determining the flow directions of links, for example when
DPAs disagree. The rationales and implementations for each
DPA, along with the definitions of uncertainty, are described
in Sect. 3.1.

By chaining together DPAs, “recipes” for setting all flow
directions of a CN may be designed. Due to the quali-
tatively different natures of relatively confined and elon-
gated braided river CNs compared with distributed, multi-
directional delta CNs, we developed two separate recipes for
fully setting the CN directionality of deltas (DR) and braided
rivers (BR). Similarly, delta- and braided-river-specific DPAs
were developed to exploit the qualitative differences between
delta and braided river CNs. Section 3.3 describes how DPAs
were assembled to create the BR and DR.

3.1 Direction-predicting algorithms (DPAs)

3.1.1 Exact DPAs (no uncertainty)

– IO: inlets and outlets. Links attached to inlets and out-
lets are predicted such that flow travels away from inlet
nodes and towards outlet nodes.

– PAR: parallel links, Fig. 2a. Parallel links occur when
two links begin and end at the same node. To avoid cre-
ating a cycle within the graph, all parallel links must
flow in the same direction. As a consequence, if the di-
rection of one of a group of parallel links is known, the
others are predicted in the same direction.

– CON: continuity, Fig. 2b. Enforcing continuity ensures
that no sources or sinks appear within the network other
than the inlet and outlet nodes. Continuity is enforced at
each node by first identifying nodes for which only one
connected link direction is unknown. If the remaining
group of known links are all either entering or departing
the node, the unknown link is predicted to an orientation
opposite the group.

– BDG: bridge links, Fig. 2c. Bridge links are those
through which all flow must travel to reach an outlet.
Removal of a bridge link from a CN breaks the connec-
tivity of the CN, forming two disconnected CNs. Bridge

links are identified in a CN graph via the NetworkX
(Hagberg et al., 2008) bridges function and are tem-
porarily removed, creating two subnetworks. Each sub-
network is searched for the presence of inlet and outlet
nodes. If either of the subnetworks has either only inlets
or only outlets, the flow direction for the bridge link can
be predicted as either away from the subnetwork con-
taining the inlets or toward the subnetwork containing
the outlets. In some cases, both subnetworks may con-
tain both inlets and outlets; the bridge link direction is
thus not predictable.

3.1.2 Exploitative DPAs

– MDC: minimize direction change, Fig. 2d. MDC is
based on the principle that branching angles are more
likely to be acute, as observed in both inland (De-
vauchelle et al., 2012; de Serres and DeRoy, 1990) and
deltaic (Coffey and Shaw, 2017) CNs. We extend these
observations by hypothesizing that the change in flow
directions should be minimized at each node. Candi-
date links for MDC are identified as unknown links con-
nected to at least one known link. At each end node of
a candidate link there may be one or more links flowing
into or out of the node. Each of these links, along with
the candidate link, is represented by a unit vector whose
direction is defined by its endpoint locations (lu for the
unknown candidate link). If multiple links flow into (or
out of) the node, their unit vectors are averaged to pro-
vide a single direction vector (li and lo for into node
and out of node, respectively). The goal is to determine
which of li or lo is most parallel to lu; thus, angles are
computed between li, lo and lu0 , lu1 , where lu0 represents
the original position of the unknown link, and lu1 repre-
sents its 180◦ rotation about the node. The minimum of
all angles is computed via Eq. (1):

αmin =
(
αuo,li ,αuo,lo ,αui,li ,αui,lo

)
, (1)

where the subscripts denote the vectors defining the an-
gle. If αmin = αuo,lo or αui,li , the unknown link is set to
flow out of the node; otherwise, it is set to flow into
it. Where possible, this procedure is repeated for both
end nodes of lu, and αmin becomes the minimum of
both node minima. The magnitude of αmin provides a
measure of certainty of the prediction; αmin closest to 0
represents links whose flow directions are more aligned
with at least one of the known connected links. A thresh-
old (ωang) may thus be set on αmin to specify the max-
imum level of direction change allowed before setting
the unknown link’s direction.

