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Abstract. Forested, gravel-bed streams possess complex channel morphologies which are difficult to objec-
tively characterize. The spatial scale necessary to adequately capture variability in these streams is often unclear,
as channels are governed by irregularly spaced features and episodic processes. This issue is compounded by the
high cost and time-consuming nature of field surveys in these complex fluvial environments. In larger streams,
remotely piloted aircraft (RPA) have proven to be effective tools for characterizing channels at high resolutions
over large spatial extents, but to date their use in small, forested streams with closed forest canopies has been
limited. This paper seeks to demonstrate an effective method for classifying channel morphological units in
small, forested streams and for providing information on the spatial scale necessary to capture the dominant
spatial morphological variability of these channels. This goal was achieved using easily extractable data from
close-range RPA imagery collected under the forest canopy (flying height of 5–15 m above ground level; ma.g.l.)
in a small (width of 10–15 m) stream along its 3 km of salmon-bearing channel. First, the accuracy and cover-
age of RPA for extracting channel data were investigated through a subcanopy survey. From these survey data,
relevant cross-sectional variables (hydraulic radius, sediment texture, and channel slope) were extracted from
high-resolution point clouds and digital elevation models (DEMs) of the channel and used to characterize chan-
nel unit morphology using a principal component analysis-clustering (PCA-clustering) technique. Finally, the
length scale required to capture dominant morphological variability was investigated from an analysis of mor-
phological diversity along the channel. The results demonstrate that subcanopy RPA surveys provide a viable
alternative to traditional ground-based survey approaches for mapping morphological units, with 87 % cover-
age of the main channel stream bed achieved. The PCA-clustering analysis provided a comparatively objective
means of classifying channel unit morphology with a correct classification rate of 85 %. An analysis of the mor-
phological diversity along the surveyed channel indicates that reaches of at least 15 bankfull width equivalents
are required to capture the channel’s dominant morphological heterogeneity. Altogether, the results provide a
precedent for using RPA to characterize the morphology and diversity of forested streams under dense canopies.
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1 Introduction

Channel morphological units such as pools and riffles con-
stitute the building blocks of reach-scale channel morpholo-
gies (Buffington and Montgomery, 2013), with spatial vari-
ability in these units providing critical habitat diversity. As
a result, characterization of morphological units is a goal
of many habitat-based classification schemes (e.g. Hawkins
et al., 1993). Morphological unit classification may be par-
ticularly important in forested, gravel-bed streams, where
episodic and transient geomorphological processes (Pryor
et al., 2011; Wohl and Brian, 2015; Hassan et al., 2019) can
lead to a high degree of channel complexity even within a
relatively homogeneous channel type (Madej, 1999; Nelson
et al., 2010; Gartner et al., 2015). Within these streams, clas-
sification schemes can serve an important role in facilitating
discussions on stream management (Buffington and Mont-
gomery, 2013). This is evident in the array of classification
schemes proposed to characterize channel types and morpho-
logical units for both geomorphologists and ecologists alike
(e.g. Hawkins et al., 1993; Rosgen, 1994; Montgomery and
Buffington, 1997; Brierly and Fryirs, 2005). A common chal-
lenge of these classification approaches, however, is their de-
scriptive nature (Buffington and Montgomery, 2013; Hassan
et al., 2017) and that their implementation can be subjective,
differing between classifiers.

Challenges in objectively classifying morphological units
are further compounded by difficulties in determining the ap-
propriate spatial extent for capturing the primary structural
variability that influences geomorphological and ecological
processes at the reach or basin scale. While approaches are
often taken to select “representative sites” when the charac-
terization of channel variables is necessary (Harrelson et al.,
1994; Bisson et al., 2006), site selection is often based on a
narrow subset of metrics (e.g. gradient; see Montgomery and
Buffington, 1998) and “rules of thumb” are frequently used
to define the spatial extent of the surveyed area (Bisson et al.,
2006). Furthermore, traditional survey techniques often limit
classification to short, accessible channel areas due to time
and cost constraints, and these limitations may bias our un-
derstanding of the larger river network as a result of missing
important channel areas and processes (Fausch et al., 2002;
Hugue et al., 2016). Given the logistical difficulty and cost
of undertaking field surveys in small, forested, gravel-bed
streams, a more precise approach for site selection and ob-
jective technique for classifying morphological units is war-
ranted.

Traditionally, characterization and classification of chan-
nels through field surveys has required the use of a vari-
ety of GPS-based tools and linear-survey methods involv-
ing automatic levels, theodolites, and total stations (e.g. Ban-
gen et al., 2014; Reid et al., 2019). However, advances in
our understanding of connections between geomorphologi-
cal, hydrological, and ecological processes across the river-
scape require a new approach for fluvial characterization

that can capture many variables concurrently and be con-
ducted at scales relevant to key processes and their inter-
actions (Beechie et al., 2010). These spatial scales are of-
ten intermediate in length (on the order of kilometres), do-
mains over which continuous, high-resolution characteriza-
tion of channel conditions has traditionally been a challenge
due to the time and cost constraints of ground-based survey
methods (Fausch et al., 2002). Over the past decade, the use
of remotely piloted aircraft (RPA) has helped overcome this
challenge through the collection of high-resolution imagery
over a range of scales for evaluation of stream bed topog-
raphy (e.g. Tamminga et al., 2015; Woodget and Austrums,
2017), bathymetry (e.g. Kasvi et al., 2019), and ecologi-
cal parameters (e.g. Roncoroni and Lane, 2019). However,
much of this work has been limited to larger systems, where
the forest canopy has a limited impact on obstructing view
of the channel. By contrast, smaller streams can be more
prone to an obstructed view of the channel from dense forest
canopies. Given the importance of in-stream wood for chan-
nel structure and function, particularly in smaller systems
(Hassan et al., 2019), we consider the classification by Has-
san et al. (2005) for small to intermediate streams in the Pa-
cific Northwest as those where the ratio between wood length
to bankfull channel width is close to or greater than 1 and
the ratio between wood piece diameter and bankfull depth
is close to or greater than 1 (see Table 2 of the paper for
more details). Streams on the intermediate side of this spec-
trum, where the ratio between bankfull channel width and
wood length is close to 1 differ from larger systems as they
can be greatly influenced by wood delivered to the channel
(Wohl and Scott, 2017). These channels are often overlain
by dense forest canopies and are poorly suited to observation
from above the forest canopy. This limitation has historically
excluded a large fraction of river network length from RPA-
based surveys.

The primary objective of this paper is to develop and
test a methodology based upon spatially continuous RPA-
derived data in order to objectively classify morpholog-
ical units and characterize scales of variability in small,
forested rivers under dense forest canopies. The variables
considered for the classification include channel slope, wa-
ter depth, and grain size characteristics, all of which reflect
larger basin-scale controls on channel morphology (Buffin-
gton and Woodsmith, 2003) and are easily extractable from
RPA imagery. Channel slope is a key variable to consider,
as it has been shown that there is a general progression of
channel morphologies from pool-riffle, plane-bed, and step-
pool morphologies to cascade morphologies with increasing
slope (Montgomery and Buffington, 1997). Water depth met-
rics are important for discriminating between pool areas and
other shallow water environments. Finally, grain size is a key
variable as there tends to be a coarsening in bed material from
glides and pools to riffles and runs (Garcia et al., 2012). In an
effort to improve the characterization of these channels, we
developed a new framework to map and classify channel at-
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Figure 1. The Carnation Creek watershed, located on the southwest coast of Vancouver Island. The RPA survey extent is shown as a red line.
An additional site (SA1) located in the channel estuary was active until the late 1980s but has since been abandoned and was not included in
this survey. Note that the RPA survey also included coverage of SA9, upstream of the other sites.

tributes through the use of RPA-based data collection under
forest canopies. To build this framework, this paper aims to
address the following research questions:

1. What are the capabilities and limitations of a survey
approach using subcanopy RPA flights to characterize
channel attributes in small, forested streams?

2. Can spatially continuous RPA-derived measurements be
used to objectively characterize patterns in channel mor-
phology?

3. What is the spatial extent of data collection necessary to
capture the primary variability in geomorphic channel
attributes?

To address these questions, a subcanopy RPA survey was
conducted along approximately 3.0 km of a channel in Car-
nation Creek, BC, a small coastal stream located on west-
ern Vancouver Island. This site serves as a valuable testing
area due to the abundance of complementary data available
through annual total station surveys of the channel’s study
sections and longitudinal profile survey data across the chan-
nel’s lower 3.0 km (Tschaplinski and Pike, 2017; Reid et al.,
2019).

