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Abstract. Although in situ measurements in modern frequently occurring turbidity currents have been per-
formed, the flow characteristics of turbidity currents that occur only once every 100 years and deposit turbidites
over a large area have not yet been elucidated. In this study, we propose a method for estimating the paleo-
hydraulic conditions of turbidity currents from ancient turbidites by using machine learning. In this method,
we hypothesize that turbidity currents result from suspended sediment clouds that flow down a steep slope in a
submarine canyon and into a gently sloping basin plain. Using inverse modeling, we reconstruct seven model
input parameters including the initial flow depth, the sediment concentration, and the basin slope. A reasonable
number (3500) of repetitions of numerical simulations using a one-dimensional layer-averaged model under
various input parameters generates a dataset of the characteristic features of turbidites. This artificial dataset is
then used for supervised training of a deep-learning neural network (NN) to produce an inverse model capable
of estimating paleo-hydraulic conditions from data on the ancient turbidites. The performance of the inverse
model is tested using independently generated datasets. Consequently, the NN successfully reconstructs the flow
conditions of the test datasets. In addition, the proposed inverse model is quite robust to random errors in the
input data. Judging from the results of subsampling tests, inversion of turbidity currents can be conducted if an
individual turbidite can be correlated over 10 km at approximately 1 km intervals. These results suggest that the
proposed method can sufficiently analyze field-scale turbidity currents.

1 Introduction

Turbidity currents are sediment-laden density flows that oc-
cur intermittently in deep-sea environments (Talling, 2014).
Turbidity currents are the main drivers of mass circulation
processes in deep-sea environments. In fact, estimating the
flux of organic carbon transported and buried by turbidity
currents is particularly necessary to understand carbon cy-
cle processes (Buscail and Germain, 1997; Heussner et al.,
1999). In addition, the deposits of turbidity currents, i.e.,
turbidites, form submarine fans on the seafloor, which may
function as large-scale hydrocarbon reservoirs (Kendrick,
1998; Yoneda et al., 2015), and are thus economically es-
sential.

Through recent development of observational instruments,
the velocity and flow depth of deep-sea currents can be mea-

sured directly (Hughes Clarke, 2016). Consequently, numer-
ous records of turbidity currents have been reported at loca-
tions such as Squamish Bay, Canada (Hughes Clarke, 2016),
Monterey canyon offshore of California (Xu et al., 2004; Xu,
2010; Paull et al., 2018), and the Congo Submarine Channel
(Vangriesheim et al., 2009; Azpiroz-Zabala et al., 2017). Sur-
prisingly, these records have revealed that turbidity currents
occur almost monthly in modern submarine environments
(Paull et al., 2018). The record in Squamish even indicates
seven events in 1 d. However, the turbidites observed in out-
crops and cores are deposited at intervals of 500–1000 years
or longer. For example, Ishihara et al. (1997) investigated the
deposits of the fore-arc basin (the Pliocene Awa Group) and
reported that turbidite beds were deposited approximately
once every 1200–1300 years. Clare et al. (2014) analyzed

Published by Copernicus Publications on behalf of the European Geosciences Union.



1092 H. Naruse and K. Nakao: Inverse modeling of turbidity currents by a neural network

turbidites in the western Mediterranean Sea, off the north-
western coast of Africa, and in the Apennines and found that
they were deposited with a frequency of about 1400–36 000
years in all regions. In contrast to these geologic records, re-
cent field observations show that turbidity currents are not a
rare event.

What caused the difference in observed frequency of mod-
ern turbidity currents compared with the records of ancient
turbidites? One of the possibilities is that most of the turbid-
ity currents observed in the present day may be very small
in magnitude or are diluted and leave little or no deposits
in large areas. If this is the case, turbidites several tens of
centimeters thick observed in geologic records can be inter-
preted as deposits of extraordinarily large-scale events that
occurred once every several hundred years. This hypothe-
sis implies that turbidites in the strata resulted from low-
frequency but very high-risk events such as large tsunamis
and earthquakes (Goldfinger et al., 2003). In this case, we
would have to assume that the velocity and concentration of
turbidity currents obtained from in situ observations are quite
different from those of turbidite-forming currents in strata.
Another possibility is that the areas where turbidity currents
have been measured experienced very special conditions and
that the frequency of turbidity currents will be significantly
reduced even in those areas over long timescales. It is very
difficult to determine which of these hypotheses is correct at
this time because typical hydraulic conditions under which
ancient turbidites were deposited have not been well under-
stood. Although the characteristics of turbidity currents in
natural environments have been elucidated rapidly through
recent in situ observations of flow properties (Paull et al.,
2018), the flow characteristics of turbidity currents that form
actual submarine fans remain unknown.

The inverse analysis of turbidites in strata may fill the
gap between observations of turbidity currents and geologic
field observations of ancient turbidites. The reconstruction
of past conditions by inverse analysis has been a major tool
in several research fields including sedimentology and geo-
morphology. For example, several studies have reconstructed
the magnitudes of past tsunamis from tsunami deposits (Jaffe
and Gelfenbaum, 2007; Naruse and Abe, 2017; Mitra et al.,
2020), and Rossano et al. (1996) estimated the behavior of
pyroclastic flows using inverse analysis. If the hydraulic con-
ditions of turbidity currents, such as velocity and concentra-
tion from turbidites, can be reconstructed, it should be possi-
ble to verify whether turbidite beds in geologic records were
deposited from flows of different scales or not by comparing
the reconstructed values with the in situ observations.

However, no practical methodology for the inverse anal-
ysis of turbidity currents applicable on a field scale has yet
been established. Early attempts to obtain hydraulic parame-
ters of turbidity currents were based on the grain size distri-
bution of turbidites (Scheidegger and Potter, 1965; van Tas-
sell, 1981; Bowen et al., 1984; Komar, 1985; Kubo, 1995)
or on sedimentary structures (Harms and Fahnestock, 1960;

Walker, 1965; Allen, 1982; Komar, 1985; Allen, 1991; Baas
et al., 2000). The estimation of hydraulic conditions for tur-
bidity currents based on grain size assumed that the flow is
close to the criteria of suspension or auto-suspension (Ko-
mar, 1985), but it has been emphasized that this assumption
is highly problematic and leads to significantly different re-
sults compared with the actual hydraulic conditions for tur-
bidity currents (Hiscott, 1994). Although the methods based
on sedimentary structures can provide rough estimates of the
conditions of a turbidity current, assumptions regarding the
thickness of the flow are required (Ohata et al., 2017).