– SDEM: synthetic DEM (deltas only), Fig. 2e. As dis-
cussed in Sect. 1, DEMs may provide valuable infor-
mation for discerning flow directions but are often too
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Figure 2. Diagrams showing the direction-predicting algorithms (DPAs). Symbology is further explained in Sect. 3.1. (a) Predicting an
unknown parallel link. (b) An example of applying CON to determine the unknown link. (c) Predicting a bridge link with BDG. (d) Using
the minimum direction change MDC for predicting the unknown link. (e) A synthetic DEM (SDEM) for the Mackenzie Delta is shown with
blue outlets and red inlets. (f) A centerline mesh is shown for the Brahmaputra River with a yellow centerline to demonstrate VD and VA.
The box denotes the bounds of the zoom view. The unknown link’s endpoints are marked by red points. Dashed lines follow the mesh perpen-
diculars. (g) Main channels found by MC for the Colville Delta are denoted by blue lines. (h) An example of main channel parallels (PMC).
Distances d1 and d2 are defined in Sect. 3.1; MCn refers to the nth main channel node, ordered from upstream to downstream. The dashed
link’s flow direction is initially unknown.

coarse for use with low-sloped delta CNs. SDEM in-
vokes our conceptualization of long-time, steady-state
flow that moves from the apex of a delta to its outlets to
construct a synthetic DEM. This procedure creates inlet
and outlet DEMs separately, designed such that eleva-
tions are higher near inlets and lower near outlets. The
final synthetic DEM is simply the sum of the inlet and
outlet DEMS.

For the outlet DEM, an image of the same size and res-
olution as the input mask is created and filled with val-
ues of 1. To estimate the delta’s shoreline, the convex
hull of the outlet nodes is computed, and the edge of
the convex hull connecting the two most distant out-
let nodes is removed to provide an ordered set of in-
put nodes. Line segments between each input node are
linearly interpolated at 0.1 pixel intervals, and this inter-
polated shoreline is “burned” into the image of 1 values
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by lowering their elevations to 0. A distance transform
(Jones et al., 2001) of the image returns an image in
which each pixel’s value represents its distance to the
nearest shoreline. This image (IDEM,o) is normalized on
the interval [0, 1] according to

IDEM,o =
IDEM,o−

(
IDEM,o

)(
IDEM,o

)
−

(
IDEM,o

) . (2)

The inlet DEM (IDEM,i) is constructed similarly but
with some exceptions. Only inlet nodes whose associ-
ated channel widths are at least 75 % of the widest inlet
channel are considered. Before normalization (Eq. 2),
IDEM,i is inverted via

IDEM,i = (max)
(
IDEM,i

)
− IDEM,i (3)

to ensure that elevations near the inlets are raised rather
than lowered. The final synthetic DEM is simply the
sum of IDEM,o and IDEM,i. The synthetic DEM for the
Mackenzie Delta is shown in Fig. 2e; only one of the
inlet nodes contributed to its IDEM,i.

The slope of each link may be computed by drawing
elevation values from IDEM, and a prediction of a link’s
flow direction can be made. Channels often flow perpen-
dicular to the general flow direction dictated by IDEM,
so predictions made by SDEM may be poor. How-
ever, the magnitudes of a link’s slope and its length
serve as measures of certainty; links may be thresholded
by length (ωlen), slope (ωslope), or both to ensure that
SDEM only sets the longest, steepest links.

– MC: main channels, Fig. 2f. Typically, but with ex-
ceptions, the main channels (i.e., those that transport
the largest discharge) of a braided river or delta CN
are the widest of the CN. This concept originates in
well-studied, quasi-universal hydraulic geometry rela-
tionships of the form W = aQb for width (W ), dis-
charge (Q), and fitted parameters (a, b) (Leopold and
Maddock, 1953; Parker et al., 2007). We impose two
additional constraints to this relationship to define main
channels: they must begin at inlets and end at outlets,
and they tend to follow the most direct path.

Under these conditions, each outlet has a corresponding
“shortest and widest” path from each inlet. This path is
found by creating a weighted graph of the CN, whereby
weights are defined according to

wti = li · ((w)−wi) (4)

for the ith link with length li and widthwi . This weight-
ing scheme results in larger weights for longer and
narrower channels. The shortest paths of the weighted
graph are computed from each inlet to each outlet us-
ing Dijkstra’s method implemented in NetworkX. The

direction of each link along each path may then be pre-
dicted according to the ordered list of nodes returned.
A CN may contain multiple main channels; if a link’s
direction has already been predicted by a main channel,
it is not re-predicted by other main channels that share
it. Therefore, in rare cases in which two main channels
might predict opposite flow directions for a link, the link
is predicted by only the flow direction of the first. No
uncertainty measurements are made for MC.

– VD: valley line distance (braided rivers only), Fig. 2g.
Rivers typically flow through corridors of some sort,
referred to here as valleys. Valleys feature the lowest
elevations in a landscape and contain river floodplains.
Multi-scale analyses of river valleys indicate that signif-
icant information about the local (link) scale is shared
with the valley scale (Gutierrez and Abad, 2014; Ver-
meulen et al., 2016). VD attempts to impart flow direc-
tion information from the river valley scale to the link
scale.