2 Study area

This research was conducted along Carnation Creek, a small
gravel-bed river located on the southwest coast of Vancou-
ver Island, BC (Fig. 1). The watershed has been the site of a
long-running fish–forestry interactions study focusing on the
effect of different logging treatments on watershed response
(Tschaplinski and Pike, 2017). The channel mainstem is ap-
proximately 8 km long and has a drainage area of 11.2 km2

(Tschaplinski and Pike, 2017). The focus of research is along
the lowermost 3.0 km of the channel, which possesses a

low gradient (0.5 %–1 %) and is dominated by a pool-riffle
channel morphology. Upstream, the channel narrows into a
canyon (Fig. 1) which contains a predominantly step-pool
morphology and gradient above 5 % (Reid et al., 2019). The
average bankfull width (wb) of the lower channel is close
to 15 m. The channel is located within the Coastal West-
ern Hemlock biogeoclimatic zone, common along coastal re-
gions of the Pacific Northwest (Hartman et al., 1982). Vi-
sual estimates suggest that over 50 % of the channel is hid-
den below a dense forest canopy composed of both conifer-
ous and deciduous tree species. The riparian vegetation con-
sists of a variety of tree species including western hemlock
(Tsuga heterophylla), Amabilis fir (Abies amabilis), western
red cedar (Thuja plicata), Sitka spruce (Picea sitchensis), and
red alder (Alnus rubra). The height of the riparian canopy is
variable, between approximately 15 and 40 m. The riparian
forest floor is composed of a variety of ferns and shrubs, such
as salmonberry (Rubus spectabilis), sword fern (Polystichum
munitum), trailing blackberry (Rubus ursinus), and thimble-
berry (Rubus parviflorus) that may provide some cover to the
channel. The environment is typical of the Pacific Northwest:
precipitation rates are high and dominated by rain (between
2900 and 5000 mmyr−1), the majority of which falls dur-
ing the autumn and winter months (Tschaplinski and Pike,
2017). Streamflow ranges from 0.1 to 64 m3 s−1 in autumn
and winter months (Tschaplinski and Pike, 2017) and is of-
ten very low (< 0.01 m3 s−1) for extended periods in the sum-
mer (Reid et al., 2020). Frequent storms in the winter months
lead to multiple floods per year that are capable of mobiliz-
ing gravel in the system, with bankfull discharge between 20
and 30 m3 s−1 (Haschenburger, 2011).

The processes governing the morphological and hydraulic
conditions in Carnation Creek are irregular in both time and
space, creating a great deal of heterogeneity along the chan-
nel. Sediment is predominantly delivered from episodic land-

https://doi.org/10.5194/esurf-8-913-2020 Earth Surf. Dynam., 8, 913–929, 2020



916 C. Helm et al.: Use of RPA to capture scales of variability in streams

slides and debris flows located in the upstream half of the
watershed, while large logjams intercept delivered material
and lead to spatially variable sediment textures and morpho-
logical features (Reid et al., 2019). The sediment texture of
the bed varies from small gravels near the stream outlet to
coarser cobbles and boulders in the steeper canyon reach but
varies substantially over short distances (Reid et al., 2019).
The bed surface and subsurface sediment textures are simi-
lar, representative of systems that experience comparatively
high sediment supply conditions (Hassan et al., 2006).

Detailed morphological data have been collected through
annual topographic surveys in eight study sections (SA2–9),
seven of which (SA2–8) are located downstream of a canyon
(termed the “canyon reach”; see Fig. 1). The eighth study
section (SA9) is located away from the others, upstream of
the canyon. The lower study sections are 300–500 m apart
and 5–10 wb (50–150 m) in length (Reid et al., 2019).

3 Methods

3.1 Remotely piloted aircraft survey

In July 2018, approximately 3.0 km of channel was surveyed,
with coverage extending from just upstream of the river
mouth to the downstream limit of the canyon reach (Fig. 1),
as well as over most of the SA9 study section. SA9 is farther
upstream and possesses smaller channel dimensions with a
closed canopy that provides cover to the channel and there-
fore serves as a challenging test site to navigate and evalu-
ate the coverage attainable with the RPA. Total survey time
was approximately 12 full days, including flights over SA9.
The RPA survey involved low-level flights (5–15 m above
ground level; ma.g.l.) conducted in tandem with placement
of ground control points (GCPs) on the dry exposed bars and
checkpoints on both the exposed and submerged bed. Flights
were operated manually below the canopy to have an unob-
structed view of the channel bed, and because low-hanging
vegetation and the forest canopy made pre-planned flights
impractical. The flights were undertaken with a DJI Phantom
4 Advanced RPA, a consumer-grade RPA which contains a
camera with a focal length of 8.8 mm (24 mm in 35 mm for-
mat equivalent) and a field of view of 84◦. To obtain suffi-
cient overlap between images, frames were acquired at 2 s
intervals while moving at approximately 1 ms−1 horizontal
velocity.

Due to flight obstacles (low-hanging branches, fallen trees,
etc.), sightline obstructions, RPA battery life, and other prac-
tical survey challenges, the 3.0 km of channel was divided
into roughly 80 segments, covered by 300–1000 photos each.
Each segment was initially flown following flight lines paral-
lel to the channel direction, with imagery collected at 90◦

relative to the bed plane. While this in-flight photography
strategy captured much of the channel, bank areas were of-
ten obstructed from overhead view by low-elevation shrubs,
ferns, and brambles. To capture these obscured channel ar-

eas, each segment was flown with oblique and convergent
imagery. “Oblique imagery” refers to frames captured with a
camera angle differing from bed perpendicular, while “con-
vergent” refers to images capturing the same bed area but
from different approach directions. This approach to image
collection is likely advantageous in streams where riparian
vegetation may prevent the RPA from flying directly over the
bank and has led to improvements in the quality of survey
outcome in several studies (Wackrow and Chandler, 2011;
James and Robson, 2014; Harwin et al., 2015). To collect
this type of imagery, the RPA camera was tilted at a low an-
gle (20–30◦ from the vertical plane; see Fig. 2a) and a flight
path parallel to the banks was taken (see Fig. 2b).

A minimum of 10 GCPs (composed of approximately
0.1 m× 0.1 m ceramic tiles with a central X marking the sur-
veyed location) were placed along dry exposed bars in each
of the 80 channel segments to provide precise image geo-
referencing, with additional tiles positioned on the dry ex-
posed bars and below the water surface in order to serve
as independent checkpoints, to assess the accuracy of the
model outputs. The majority of the GCPs were distributed
in a zig-zag fashion along dry exposed bars in the periph-
ery of the channel segments, with a smaller number situ-
ated towards the centre. This configuration provided a bal-
ance between the suggested distributions of GCPs found in
previously published studies (Harwin et al., 2015; Agüera-
Vega et al., 2016; Tonkin and Midgley, 2016; Sanz-Ablanedo
et al., 2018). All GCPs and checkpoints were surveyed with a
Leica TPS 1100 total station. Open survey traverses were tied
into benchmarks previously established in the study sections,
and then an affine transformation was applied to georefer-
ence the points in the XY plane. The average offset between
the benchmark elevations of the local open traverse and their
known reference elevations were then used to georeference
the points in the Z plane. Errors were typically 0.02 m in the
XY plane and 0.01 m in the Z plane.

3.2 Base data extraction

Channel elevation, bathymetry, and grain size were extracted
from the RPA imagery to aid in the classification of channel
unit morphology. A digital elevation model (DEM) was gen-
erated of the site using the Agisoft PhotoScan Professional
software (AgiSoft, 2017) to generate georeferenced dense
point clouds of each surveyed channel segment. As riparian
vegetation often obstructed parts of the channel bed and in-
troduced errors when digital elevation models are generated
from point clouds (Tamminga et al., 2015), the cloth simu-
lation filter (Zhang et al., 2016) from the open-source Cloud
Compare software (Cloud Compare, 2017) was employed.
This tool inverts the point cloud and generates an interpo-
lated surface analogous to “draping” a simulated cloth over
the ground surface to approximate the terrain of an obscured
area (Zhang et al., 2016). Following visual inspection of the
filtered result, a cloth resolution of 0.1 m and maximum dis-
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Figure 2. (a) Example partial channel cross-section showing the oblique angles of the RPA’s camera (solid black line) for image acquisition
of the banks. To characterize the channel banks, the camera was tilted 20–30◦ from the vertical plane. (b) Plan view of the flight path of the
RPA with the parallel flight lines shown as dashed lines. The outlined circles show the locations of a vertical image, and the arrows show the
horizontal orientation of the camera towards the channel banks for the oblique images described in panel (a).

tance between 0.5 and 1.0 m was found to adequately filter
the bed points. The cloth resolution represents the horizontal
spacing between points in the cloth, whereas the maximum
distance represents the threshold used to classify ground and
non-ground points based on the distance between the original
cloud and cloth.

The elevations of submerged channel bed areas are often
overestimated due to the refractive effect of overlying water
(Dietrich, 2017). To correct for this effect and to develop ac-
curate bathymetry, a corrective Python script developed by
Dietrich (2017) was employed. By determining the distance
from a generated water surface mesh to the estimated bed el-
evations in the point cloud below, the corrected water depth
for a location could be calculated as a function of the multiple
viewing angles used to observe each point. The method re-
quires that the water be clear such that the channel bed can be
captured. The low flow conditions present at the time of the
survey resulted in clear water that permitted viewing of the
channel bed. Removal of overhanging vegetation using the
cloth simulation filter in Cloud Compare, and subsampling
the point clouds and resulting DEMs to a spacing of 0.02 m
using the minimum elevations in the point cloud, helped to
ensure that the refraction correction was based on channel
bed points and not on overhanging vegetation points that may
have been incorporated in the point cloud.