To obtain reasonable flow characteristics from turbidites,
inverse analysis using a numerical model should be per-
formed. Falcini et al. (2009) proposed a method for pre-
dicting the hydraulic conditions of turbidity currents from
ancient turbidites and applied it to the Laga Formation in
the central Apennines, Italy. Their steady-state model was
largely simplified to obtain an analytical solution of the
model. However, most of the ancient turbidites are charac-
terized by graded bedding (Bouma, 1962), which suggests a
non-steady waning nature of currents. Therefore, the appli-
cability of this method should be quite limited to non-graded
turbidites deposited from long-maintained flows. Conversely,
Lesshafft et al. (2011) applied a direct numerical simulation
model for the inversion of turbidite; however, the application
to field-scale data is difficult because of the high calculation
cost. Parkinson et al. (2017) proposed a method applicable to
non-steady field-scale flows by using a layer-averaged model
as the forward model, which is potentially applicable to tur-
bidites in outcrops. However, the flow conditions predicted
from ancient turbidites were quite unrealistic in their study.
They analyzed a turbidite in the Marnoso Arenacea Forma-
tion in the Apennines and gave flow depth of 3950 m or
1.92 mm; both reconstructions are not acceptable as realistic
conditions. These extremely large or small estimates may be
due to oversimplification in their forward model or failure in
the optimization of the input parameters. Nakao and Naruse
(2017) were the first to successfully perform an inverse anal-
ysis of turbidites using a general non-steady layer-averaged
model. Although their reconstruction of the hydraulic con-
ditions of the turbidity current was reasonable, the compu-
tational load of the inverse analysis was high because they
used a genetic algorithm for optimization. Thus, they were
unable to repeatedly analyze various artificial or field data
to test the validity and robustness of their inverse model. In
addition, because of the high computational load, modify-
ing their forward model to a more complex one in the future
would be difficult. These previous attempts suggest that a ro-
bust inverse model that can accept a more complex forward
model is required to conduct inversion of turbidity currents
from turbidites under realistic conditions.

Here, we propose a new methodology using an artificial
neural network (NN) for obtaining flow characteristics of tur-
bidity currents from their deposits (Fig. 1). NNs are machine-
learning systems that can be trained to perform very complex
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functions (Hecht-Nielsen, 1987). NNs have been used in a
wide range of applications such as classification (Krizhevsky
et al., 2012) and generative modeling (Sun, 2018). In recent
years, this method has also been widely applied in the field
of Earth and planetary sciences (Laloy et al., 2018). Partic-
ularly, NNs are a powerful tool for high-dimensional regres-
sion of multiple variables with complex distributions (LeCun
et al., 2015). In this study, we generate a nonlinear regression
model to estimate the hydraulic conditions of turbidity cur-
rents from the spatial distribution of bed thickness and grain
size of turbidites using NN. If the regression is adequate, the
NN can be used as an inverse model of turbidity currents.
However, there are too few in situ measurements of the hy-
draulic conditions of turbidity currents available. Although
it is predicted that at least several hundred datasets of hy-
drological conditions and depositional characteristics are re-
quired to train an NN, such frequent observation of turbidity
currents that occur intermittently on the deep seafloor cannot
be expected. Therefore, the method proposed in this study
is designed to generate data on deposits from known con-
ditions by numerical calculations of the forward model. In
this case, the generation of training data can be completely
parallelized, and therefore any model that incurs a high com-
putational load can be implemented as a forward model.

In this study, we implement an NN-based inverse analysis
and examine its effectiveness for turbidites at the field scale.
The focus of this study is on rapidly decelerating sedimen-
tary turbidity currents, and normally graded turbidites are
considered to be deposited from such decaying flows. This
approach has already proven to be effective for the inverse
analysis of tsunami deposits by Mitra et al. (2020). However,
the forward model used in their study was based on the as-
sumption of quasi-steady flow, and thus our work is the first
to perform the inverse analysis using a neural network with
completely unsteady flow. The success of the inverse analysis
for turbidity currents, which exhibit quite different properties
from those of tsunamis, would indicate the wide applicability
of our inversion framework for event deposits.

2 Forward model description

Here we describe the formulation of the forward model used
for producing training datasets for the inverse model (Fig. 2).
This model is based on the model developed by Kostic and
Parker (2006), which predicts the behavior of surge-type tur-
bidity currents, but we modified it to consider sediment trans-
port and deposition of multiple grain size classes. The initial
setting of the flows was set to be the lock-exchange condi-
tion, which assumes that the collapse of a rectangular-shaped
cloud of sediment suspension produces a turbidity current.

In a turbidity current flowing over hundreds of kilometers,
Luchi et al. (2018) suggested that the upper layer of the cur-
rent is predicted to be continuously diluted, while the lower
layer remains highly concentrated, thus maintaining the cur-

rent over long distances. Existing one-layer shallow-water
equation models are insufficient to reproduce such phenom-
ena. The forward model of this study is not an exception.

However, the focus of this study is on rapidly decelerating
sedimentary turbidity currents. Normally graded turbidites
are considered to be deposited from such decaying flows. In
this study, the distribution of turbidites is assumed to be lim-
ited to several tens of kilometers at most, and the separation
of the lower and upper layers that occurs in sustained turbid-
ity currents after flowing tens of kilometers does not need to
be considered when calculating such relatively small-scale
turbidity currents. In fact, the model of Kostic and Parker
(2006), on which the forward model of this study is based,
has been verified to reproduce turbidity currents at experi-
mental and small natural scales (e.g., Fildani et al., 2006).
This suggests that the inverse model in this study is well
suited to analyze a single bed of turbidites that generally ex-
hibit normal grading in strata.

2.1 Layer-averaged equations

Let t and x be the time and bed-attached streamwise coor-
dinates, respectively. Parameters U and h denote the layer-
averaged flow velocity and the depth, respectively. The to-
tal sediment concentration is CT. Here, we apply the follow-
ing layer-averaged conservation equations of fluid mass, mo-
mentum, and suspended sediment mass of a turbidity current
(Parker et al., 1986; Kostic and Parker, 2006).

∂h
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+
∂Uh

∂x
= ewU (1)

∂Uh
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∂U2h
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∂Cih
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∂UCih

∂x
= wsi(Fiesi − r0Ci) (3)

Here, R(= ρs/ρf−1) is the submerged specific density of the
sediment (ρs and ρf are the densities of the sediment and the
fluid), and g is the gravity acceleration. S is the slope, and
Cf denotes the friction coefficient. The right-hand side of the
fluid mass conservation (Eq. 1) considers the entrainment of
ambient fluid to the flow, in which the empirical entrainment
coefficient ew is applied. Equation (3) describes the mass
conservation of the suspended sediment in the flow, which
varies depending on the balance between settling and en-
trainment of the sediment from and to the active layer. In this
model, the grain size distribution of sediment is discretized
to N classes. The parameter Ci denotes the suspended sedi-
ment concentration of the ith class. The model applies the ac-
tive layer assumption, in which the grain size distribution is
vertically uniform in the bed surface layer (active layer) that
exchanges sediment with suspended load (Hirano, 1971). Fi
indicates the fraction of the ith grain size class in the active
layer. The parameter wsi denotes the settling velocity of the
sediment particles in the ith class, and r0 denotes the ratio of
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Figure 1. Schematic diagram of the inversion process of turbidity currents from deposits. The method is composed of three steps: (1) gener-
ation of training datasets by the forward model using random values for model input parameters, (2) training of the NN based on the artificial
datasets, and (3) application of the trained inverse model to unknown field datasets.