A river corridor centerline is created by filling the holes
in the CN mask, skeletonizing it, and smoothing. A
mesh is generated over the CN by drawing perpen-
dicular line segments along the centerline. This mesh-
generation technique was introduced by Schwenk et
al. (2017) and adapted to a Python implementation here.
Knowledge of the inlet and outlet node locations allows
for an ordering of the polygons and perpendiculars com-
prising the mesh.

A prediction for each link is made by finding the
two perpendiculars that encompass the link’s endpoints
(dotted white lines, Fig. 2g). The link’s upstream node
is predicted as the one closer to the upstream perpendic-
ular. Similarly to deltas, channels of a braided river may
flow approximately perpendicularly to the centerline,
resulting in an uncertain prediction. To account for the
certainty of VD, the number of perpendiculars required
to encompass a link (Nperps) is also computed. Links
passing through more perpendiculars carry a greater
prediction certainty, and a threshold (ωperps) may be
applied to predict only the most certain links.

– VA: centerline angle (braided rivers only), Fig. 2g. The
logic behind VA exactly follows that of VD, but in-
stead of considering down-valley distance, we consider
the local angle of the valley centerline. Flow direction
can be predicted by comparing a link’s angles with the
nearby centerline angle. The endpoints of the link are
mapped to the nearest perpendicular, and the centerline
angle between these two perpendiculars (αcl) is com-
puted (Fig. 2g). The angles of the link computed from
the vector defined by its endpoints (α0) and its 180◦

rotated version (α1) are also computed. The link’s di-
rection is predicted as the orientation whose angle is
closest to αcl. The difference between αcl and the closer
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of α0 and α1 provides a measure of certainty of VA, with
smaller differences corresponding to higher certainties.
This difference may be thresholded (ωcla) to specify the
level of parallelism between the link and the valley cen-
terline required to make a prediction.

3.1.3 Heuristic DPAs

– SP: shortest path. SP stemmed from the observation that
in most cases in which flow direction is unknown, the
true flow path corresponded to the shortest distance to
its outlet. The SP implementation is identical to MC
except the links are unweighted. In cases in which the
shortest path between inlets and outlets results in oppo-
site predictions of flow direction for a link, the mode is
selected as the prediction. SP may fail when the macro-
morphology of the CN, e.g., the change in the Brahma-
putra valley direction from west to south (Fig. 1), im-
poses a low-frequency direction change.

– PMC: parallel to main channel, Fig. 2h. Similarly to
how VA and VD transfer information from the valley
line to predict individual links, the links of main chan-
nels contain information on local flow directions that
may be exploited to predict nearby, approximately par-
allel links whose flow directions are unknown. For each
link that is not part of a main channel, the nearest (Eu-
clidean distance) main channel node is found. Each of
the endpoint nodes of the unknown link is mapped to its
nearest main channel nodes (for example, d1 and d2 in
Fig. 2h). If the endpoint nodes map to the same main
channel node, no prediction can be made for the link.
In all other cases, a prediction can be made that aligns
the flow direction of the unknown link with the main
channel nodes to which its end nodes were mapped.
The strength of this prediction (ωnodes) is captured by
the difference of mapped-to-node positions along the
main channel. In Fig. 2h, for example, this number is 1
(ωnodes =MC2−MC1).

– MMA: multiple methods agree. If DPAs disagree about
the flow direction of a link, MMA simply chooses the
most common prediction. A minimum number of agree-
ing DPAs may be enforced (ωagree) to ensure greater
certainty of the predictions made by MMA.

3.2 Recipes for deltas and braided rivers

DPAs provide a number of tools for predicting flow direc-
tions, and they may be assembled into “recipes” designed to
set flow directions for all links in a CN. Morphologic vari-
ability across our study deltas and braided rivers prevented
the design of a “one size fits all” recipe, so we designed
both a delta recipe (DR) and a braided river recipe (BR). The
arrangement of and thresholds applied to the DPAs used to

construct each recipe are detailed in Fig. 3; here, the guiding
design principles are discussed.

DPAs provide predictions of some link directions, and
each prediction has an associated uncertainty. Only IO,
CON, PAR, and BDG are fully deterministic (i.e., not reliant
on thresholding), while all other DPAs provide predictions
based on some degree of thresholding. Because some DPAs
are only effective when some links’ directions are already
known (i.e., MDC and MAA), a recipe must be designed that
sets links iteratively rather than all at once. Setting links it-
eratively is disadvantageous because an improperly set link
direction may “infect” nearby links (i.e., cause them to be
improperly set), and the infection may spread throughout the
network. However, an iterative approach also allows links to
be set from most certain to least, minimizing the likelihood
of an infection.