Grain size estimates of the exposed bed were important to
extract from the bed imagery, as patterns in sediment tex-
ture often follow patterns in channel morphology and are
frequently discussed in classification schemes (e.g. Mont-
gomery and Buffington, 1997). Grain size estimates were
acquired by establishing a relationship between the rough-
ness of the point cloud for 22 training sites and their median
grain size (D50) (see method described by Woodget and Aus-
trums, 2017), a metric often of interest to river managers.
Each roughness sampling site was approximately 1 m2 and
imagery was captured for photo-sieving by hovering the RPA
approximately 2 ma.g.l. Using an in-house photo-sieving
program based in MATLAB (Matlab, 2017), the grain size
distribution of each training site was determined. The pro-
gram loads the image, prompts the user to scale the image,
and then overlays a grid with 50 nodes prompting the user to
measure the B axis of grains falling below a grid node. Point
clouds for each sample site were then extracted from the
georeferenced point cloud that was developed for the study
section that they fell within, and a roughness value for each
point was estimated using the roughness tool in Cloud Com-
pare. DEMs were then developed for each roughness site at a
0.02 m resolution and a mean roughness value for each DEM
determined using R. A linear model then was then fit between
each sample’s D50 (Fig. 3) and its mean roughness value. Us-
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Figure 3. Predictive grain size relationships between the median
surface sediment calibre (D50) and the average roughness value of
the training sites as determined from RPA-derived bed surfaces.

ing a 1 m2 moving window (which approximates the size of
the training sites), grain size was then estimated across the
exposed bed as described by Woodget and Austrums (2017).

3.3 Selection of channel variables

To classify the channel along the longitudinal profile, the
thalweg was first identified using the River Bathymetry
Toolkit (RBT), an ArcMap add-in (McKean et al., 2009). The
thalweg was used as a standardized location along which ob-
servations would be extracted at fixed 1 m intervals to pro-
vide a smooth transition in channel unit morphologies. To
characterize patterns in channel unit morphology, five vari-
ables were extracted: the hydraulic radius (Rh), median grain
size (D50), local bed (Sl) and water surface slope (Sws), and
the reach bed slope (Sr). These variables were chosen as they
are straightforward to extract from the data (a key require-
ment for a rapid classification scheme), and because they
reflect larger basin-scale variables relevant to channel form,
such as geology, climate, and land use. To provide a mea-
sure of grain roughness across the channel, the average D50
of the dry exposed bars in a 0.5 m buffer around each sam-
pling location’s cross-section was extracted. The local slopes
of the bed and water surface (extracted from point clouds of
the water surface mesh that were generated from the Diet-
rich, 2017 routine) were calculated for each sampling loca-
tion by fitting a linear model through observations in a 15 m
window around each sample site. This was repeated for the
reach-scale bed slope using a 45 m window. Together, these
variables summarize the channel form (Rh and S) and rough-
ness of each cross-section. Cross-sections where the channel
banks were not discernible (due to channel obstructions or
dense low-lying vegetation) were excluded from the analy-
sis. Exclusion of these cross-sections, along with segments
of the channel the RPA could not access, comprised approx-
imately 25 % of the channel’s thalweg.

3.4 Analysis

Following the extraction of the five channel variables, a prin-
cipal component analysis (PCA) was applied to determine
which variables were important for characterizing channel
unit morphology, and a k-means clustering approach was
then used to classify the PCA results into morphological
units. To implement the PCA and k-means clustering, the
package “stats” in R was employed (R Core Team, 2018).
The general objective of a PCA is to reduce the number of
dimensions in a dataset that contains interrelated variables
while describing the maximum amount of variation present
(Jolliffe, 2002). Because the dataset was multi-dimensional
with five variables over 2362 sampling sites, a PCA was
an appropriate tool to help simplify and extract patterns in
the data, a prerequisite for k-means clustering. The PCA
was run and then three of the five components were retained
for further analysis, which together explained approximately
79.0 % of the variation in the dataset, an appropriate cut-off
according to Jolliffe (2002).

Following the PCA, the k-means clustering algorithm was
run to identify groupings that may have been present in the
dataset along its first three components. A k-means cluster-
ing algorithm is an unsupervised classification that assigns
observations from n dimensions to clusters that allow the
within-cluster sum of squares to be minimized (Hartigan and
Wong, 1979). Following guidelines for the method described
by Flynt and Dean (2016), six clusters were chosen to group
the dataset, a value which is in reasonable agreement with
the number of channel unit morphologies one may expect at
Carnation Creek.

Following clustering of the cross-sectional variables, the
mean values of each channel variable for each cluster were
examined and one of the following morphological units at-
tributed to each cluster: pool, riffle, coarse riffle (riffleC),
glide, run, or plane bed. The units were assigned to clus-
ters based on obvious features (e.g. shallow water slopes and
greater depth for pools, negative pool exit slopes for glides,
and steeper pool entry slopes for runs) and criteria presented
in Church (1992), Anonymous (1996), and Buffington and
Woodsmith (2003). These criteria are described in Table 1.
The resulting assignment of morphologies to clusters leads
to a continuous classification of morphological units found
along the study reach at 1 m intervals and provides insight
into the survey extents necessary to adequately capture the
heterogeneity of the system.

To characterize the diversity of morphological units across
the stream, a moving analysis using the Shannon diversity
index (Shannon and Weaver, 1964) was conducted. This in-
dex provides a measure of the abundance and evenness of a
property in an area (Lloyd and Ghelardi, 1964). While this
index is often calculated with regard to species types in ecol-
ogy, the approach can also be applied to morphological units,
similar to the work of Harris et al. (2009). To calculate in-
dex values, the proportion of each morphological unit in an
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Table 1. Average values for variables from morphological units found in previously published studies.

SChurch SAnon. SBuff. D/dChurch D/dAnon.
Morphology (mm−1)a (mm−1)b (mm−1)c (m)d (m)e

Riffle 0.02 0.005–0.015 0.001–0.02 < 1.0 0.1–0.3
RiffleC – 0.015–0.03 – – 0.3–0.6
Plane bed 0.02–0.04 0.03–0.05 0.01–0.04 ∼ 1 0.6–1.0

a Slope values published from Church (1992). b Slope values published from Anonymous (1996). c Slope
values published from Buffington and Woodsmith (2003). d Relative roughness values published from Church
(1992). e Relative roughness values published from Anonymous (1996).

area is multiplied by the natural logarithm of the proportion.
These values are then summed for all the morphological units
present in an area. In order to apply the method to the Carna-
tion Creek data, the index values are first calculated by iter-
atively dividing the channel into segments based on window
sizes ranging from 15 to 750 m in length (at 15 m intervals).
For each iteration, the abundance of each morphological unit
in each channel segment was determined. Using the “vegan”
package in R, the Shannon diversity index of each channel
segment was then calculated.

To determine the spatial scale required to capture the het-
erogeneity of the channel, diversity metrics were first cal-
culated for each iteration (using an increasing window size
ranging from 1 to 50 wb in length), and then the standard
deviation (SD) of all the diversity values for each iteration
was calculated. For example, for the first iteration, diversity
metrics were calculated across the channel based on 15 m
segments. The SD value was then calculated from all the di-
versity metrics for the iteration. As sample size increases, the
SD of the diversity index from the channel segments would
be expected to tend towards an asymptote. The length scale
required to approach this asymptote can therefore be inter-
preted as the scale beyond which diminishing returns arise in
variability captured.

4 Results

4.1 Accuracy of the RPA survey

The channel-averaged vertical survey error was estimated by
calculating the root-mean-square error (RMSE) and the mean
error (ME) of differences between the elevations of check
points collected with the total station survey and those esti-
mated from the DEMs. The RMSE provides a measure of
the spread of the squared residuals, whereas the ME pro-
vides a measure of any potential positive or negative bias
to the data and is similar to other metrics used to evaluate
RPA survey performance (e.g. Tamminga, 2016). The over-
all spread of this error and summary statistics are illustrated
in Fig. 4. Vertical errors of the exposed bed points were
found to be 0.093 and 0.025 m for the RMSE and ME, re-
spectively (n= 1203), and similar values were obtained for
the submerged bed points (RMSE= 0.11 m, ME= 0.025 m,

Figure 4. Density plot displaying the distribution of vertical er-
rors between the modelled and field-measured elevations. Summary
statistics (RMSE and ME) are provided for both the exposed and
submerged checkpoints.

n= 521). As shown in Fig. 4, the majority of the errors for
the submerged points were close to 0. However, factors such
as shadows from the riparian vegetation and reflections from
the canopy may have influenced the success of the refraction
correction (Dietrich, 2017).