Figure 2. Explanation of model parameters. The turbidity current exchanges suspended sediment with the active layer (La in thickness) on
the top of the deposit (ηT in thickness) by settling and entrainment. The volumetric rate of settling of the ith grain size class of sediment is
calculated from the basal sediment concentration r0Ci multiplied by the sediment settling velocity wsi . The sediment entrainment rate from
the active layer is wsiFiesi , where Fi is the volumetric fraction of the ith grain size class in the active layer and Esi is the unit dimensionless
rate of sediment entrainment. The time variation of grain size distribution in the active layer is computed in this model.
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the near-bed concentration to the layer-averaged concentra-
tion of the suspended sediment.

The mass conservation of the sediment in the active layer
and the deposit (historical layer) takes the form

∂ηi

∂t
=

wsi

1− λp
(r0Ci − esiFi), (4)

∂ηT

∂t
=

∑ ∂ηi

∂t
, (5)

∂Fi

∂t
+
Fi

La

∂ηT

∂t
=

wsi

La(1− λp)
(r0Ci −Fiesi), (6)

where ηi denotes the volume per unit area of the ith grain
size class, and ηT is the total thickness of the deposit. La de-
notes the thickness of the active layer, which is assumed to be
constant for simplicity. The parameter λp denotes porosity of
the active layer and the deposit (0.4 in this study), and esi is
an empirical coefficient for sediment entrainment of the ith
class from the active layer. Equation (4) describes the mass
conservation of the ith class sediment in the bed, and the rate
of bed aggradation is obtained by summation of the accu-
mulation rates of all grain size classes (Eq. 5). Equation (6)
considers the temporal development of the grain size distri-
bution in the active layer; the time development of the total
bed thickness ηT is obtained by summation of the right-hand
side of Eq. (4) for all grain size classes.

To solve Eqs. (1)–(6), empirical relations are required for
the parameters wsi , r0, Cf, La, ew, and esi . Here we applied
the formulation of Dietrich (1982) for obtaining the settling
velocity wsi . The ratios of near-bed to layer-averaged con-
centrations r0 and the bed friction coefficient Cf are fixed
to be 2.0 and 0.004 for simplicity (Garcia, 1990). The ac-
tive layer thickness La is assumed to be constant (0.003 m).
Regarding the entrainment coefficients of ambient water and
basal sediment ew and esi , we applied formulations proposed
by Parker et al. (1987) and Garcia and Parker (1991), respec-
tively.

For computational efficiency and numerical stability, a de-
formed grid approach was adopted to solve Eqs. (1)–(3). In
this transformed coordinate, the propagating flow head was
fixed at the downstream boundary using a Landau transfor-
mation (Crank, 1984). The tail of the flow was also fixed at
the upstream end of the calculation domain, and thus the grid
spacing in the dimensional coordinate space was continu-
ously stretched during calculation, whereas that in dimen-
sionless space remained constant. This scheme was based
on Kostic and Parker (2006), and more details regarding the
numerical implementation are given by Nakao and Naruse
(2017).

2.2 Model input parameters and topographic settings

In this study, a turbidity current was assumed to occur from
a cloud of suspended sediment (height H0, length l0). The
initial flow velocity was set to 0, and the sediment of the

Figure 3. Model input parameters. The initial conditions of the tur-
bidity current are assumed to be the suspended sediment cloud that
is H0 and l0 in height and length, respectively. The initial sediment
concentrationsC1 toC4 and the basin slope Sl are to be specified for
calculation. These seven input parameters are subject reconstruction
by inverse analysis.

ith grain size class was considered to be initially homoge-
neously distributed in the suspension cloud at the concentra-
tionCi (Fig. 3). The suspended sediment cloud was located at
the upstream end of the calculation domain, where the slope
gradient was 0.1. This steep slope extended for 5.0 km and
transited to a gently sloping basin plain (gradient is Sl) in
the downstream region. The total length of the calculation
domain was 100 km. In summary, the number of initial con-
ditions required for the forward model calculation was three
(H0, l0, and Sl) plus the number of grain size classes (Ci).

3 Inverse modeling by a deep-learning NN

In this study, numerical simulation of a turbidity current is
repeated under various random initial conditions to produce
a dataset of the characteristic features of turbidites. Then,
this artificial dataset of turbidites is used for supervised train-
ing of a deep-learning NN. The values of the turbidite char-
acteristics, i.e., distribution of volume per unit area of all
grain size classes, in the training dataset are input to the NN,
and the estimated initial conditions (e.g., initial flow height
and concentration) of the turbidity current are obtained from
the output nodes of the NN. The output values of the NN
are compared with the true conditions. The optimization of
weight coefficients of the NN is then conducted to reduce the
mean square of the difference between the true conditions
and the output values of the NN. If the number of training
datasets is sufficiently large, the trained NN should be able
to estimate the paleo-hydraulic conditions from the data on
the ancient turbidites (Fig. 1). In other words, an empirical
relationship with numerical results and the model input pa-
rameters is explored in this method, and the discovered rela-
tionship is used for inverse modeling of turbidity currents.

The local conditions of a turbidity current (velocity, con-
centration, etc.) at any location and time can be estimated
from the reconstructed initial conditions. The flow parame-
ters are obtained by calculating the time evolution of the for-
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ward model from the initial conditions. In this way, we can
obtain the behavior of the flow with a relatively small number
of parameters. This approach has already been tried success-
fully by Lesshafft et al. (2011), and Falcini et al. (2009) also
reconstructed flow conditions of turbidity currents by obtain-
ing boundary conditions of the model.

The details of these procedures are described below.

3.1 Production and preprocessing of training and test
datasets for supervised machine learning

We conducted iterative calculations using the forward model
and accumulated data to train and validate the inverse model.
To investigate the appropriate amounts of data for training
the inverse model, we conducted 500–3500 iterations of the
forward model calculations. To verify the performance of the
trained model, 300 test datasets were also generated numeri-
cally, independent of the training data.

Model input parameters that are subject to inversion are
required to produce the training and test data by the forward
model calculation (Fig. 3). In this study, the model inputs
are the initial flow height H0, the initial flow length l0, the
initial sediment concentration for the ith grain size class Ci ,
and the basin slope S. These model parameters are gener-
ated as uniform random numbers within a certain range, and
their range is changed according to the target of the inverse
analysis. Since this study is aimed at field-scale analysis, the
following ranges are chosen. Both initial depth and length of
the suspended cloud range from 50 to 600 m. The sediment
concentration for each grain size class ranges from 0.01 %
to 1.0 %. The number of grain size classes N is four, and
the representative grain diameters are 1.5, 2.5, 3.5, and 4.5
φ. The inclination of the basin plain where the turbidites are
expected to form ranges from 0 % to 1.0 %.