Most DPAs provide a metric of uncertainty in addition to
their prediction. By applying thresholds (ω) to these metrics,
directions may be set for only a DPA’s most certain links
rather than applying the DPA to all links. For example, for
SDEM, longer and steeper links are more certain, so the first
call to SDEM in the DR is only applied to links that are in the
upper 25th and upper 50th percentiles for length and slope,
respectively (i.e., ωlen = 25 % and ωslope = 50 %). Thresh-
olds for DPAs also include ωang (MDC), ωnodes (PMC),
ωagree (MAA), ωn_perps (VD), and ωcl_ang (VA). For the
angle-based thresholds, smaller values correspond to higher
certainty and conversely for the non-angle-based thresholds.
The meaning of these thresholds was described in detail in
Sect. 3.1.

The most certain non-exact DPAs are those containing in-
formation on the general flow direction – SDEM for deltas
and VD and VA for braided rivers. These are applied second,
following the exact DPAs. Continuity (CON) is not explicitly
shown in the recipes (Fig. 3), but whenever a link’s direc-
tion is set, all its connected links are attempted to be set by
CON. Each time MDC is applied, the threshold ωang is ap-
plied in equally spaced intervals of 10 to ensure that the most
certain links are set first. For example, ωang = 1.0 would ap-
ply MDC with ωang = (0.1, 0.2, . . . 1.0). It is possible that
the BR fails to set all link directionality; however, we found
through visual inspection that the flow directions of these un-
set links were ambiguous, and their flow directions are thus
set randomly. Similar links exist in delta CNs, but SDEM is
used to set their directions in the DR. Attempts to fix inter-
nal sources, sinks, and cycles are made at the ends of both
the DR and BR.

3.3 Cycles and continuity

After all link directions of a CN have been set, the resulting
graph may contain interior sources or sinks and/or cycles. A
cycle is a set of directed links and nodes for which a node is
reachable from itself. While it is possible that a real CN may
truly contain a cycle, our conceptualization of a CN as deliv-
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Figure 3. Recipes for setting link flow directions by chaining together DPAs. (a) Delta recipe. (b) Braided river recipe. Continuity (CON) is
not explicitly represented in the diagrams, but it is applied locally after any link’s direction is set. Thresholds (ω) are implemented to ensure
that only the most certain links are set by each DPA and are defined in Sect. 3.1. Each threshold has a different meaning that corresponds to
the particular DPA.

ering all fluxes from its apex(s) to its outlet(s) precludes their
existence in our graphs. Thus, cycles identified in a CN in-
dicate a set of links for which at least one link flows in a
direction opposite of what is desired; in other words, cycles
identify links that should be corrected. Cycles are identified
via the NetworkX method simple_cycles(). Sources and sinks
are identified by ensuring that for all interior nodes (i.e., not
inlets or outlets), at least one link departs the node and one
link enters it.

If an interior source or sink is present in a CN, a “fix” is
attempted. Its goals are to flip the directionality of a single
link so that (a) the source or sink is no longer present, (b) the
flipped link does not create another source or sink, and (c) the
flipped link does not create a cycle. To fix the source or sink,
each link connected to the source or sink node is flipped and
continuity is reevaluated. If the link violates continuity post-
flip, it is discarded from consideration. For each of the flipped
links that did not violate continuity, if flipping its direction
creates a cycle, it is also discarded. If more than one link
meets these criteria, the shortest link is selected as the one to

be fixed (flipped), as DPAs are generally more certain about
longer links.

Cycles may be more complicated to fix automatically be-
cause there is no upper bound on the number of links they
may contain. In practice, cycles typically contained fewer
than∼ 10 links, so an automated cycle fix was implemented.
This procedure simply unsets all the directions of links in a
cycle, with the exception of directions that were set via IO,
MC, BDG, SDEM, VD, or VA. The unset links are then re-
set according only to MDC, beginning with the most certain
angles (lowest ωang) and longest links. After all links have
been reset, a check ensures the cycle has been resolved. If
the cycle persists, the same procedure is repeated except the
directions of the cycle links plus all links connected to the cy-
cle are initially unset. If the cycle still remains unfixed, links
are returned to their original directions and the cycle is noted
for manual inspection.
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Figure 4. Flow directions for each channel network. The Brahmaputra and Indus rivers are cropped for improved visibility. White arrows
denote the general flow direction for each CN.