4.2 Coverage with the RPA survey

In order to evaluate the coverage extent obtainable with the
subcanopy RPA survey, the RPA-based results were com-
pared to channel boundaries delineated with a total station in
the eight established study sections (see example in Fig. 5).
When including side channels, which were generally diffi-
cult to access with the RPA due to dense subcanopy vege-
tation, it was possible to capture approximately 80 % of the
delineated study sections, a value which increased to 87 %
when side channels are excluded. When examining individ-
ual study sections that contained side channels, coverage
ranged from a low of 54 % in SA4 to a high of 89 % in SA9.
Generally, narrow (width < 3 m) side channels could not be
effectively surveyed, but oblique imagery was advantageous
in situations where a clear flight path was present alongside
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Figure 5. RPA coverage in comparison to the study section boundaries for SA2–9. Percentages of the study section covered with the
RPA relative to the total station are based on whether the reference boundary included side channels (RPA : S) or just the main channel
(RPA : NS). In-stream large wood (LW) was manually digitized using the DEMs and orthomosaics of the study sections. Pieces of wood
(larger than approximately 0.1 m in diameter and 1 m in length) were digitized individually, whereas log jams were digitized as polygons as
a result of difficulties in identifying individual pieces embedded within jams.

an obscured channel area (Fig. 6). Similarly, bank-top eleva-
tions were difficult to capture in most locations due to un-
derstorey vegetation obscuring the ground surface. The in-
clusion of bathymetric calibration greatly increased the area
over which bed topography could be estimated (Fig. 6).

4.2.1 Principal component analysis, clustering analysis,
and channel classification results

The first three components from the PCA explained approxi-
mately 80 % of the variation in the data, with the first, second,
and third components reflecting 45.11 %, 19.3 %, and 14.6 %
of the variation, respectively. The first component is domi-
nated by Sr, D50, and Sws, the second by Rh, and the third by
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Figure 6. Coverage of a deep pool in SA8 under dense riparian
vegetation. Note that the photo was taken in the autumn prior to the
RPA survey, when the water level was higher than it was during the
RPA survey. Photo courtesy of Iain Reid.

Sl and D50. After running the k-means clustering algorithm
using six groupings on the first three components, these pat-
terns were evident along the axis of the biplot (Fig. 7). For
each cluster, the mean of each variable was calculated and the
likely morphological unit corresponding to the cluster esti-
mated from these values (Table 2). Moving from left to right
along the first dimension (Fig. 7), there is a shift from unit
morphologies with lower bed and water surface slopes and
finer bed sediment to those with steeper gradients and coarser
material. This appears to represent a transition from pool to
riffle unit morphologies along the first component. Overall,
distinctions between most channel attributes arising from the
clustering are clear and lead to relatively unambiguous clas-
sification of morphological units (Table 2). Within the rif-
fle channel unit, the classification also captures a distinction
between riffle unit morphologies with slightly coarser bed
material, defined here as “riffle-coarse” (riffleC; see Anony-
mous, 1996). When examining the second component (y axis
of Fig. 7), hydraulic radius (Rh) decreases from top to bot-
tom, as indicated by the transition from lower-velocity pool
to higher-velocity glide unit morphologies, with remaining
unit morphologies possessing intermediate Rh (Fig. 7).

Pools, riffles, glides and runs are relatively well distributed
along the surveyed length of channel (Fig. 8). However,
plane-bed and coarse-riffle morphological units are mostly
located near the upstream limit of the survey extent in this
region. This area represents the outlet and downstream en-
trance of the canyon reach, where steeper gradients and

Figure 7. Biplot of each observation along the first two principal
components (PC1 and PC2). The groupings from the k-means clus-
tering analysis are colour coded and their centroid outlined.

coarser sediment are found. This is highlighted in Table 2,
which shows that on average these morphological units are
located 3160 m upstream, with steep reach-scale gradients
of 0.042 mm−1 and coarse material with an average D50 of
0.082 m. Similarly, the coarse riffle morphologies were lo-
cated approximately 2980 m upstream on average, with rela-
tively steep gradients and coarse material (reach-scale slope
of 0.024 mm−1 and D50 of 0.067 m). By contrast, the av-
erage positions of the riffle, glide, run, and pool morpholo-
gies were approximately 1500 m, midway along the chan-
nel’s profile, indicating that these morphological units are
distributed over a greater length of channel. Grain size was
generally similar between these morphologies, except for the
riffle unit, which was slightly coarser with a D50 of 0.041 m.
Pools were the deepest, with average water depths of 1.04 m
and near-zero water surface slopes, whereas riffles were the
shallowest with average water depths of 0.13 m and relatively
steep water surface and reach-scale bed slopes. Glides and
runs were intermediate between these morphologies, with
glides often retaining negative local bed slopes, correspond-
ing to the exit of pools, and runs with large positive local bed
slopes, corresponding to the entry of pools.

4.3 Assessment of the channel classification

To assess the accuracy of the clustering algorithm, 100 lo-
cations along the surveyed length of channel were randomly
selected and visually assigned to either glide, pool, run, rif-
fle, riffleC, or plane-bed morphological units. These values
were then compared to the morphological units predicted by
the PCA. A summary of agreement between the PCA and vi-
sual classification approach is shown in Table 3. On average,
85 % of sampled locations received the same morphological
unit assignment between the two approaches, with riffle ar-
eas showing the lowest agreement (72 %) and plane-bed ar-
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Table 2. Means of channel variables for each cluster.

Cluster l (m)a d (m)b Rh (mm−1)c Sl (mm−1)d Sws (mm−1)e Sr (mm−1)f D50 (m)g W (m)h

RiffleC 2980 0.16 0.12 0.018 0.018 0.024 0.067 4.13
Plane bed 3160 0.20 0.14 0.054 0.047 0.042 0.082 3.47
Riffle 1650 0.13 0.090 0.027 0.016 0.012 0.041 3.65
Glide 1470 0.28 0.16 −0.020 0.003 0.003 0.037 4.99
Run 1435 0.61 0.35 0.044 0.005 0.016 0.039 4.94
Pool 1420 1.04 0.60 −0.031 −0.004 0.000 0.037 5.99

a The midpoint of the longitudinal span where the morphological unit occurs. b Thalweg depth. c Hydraulic radius. d Local slope. e Water surface slope.
f Reach-average slope. g Median grain size. h Wetted channel width.

Figure 8. Distribution of morphological units along the surveyed reach of Carnation Creek. At approximately 2500 m upstream, there is a
marked change in channel unit morphologies from pool, riffle, run, and glides to much steeper and shallower channel morphological units.

eas the highest (100 %). Overall, the classification matches
the typical expected progression of channel unit morpholo-
gies in a pool-riffle system, as is shown in Fig. 9. The exit
of the pool is classified as a glide, with negative bed surface
gradients. As gradient increases, we see shallow riffle unit
morphologies that meld into a deeper run at the entry of the
pool (Fig. 9). It is likely that much of the disagreement can
be attributed to “transition” morphologies, which most clas-
sification schemes are unable to capture or define.

Table 3. Accuracy assessment of morphological unit classification
using k-means clustering.

Morphological unit % Correctly classified

RiffleC 78
Riffle 72
Plane bed 100
Glide 97
Run 85
Pool 80

All 85

Earth Surf. Dynam., 8, 913–929, 2020 https://doi.org/10.5194/esurf-8-913-2020



C. Helm et al.: Use of RPA to capture scales of variability in streams 923

Figure 9. Example sequence of morphological units predicted from
the k-means clustering algorithm. The figures show the transition
from riffles to pools in a heterogeneous section of channel over-
laid on (a) a DEM and (b) an orthomosaic. Note the hole at the
downstream pool (b), which is due to overhanging vegetation that
prevented stitching of the orthomosaic for this area. By contrast, in
panel (a), this vegetation was removed using the cloth simulation
filter in Cloud Compare (Zhang et al., 2016), resulting in a clear
DEM of the bed.

5 Discussion

5.1 Utility of subcanopy RPA surveys for small, forested
streams

The results of this study provide a precedent for using RPA to
characterize morphological units in small, forested streams
below the forest canopy. This approach provides several ad-
vantages over traditional ground-based surveys. We have
demonstrated that over 12 field days, nearly 3 km of a small,
forested channel could be surveyed with an estimated cover-
age rate of 80 % (including side channels) at a greater spa-
tial resolution and extent than most traditional ground-based
methods allow. For example, the traditional total station-
based surveys conducted in Carnation Creek typically result

in point densities of 0.5–1.5 points per m−2, with 500–1000
points captured in a normal field day over a 70 m length of
a channel. In contrast, the average data acquisition rate with
the RPA was 225 md−1, more than 3 times the length cov-
erage from the total station approach and at a much higher
resolution. The DEMs and orthomosaics created from these
images were of a very high resolution (0.02 mpx−1) with sur-
vey uncertainty between 0.01 m (for dry areas) and 0.1 m (for
submerged bed areas). This magnitude of error is comparable
to values observed in other studies (e.g. Flener et al., 2013;
Tamminga et al., 2015) and is similar to error achieved using
traditional ground or GPS-based point surveys in the same
channel (Reid et al., 2019).

Oblique imagery appears to provide good coverage of
near-bank areas that are traditionally difficult to capture
with vertical imagery, enabling the characterization of low-
velocity, near-bank channel areas which serve as critical fish
habitat (Bjornn and Reiser, 1991). This additional imagery
is generally straightforward to collect but adds to the RPA
power requirements and also increases survey time as a re-
sult of the need for additional flight passes. However, should
repeat surveys be undertaken, a major reduction in survey
time would be achieved through the installation of permanent
ground control points. New real-time kinematic (RTK) GPS
systems providing centimetre-level accuracy are also becom-
ing available for consumer-grade RPA, though signal atten-
uation through dense trees may reduce survey accuracy and
limit their applicability for subcanopy surveys.