Each run of the forward model calculation is initiated with
the given model input parameters and is terminated when the
flow head reaches the downstream end or a sufficiently long
time period (1.2× 105 s) has elapsed. As a result of the cal-
culation, the forward model outputs the volume per unit area
of sediment for all grain size classes over the 100 km long
calculation domain. The inverse model estimates the model
input parameters from the resultant spatial distribution of
the granulometric characteristics of the deposits. However,
in natural outcrops, it is unlikely that the entire distribution
of the turbidite beds would be exposed. Therefore, we limit
the length of the sampling window in the calculation domain,
and only the sediment data contained in this window are ex-
tracted for both training and testing. The upstream end of the
sampling window was set at the transition point between the
steep slope and the basin plain (5 km from the upstream end),
and the length of the window varies from 1 to 30 km to eval-
uate the data interval required for the inverse analysis.

Before the model input parameters are input to the NN, all
values are normalized between 0 and 1 using the following

equation:

I ∗i =
Ii − Imin

Imax− Imin
, (7)

where I ∗i and Ii denote the ith normalized and original in-
put parameters, respectively. Imaxi and Imini are the maxi-
mum and minimum values used for generating the ith input
parameter, respectively. This min–max normalization is ap-
plied to consider all parameters at equal weights because the
range of the initial flow conditions is significantly different
between them.

3.2 Structure of NN

The artificial NN is used as the inverse model to reconstruct
flow conditions from the depositional architecture. We input
the spatial distribution of volume per unit area of multiple
grain size classes of a turbidite in the NN, which outputs the
values of the flow initial conditions and the basin slope. In
this study, we use a fully connected NN that has four hidden
layers. The volume per unit area of N grain size classes of
sediment deposited on M spatial grids in the sampling win-
dow is given to the input nodes of the NN. Thus, the total
number of NN input nodes is N ×M . The number of nodes
in all hidden layers is set to 2000 in this study.

The rectified linear unit (ReLU) activation function is
adopted for all NN layers (Nair and Hinton, 2010; Glorot
et al., 2011). The ReLU is the half-wave rectifier f (z)=
max(z,0). Compared with other smoother nonlinearities,
such as tanh(z) or 1/(1+exp(−z)), the ReLU typically learns
much faster in an NN with multiple layers (Glorot et al.,
2011), and thus it allows us to train a deep supervised net-
work without unsupervised pre-training (LeCun et al., 2015).

The NN is expected to output the model input parame-
ters (i.e., the initial flow conditions and the basin slope), and
therefore the number of nodes in the output layer is equal to
the number of input parameters for the forward model, which
is seven here (the initial flow length, depth, sediment concen-
trations, and the basin slope).

3.3 Training the inverse model

To develop the inverse model, supervised training is con-
ducted using the artificial dataset produced by the forward
model calculation. First, the artificial dataset is randomly
split into training and validation datasets to detect overfit-
ting during the training process. The ratio of the validation
dataset is set to 0.2 so that 80 % of the artificial dataset is used
for training. The model input parameters used for producing
training and validation sets were regarded as the teacher data
to train and evaluate the model.

The methodology applied for training the NN is as fol-
lows. The mean squared error (MSE) is adopted as the loss
function because the supervised training of the NN in this
study is classified as a regression problem (Specht, 1991),
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and MSE is a common loss function for regression (Bishop,
2006; Hastie et al., 2009; Shalev-Shwartz and Ben-David,
2014). Before training, all weight coefficients of the NN
are randomly initialized using the Glorot uniform distribu-
tion (Glorot and Bengio, 2010). The back-propagation al-
gorithm (Rumelhart et al., 1986) is used to calculate the
derivative of this error metric for each connection between
the nodes, and the stochastic gradient descent method (SGD)
with Nesterov momentum (Nesterov, 1983) is used for op-
timizing the weight coefficients of the NN to minimize the
difference between the model predictions and the teacher
datasets. Other optimization methods, such as AdaGrad
(Duchi et al., 2011), RMSprop (Tieleman and Hinton, 2012),
and AdaDelta (Zeiler, 2012), have been tested, but SGD
shows the best performance in this case. Dropout regular-
ization (Srivastava et al., 2014) is applied for each epoch to
reduce overfitting and to improve the generalization ability
of the NN. One training epoch, which refers to one cycle
through the full training dataset, is repeated until the loss
function of the validation dataset converges to a constant
value. These methods are all implemented in Python with the
library Tensorflow 2.1.0 (Raschka and Mirjalili, 2019), and
the calculations are conducted using GPU NVIDIA GeForce
GTX 2080 Super with libraries CUDA 11.0 and CuDNN 7.0.

Several hyperparameters should be specified for the train-
ing of an NN. Specifically, the dropout rate, the learning rate,
the batch size, the number of epochs, and the momentum are
adjusted manually after repeated trial and error. To perform
an optimization calculation with SGD, the batch size and the
learning rate were set to 32 and 0.02, and the value 0.9 was
chosen for the momentum. The dropout rate for regulariza-
tion was 0.5.

3.4 Testing the inverse model

The performance of the inverse model is tested using a set
of 300 data that are produced independently of the train-
ing and validation datasets. The inversion precision for each
model input parameter is evaluated by the root mean square
error (RMSE) and the mean absolute error (MAE) of the pre-
diction. These error metrics are computed for both raw and
normalized values with true values and used to evaluate the
model. Moreover, the bias of prediction (i.e., the mean devia-
tion of the model predictions from the true input parameters)
is used to describe the accuracy of the inversion.

Three additional tests are conducted for verifying the ro-
bustness of the inverse model that is significant for the ap-
plicability of the model to field datasets. The results of these
tests are evaluated by the average of the normalized RMSE,
which is defined as

RMSE=

√√√√ 1
JK

∑
J

∑
K

(
Ipjk − Ijk

Ijk

)2

, (8)

where Ipjk and Ijk denote the predicted and the original val-
ues of the j th model input parameter for the kth test dataset,
respectively. J andK are the numbers of model input param-
eters and test datasets.

First, noise is artificially added to the test data to evaluate
the robustness of the inversion results against the measure-
ment error. Under natural conditions, measurement errors in
the thickness and grain size analysis of turbidites as well as
the local topography affect these results. If the results of the
inverse analysis change significantly due to such errors, it
means that our method is not suitable for application to field
data. To investigate this, we apply normal random numbers
to the volume per unit area at each grid point in the training
data at various rates, and we observe how much influence the
noise has on the inverse analysis results.

The second test on the inverse model is to perform a sub-
sampling of the grid points in the training data. Outcrops
are not continuous over tens of kilometers, so the thickness
and the grain size distribution of a turbidite in the interval
between outcrops can only be obtained by interpolation. To
simulate this situation, the grid points in test datasets are ran-
domly removed in this test, and the volume per unit area at
the removed grid points is linearly interpolated. By varying
the rate at which grid points are removed, this test also allows
us to estimate the average interval of the outcrops necessary
for conducting the inverse analysis. That is, if 90 % of the
grid points set at 5 m intervals are removed and the inverse
analysis is conducted on the remaining 10 %, the average dis-
tance between the grid points is 50 m. Estimating the outcrop
spacing requires obtaining reasonable results of inverse anal-
ysis before applying it to the actual field.