3.4 Validating flow directions

In the absence of data for all links of all CNs that would
allow for a deterministic evaluation of each link’s flow direc-
tion, we created a validation database of link directions set
according to the judgements of a delta and a braided river
expert. For each CN, at least 10 % of the total number of
links were randomly selected, and their directions were de-
termined manually by the experts using only the same in-
formation available to the recipes, i.e., the channel network
mask and its graph. Each of the selected link IDs were stored
along with the expert best judgement of the corresponding
upstream node ID. We note that the recipes were developed
prior to the development of this validation database. Each
disagreement between the expert and the recipe-predicted
link direction was investigated, and we also counted the num-
ber of expert errors either due to mistaken data entry or obvi-
ously incorrect judgement; expert errors were less than 4 %

across all individual CNs with an average of 1.7 % for all
sampled links (Table 1).

4 Results and discussion

4.1 Overall accuracy of the recipes

Overall, we found 97.0 % and 98.2 % agreement between ex-
pert judgement and links set according to the DR and BR, re-
spectively. Henceforth, we consider expert judgement to be
“the truth” and refer to disagreements as errors, although the
expert judgements were also subject to mistakes (Sect. 3.4,
Table 1). No errors were found within four of the seven
delta CNs, with the Niger CN having the highest error
rate (9.5%), followed by the Mackenzie (5.3 %) and Lena
(3.4 %) CNs. The BR performed similarly for both braided
river CNs, with errors of 2.3 % and 2.2 % for the Brahmapu-
tra and Indus CNs, respectively. No CNs contained internal
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Table 1. Channel network properties and errors of the recipes. The percent of links compared is the fraction of total links for each CN. The
disagreement and expert error percentages are fractions of the links compared.

CN Links Cycles Cycles Links Disagree Expert
fixed compared (%) errors

(%) (%)

Colville 256 0 0 30 (11.7) 0 (0.0) 0
Kolyma 421 0 0 49 (11.6) 0 (0.0) 0
Lena 4592 4 3 467 (10.2) 15 (3.2) 2 (0.4)
Mackenzie 1158 1 1 119 (10.3) 6 (5.3) 2 (1.7)
Niger 365 0 0 42 (11.5) 4 (9.5) 1 (2.4)
Yenisei 685 0 0 69 (10.1) 0 (0.0) 0
Yukon 750 1 1 80 (16.6) 0 (0.0) 2 (2.5)
Brahmaputra 6446 5 4 667 (10.3) 11 (1.6) 13 (1.9)
Indus 2103 0 0 308 (14.6) 6 (1.9) 11 (3.6)

sinks or sources, but four out of nine CNs did contain cycles.
Of these, only a single cycle was not automatically resolvable
for the Lena and Brahmaputra CNs.

4.2 Erroneous links

Each of the 42 identified links that were erroneously set by
our recipes was inspected to identify where and how DPAs
are likely to fail. Due to the iterative nature of the recipes,
erroneous links set early in a recipe are more likely to in-
fect neighboring links, and we found that erroneous links
were rarely isolated but occurred in clusters. Because of this,
evaluating the accuracy of a particular DPA requires deeper
investigation than simply counting the number of erroneous
links set by that particular DPA. For example, if MC erro-
neously sets a link, MDC may use the local flow direction of
the mis-set link to erroneously set further links.

The following subsections describe sources of errors, in-
cluding the most common error (Sect. 4.3.1) and mor-
phologic properties of the Lena (Sect. 4.3.2) and Niger
(Sect. 4.3.3) CNs that were problematic for our recipes.
These subsections explain 29 out of 42 of the identified er-
roneous links. Of the 13 remaining errors, PMC was respon-
sible for 2, MAA was responsible for 1, and MDC was re-
sponsible for 10. We note that not all erroneous links were
identified in the CNs as we only tested >=10 % of the total
links in each CN. However, because errors tended to occur
in clusters and links were randomly sampled for testing, it is
likely that we captured all the major sources of errors.

4.2.1 Ambiguous links

A total of 16 of the 42 link direction errors were attributable
to ambiguous links for which morphology alone cannot pro-
vide certainty of flow direction. Generally, ambiguous links
flow perpendicularly to the local (or overall) flow direction
(Fig. 5a–d). Flow directions through ambiguous links can
reasonably be argued to go both directions, and in many

cases bidirectional flow may be reality (e.g., Fig. 5a). In these
cases, MDC cannot be applied with certainty due to the high
junction angles, nor can SDEM be applied with certainty be-
cause ambiguous links are typically short and not parallel to
the main flow direction. MAA, which employs shortest-path
methods, sets many of these links, but we found the shortest
path to be unreliable for CNs with large-scale morphologic
variability, e.g., the ∼ 90◦ bend in the Brahmaputra CN. In
the case of Fig. 5c, neither VA nor VD could set the erro-
neous links because of their perpendicular orientation with
respect to the centerline. Figure 5d shows an unusual am-
biguous link created by the formation of an oxbow lake; the
expert judgement was based on the flow direction before the
oxbow lake was cut off from the main channel, but the mod-
ern topology suggests that flow could travel in the opposite
direction. We were unable to design DPAs that set ambigu-
ous links with certainty; however, ambiguous links were the
last ones (i.e., least certain) to be set by our recipes, which
limited the influence that their potentially erroneous flow di-
rections propagated to other links in the network. Although
not strictly true, ambiguous links typically play unimportant
roles in overall CN routing.