While subcanopy RPA surveys appear promising, certain
environmental conditions and aspects of the survey approach
continue to present limitations. First, the techniques for ex-
tracting the bathymetry may not be suitable for streams with
turbid water that prevent observation of the submerged bed.
While oblique imagery aided in characterization of some
bank areas, low elevation and dense riparian vegetation still
pose a challenge for capturing bank topography in some lo-
cations, information which is necessary should the result-
ing survey be used for hydrodynamic modelling (Cienciala
and Hassan, 2013) or to quantify bank erosion (Reid et al.,
2019). In addition to bank vegetation causing obstructions,
submerged areas with little texture and low-hanging branches
(predominantly from riparian deciduous species) occasion-
ally led to flight difficulties that prevented sufficient collec-
tion of imagery for photo-stitching. Therefore, these tech-
niques may be most suited to small channels in relatively
mature forests that have an open understorey, and flights in
winter months when foliage is absent may prove beneficial.
In certain circumstances, a hybrid survey with both RPA and
total station data could provide complete coverage, even in
locations highly obscured by dense understorey foliage. In
spite of these limitations, however, the subcanopy RPA sur-
vey approach appears to offer substantial improvements over
traditional survey methods.
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Table 4. Comparison of average values for variables of each morphological unit to those found in previously published studies. Values from
this study are indicated in bold.

SChurch SAnon. SBuff. S D/dChurch D/dAnon. D/d

Morphology (mm−1)a (mm−1)b (mm−1)c (mm−1) (m)d (m)e (m)

Riffle 0.02 0.005–0.015 0.001–0.02 0.012 < 1.0 0.1–0.3 0.33
RiffleC – 0.015–0.03 – 0.024 – 0.3–0.6 0.41
Plane bed 0.02–0.04 0.03–0.05 0.01–0.04 0.042 ∼ 1 0.6–1.0 0.42
Glide – – – 0.003 – – 0.13
Run – – – 0.016 – – 0.06

a Slope values published from Church (1992). b Slope values published from Anonymous (1996). c Slope values published from
Buffington and Woodsmith (2003). d Relative roughness values published from Church (1992). e Relative roughness values published
from Anonymous (1996).

5.2 Assessment of the classification approach

The PCA-clustering classification approach appears to
present a viable and less subjective method for evaluat-
ing morphology at the channel unit scale and incorporates
a larger number of key variables than traditional methods.
While some subjectivity remains in the interpretation of the
k-means-derived clusters, examination of the classification
from the PCA-clustering analysis revealed that there was
good agreement between the characteristics of the morpho-
logical units derived from the clustering approach and mor-
phological units identified visually (Table 3), with at least
some remaining disagreement attributable to transition ar-
eas between morphological units. As shown in Table 4, the
mean values of the variables for each assigned morphological
unit are similar to reference values found for the slope, depth
and grain size characteristics of similar channels classed in
a number of other studies. Another advantage of the PCA is
that it highlights the trends present in a dataset, rather than
focusing on specific features. For example, anomalous areas
where imagery may have had stitching issues due to poor
coverage (e.g. SA5 in Fig. 5) would likely appear as noise,
thereby having a minimal influence on the PCA.

Including frequently measured channel metrics in a PCA-
clustering analysis, as was conducted in this study, provides
a sophisticated means not only for relating physical condi-
tions to channel form (as descriptive schemes tend to do)
but for identifying which key variables impact the relation-
ship. Such an analysis may provide a precursory understand-
ing of key variables worthy of investigation in the develop-
ment of process-based classification schemes. A challenge
encountered by many classification schemes is that they often
lack the generality to be applied in environments outside of
those for which they were developed. For example, although
Whiting and Bradley (1993) provided a strong process-based
classification of channel form, it was intended for headwa-
ter channels, limiting its wider applicability (Buffington and
Montgomery, 2013). Similarly, the approach to classifying
channels proposed by Montgomery and Buffington (1997)
has a clear process basis where the channel is partitioned

into source, transport, and deposition zones but was devel-
oped for mountain drainage basins. While the classification
approach proposed here is also based in a mountainous envi-
ronment, the PCA-clustering technique allows for the iden-
tification of morphological units in any fluvial environment
where sufficient variation in bed topography is present. Un-
like most classification schemes, identified clusters must be
interpreted after the analysis to situate them within our con-
ceptual understanding of river systems. While this consists
of an additional step, it can provide opportunities to confirm
our understanding of field observations in river systems or to
guide further investigation when unexpected patterns appear.

Finally, it should be noted that in order to characterize the
geometry of the channel, the PCA approach relies on wetted
variables, in contrast to flow-independent features like bank-
full width or depth. When considering factors such as the
needs of salmonids, the low-flow conditions observed in late
summer may be of concern and will determine the connectiv-
ity and distribution of certain morphological units across the
riverscape. Depending on the application, however, consid-
eration of flow-independent variables may be required, like
the bankfull width or depth, which are less dependent on the
particular wetted conditions observed at the time of the sur-
vey.

5.3 Insight into scales of spatial variability

The results of calculating the SD of the diversity metric for
morphological units (Fig. 10a) suggest that a window size of
approximately 13–15 wb (175–200 m in length) is necessary
to capture the dominant variability along the channel. The in-
flection in SD caught at approximately 13 wb indicates that
the diversity metric is more consistent between the different
samples used for the iteration, suggesting that each individ-
ual sample is more likely to be representative of the natural
variability in the channel. Beyond this scale, additional vari-
ability is captured but at a decreasing rate. The 3.0 km of a
channel over which this analysis was conducted would likely
be considered a relatively homogeneous pool-riffle reach un-
der traditional channel classification schemes, such as that of
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Figure 10. Notable length scales along the lower 3.0 km of Carna-
tion Creek: (a) standard deviation of channel diversity index values;
(b) autocorrelation function values extracted from channel longi-
tudinal profile data collected four times between 1991 and 2017
(figure modified from Reid et al., 2019); (c) spectral density plot
from analysis applied to longitudinal profile data in panel (b) (figure
modified from Reid et al., 2019). Note that channel width equiva-
lents are given in relation to width determined as of 2017, equivalent
to 13.4 m.

Montgomery and Buffington (1997). The 15 wb length scale
is shorter than the 30–50 wb equivalent often suggested for
characterizing channel form (Bisson et al., 2006) and equiv-
alent to two to three sets of pool-riffle units as defined by
Keller and Melhorn (1978). This value fits in with the range
of recommended study reach lengths that have been reported
in the literature, though it is at the lower end (see Trainor and
Church, 2003). For example, Montgomery and Buffington
(1997) considered reaches 10–20 wb in length for their re-
search, while Woodsmith and Buffington (1996) considered
reaches 20 wb in length. At the higher end, Hogan (1986)

and Trainor and Church (2003) consider reaches greater than
30 wb and reaches between 50 and 70 wb to be conservative
lengths for their research, respectively. Given that additional
variability is still captured with a greater spatial survey ex-
tent, the 15 wb value should be considered a minimum.

The explanation for the 15 wb domain over which a thresh-
old in variability is reached may be related to the spacing of
major sediment storage areas in the system. Previous work
in Carnation Creek by Reid et al. (2019) suggests that non-
random spatial patterns in sediment storage are present along
the channel (see Fig. 10b and c). Both autocorrelation and
spectral analysis methods applied to four sediment storage
datasets collected between 1991 and 2017 revealed a peri-
odicity in the data on the order of 12–20 wb, providing in-
formation on the spacing of major sediment storage areas.
Given the similarity in length scales in Fig. 10a–c, it is possi-
ble that these storage zones (mainly large bars) serve as end
members between which the typical progression of channel
unit morphologies would be expected.

The bar-to-bar spacing represented by length scales shown
in Fig. 10 is within the range, but close to the upper limit, of
values reported for gravel-bed streams in Thompson (2013).
The explanation for the relatively large feature spacing may
be related to the presence of major logjams along the chan-
nel, which are commonly associated with areas of major sed-
iment storage (Abbe and Montgomery, 1996; Davidson and
Eaton, 2015; Wohl and Scott, 2017). However, as of 2017
(1 year prior to the RPA survey), comparatively few major
jams storing large quantities of sediment remained in the
channel, and average jam spacing was only between 5 and
8 wb (see Reid et al., 2019). Other factors which may explain
the relatively large unit spacing in Carnation Creek could be
related to patterns in channel width (Chartrand et al., 2018)
or flow convergence (MacVicar and Roy, 2007; Thompson
and Wohl, 2009).

