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Section S1. Treatment of misclassified points 

Remaining vegetation points in the ground-classified pre-EQ point cloud can be identified as (1) they are locally high above 

the surrounding ground and (2) it concerns generally one or a patch of points. Thus they are mainly characterized by a high 

local roughness and a low point density. To remove suspicious remaining vegetation points, we first reconstructed a mesh from 

the ground-classified pre-EQ point cloud using the Poisson surface reconstruction algorithm developed by Kazhdan et al. 5 

(2006). We then removed outlier points of the pre-EQ point cloud by first computing the cloud-to-mesh distance (EDF R&D, 

2011) for each point and then filter points for which the positive cloud-to-mesh distance was higher than 4 standard deviations. 

This threshold has been chosen, by trials and errors, to preserve points located on steep ridges and steep valley bottoms that 

will be removed if chosen too low due to the smoothing of the surface by the interpolation. This procedure was repeated 3 

times while refining the surface reconstruction between each iteration as further iterations removed significantly points located 10 

on ridges and valley bottoms. 

Figure S1. Map of flight line extents from the pre-EQ LiDAR data. Flight lines are overlaid on the post-earthquake 

orthoimagery (12-15-2016, Aerial survey, 2017) 
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Table S1. Mean 3D-M3C2 distance and standard deviation between each flight line and a reference line estimated from 

the pre-EQ (n° 215, Fig. S2) and post-EQ LiDAR point cloud (n° 301). 20 

Data N° flight line Mean 3D-M3C2 distance Standard deviation 

Pre-EQ point cloud 

216 0.00 0.18 

217 0.00 0.15 

218 0.01 0.15 

524 -0.03 0.20 

525 -0.03 0.17 

526 -0.03 0.15 

527 -0.03 0.19 

528 -0.03 0.13 

529 0.00 0.14 

611 0.03 0.15 

612 0.03 0.14 

Post-EQ point cloud 

108 -0.01 0.06 

110 -0.01 0.05 

304 0.01 0.12 

303 0.00 0.07 

111 0.00 0.06 

Table S2. Value of the transformation apply on the post-earthquake LiDAR data along the X, Y and Z axis. 

 X Y Z 

Coarse registration (m) - - - 1.36 

ICP fine registration (m) -1.40 0.14 0.85 

 

Section S2. Segmentation results with density based clustering algorithms 

Density based spatial clustering algorithms aim at identifying clusters of high point density representing a signal, from areas 

of low point density representing noise. As for the connected component algorithm, the number of clusters to detect does not 25 

have to be specified. DBSCAN (Ester et al., 1996) is an algorithm now classically used in the segmentation of 3D rockfall 

inventories (e.g. Benjamin et al., 2020; Carrea et al., 2021; Riquelme et al., 2014). DBSCAN has two main parameters: (1) ԑ, 
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is a spatial search radius, (2) minpoints is the minimum of points within a distance ԑ of a point to define it as a cluster and to 

consider a point as member of an existing cluster.  Both minpoints and ԑ are related, and are not easy to a priori define (Carrea 

et al., 2021). In our context, the main difference between a connected component and a density based clustering is that in the 30 

first case, cluster-membership is based on the distance to the nearest neighbor in 3D with respect to Dm, while in the second it 

is based on the density of neighbors within a radius ԑ. No cluster is defined if it does not have minpoints. As our minimum 

detectable landslide size is 20 m², and to be consistent with the parameters used in the Connected Component we set 

minpoints=Np=20. Following Carrea and co-authors (2021), we use OPTICS (Ankerst et al., 1999) an improved version of 

DBSCAN available in the python scikit-learn library. OPTICS does not consider a fixed ԑ value to identify a cluster, although 35 

practically a maximum ԑ is generally set to reduce computation time. We test the impact of ԑ on the segmentation.  

We also compare our results to HDBSCAN (McInnes et al., 2017), with the dedicated python library. HDBSCAN can better 

capture clusters of varying density compared to DBSCAN and ԑ does not have to be specified. HDBSCAN has two main 

parameters: (1) min_cluster_size which is equivalent to minpoints in OPTICS, and that we set to 20, our minimum detectable 

size; (2) min_samples which evaluate how conservative the clustering will be. As min_samples is increased, more points will 40 

be declared as noise. We test the impact of min_samples on the segmentation. To our knowledge, HDBSCAN has never been 

used in the context of rockfall segmentation. 

OPTICS and HDBSCAN were applied on the significant core point sources and compared to the segmentation obtained by 

Connected Component. Computation time are given for a laptop using a core i7-7820HQ, clustering 370,708 points in 3D. 