4.2.2 The Niger CN

At 9.5 %, the Niger CN contained the highest fraction of er-
roneous links (Table 1). However, we found that all four erro-
neous links shared the same source of error. The Niger Delta
features a number of tidal channels that are typically wider
at their outlets and eventually fade away toward the delta’s
apex. Some of these tidal channels are connected to the CN,
while others terminate on the delta plain without a surface
connection (Fig. 5e). The erroneous links of the Niger were
feeder links from the main CN to a tidal channel that, while
connected, likely receives very little flow from the main sub-
network. In other words, fluxes to the outlet of this tidal chan-
nel should originate at the tidal channel inlets, but these inlets
were not considered to be inlets of the CN. Their absence re-
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Figure 5. Errors of the recipes. (a–d) Ambiguous links that were erroneously set for the Mackenzie (a, d), Indus (b), and Brahmapu-
tra (c) CNs. (e) The Niger CN features tidal channels whose inlets were not considered. A main channel is shown to an outlet node that
should be fed by the missing inlets. (f) A problematic main channel (white) is shown for the Lena CN. A zoom view of the shaded area is
shown in (g). (h) Synthetic DEM for the Lena CN with a ridge of the synthetic DEM marked.

sulted necessarily in a main channel from the CN inlet to the
tidal channel outlet, which in turn forced flows rightward to-
wards the tidal channel and resulted in erroneous links. We
verified that placing a single inlet at the source of the tidal
channel resolved these erroneous links, resulting in a 0 % er-
ror for the tested links of the Niger CN.

4.2.3 The Lena CN

The Lena CN had a total of 15 identified erroneous links and
an unresolved cycle. Nine of these links and the cycle are at-
tributed to the Lena CN’s unusual structure. The Lena CN
features two clusters of outlets; a long, continuous shoreline
on its upper right side contains the majority of the outlets,
but a separate subnetwork delivers fluxes to the left side (di-

rections with respect to the orientation in Fig. 5f–h). Fluxes
entering its inlet node are either immediately routed to the
left subnetwork or flow upwards to a pseudo-apex (Fig. 5f).
While the majority of flow through the pseudo-apex heads
toward the right shoreline, some is routed through smaller
channels to the left shoreline. Recall that MC finds the short-
est, widest path from inlets to outlets as a main channel. The
main channel from the inlet to the outlet denoted in Fig. 5f
is incorrect, as flow to that outlet node should travel through
the pseudo-apex. However, because of the narrowness of the
channels connecting the pseudo-apex to the outlet, the short-
est, widest path bypasses the pseudo-apex and flow to the
outlet approaches from the wrong side. MC thus erroneously
sets a number of links, including one particularly critical link
(Fig. 5g). This link is critical because it bridges two sub-
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Figure 6. DPA effectiveness. (a) Fraction of links set by each DPA for each study CN. DPAs are defined as follows. VAD – valley angle and
distance, VA – valley angle, VD – valley distance, MAA – multiple DPAs agree, SDEM – synthetic DEM, MDC – minimize direction change,
BDG – bridge links, MC – main channels, PMC – parallels to main channels, CON – continuity, and IO – inlet/outlet links. (b) Fraction of
each DPA for all CNs; red (and blue) bars sum to 1.

networks; incorrectly setting its flow direction prevents flow
from the upper subnetwork from reaching the leftmost out-
lets. As MC is applied early in the DR, its incorrect direction
more readily infects nearby links as evidenced by the numer-
ous erroneous links surrounding it. Its incorrect direction also
created the unresolvable cycle in the Lena; this cycle was not
present when we preset the critical link to the correct flow
direction and then applied the DR.

