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Abstract. Thermochronometry provides one of few methods to quantify rock exhumation rate and history, in-
cluding potential changes in exhumation rate. Thermochronometric ages can resolve rates, accelerations, and
complex histories by exploiting different closure temperatures and path lengths using data distributed in eleva-
tion. We investigate how the resolution of an exhumation history is determined by the distribution of ages and
their closure temperatures through an error analysis of the exhumation history problem. We define the sources of
error, defined in terms of resolution, model error and methodological bias in the inverse method used by Herman
et al. (2013) which combines data with different closure temperatures and elevations. The error analysis provides
a series of tests addressing the various types of bias, including addressing criticism that there is a tendency of
thermochronometric data to produce a false inference of faster erosion rates towards the present day because of
a spatial correlation bias. Tests based on synthetic data demonstrate that the inverse method used by Herman et
al. (2013) has no methodological or model bias towards increasing erosion rates. We do find significant resolu-
tion errors with sparse data, but these errors are not systematic, tending rather to leave inferred erosion rates at or
near a Bayesian prior. To explain the difference in conclusions between our analysis and that of other work, we
examine other approaches and find that previously published model tests contained an error in the geotherm cal-
culation, resulting in an incorrect age prediction. Our reanalysis and interpretation show that the original results
of Herman et al. (2013) are correctly calculated and presented, with no evidence for a systematic bias.

1 Introduction

Thermochronometry provides one of few methods to quan-
tify rock exhumation histories. Over the last 30 years, it has
been extensively applied to understand tectonics and land-
scape evolution. Part of its success stems from the large num-
ber of thermochronometer systems available (Reiners and
Brandon, 2006; Reiners et al., 2005) as well as the devel-
opment of numerical models able to convert thermochrono-

metric data into constraints on cooling associated with ex-
humation by surface or tectonic processes (e.g. Braun, 2003;
Ehlers and Farley, 2003; Ketcham, 2005; Gallagher, 2012;
Braun et al., 2012; Willett and Brandon, 2013; Fox et al.,
2014). Where exhumation occurs by surface processes, the
exhumation rate is equivalent to a surface erosion rate, and
we will use these two terms interchangeably in this paper.
Models are an integral part of thermochronometric data inter-
pretation as they are needed for computing cooling histories
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from parent–daughter loss relationships with a complex ther-
mal history as well as for converting cooling histories into
exhumation histories. Cooling or exhumation histories pro-
vide direct constraints on kinematics or tectonic processes
and rates of surface erosional processes (e.g. Grasemann and
Mancktelow, 1993; Seward and Mancktelow, 1994; Brandon
et al., 1998; Batt et al., 2000; Moore and England, 2001; Wil-
lett and Brandon, 2002; Ehlers et al., 2003; Lock and Willett,
2008; Campani et al., 2010; Herman et al., 2010; Barnes et
al., 2012; McQuarrie and Ehlers, 2015).

Surface erosional processes are closely linked to climate
through parameters and processes such as temperature, pre-
cipitation and biological activity (e.g. Antonelli et al., 2018;
Starke et al., 2017). Temperature determines the dominant
surface processes, for example glacial, fluvial or hillslope,
and precipitation often determines efficiency as well as its
spatial distribution. Thermochronometry holds the potential
to provide a measure of past erosional conditions and there-
fore how these conditions may be related to past climate and
how the coupled system has evolved (e.g. Shuster et al., 2005,
2011; Burbank et al., 2003; Reiners et al., 2003; Wobus et al.,
2003; Vernon et al., 2008; Thomson et al., 2010a; Thiede and
Ehlers, 2013; Fox et al., 2015, 2016; Herman and Brandon,
2015).

One of the fundamental questions of paleoclimate and
its links to Earth processes is how the onset of Quater-
nary glaciations affected solid Earth processes including
surface erosional efficiency. Glaciers can be very efficient
agents of surface erosion, and regions of heavy continen-
tal or Alpine glaciation have clearly been morphologically
modified. Whether geomorphic change has a correspond-
ing change in net erosion rates is a more difficult question,
although support for a Quaternary increase in global ero-
sion rate comes from sedimentological evidence (Molnar and
England, 1990; Zhang et al., 2001; Molnar, 2004). A sec-
ond open question is whether regions that have experienced
Quaternary climate change but have remained too warm for
active glaciation have also experienced an increase in aver-
age erosion rate, for example through increases in precip-
itation or climate variability (Zhang et al., 2001; Molnar,
2004). Controversy surrounds this question in part because
many orogens experienced a decrease in precipitation in the
Quaternary due to cooler air temperatures holding less mois-
ture during glacial periods (e.g. Mutz et al., 2018; Mutz and
Ehlers, 2019).