Finally, the influence of the length of the upstream slope
was examined. In this study, it is assumed that a steep slope
(10 %) of a submarine canyon with a length of 5 km exists
upstream, and a basin plain with a gentle slope exists down-
stream of the steep slope. Although the topography and de-
posits of the upstream slope are not the subject of the inverse
model analysis, the length of the slope potentially affects the
results of the inverse analysis. As a test, we set a slope of
10 km length instead of 5 km upstream and deposited a tur-
bidite bed from the turbidity current flowing down from the
uppermost part of the slope. The turbidite was then analyzed
using a model trained on the assumption of a 5 km slope
to compare the reconstructed values with the original con-
ditions.

4 Results

4.1 Properties of artificial datasets of turbidites

Here, we describe the properties of turbidite artificial data
generated for training and testing the inverse model. Sev-
eral artificial datasets of turbidites are produced using a 1D
shallow-water equation model. Figure 4 exhibits examples
of the calculated spatial distribution in the bed thickness and
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Figure 4. Examples of turbidites calculated by the forward model.
(a) Spatial distributions of bed thickness. Four beds (beds 1–4) were
plotted as examples. (b) Spatial distribution of the volume per unit
area for each grain size class in bed 1 (Fig. 4a).

grain size of turbidites deposited in the region of the basin
plain. Most beds exhibit the typical “top hat” or “core and
drape” shape of turbidites (Hirayama and Nakajima, 1977;
Talling et al., 2012; Pantopoulos et al., 2013): turbidite beds
become thicker in the upstream part of the basin and then thin
rapidly from their peak of thickness. Thereafter, beds con-
tinue over a long distance, gradually decreasing in thickness
(Fig. 4). At the same time, the grain size gradually becomes
finer downstream. The maximum thickness of beds is 1.27
m on average (standard deviation σ = 1.65 m), and the mean
value of the area where sediments with a thickness greater
than 1 cm are distributed is 42.0 km (σ = 15.7 km). Each bed
is composed of four grain size classes. All distributions of the
volume per unit area of the grain size classes are still top-hat-
shaped (Fig. 4b), but the depositional center and the amounts
of deposition are different for each class depending on their
size.

4.2 Results of training

We trained the NN inverse model with various numbers of
artificial data and lengths of the sampling window, and the
best result in terms of the value of the loss function for the
validation sets and the practical usage of the model can be
obtained with 3500 training datasets and a 10 km long sam-
pling window (Fig. 5). Results with fewer than 2000 training
datasets produce a discrepancy in the loss function between
the training and the validation sets, indicating over-learning
of the NN. Conversely, when the number of datasets exceeds

Figure 5. Results of training of the NN with different numbers of
training datasets and lengths of the sampling window.

2000, the loss function of the validation set is slightly less
than the value of the training set. As the number of training
data increases, the resultant values of the loss function im-
prove. However, when the number of data exceeded 2500,
the improvement of values of the loss function became not
so rapid. Regarding the distance of the sampling window, the
training results are not stable when the sampling window is
shorter than 5 km (Fig. 5). On the other hand, the training re-
sults are stable when the window length is longer than 10 km,
and the results gradually improve as the window length in-
creases. However, extending the window length from 10 to
30 km results in little improvement of the loss function. We
do not fully understand why the results are not stable for sam-
pling windows shorter than 5 km, but it probably indicates
that the training results fall into a local optimum solution de-
pending on the initial values of the weight coefficients of the
neural network (given by random numbers) due to incom-
plete information. In any case, the loss function is very good
(less than 0.01), so even turbidites that can be tracked for less
than 5 km are likely to give good results if the outcrop spac-
ing is sufficiently narrow and detailed observation of beds is
possible.

Hereafter, we further investigate the performance of the
inverse model trained on 3500 datasets with a 10 km long
sampling window. The history of training indicates that the
values of the loss function improved significantly in the first
1000 epochs, and the results are improved up to 15 000
epochs (Fig. 6). Eventually, saturation is reached at approx-
imately 20 000 epochs. The resultant loss function (i.e., the
MSE of prediction) is 3.78× 10−3 for training sets and is
1.03× 10−3 for validation sets.
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Figure 6. Training history of the NN; 3500 datasets and a 10 km
long sampling window were used for this training.

4.3 Precision and accuracy of inverse analysis

Using 300 test datasets, the performance of the inverse model
trained with 3500 datasets and a 10 km long sampling win-
dow is evaluated. The estimated parameters match well, with
slight deviations (Figs. 7, 8; Table 1). R2 values are beyond
0.98 for all parameters. Particularly good agreement is ob-
tained for the estimates of the initial height and the length
of the suspended sediment cloud. Values of the normalized
RMSE and MAE for these parameters are less than 9 % and
6 %, respectively. The sediment concentration is also pre-
cisely estimated. The normalized RMSE for the sediment
concentration ranges from 12 % to 16 %, which corresponds
to only 0.02–0.03 volumetric percent. The prediction for the
basin slope shows relatively large errors (RMSE is close to
20 % and MAE is 11.7 %), but these errors correspond to
only 0.03 % of slope. Focusing on the bias of the estimates,
all estimated values except for the basin slope tend to be
slightly smaller, whereas the predicted values of the basin
slope tend to be larger (Fig. 8). The values of the bias, how-
ever, range only from 2 % to 12 % of the original value.

The forward model is calculated again using the recon-
structed values to examine the influence of the estimation
error of the model input parameters on the predicted flow
behavior (Fig. 9). The chosen test values deviate from the
true conditions as indicated by the RMSE value of 0.27
(Table 2), but the time evolution of the flow characteristics
agrees very well with those calculated from the true values
(Fig. 9). When comparing the velocity and concentration of
the flow at 10 km from the upstream end, the discrepancy
between calculation results using reconstructed and original
parameters is less than 5 % for both parameters.

4.4 Tests for robustness against noise and subsampling
on input data

The test data with various normal random values are ana-
lyzed to verify the robustness of the inverse model. Conse-
quently, even when the standard deviation of the normal ran-
dom numbers given as measurement errors was set to approx-
imately 200 % of the value of the original data, only a small

Figure 7. Result of the inverse analysis compared with the true
parameters. The x axis represents the value of the true parameter,
and the y axis represents the value of the estimated parameter. The
orange lines show that the two values are in a 1 : 1 relationship, and
thus the plots on this line indicate that the prediction is perfectly
consistent with the true value.

effect was observed in the normalized root mean square (rms)
of the results of the inverse analysis (Fig. 10). The rms val-
ues gradually increase when the standard deviation of errors
exceeds 50 %, but there is no rapid increase in the RMSE of
the results at any particular threshold.

Similarly, using subsampling data obtained by extracting
some of the spatial grids from the original data, we conducted
an inverse analysis of the test datasets. The results show that
there is little influence on the RMSE values of the inverse
analysis of the test datasets when the sampling rate of grids
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Figure 8. Histograms indicating the deviation of the predicted values from the true values.