A total of 4 of the Lena CN’s 15 identified erroneous links
were attributable to the difficulty of creating a representa-
tive synthetic DEM. Elevations in the synthetic DEM are
proportional to their distance from the outlet nodes and in-
versely proportional to the distance from the inlet nodes; this
scheme created a ridge in the synthetic DEM (Fig. 5h) that
divided the inlet subnetwork from the rest of the delta, effec-
tively forcing the links of the inlet subnetwork to flow uphill
and resulting in the four erroneous links. Because elevations
near the inlet are raised, the slopes of the inlet subnetwork
links were relatively smaller, allowing the DR to pass over
them (i.e., not set their directions) in the early stages of the
recipe. Other DPAs were thus employed to set the vast ma-
jority of the inlet subnetwork links, preventing the ridge from
adversely affecting their directions. Interestingly, the end of
the ridge coincides with the location of the pseudo-apex due
to the radial layout of the Lena’s outlets.

4.3 Effectiveness of DPAs

Channel networks can exhibit a wide range of morphologic
variability but also contain consistent features that may be
exploited by various DPAs. In order to understand which
features are more universally consistent, we measured the
effectiveness of a DPA by the fraction of a CN’s links it
sets (Fig. 6). Morphologically, delta and braided river CNs
have three key differences exploitable to predict flow direc-

tions through their links. First, deltas typically have more
outlets than braided rivers. IO reflects this difference; 5 %
of delta CN links were set by IO compared with < 1 % for
braided rivers (Fig. 6). SDEM also takes advantage of the
additional outlets of delta CNs to construct the synthetic
DEM, accounting for setting 10 % of delta CN link direc-
tions. MC best exploits the delta CNs’ relatively numer-
ous outlets as it finds a “main channel” from each inlet to
each outlet (25 % set, Fig. 6b). However, we found MC un-
successful for braided river CNs because link widths were
too similar to confidently define a main channel, highlight-
ing the second morphologic difference between delta and
braided river CNs: the tendency for delta main channels to
be wider relative to the full width distribution and thus more
certainly identified. The average coefficient of variation of
link widths reflects this: 1.05 for delta CNs compared with
0.83 for braided river CNs. Finally, the third exploitable mor-
phologic difference between braided rivers and deltas, ev-
ident from Fig. 1, is the relatively elongated and confined
domain occupied by braided rivers compared with the radial
shape of most deltas. The confinement of braided rivers to
a relatively narrow band permits a meaningful centerline to
be resolved, which we exploited through VD, VA, and VAD.
These three DPAs accounted for setting 54 % of link direc-
tions in the braided river CNs (Fig. 6b).

Across all CNs, more than half of all links were set by
MDC (33 %) and CON (27 %) (Fig. 6b). Thus, 60 % of all
links were set with only local flow direction information,
highlighting the importance of the accuracy of other DPAs.
The basis for developing MDC lies in theoretical and empiri-
cal observations that indicate that channel bifurcation angles
tend to deviate an average of ∼ 36◦ with respect to the up-
stream channel direction for both river (Devauchelle et al.,
2012) and delta (Coffey and Shaw, 2017) CNs. However, the
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distribution of bifurcation angles may be quite broad and out-
liers are not uncommon. MDC was thus applied iteratively
and thresholded to be applied only to the links nearest the
mean of the bifurcation angle distribution. Despite this itera-
tive approach, MDC was responsible for the greatest propor-
tion of erroneous links, highlighting the spread around the
cited ∼ 36◦ average. Nevertheless, the similarity of the ef-
fectiveness of MDC across both delta and braided river CNs
(Fig. 6b) suggests similar local processes at work to form
and maintain channel bifurcations in both deltas and braided
rivers. Although deltas and braided river CNs are shaped by
shared fundamental processes of fluvial erosion and sediment
transport, deltas are subject to additional processes includ-
ing tides, waves, coastal currents, sea level rise, and subsi-
dence that result in more topologic and morphologic com-
plexity. This complexity was reflected in the construction of
our recipes, which may be considered the minimum number
of rules required to accurately predict all flow directions in
a CN. The DR required 15 DPA applications compared with
the BR’s 7.

DPAs showed fairly consistent effectiveness across the
delta and braided river CNs (Fig. 6a). As expected, MC and
IO were more effective for delta CNs with many outlets
and fewer links (Colville, Kolyma, and Yukon). CON was
relatively more effective and MDC less effective for the
Niger CN than the other deltaic CNs, reflecting its smaller
proportion of laterally flowing (relative to the general flow
direction) links. The braided river CNs, on the other hand,
feature numerous laterally flowing links, and the higher ef-
fectiveness of CON and MDC relative to the delta CNs re-
flects this morphologic difference in CNs. Interestingly, al-
most no bridge links were present in the braided river CNs,
while 3 % of delta CN links were set by BDG.