Results: Table S6 shows the number of clusters detected, the percentage of points not clustered and the size of the largest 45 

landslide. Figure S7 shows segmentation results. Figure S8 the pdf(A) resulting from various segmentations. The results 

slightly differ from the main paper as we used the standard LoD definition of M3C2 with t=1.96 in eq.(2). 

In our reference segmentation with connected components (Dm=2 m), the number of clusters is 1270, the largest source area is 

40,272 m², and 4.2 % of core points are not clustered. Decreasing Dm to 1.5 m does not reduce the largest landslide, but 

increasing Dm reduces the number of clusters while increasing slightly the size of the largest source. A connected component 50 

is calculated in 3 seconds with Cloudcompare. 

OPTICS: As ԑ increases, OPTICS creates more clusters while fewer points are considered as noise, but the largest source area 

remains around 34,350 m². The segmentation map (Fig S7a and b) obtained for the case that discards the less points (ԑ=10 m), 

show that OPTICS manages to segment one branch of the largest landslide (A in Fig S7a), but does not significantly improve 

the segmentation of this landslide compared to a connected component. However, OPTICS tends to oversegment intermediate 55 

landslides into smaller ones, generating nearly 50 % more clusters than our reference case. This translates into a pdf(A) with a 

slightly lower exponent γ than the reference data (-1.88 vs -1.82) for ԑ=10 m (Fig. S8a). OPTICS computation time with scikit-

learn is 45 minutes (for ԑ=10 m). 

HDBSCAN: For the most conservative clustering parameter (min_samples=1), HDBSCAN creates 35% more clusters than 

the Connected Component, rejects only 2.5 % of points, and segments the largest landslide exactly as the reference dataset. As 60 

min_samples increases up to 20, the largest source area and the number of clusters decreases. For min_samples > 20, the 
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number of cluster decreases, but amalgamation starts to be very pronounced and the largest source area increases. For 

min_samples=20, HDBSCAN creates a similar number of clusters than our reference dataset, but the largest landslide is only 

31,776 m², 21 % smaller than the largest landslide of the connected component. The segmentation shows that the largest 

landslide is not sub-segmented (Fig. S7c), and the size reduction is in fact due to removal of border core points. This size 65 

reduction happens for all landslides and is actually detrimental as these points correspond to statistically significant change. 

HDBSCAN segmentation does not result in a scaling exponent of pdf(A) significantly different from the connected component. 

HDBSCAN computation time with the python library is 45 seconds. 

Discussion and conclusion 

OPTICS and DBSCAN generates different segmentation than a connected component, which in some cases marginally 70 

improves the segmentation of large landslides compared to a connected component (e.g., landslide B in Fig. S7). However, 

they do not outperform a Connected Component in segmenting large strongly amalgamated landslides into several smaller 

ones. This is expected as the density of core points is actually nearly uniform in very large landslides. Density based clustering 

mostly affects clustering and noise detection on landslides close to the minimum cluster size (e.g., OPTICS) or border points 

where the core density drops (e.g., HDBSCAN). Yet, their impact on the pdf of source area remains marginal. Given that a 75 

trial and error approach is systematically needed to evaluate the best clustering parameters; the much longer computation time 

of OPTICS is hardly suitable for large datasets. HDBSCAN is faster, however choosing the right set of parameters is difficult, 

and border points of large landslide tend to be removed. Consequently, we choose the fastest and simplest solution that has the 

benefit of being highly scalable to much larger dataset and is consistent with segmenting a dataset where within landslide point 

density is uniform.    80 

Table S3:  summary of parameters tested for the 3 clustering algorithms used for source segmentation 

 
Algorithm 

parameter 
Nb_cluster 

% of pts not 

clustered 
Largest source area (m²) 

Connected Component 

with Np=20 and 

variable min_samples 

1.5 1370 5.9 40,269 

2* 1270 4.2 40,272 

3 1061 3.7  40,819 

4 871 2.8 42,547 

6 634 1.7 42,809 

OPTICS with 

min_points =20 and 

variable epsilon 

3+ 1335 17.6 34,350 

4 1632 13.7 34,350 

6 1793 11.7 34,346 

10 1873 10.6 34,346 

HDBSCAN with 

min_cluster_size=20 

and variable 

min_samples 

1 1714 2.5 40,274 

10 1469 3.5 39,945 

15 1410 6.25 36,862 

20 1279 8.6 31,776 

25 1045 5.9 42,577 
*: reference case used in the study before SNR and CDD filtering. +: minimum value for which the algorithm creates several clusters. 