It is important to note that the spatial scale of measurement
needed to capture variability will depend on the particular
variables of interest and the expected morphological charac-
ter of the system. Carnation Creek is a channel which expe-
riences episodic delivery of sediment from hillslopes (Hart-
man and Scrivener, 1990; Reid et al., 2019). As shown by
the range of values in Fig. 10b and c, temporal variability
exists in the spatial pattern of dominant channel features.
The 26-year period over which the data in Fig. 10b and c
were collected represents a comparatively inactive time in-
terval in terms of colluvial sediment supply. This variability
would be expected to increase during periods of episodic sed-
iment supply and could influence the resulting spatial scale
over which dominant variance is captured. In this instance, a
greater length of channel may be necessary to survey in order
to increase the probability of capturing this type of localized
feature. Similarly, practical survey limitations (such as site
accessibility) may still factor strongly in decisions regarding
site selection and survey extent. As others (e.g. Montgomery
and Buffington, 1998) have suggested, examination of chan-

https://doi.org/10.5194/esurf-8-913-2020 Earth Surf. Dynam., 8, 913–929, 2020



926 C. Helm et al.: Use of RPA to capture scales of variability in streams

nel gradient or a channel profile will still provide useful pre-
liminary information on regions of relatively homogeneous
channel morphology.

6 Conclusions

The spatial extent needed to adequately capture variabil-
ity and classify morphology of forested, gravel-bed streams
with closed canopies is often unclear, while the challenge
of collecting comprehensive data in these environments ne-
cessitates efficient and low-cost data acquisition methods.
This paper describes an approach to characterize and clas-
sify these channels through use of subcanopy flights with
remotely piloted aircraft (RPA) at the channel unit to the
reach scale. Through the incorporation of oblique-convergent
imagery, it was possible to undertake a subcanopy channel
survey along 3.0 km of Carnation Creek, a small, forested
gravel-bed stream. Use of RPA-derived rasters of bed mor-
phology, bathymetry, and grain size in combination with a
PCA-clustering analysis of channel unit morphologies pro-
vided characterization of this channel at an extent and reso-
lution that would be difficult to attain using traditional meth-
ods. This allowed for the exploration of the spatial extent
necessary to capture the dominant morphological variability
of the channel. After calculating a diversity index describing
the heterogeneity in channel unit morphology, a spatial scale
equivalent to approximately 15 channel widths was found to
capture much of the variability in channel unit morphology.

Overall, the methods were successful in demonstrating the
use of RPA for collecting channel attribute data below forest
canopies and in providing an objective technique for char-
acterizing patterns in morphological units of small, forested
channels at a variety of spatial scales. This research helps to
expand the toolkit available to geomorphologists for charac-
terizing small channels with complex morphology residing
largely below forest canopies and presents a classification
approach with fewer drawbacks from subjective morphology
identification. The results of this work are presented for a
single catchment; additional study is needed to evaluate the
limits of RPA approaches for data collection in similar envi-
ronments.

Data availability. Data used for the analysis can be found at
https://doi.org/10.17632/jv9rftdmst.1 (Helm, 2020).

Author contributions. CH led all data collection, analysis, and
most manuscript preparation. MH provided supervisory support and
assisted with project conceptualization and manuscript preparation.
DR assisted with project conceptualization, data collection, and
manuscript preparation.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. The fieldwork completed at Carnation
Creek was made possible through a number of people involved in
the watershed study. Robin Pike and Peter Tschaplinski supplied
the reference data used in the project and helped coordinate the
field work. Steve Voller and Andrew Westerhof provided much-
appreciated support at the field site. The authors thank Stephen Bird
and John Richardson for their insightful discussions and feedback
throughout the project. Ryan Matheson and Kyle Wlodarczyk pro-
vided field assistance for the data collected at Carnation Creek.
Eric Leinberger provided support in designing the figures. Jack Car-
rigan and Charles Helm proof-read the manuscript.

Financial support. The research was funded by NSERC Discov-
ery (to Marwan A. Hassan) and the Canada Foundation for Innova-
tion (to Marwan A. Hassan).

Review statement. This paper was edited by Rebecca Hodge and
reviewed by three anonymous referees.

References

Abbe, T. and Montgomery, D. R.: Large Woody Debris Jams, Chan-
nel Hydraulics and Habitat Formation in Large Rivers, Regul.
River., 12, 201–221, 1996.

AgiSoft: AgiSoft PhotoScan Professional, Version 1.4.3, avial-
bale at: http://www.agisoft.com/downloads/installer/ (last ac-
cess: 21 July 2018), 2017.

Agüera-Vega, F., Carvajal-Ramírez, F., and Martínez-Carricondo,
P.: Accuracy of digital surface models and orthophotos
derived from unmanned aerial vehicle photogrammetry, J.
Surv. Eng., 143, 4016025, https://doi.org/10.1061/(asce)su.1943-
5428.0000206, 2016.

Anonymous: Channel assessment procedure: Field guidebook,
Ministry of Forest and British Columbia Environment, Victoria,
British Columbia, 1996.

Bangen, S., Wheaton, J., Bouwes, N., Bouwes, B., and Jordan, C.:
A methodological intercomparison of topographic survey tech-
niques for characterizing wadeable streams and rivers, Geomor-
phology, 206, 343–361, 2014.

Beechie, T. J., Sear, D. A., Olden, J. D., Pess, G. R., Buffington,
J. M., Moir, H., Roni, P., and Pollock, M. M.: Process-based Prin-
ciples for Restoring River Ecosystems, Bioscience, 60, 209–222,
https://doi.org/10.1525/bio.2010.60.3.7, 2010.

Bisson, P. A., Buffington, J. M., and Montgomery, D. R.: Val-
ley Segments, Stream Reaches, and Channel Units, chap. 2, in:
Methods in Stream Ecology, 2nd edn., edited by: Hauer, F., Else-
vier, San Diego, CA, 23–49, 2006.

Bjornn, T. and Reiser, D. W.: Habitat Requirements of Salmonids in
Streams, in: Influences of Forest and Rangeland Management on
Salmonid Fishes and their Habitats, edited by: Meehan, W. R.,
Am. Fish. Soc. Spec. Publ., Bethesda, 19, 83–138, 1991.

Earth Surf. Dynam., 8, 913–929, 2020 https://doi.org/10.5194/esurf-8-913-2020

https://doi.org/10.17632/jv9rftdmst.1
http://www.agisoft.com/downloads/installer/
https://doi.org/10.1061/(asce)su.1943-5428.0000206
https://doi.org/10.1061/(asce)su.1943-5428.0000206
https://doi.org/10.1525/bio.2010.60.3.7


C. Helm et al.: Use of RPA to capture scales of variability in streams 927

Brierly, G. and Fryirs, K.: Geomorphology and River Management:
application of the River Styles Framework, Blackwell Publish-
ing, Carlton, Victoria, Australia, 2005.

Buffington, J. and Montgomery, D.: 9.36 Geomorphic Classification
of Rivers, in: chap. Geomorphic Classification of Rivers, Treatise
on Geomorphology, vol. 9, edited by: Shroder, J. and Wohl, E.,
Elsevier, San Diego, https://doi.org/10.1016/B978-0-12-374739-
6.00263-3, 730–767, 2013.

Buffington, J. and Woodsmith, R. D.: Fluvial processes
in Puget Sound rivers and the Pacific Northwest,
in: Restoration of Puget Sound Rivers, 46–78, avail-
able at: http://books.google.com/books?hl=en&lr=&id=
VoyBJ07HUQoC&oi=fnd&pg=PA46&dq=Fluvial+Processes+
in+Puget+Sound+Rivers+and+the+Pacific+Northwest&ots=
nglUuFQP_O&sig=ig4_F9fT6weBTuBmlrkRxU1PZzM, (last
access: 1 August 2019), 2003.

Chartrand, S. M., Jellinek, A. M., Hassan, M. A., and Ferrer-
Boix, C.: Morphodynamics of a width-variable gravel bed
stream: New insights on pool-riffle formation from phys-
ical experiments, J. Geophys. Res.-Earth, 123, 2735–2766,
https://doi.org/10.1029/2017JF004533, 2018.

Church, M.: Channel morphology and typology, in: The Rivers
Handbook, edited by: Carlow, P. and Petts, G. E., Blackwell, Ox-
ford, UK, 126–143, 1992.

Cienciala, P. and Hassan, M. A.: Linking spatial patterns
of bed surface texture, bed mobility, and channel hy-
draulics in a mountain stream to potential spawning sub-
strate for small resident trout, Geomorphology, 197, 96–107,
https://doi.org/10.1016/j.geomorph.2013.04.041, 2013.

Cloud Compare: available at: http://www.cloudcompare.org/ (last
access: 30 December 2018), 2017.

Davidson, S. and Eaton, B.: Simulating riparian disturbance: Reach
scale impacts on aquatic habitat in gravel bed streams, Water Re-
sour. Res., 51, 7590–7607, 2015.

Dietrich, J. T.: Bathymetric structure-from-motion: extract-
ing shallow stream bathymetry from multi-view stereo
photogrammetry, Earth Surf. Proc. Land., 42, 355–364,
https://doi.org/10.1002/esp.4060, 2017.

Fausch, K. D., Torgersen, C. E., Baxter, C. V., and Li,
H. W.: Landscapes to riverscapes : Bridging the gap
between research and conservation of stream fishes,
Bioscience, 52, 483–498, https://doi.org/10.1641/0006-
3568(2002)052[0483:LTRBTG]2.0.CO;2, 2002.