4.4 Improvements and speed

With an overall accuracy of 97.7 %, our recipes can provide
a suitable starting point for resolving flow directions in all
links of delta and braided river CNs. However, some appli-
cations (e.g., flux routing) may require complete accuracy. In
these cases, perhaps the simplest and most effective method
to improve accuracy is to pre-seed the CN with known flow
directions. This may be done prior to the initial application of
a recipe or in an iterative fashion by identifying critical, erro-
neous links after the recipe’s application. For example, when
the correct flow direction was assigned to the critical link of
the Lena (Fig. 5g) before applying the recipe, 20 erroneous
links and the unresolvable cycle did not occur. Fully speci-
fying all inlet and outlet nodes is also important to improve
accuracy, as evidenced by the elimination of all erroneous
links from the Niger by adding a single inlet. The flexibil-
ity of the recipes allows for the easy implementation of other
DPAs that can be designed to exploit other morphologic CN
properties and improve overall recipe performance.

MDC was responsible for the greatest proportion of er-
roneous links. Our implementation considered only the link
endpoint locations to compute flow direction vectors, but in
the case of longer links, this approach may fail. An alterna-
tive and potential improvement might consider only the lo-
cal link directions (i.e., the pixels of the link closest to the
node), although we found this approach challenging to im-
plement. Often the near-node segments of links do not rep-
resent a link’s actual direction, especially for narrower links
connected to wider ones.

In our Python implementation, runtimes for the unparal-
lelized recipes were on the order of 1 s on a typical desktop
machine. However, depending on the size and resolution of
the underlying mask, the image processing techniques to cre-
ate the synthetic DEM for delta CNs and the centerline mesh
for braided river CNs can require tens of seconds. These pro-
cesses must only be run once, though, allowing for the rapid
development and testing of other DPAs and recipes.

5 Conclusions

This work presents a framework for building algorithmic
recipes to automatically and objectively set the steady-state
flow directions in all links of a channel network (CN) graph
using only a binary mask of the channel network. A total
of 12 direction-predicting algorithms (DPAs) were presented
that exploit the morphologic and topologic features of a CN
to predict the direction of flow within links. By chaining
DPAs together, we created recipes for delta CNs and braided
river CNs that set all flow directions within the CN.

Knowing only the channel network mask and the locations
of inlets and outlets, our recipes for setting link directions
agreed with expert opinion for 97 % (delta CNs) and 98 %
(braided river CNs) of links analyzed. An analysis of the
links that disagreed showed that special attention must be
taken to design recipes for CNs with unusual morphologic
features. We also found that CNs may contain critical links
that, if set incorrectly, may result in many other mis-set links
and cycles in the CN. However, pre-seeding the CN with the
correct directions of critical links effectively “cures” such in-
fections.

Even across the wide range of delta morphologies we ex-
amined, only a handful of DPAs were required to set the
vast majority of links of the CNs. Locally minimizing the
change in flow direction between links and enforcing con-
tinuity were sufficient to set 60 % of link flow directions
in both delta and braided river CNs. Most of the remain-
ing 40 % were set by incorporating information from the
macroscale CN by identifying main channels, constructing
a synthetic DEM (deltas), or leveraging an along-centerline
mesh (braided rivers). The effectiveness of MDC for both
deltas and braided rivers points toward the dominant expres-
sion of process–form relationships in fluvial systems under
a range of environmental conditions. This expression was
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present but more obscure in delta CNs that are affected by
tidal processes.

Although we analyzed large CNs whose masks originated
from 30 m resolution Landsat imagery, our recipes are gen-
erally applicable to CNs of any scale. The accuracy of our
delta recipe across a broad range of delta morphologies sug-
gests a robustness to delta CN forms and suggests that our
recipes are applicable to experimental and modeled CNs as
well. However, globally, CNs exhibit a wider range of mor-
phologies and topologies than we captured in our test set.
If our recipes perform poorly on other CNs, their flexibil-
ity and adaptability allow for modification to rearrange the
order of DPA application, change the DPA thresholds, or in-
corporate new DPAs. Relative to deltas, braided rivers exhibit
less macro-morphologic variability, so we expect the braided
river recipe to be more generally applicable. Our framework
is also applicable to other networks and network-based mod-
els wherein directionality is crucial to understand transport,
such as in the vascular systems of plants and animals, trans-
portation systems, and utility grids, although application-
specific DPAs may need to be developed for these systems.

Code and data availability. The algorithms and recipes detailed
here are being implemented into RivGraph (Schwenk et al., 2018),
a Python package for analyzing the morphologies and topologies of
channel networks. An unofficial release of this code can be found at:
https://doi.org/10.5281/zenodo.3661473 (Schwenk, 2019). Georef-
erenced binary channel masks, distance transforms, link direction
geotiffs, and shapefiles of each channel network’s directed links and
nodes are provided in the Supplement.

Supplement. The supplement related to this article is available
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