5 

 

Figure S2: Best segmentation results of statistically significant core points with erosion obtained with Connected 

Component (a, reference dataset prior to SNR and CDD filtering), OPTICS (b), and HBDSCAN (c). The largest source 

is systematically A. Note the varying degrees of segmentation of sources B. Colors are random for each segmentation 85 

and not comparable. 

 

a: Connected components, with Dm=2 m (reference dataset prior to SNR and CDD filtering) 

 

b: DBSCAN-OPTICS with minimum cluster size = 20 and ԑ = 10 90 

 

c: HDBSCAN with minimum cluster size = 20 and minimum number of samples = 20 
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Figure S3: Probability density function of source area calculated for OPTICS, HDBSCAN and compared to the 

reference segmentation (Connected component, Np=20, Dm=2 m) before SNR and CDD filtering. Fits for the 95 

segmentations shown in Fig. S1. 
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Figure S4. Map of the average number of laser returns from the post-EQ LiDAR data. The laser returns correspond 

to the number of targets a laser pulse has intercepted. 

 100 

Figure S5. Map of the landslide source area only detected in the 3D predicted inventory with the classes corresponding 

to the table 4. Landslide sources are overlaid on the post-earthquake orthoimagery (12-15-2016, Aerial survey, 2017). 
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Figure S6. Slope distribution of landslide sources detected from 3D point cloud differencing 105 

  

 

Fig S7: Sensitivity analysis to a) the registration error, b) the minimum segmentation distance and c) the SNR threshold 

to the landslide volume distribution.  
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Fig S8: Sensitivity analysis to a) the registration error, b) the minimum segmentation distance and c) the SNR threshold 

to the landslide V-A relationship.  
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Table S4: Table of the result of the sensitivity analyses to the landslide inventory and the workflow parameters: reg, 

Dm. Units for the registration error reg and the minimum segmentation distance Dm are in meter. 

Test Value NLT Landslide area distribution Landside volume distribution V-A relationship 

   Log b c R² Log d e R² Log α γ R² 

Inventory 

Predicted 433 0.65 ± 0.11  -1.64 ± 0.03 0.99 0.45 ± 0.23 -1.54 ± 0.07 0.98 -0.22 ± 0.10 1.17 ± 0.03 0.99 

Label FD 355 1.13 ± 0.20 -1.89 ± 0.08 0.98 1.32 ± 0.33 -1.98 ± 0.12 0.98 -0.05 ± 0.09 1.02 ± 0.04 0.99 

Label TP 384 0.60 ± 0.11  -1.61 ± 0.04 0.99 0.35 ± 0.23 -1.50 ± 0.06 0.98 -0.29 ± 0.10 1.18 ± 0.03 0.99 

reg 

0.2* 433 0.65 ± 0.11  -1.64 ± 0.03 0.99 0.45 ± 0.23 -1.54 ± 0.07 0.98 -0.22 ± 0.10 1.17 ± 0.03 0.99 

0.3 448 0.68 ± 0.13  -1.67 ± 0.04 0.99 0.45 ± 0.17 -1.54 ± 0.05 0.99 -0.19 ± 0.09 1.18 ± 0.03 0.99 

0.4 361 0.60 ± 0.09 -1.63 ± 0.03 0.99 0.42 ± 0.19 -1.52 ± 0.06 0.99 -0.15 ± 0.10 1.19 ± 0.03 0.99 

0.5 251 0.40 ± 0.16 -1.54 ± 0.05 0.98 0.44 ± 0.17 -1.50 ± 0.05 0.99 -0.04 ± 0.03 1.18 ± 0.01 0.99 

Dm 

1.5 486 0.69 ± 0.10 -1.67 ± 0.03 0.99 0.45 ± 0.25 -1.55 ± 0.07 0.98 -0.24 ± 0.12 1.18 ± 0.04 0.98 

2* 433 0.65 ± 0.11  -1.64 ± 0.03 0.99 0.45 ± 0.23 -1.54 ± 0.07 0.98 -0.22 ± 0.10 1.17 ± 0.03 0.99 

3 387 0.49 ± 0.14 -1.57 ± 0.04 0.99 0.50 ± 0.22 -1.55 ± 0.06 0.98 -0.22 ± 0.08 1.16 ± 0.03 0.99 

4 337 0.43 ± 0.15 -1.54 ± 0.05  0.99 0.55 ± 0.19 -1.56 ± 0.05 0.99 -0.21 ± 0.08 1.16 ± 0.03 0.99 

6 252 0.25 ± 0.17 -1.45 ± 0.06 0.98 0.41 ± 0.16 -1.48 ± 0.05 0.99 -0.10 ± 0.09 1.10 ± 0.03 0.99 
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