Flener, C., Vaaja, M., Jaakkola, A., Krooks, A., Kaartinen, H.,
Kukko, A., Kasvi, E., Hyyppä, H., Hyyppä, J., and Alho, P.:
Seamless mapping of river channels at high resolution using mo-
bile liDAR and UAV-photography, Remote Sens.-Basel, 5, 6382–
6407, https://doi.org/10.3390/rs5126382, 2013.

Flynt, A. and Dean, N.: A survey of popular R Packages
for cluster analysis , J. Educ. Behav. Stat., 41, 205–225,
https://doi.org/10.3102/1076998616631743, 2016.

Garcia, X. F., Schnauder, I., and Pusch, M. T.: Complex
hydromorphology of meanders can support benthic in-
vertebrate diversity in rivers, Hydrobiologia, 685, 49–68,
https://doi.org/10.1007/s10750-011-0905-z, 2012.

Gartner, J., Dade, W., Renshaw, C., Magilligan, F., and Bu-
raas, E.: Gradients in stream power influence lateral and
downstream sediment flux in floods, Geology, 43, 983–986,
https://doi.org/10.1130/G36969.1, 2015.

Harrelson, C., Rawlins, C., and Potyondy, J.: Stream Channel Ref-
erence Sites : An Illustrated Guide to Field Technique, Tech. rep.,
US Department of Agriculture, Fort Collins, CO, 1994.

Harris, C., Thoms, M., and Scown, M.: The ecohydrology of
stream networks, International Association of Hydrological Sci-
ences, 328, 127–136, available at: https://iahs.info/uploads/dms/
14645.19-127-136-IAHS-328-06-JS1---Harris.pdf (last access:
1 July 2019), 2009.

Hartigan, J. A. and Wong, M. A.: Algorithm AS 136:
A k-means clustering algorithm, Appl. Stat., 28, 100,
https://doi.org/10.2307/2346830, 1979.

Hartman, G. F. and Scrivener, J. C.: Impacts of forestry practices on
a coastal stream ecosystem, Carnation Creek, British Columbia,
Bull. Fish. Aquat. Sci., 223, 1–148, 1990.

Hartman, G. F., Andersen, B. C., and Scrivener, J. C.: Seaward
movement of coho salmon (Oncorhynchus kisutch) fry in Carna-
tion Creek, an unstable coastal stream in British Colombia, Can.
J. Fish. Aquat. Sci., 39, 588–597, https://doi.org/10.1139/f82-
083, 1982.

Harwin, S., Lucieer, A., and Osborn, J.: The impact of the cali-
bration method on the accuracy of point clouds derived using
unmanned aerial vehicle multi-view stereopsis, Remote Sens.-
Basel, 7, 11933–11953, https://doi.org/10.3390/rs70911933,
2015.

Haschenburger, J. K.: Vertical mixing of gravel over a long
flood series, Earth Surf. Proc. Land., 36, 1044–1058,
https://doi.org/10.1002/esp.2130, 2011.

Hassan, M., Bird, S., Reid, D., Ferrer-Boix, C., Hogan, D., Brardi-
noni, F., and Chartrand, S.: Variable hillslope-channel cou-
pling and channel characteristics of forested mountain streams
in glaciated landscapes, Earth Surf. Proc. Land., 44, 736–751,
https://doi.org/10.1002/esp.4527, 2019.

Hassan, M. A., Hogan, D. L., Bird, S. A., May, C. L., Gomi,
T., and Campbell, D.: Spatial and temporal dynamics of wood
in headwater streams of the Pacific Northwest, J. Am. Wa-
ter Resour. Assoc., 41, 899–919, https://doi.org/10.1111/j.1752-
1688.2005.tb03776.x, 2005.

Hassan, M. A., Egozi, R., and Parker, G.: Experiments on the
effect of hydrograph characteristics on vertical grain sort-
ing in gravel bed rivers, Water Resour. Res., 42, 1–15,
https://doi.org/10.1029/2005WR004707, 2006.

Hassan, M. A., Ferrer-Boix, C., Cienciala, P., and Chartrand, S.:
Sediment Transport and Channel Morphology Implications for
Fish Habitat, in: Open Channel Hydraulics, River Hydraulic
Structures and Fluvial Geomorphology, CRC Press, Boca Raton,
322–348, https://doi.org/10.1201/9781315120584-17, 2017.

Hawkins, C. P., Kershner, J. L., Bisson, P. A., Bryant, M. D.,
Decker, L. M., Gregory, S. V., McCullough, D. A., Over-
ton, C. K., Reeves, G. H., Steedman, R. J., and Young,
M. K.: A hierarchical approach to classifying stream habi-
tat features, Fisheries, 18, 3–12, https://doi.org/10.1577/1548-
8446(1993)018<0003:AHATCS>2.0.CO;2, 1993.

Helm, C.: RPA Survey data from Carnation Creek –
Carina Helm MSc Research, Mendeley Data, V1,
https://doi.org/10.17632/jv9rftdmst.1, 2020.

Hogan, D. L.: Channel morphology of unlogged, logged, and de-
bris torrented streams in the Queen Charlotte Islands. British
Columbia Ministry of Forests and Lands, Land management Re-

https://doi.org/10.5194/esurf-8-913-2020 Earth Surf. Dynam., 8, 913–929, 2020

https://doi.org/10.1016/B978-0-12-374739-6.00263-3
https://doi.org/10.1016/B978-0-12-374739-6.00263-3
http://books.google.com/books?hl=en&lr=&id=VoyBJ07HUQoC&oi=fnd&pg=PA46&dq=Fluvial+Processes+in+Puget+Sound+Rivers+and+the+Pacific+Northwest&ots=nglUuFQP_O&sig=ig4_F9fT6weBTuBmlrkRxU1PZzM
http://books.google.com/books?hl=en&lr=&id=VoyBJ07HUQoC&oi=fnd&pg=PA46&dq=Fluvial+Processes+in+Puget+Sound+Rivers+and+the+Pacific+Northwest&ots=nglUuFQP_O&sig=ig4_F9fT6weBTuBmlrkRxU1PZzM
http://books.google.com/books?hl=en&lr=&id=VoyBJ07HUQoC&oi=fnd&pg=PA46&dq=Fluvial+Processes+in+Puget+Sound+Rivers+and+the+Pacific+Northwest&ots=nglUuFQP_O&sig=ig4_F9fT6weBTuBmlrkRxU1PZzM
http://books.google.com/books?hl=en&lr=&id=VoyBJ07HUQoC&oi=fnd&pg=PA46&dq=Fluvial+Processes+in+Puget+Sound+Rivers+and+the+Pacific+Northwest&ots=nglUuFQP_O&sig=ig4_F9fT6weBTuBmlrkRxU1PZzM
https://doi.org/10.1029/2017JF004533
https://doi.org/10.1016/j.geomorph.2013.04.041
http://www.cloudcompare.org/
https://doi.org/10.1002/esp.4060
https://doi.org/10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2
https://doi.org/10.3390/rs5126382
https://doi.org/10.3102/1076998616631743
https://doi.org/10.1007/s10750-011-0905-z
https://doi.org/10.1130/G36969.1
https://iahs.info/uploads/dms/14645.19-127-136-IAHS-328-06-JS1---Harris.pdf
https://iahs.info/uploads/dms/14645.19-127-136-IAHS-328-06-JS1---Harris.pdf
https://doi.org/10.2307/2346830
https://doi.org/10.1139/f82-083
https://doi.org/10.1139/f82-083
https://doi.org/10.3390/rs70911933
https://doi.org/10.1002/esp.2130
https://doi.org/10.1002/esp.4527
https://doi.org/10.1111/j.1752-1688.2005.tb03776.x
https://doi.org/10.1111/j.1752-1688.2005.tb03776.x
https://doi.org/10.1029/2005WR004707
https://doi.org/10.1201/9781315120584-17
https://doi.org/10.1577/1548-8446(1993)018<0003:AHATCS>2.0.CO;2
https://doi.org/10.1577/1548-8446(1993)018<0003:AHATCS>2.0.CO;2
https://doi.org/10.17632/jv9rftdmst.1


928 C. Helm et al.: Use of RPA to capture scales of variability in streams

port 49, Tech. rep., British Columbia Research Branch Ministry
of Forests and Lands, Victoria, BC, 1986.

Hugue, F., Lapointe, M., Eaton, B. C., and Lepoutre, A.: Satellite-
based remote sensing of running water habitats at large
riverscape scales: Tools to analyze habitat heterogeneity for
river ecosystem management, Geomorphology, 253, 353–369,
https://doi.org/10.1016/j.geomorph.2015.10.025, 2016.

James, M. R. and Robson, S.: Mitigating systematic error in
topographic models derived from UAV and ground-based
image networks, Earth Surf. Proc. Land., 39, 1413–1420,
https://doi.org/10.1002/esp.3609, 2014.

Jolliffe, I. T.: Principal Component Analysis, Springer
Series in Statistics, Springer-Verlag, New York,
https://doi.org/10.1007/b98835, 2002.

Kasvi, E., Salmela, J., Kumpula, T., and Lane, S.: Comparison of re-
mote sensing based approaches for mapping bathymetry of shal-
low, clear water rivers, Geomorphology, 333, 180–197, 2019.