Table 1. Errors and bias of the predicted parameters. Prediction errors are exhibited by the root mean squared error (RMSE) and the mean
absolute error (MAE), and the mean bias is also described. Normalized values of RMSE, MAE, and mean bias by true values are also shown.

R2 RMSE RMSE MAE MAE Mean bias Mean bias
(normalized) (normalized) (normalized)

Initial height 0.99 18.97 m 8.55 % 14.81 m 5.96 % −12.93 m −5.18 %
Initial length 0.99 15.82 m 7.53 % 12.09 m 4.92 % −2.33 m −2.06 %
C1 0.99 0.02 % 12.91 % 0.02 % 6.00 % −0.01 % −4.44 %
C2 0.99 0.02 % 15.57 % 0.02 % 7.67 % −0.01 % −4.29 %
C3 0.99 0.02 % 13.03 % 0.02 % 6.39 % −0.00 % −2.49 %
C4 0.99 0.03 % 13.71 % 0.02 % 6.67 % −0.01 % −4.21 %
Sl 0.98 0.03 % 19.56 % 0.03 % 11.67 % 0.03 % 11.45 %
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Table 2. The predicted and true parameters used for an example calculation of the time evolution of the flow characteristics.

Initial height Initial length C1 C2 C3 C4 Sl
(m) (m)

True input parameters 484.41 318.18 0.17 0.05 0.95 0.74 0.23
Estimated parameters 454.67 301.73 0.18 0.02 0.93 0.73 0.25

Figure 9. Example of forward model calculation with reconstructed
and true parameters. The solid line indicates the calculation result
using the predicted parameters, and the dashed line exhibits the re-
sults using the true parameters. (a) Velocity distribution at 2000,
3500, and 5000 seconds after the flow initiation. (b) Total sediment
concentration at 2000, 3500, and 5000 s after the flow initiation.
(c) Spatial distribution of bed thickness at 25 000 s after the flow
initiation.

is greater than 1 % (Fig. 11). The RMSE values gradually
increased when the sampling rate falls below 1 %, and RMSE
becomes extremely high when the rate drops below 0.4 %.

4.5 Tests for influence of length of the upstream slope

Here, a turbidite deposited in a different topographic set-
ting was analyzed to determine the influence of the topo-

Figure 10. Result of inverse analysis of the test datasets with arti-
ficial noise. The values of RMSE are averaged over 20 iterations.
Error bars indicate standard errors of RMSE values.

Figure 11. Results of the inverse analysis for the subsampled test
datasets. The values of RMSE are averaged over 20 iterations. Error
bars indicate standard errors of RMSE values.

graphic assumptions on inversion results. The slope of 10 km
instead of 5 km was set at the upstream end of the calcu-
lation domain. The initial conditions for this test assum-
ing a 10 km slope were a suspended sediment cloud 359 m
high and 227 m long, with concentrations of 0.13 %, 0.15 %,
0.38 %, and 0.65 % for the four grain size classes. The gradi-
ent of the downstream slope was set to be 0.69 %.

As a result, the initial conditions estimated by the inverse
model trained on the assumption of a 5 km upstream slope
were a suspended sediment cloud 117 m high and 587 m
long, with concentrations of 0.33 %, 0.38 %, 0.48 %, and
0.53 % for each grain size class, and the downstream slope
was estimated to be 0.96 %. Then, these initial conditions
were given to the forward model to calculate their time de-
velopment, and the obtained parameters were compared on a
basin plain where the turbidite was deposited (Fig. 12).

The results showed that the model with a 5 km slope pre-
dicted values relatively close to the original results for the
flow velocity (Fig. 12). The model with both a 5 and 10 km
slope calculated velocities that were approximately 3 ms−1

maximum over the basin plain and gradually decelerated
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Figure 12. Influence of the length of the upstream slope on the re-
sult of inverse analysis. A 10 km long slope was used to produce
a turbidite, and the bed was analyzed by the inverse model trained
with a 5 km long upstream slope. Solid lines are values for currents
producing the bed, and the dashed lines are reconstructed values.
(a) Time development of flow velocity. (b) Total sediment concen-
tration. (c) Distribution of bed thickness.

downstream. However, because the slope length is different,
the time to reach each point on the basin plain differs greatly.

In contrast, the concentration of the turbidity current was
significantly overestimated in the model reconstruction as-
suming a 5 km slope (Fig. 12). When the flow reached the
downstream gentle slope at about 10 km, the original turbid-
ity concentration was about 0.2 % at maximum, while the re-
stored value was closer to 0.5 %. As a result, the thickness of
turbidite estimated from the reconstructed initial values was
also thicker than the original values.

5 Discussion

5.1 Performance of inverse model

The performance of the inverse model for turbidity currents
is evaluated using the test dataset, implying that this model

can accurately reconstruct the flow characteristics of the tur-
bidity currents from the spatial distribution of the thickness
and grain size of turbidites (Figs. 7 and 8). The biases in the
values reconstructed from the true input parameters are also
very small and should thus not pose a serious issue when the
method is applied to actual field data.

The inverse model reconstructed not only the initial con-
ditions of turbidity currents accurately, but also the predicted
time evolution of the flow behavior accurately and precisely.
In the results of the forward model calculations using the pre-
dicted model input parameters that relatively deviate from the
true values (Table 2), the time evolution of the velocity and
the thickness of the flow does not deviate significantly from
the results using the true values (Fig. 9).

Turbidity currents have a mechanism called self-
acceleration, which is caused by erosion and associated in-
crease in the flow density (Parker et al., 1986; Naruse et al.,
2007; Sequeiros et al., 2009). Therefore, even slight differ-
ences in the initial conditions of the flow can lead to very
different results of the time evolution of the flow parameters.
However, the results of this test imply that the accuracy of
the inverse analysis in this study is enough to prevent such a
drastic change in the flow behavior.

The relationship between turbidity currents and character-
istics of turbidites is nonlinear. Especially when the flow is
self-accelerating, a small difference in the initial conditions
can result in very different sedimentary characteristics. This
means that it is easy to find the initial conditions of the flow
by inverse analysis because even if the characteristics of the
deposits are very different, the initial conditions of the flow
should not be so different. Thus, the inverse results in this
case are expected to be robust even if there are some mea-
surement errors in the characteristics of deposits. In other
words, there is a trade-off between the robustness of the for-
ward and inverse modeling.

This property of the inversion can be understood when we
consider the opposite case. If the initial conditions of the flow
are different but the characteristics of the turbidites are ex-
actly the same, it is impossible to estimate the flow condi-
tions from the turbidites. The inverse analysis of hydraulic
conditions is possible because the depositional characteris-
tics are sensitive to conditions of turbidity currents. The self-
acceleration of turbidity flow is an extreme example of the
sensitivity of turbidites to the flow initial conditions.

5.2 Applicability to field-scale problems

To apply this method to outcrops, the extent of the area
that should be surveyed to collect data and the interval be-
tween outcrops should be determined. The tests with differ-
ent sizes of sampling windows suggest that the survey region
should be located more than 10 km from the proximal region
(Fig. 5). The loss function (i.e., the MSE of the estimates of
the parameters) decreases as the length of the sampling win-
dow increases, and the best result is obtained at the 10 km
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long window. Regarding the interval of the outcrops, the test
results of sampling rates of more than 1.0 % with interpola-
tion for data at non-sampled grids are not inferior to the full
sample. Since the training data used in this study are com-
puted on 5 m spaced grids, extracting data from these grids
with a 1.0 % probability is equivalent to conducting an in-
verse analysis from outcrop data that are distributed at 0.5 km
intervals on average. Although the RMSEs of the model pre-
diction certainly increase when the sampling rate decreases
below 1.0 %, the RMSE values does not drastically worsen
until 0.5 %. Therefore, even if the outcrop spacing is about
1 km, it should be possible to obtain reasonable estimates of
the flow characteristics.

These requirements for accurate inversion are attainable in
the actual field. For example, Hirayama and Nakajima (1977)
correlated individual turbidites of the Pleistocene Otadai For-
mation distributed in the Boso Peninsula, Japan, on the basis
of the key tuff beds. Their correlation covered a region over
30 km long with 33 outcrops. Thus, the average interval be-
tween outcrops was approximately 1 km. Amy and Talling
(2006) correlated individual beds in the Miocene Marnoso
Arenacea Formation, Italy, using the Contessa Megabed and
an overlying “columbine” marker bed as the key beds. Their
correlation covers 109 sections of approximately 30 m thick
succession and extends over 120 km in a direction parallel
to flow. Other studies in various regions (e.g., the Arnott
Sandstone in France) also reported the correlation of individ-
ual turbidites at similar scale and frequency (Hesse, 1974;
Tokuhashi, 1979, 1989; Amy et al., 2000, 2004). Further-
more, Bartolini et al. (1972) surveyed the western Alboran
Basin Plain, Mediterranean Sea, and discovered an individ-
ual turbidite on the seafloor at 49 cores over approximately
30 km. The records of cores at similar scale and intervals
have also been reported by other studies of modern sub-
marine fans in different areas (Bornhold and Lilkey, 1971;
Pilkey et al., 1980). In summary, although the method pro-
posed in this study requires fairly high-resolution data on
turbidite individual beds correlated over a long distance, such
conditions in ancient geological records and modern seafloor
surveys can be achieved.

Besides these outcrop conditions, measurement errors in
the field are another important factor for application. The
test results suggest that the proposed inverse model of this
study is very robust against random noise; random errors in
the measured data have little effect on the results (Fig. 10).
Therefore, even if localized and small-scale scouring and
sedimentation occur due to some processes such as bottom
currents after the deposition of a turbidite, results of inverse
analysis will not be seriously affected. However, if deposits
of multiple events are amalgamated to form a single thick
massive sandstone, the hydraulic conditions reconstructed
from the bed should be considerably different from the actual
conditions. To avoid this situation, it is important to identify
the erosional surface inside the bed carefully at the actual
outcrop. In addition, it is safer not to analyze massive sand-

stones that are more than several meters thick because they
are likely to be amalgamated deposits.

Perhaps the most significant drawback to analyzing actual
turbidites is the assumption about the topography of the up-
stream submarine canyon. In this study, we tested doubling
the length of the upstream slope and found that the predicted
values for the concentration were different from the origi-
nal values (Fig. 12). In the case of actual analysis, the up-
stream topography can be set correctly if the modern subma-
rine fan is analyzed. Regarding ancient turbidites, however,
some assumptions about the length and scale of the subma-
rine canyons are necessary without measurements. In this
case, it is recommended to set up various lengths of sub-
marine canyons within a reasonable range and to carefully
examine the degree to which these assumptions affect the in-
verse analysis results. Nevertheless, it is worth noting that
the test results were reasonable for velocity (Fig. 12), even
if the assumption about the length of the upstream slope was
substantially different. This suggests that the inverse model
proposed in this study can generally reconstruct the behavior
of turbidity currents in sedimentary basins, even if the devel-
opment process of turbidity currents upstream is different.

5.3 Comparison with previous methodologies

In existing inverse analysis methods for turbidity currents,
the difference in depositional characteristics between the out-
puts of the forward model and the field observation is quan-
tified as the objective function, and the initial and boundary
conditions of the forward model are determined by conduct-
ing optimization calculations to minimize the objective func-
tion (e.g., Nakao and Naruse, 2017). This is because models
of turbidity currents are generally nonlinear and are difficult
to linearize, especially when considering the entrainment of
the basal sediment (Parker et al., 1986). Although the actual
computational load depends on the choice of algorithm, this
type of optimization calculation generally consists of multi-
ple steps, and each step depends on the results of the previous
calculation. Thus, the entire optimization procedure is diffi-
cult to parallelize. For instance, the kriging-based surrogate
management method (Lesshafft et al., 2011) and the genetic
algorithm (Nakao and Naruse, 2017) have been used to op-
timize the objective function for inversion of turbidity cur-
rents. In these methods, multiple calculations are conducted
in each calculation step (generation), and the distribution of
the objective function in the parametric space is iteratively
estimated. Although the computations within each genera-
tion can be parallelized in this kind of algorithms, the next
generation’s computation depends on the results of the previ-
ous generation’s computation, and therefore the entire com-
putation process cannot be parallelized. Thus, if the computa-
tional load of the forward model is high, the inverse analysis
takes an unrealistic amount of time.

Parkinson et al. (2017) applied the adjoint method with the
gradient-based optimization algorithm. Although the differ-
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entiation of the layer-averaged model by the adjoint method
greatly reduces the load of the gradient calculation, this ap-
proach still requires an iterative calculation for optimization.
Thus, the sediment entrainment process is omitted from their
model. Their model does not consider the resuspension (en-
trainment) process of sediment, whereas suspended sand in
turbidity currents is maintained by balancing the effects of
particle settling and diffusion from the bottom (i.e., entrain-
ment). Their model only considers advection and settling of
particles so that the suspended sediment quickly settles and
is lost over short distances at realistic flow thicknesses and
concentrations. The only way to transport large amounts of
suspended sediment for long distances and to deposit thick
turbidites without resuspension is to make the flow extremely
thick or to suppose unusually high velocity or concentration.
This is the reason that the extremely thick flow depth (more
than 3000 m) was obtained in their results. Their inversion
method requires iterations that cannot be parallelized, so the
forward model needs to be simplified for this purpose. In ad-
dition, gradient-based optimization tends to have problems
with initial value dependency and escaping from local op-
timal solutions. For this reason, the results of their inverse
analysis of turbidites were quite unrealistic. In contrast, we
were able to adopt a “full model” that incorporates the en-
trainment process of suspended sand into our model without
any problems. As a result, our inversion did not produce any
anomalous reconstructions even though most of our test data
exhibit thickness and grain size distributions similar to real-
istic turbidites. This strongly suggests the robustness of our
inverse model and its applicability to real turbidites.