Keller, E. and Melhorn, W.: Rhythmic spacing and origin of pools
and riffles, Bull. Geol. Soc. Am., 89, 723–730, 1978.

Lloyd, M. and Ghelardi, R. J.: A Table for Calculating the ‘Eq-
uitability’ Component of Species Diversity, J. Anim. Ecol., 33,
217–225, 1964.

MacVicar, B. and Roy, A.: Hydrodynamics of a forced rif-
fle pool in a gravel bed river 1: mean velocity and
turbulence intensity, Water Resour. Res., 43, 1240,
https://doi.org/10.1029/2006WR005272, 2007.

Madej, M. A.: Temporal and spatial variability in thalweg profiles
of a gravel bed river, Earth Surf. Proc. Land., 24, 1153–1169,
1999.

Matlab: The MathWorks Inc., available at: https://www.mathworks.
com/products/matlab.html (last access: 30 December 2018),
2017.

McKean, J., Nagel, D., Tonina, D., Bailey, P., Wright, C. W., Bohn,
C., and Nayegandhi, A.: Remote sensing of channels and riparian
zones with a narrow-beam aquatic-terrestrial LIDAR, Remote
Sens.-Basel, 1, 1065–1096, https://doi.org/10.3390/rs1041065,
2009.

Montgomery, D. R. and Buffington, J. M.: Channel-reach
morphology in mountain drainage basins, Bull. Geol.
Soc. Am., 109, 596–611, https://doi.org/10.1130/0016-
7606(1997)109<0596:CRMIMD>2.3.CO, 1997.

Montgomery, D. R. and Buffington, J. M.: Channel processes, clas-
sification, and response, in: River Ecology and Management:
Lessons from the Pacific Coastal Ecoregion, edited by: Naiman,
J. M. and Bilby, R. E., Springer, New York, NY, 13–42, 1998.

Nelson, P. A., Dietrich W. E., and Venditti J. G.: Bed topography
and the development of forced bed surface patches, J. Geophys.
Res., 115, F04024, https://doi.org/10.1029/2010JF001747, 2010.

Pryor, B. S., Lisle, T., Montoya, D. S., and Hilton, S.: Trans-
port and storage of bed material in a gravel-bed chan-
nel during episodes of aggradation and degradation: A field
and flume study, Earth Surf. Proc. Land., 36, 2028–2041,
https://doi.org/10.1002/esp.2224, 2011.

R Core Team: R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria,
https://www.r-project.org/, last access: 30 December 2018.

Reid, D., Hassan, M., Bird, S., Pike, R., and Tschaplin-
ski, P.: Does variable channel morphology lead to dy-

namic salmon habitat?, Earth Surf. Proc. Land., 45, 295–311,
https://doi.org/10.1002/esp.4726, 2020.

Reid, D. A., Hassan, M., Bird, S., and Hogan, D.: Spatial
and temporal patterns of sediment storage over 45 years
in Carnation Creek, B.C., a previously glaciated moun-
tain catchment, Earth Surf. Proc. Land., 44, 1584–1601,
https://doi.org/10.1002/esp.4595, 2019.

Roncoroni, M. and Lane, S.: A framework for using small
Unmanned Aircraft Systems (sUASs) and SfM photogram-
metry to detect salmonid redds, Ecol. Inform., 53, 100976,
https://doi.org/10.1016/j.ecoinf.2019.100976, 2019.

Rosgen, D. L.: A classification of natural rivers, Catena, 22, 169–
199, 1994.

Sanz-Ablanedo, E., Chandler, J. H., Rodríguez-Pérez, J. R., and Or-
dóñez, C.: Accuracy of Unmanned Aerial Vehicle (UAV) and
SfM photogrammetry survey as a function of the number and
location of ground control points used, Remote Sens.-Basel, 10,
1606, https://doi.org/10.3390/rs10101606, 2018.

Shannon, C. E. and Weaver, W.: The mathematical theory of com-
munication, University of Illinois Press, Urbana, 1964.

Tamminga, A.: UAV-based remote sensing of fluvial hydrogeomor-
phology and aquatic habitat dynamics, PhD thesis, The Univer-
sity of British Columbia, Vancouver, BC, 2016.

Tamminga, A., Hugenholtz, C., Eaton, B., and Lapointe, M.: Hyper-
spatial Remote Sensing of Channel Reach Morphology and Hy-
draulic Fish Habitat Using an Unmanned Aerial Vehicle (UAV):
A First Assessment in the Context of River Research and Man-
agement, River Res. Appl., 31, 379–391, 2015.

Thompson, D.: Pool-Riffle, in: Treatise on Geomorphology, edited
by: Schroder, J. and Wohl, E., Academic Press, San Diego, 364–
378, 2013.

Thompson, D. and Wohl, E.: The linkage between velocity patterns
and sediment entrainment in a pool–riffle unit, Earth Surf. Proc.
Land., 34, 177–192, 2009.

Tonkin, T. N. and Midgley, N. G.: Ground-control networks for
image based surface reconstruction: An investigation of opti-
mum survey designs using UAV derived imagery and structure-
from-motion photogrammetry, Remote Sens.-Basel, 8, 16–19,
https://doi.org/10.3390/rs8090786, 2016.

Trainor, K. and Church, M.: Quantifying variability in
stream channel morphology, Water Resour. Res., 39, 1248,
https://doi.org/10.1029/2003WR001971, 2003.

Tschaplinski, P. J. and Pike, R. G.: Carnation Creek water-
shed experiment – long-term responses of coho salmon pop-
ulations to historic forest practices, Ecohydrology, 10, e1812,
https://doi.org/10.1002/eco.1812, 2017.

Wackrow, R. and Chandler, J. H.: Minimising systematic er-
ror surfaces in digital elevation models using oblique
convergent imagery, Photogramm. Rec., 26, 16–31,
https://doi.org/10.1111/j.1477-9730.2011.00623.x, 2011.

Whiting, P. and Bradley, J.: A process-based classification system
for headwater streams, Earth Surf. Proc. Land., 18, 603–612,
https://doi.org/10.1002/esp.3290180704, 1993.

Wohl, E. and Scott, D.: Wood and sediment storage and dy-
namics in river corridors, Earth Surf. Proc. Land., 42, 5–23,
https://doi.org/10.1002/esp.3909, 2017.

Wohl, E., Bledsoe, B. P., Jacobson, R. B., Poff, N. L., Rath-
burn, S. L., Walters, D. M., and Wilcox, A. C.: The Nat-
ural Sediment Regime in Rivers: Broadening the Founda-

Earth Surf. Dynam., 8, 913–929, 2020 https://doi.org/10.5194/esurf-8-913-2020

https://doi.org/10.1016/j.geomorph.2015.10.025
https://doi.org/10.1002/esp.3609
https://doi.org/10.1007/b98835
https://doi.org/10.1029/2006WR005272
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://doi.org/10.3390/rs1041065
https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO
https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO
https://doi.org/10.1029/2010JF001747
https://doi.org/10.1002/esp.2224
https://www.r-project.org/
https://doi.org/10.1002/esp.4726
https://doi.org/10.1002/esp.4595
https://doi.org/10.1016/j.ecoinf.2019.100976
https://doi.org/10.3390/rs10101606
https://doi.org/10.3390/rs8090786
https://doi.org/10.1029/2003WR001971
https://doi.org/10.1002/eco.1812
https://doi.org/10.1111/j.1477-9730.2011.00623.x
https://doi.org/10.1002/esp.3290180704
https://doi.org/10.1002/esp.3909


C. Helm et al.: Use of RPA to capture scales of variability in streams 929

tion for Ecosystem Management, BioScience, 65, 358–371,
https://doi.org/10.1093/biosci/biv002, 2015.

Woodget, A. S. and Austrums, R.: Subaerial gravel size
measurement using topographic data derived from a UAV-
SfM approach, Earth Surf. Proc. Land., 42, 1434–1443,
https://doi.org/10.1002/esp.4139, 2017.

Woodsmith, R. D. and Buffington, J. M.: Multivariate geomorphic
analysis of forest streams: Implications for assessment of land
use impacts on channel condition, Earth Surf. Proc. Land., 21,
377–393, 1996.

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X.,
and Yan, G.: An easy-to-use airborne LiDAR data filtering
method based on cloth simulation, Remote Sens.-Basel, 8, 1–22,
https://doi.org/10.3390/rs8060501, 2016.

https://doi.org/10.5194/esurf-8-913-2020 Earth Surf. Dynam., 8, 913–929, 2020

https://doi.org/10.1093/biosci/biv002
https://doi.org/10.1002/esp.4139
https://doi.org/10.3390/rs8060501

	Abstract
	Introduction
	Study area
	Methods
	Remotely piloted aircraft survey
	Base data extraction
	Selection of channel variables
	Analysis

	Results
	Accuracy of the RPA survey
	Coverage with the RPA survey
	Principal component analysis, clustering analysis, and channel classification results

	Assessment of the channel classification

	Discussion
	Utility of subcanopy RPA surveys for small, forested streams
	Assessment of the classification approach
	Insight into scales of spatial variability

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