Another potential approach to optimization is the Markov
chain Monte Carlo (MCMC) method, but even with this
method, repetition of the forward model calculation is un-
avoidable, since MCMC usually requires repetition of calcu-
lations of the objective function, which cannot be parallelized
more than the order of 104 time. The layer-averaged model
of unsteady turbidity currents is probably not suitable for for-
ward models due to their computational load.

The approach proposed in this study is obviously supe-
rior to existing methods in terms of applicability to the field,
as it allows computationally demanding models to be ap-
plied as forward models. The general relationship between
the bed and the input parameters is learned by an NN rather
than adjusting the input parameters of the numerical model
to reproduce the characteristics of specific individual beds.
The objective function used in the training of this NN is
not the difference between the features of the sediment, but
the precision of the inverse analysis results themselves. The
most computationally demanding part of the inverse analysis
method proposed here is the generation of the training data
for the NN. However, since the computations of the forward
models are completely independent of each other, the gener-
ation of the training data can be conducted in parallel. Thus,
our method enables us to easily prepare a large number of
training data by using PC clusters, even for very computa-

tionally demanding forward models. In addition, the number
of calculations required for training is not as high as other
methods, specifically only approximately 3000. It is also ad-
vantageous that the proposed method enables us to perform
various tests for robustness or precision of inversion before
application to field examples because the NN outputs the re-
sults of inverse analysis extremely fast. For these reasons, we
consider this study to have successfully generated an inverse
model using the layer-averaged model for unsteady turbidity
currents that can be applied to the field.

5.4 Limitations and future tasks

The inverse model proposed in this study has several lim-
itations. Inevitably, the accuracy of the inverse analysis is
governed by the validity of the forward model that generates
the training data. The present implementation of the inverse
model uses the one-dimensional layer-averaged model as the
forward model, but this model is likely to be applicable only
to sedimentary basins that are laterally constrained or to the
inside of the submarine channels. The layer-averaged model
of Parker et al. (1986) used in this study has been widely ac-
cepted, but various doubts have been recently raised such as
the formulation of entrainment rates of basal sediment (Dor-
rell et al., 2018) and ambient seawater (Luchi et al., 2018).
The assumption of a lock-exchange condition for the occur-
rence of turbidity currents may not be appropriate in some
situations.

Although Luchi et al. (2018) suggested that the a single-
layer model may not be sufficient for considering behavior
of turbidity currents maintained over long distances, it is ex-
pected that such turbidity currents do not leave turbidites and
create a bypassing zone. Otherwise, the concentration in the
lower layers of turbidity currents decreases, and therefore the
currents stop within a relatively short distance. Thus, a two-
layer model of turbidity currents is not always necessary for
inversion of bed-scale turbidites. However, modeling of con-
tinuous sustained turbidity currents is necessary for inverse
analysis of the development of submarine fans and channel–
levee systems on a larger scale.

It is relatively easy to solve these problems described
above. Without changing the framework of the proposed
method, we can adapt it to any situation by changing the
forward model to generate the training data. For processes
such as sediment transport, it is easy to revise the model to
incorporate state-of-the-art knowledge. By adopting compu-
tationally demanding models, inverse analysis using 2D and
3D forward models may be possible. In future research, these
issues should be addressed, and the methodology should be
applied to actual field examples.

The analysis of ancient turbidites will be an important is-
sue in the future. However, even if ancient turbidites are ana-
lyzed, it is not possible to verify that the results obtained are
correct because the hydraulic conditions for ancient turbid-
ity currents are unknown. Another way to verify the validity
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of the method is to reconstruct the hydraulic conditions of
experimental turbidity currents from the turbidites deposited
in the flume and compare them with the measured values.
The turbidity currents measured in the modern submarine
canyons and their deposits would be another candidate to be
used for model verification.

6 Conclusions

This study implemented an inverse model that reconstructs
the flow characteristics of turbidity currents from their de-
posits using an NN and verified its effectiveness at the
field scale. In this study, we assumed that turbidity currents
occur from suspended sediment clouds, which flow down
from the steep slope in a submarine canyon to a gently
sloping basin plain. The inverse model attempts to recon-
struct seven model input parameters (height and length of
the initial suspended sediment cloud, sediment concentra-
tion of four grain size classes, and slope of the basin plain)
from the thickness and grain size distribution of the tur-
bidite deposited on the basin plain. The forward model, using
one-dimensional layer-averaged equations, was used to pro-
duce training datasets with random conditions in prescribed
ranges. The NN was trained using the generated data to de-
velop the inverse model. Thereafter, the test data generated
independently from the training data were analyzed to verify
the performance of the inverse model.

As a result of the training and tests conducted on the in-
verse model, the following was found.

1. More than 2000 datasets were required for the train-
ing to avoid over-learning. An increase in the number
of training datasets results in improved performance of
the inverse model; however, the degree of improvement
becomes smaller if more than 3000 datasets are used.

2. The hydraulic conditions and basin slopes were pre-
cisely reconstructed from the test datasets. The thick-
ness and grain size distribution of the turbidites de-
posited over a 10 km long interval in a sedimentary
basin were sufficient to reconstruct the flow conditions.

3. The inverse model of this study is quite robust to ran-
dom errors in the input data. The addition of a normal
random number with about the same magnitude of the
standard deviation as the original data had little effect
on the results of the inverse analysis.

4. Judging from the results of subsampling tests, the inver-
sion of turbidity currents can be performed if an indi-
vidual turbidite can be correlated over 10 km at approx-
imately 1 km intervals.

These results imply that the inverse model of turbidity cur-
rents proposed in this study is promising for analyzing field-
scale turbidites. This method is expected to be applied to ac-
tual turbidites in the future.
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Appendix A: Notation

The symbols L, M, and T denote dimensions of length, mass, and time, respectively.
The asterisk (∗) denotes that the value is dimensionless.
CT Total layer-averaged sediment concentration∗

Ci Layer-averaged sediment concentration of the ith grain size class∗

Cf Bed friction coefficient∗

esi Sediment entrainment coefficient∗

Fi Volumetric fraction of the ith grain size class in the active layer∗

La Thickness of the active layer [L]
R Submerged specific density of sediment particles (= 1− ρs/ρf)∗

S Bed slope∗

U Layer-averaged velocity of turbidity currents [LT−1]
g Acceleration of gravity [LT−2]
h Flow depth of turbidity current [L]
l0 Initial length of suspended sediment cloud [L]
r0i Ratio of near-bed sediment concentration of the ith grain size class to layer-averaged concentration∗

t Time [T]
wsi Settling velocity of sediment of the ith grain size class [LT−1]
x Bed-attached streamwise coordinate [L]
H0 Initial height of suspended sediment cloud [L]
J Number of model input parameters∗

K Number of test datasets∗

N Number of grain size classes∗

Sl Basin slope∗

ηT Thickness of the turbidite [L]
ηi Volume per unit area of sediment of the ith grain size class [L]
λp Porosity of the turbidite∗

ρs Density of sediment particles [ML−3]
ρf Density of the water [ML−3]
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