Although numerous single-site thermochronometry stud-
ies have shown increases in Pliocene or Quaternary ero-
sion rates (e.g. Zeitler et al., 1982; Tippett and Kamp, 1993;
Farley et al., 2001; Shuster et al., 2005, 2011; Berger and
Spotila, 2008; Berger et al., 2008a, b; Vernon et al., 2008;
Glotzbach et al., 2011; Valla et al., 2011, 2012; Sutherland et
al., 2009; Thomson et al., 2010a, b; Avdeev and Niemi, 2011;
Thiede and Ehlers, 2013; Fox et al., 2015, 2016; Michel et
al., 2018), the first attempt to conduct a global-scale anal-
ysis was carried out by Herman et al. (2013). Herman et

al. (2013) compiled about 17 000 thermochronometric ages
from around the world primarily from four low-temperature
thermochronometric systems, apatite and zircon (U−Th)/He
(AHe and ZHe), and apatite and zircon fission track dating
(AFT and ZFT). In some cases, they augmented these sys-
tems with higher closure temperature thermochronometers.
These data were interpreted to quantify the exhumation rate
history of select regions distributed globally. A key objec-
tive of that study was to apply a uniform treatment of the
data using a transient thermal model embedded in a Bayesian
inverse model (Fox et al., 2014). Using this approach, Her-
man et al. (2013) found that of sites that had enough ther-
mochronometric data to resolve a recent change in erosion
rate, over 80 % were dominated by an increase in erosion
rate over the past 4 Myr. These sites included both tecton-
ically active and inactive settings, glaciated and unglaciated
regions and locations in the Northern Hemisphere and South-
ern Hemisphere. Although Herman et al. (2013) did not at-
tempt to attribute cause to any single locality, they argued
that the strong skew towards an increase in erosion rate
at such varied localities supported a common global phe-
nomenon most likely related to climate change (Zhang et
al., 2001). The spatial extent of regions directly sampled by
thermochronometry with sufficient resolution to establish a
change in erosion rate was very small (Herman et al., 2013,
Fig. 3). Furthermore, these sites are biased to areas with high
erosion rates given that resolution of rate changes over the
last 5 Ma requires that thermochronometers exhibit ages un-
der 5 Ma. Herman et al. (2013) were explicit in their conclu-
sions that their results do not provide an estimate of either
modern global erosion rate or past global rates, but rather
they provided a measure of how rates have changed over the
last ca. 5 Ma in these local high erosion rate regions. The fact
that sites included a large number of mid-latitude mountain
regions with evidence for Quaternary glaciations is circum-
stantial support that glacial erosion has contributed to this
result, but this was not claimed to be proven by Herman et
al. (2013).

However, a recent paper by Schildgen et al. (2018) chal-
lenged these conclusions, arguing that the Bayesian inversion
method employed by Herman et al. (2013) incorrectly inter-
preted spatial variability as temporal variability, resulting in a
systematic bias towards an apparent temporal acceleration in
exhumation. This contention not only suggests that the con-
clusions of Herman et al. (2013) are incorrect, but also calls
into question the results of numerous other studies using the
same method.

The objective of this paper is to test the hypothesis of
recent work suggesting the interpretations of Herman et
al. (2013) contain a bias. We test this hypothesis by conduct-
ing a complete error analysis of the method of Herman et
al. (2013). The current paper is structured into three main
parts. First, we provide a review of concepts associated with
bias and resolution inherent to thermochronometry as well
as to methods of data treatment, including the method pro-
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posed by Herman et al. (2013) and Fox et al. (2014) (Sects. 2
and 3). This is necessary to explain potential sources of er-
ror and how to test for them. Second, we conduct a series
of tests based on synthetic data and a specified and therefore
known erosion rate history in order to isolate and identify the
sources and magnitudes of errors (Sect. 4). Third, we conduct
an interpretation and assessment of selected examples from
the original Herman et al. (2013) results in order to explain
which data were responsible for resolving the various ero-
sion rate histories and how these were averaged in space and
time (Sect. 5). Finally, we review the analysis of Schildgen
et al. (2018) to identify the source of discrepancies between
their results and the findings of this paper. We determine that
Schildgen et al. (2018) made a series of self-reinforcing er-
rors that combined to create the appearance of a widespread
bias in the original analysis of Herman et al. (2013) that does
not exist.

2 Bias and resolution in
thermochronometry-derived exhumation rates

2.1 Resolution of erosion rate from thermochronometric
ages

The problem of determining an exhumation history from
thermochronometric ages is relatively simple. Expressed in
terms of a closure temperature, Tc, which is an approxima-
tion to temperature-dependent diffusional loss of a daugh-
ter product, and knowing the geotherm, T (z), the rate of ex-
humation, or erosion rate, e, can be expressed as

τ∫
0

e(t)dt = zc, (1)

where τ is the measured age and zc is the depth to the clo-
sure temperature below a sample in one dimension. Compli-
cations to this approach arise from transient geotherms and
the cooling rate dependence of the closure temperature (e.g.
Graseman and Mancktelow, 1993; Mancktelow and Grase-
mann, 1997; Batt and Braun, 1997; Harrison et al., 1997;
Moore and England, 2001; Braun et al., 2006; Reiners and
Brandon, 2006; Willett and Brandon, 2013), but the princi-
ple holds for most cases of monotonic cooling. A single age
can resolve only a single rate of cooling between its time of
closure and sampling at the surface. Resolving more complex
(e.g. transient) exhumation histories requires more informa-
tion.

Several methods have been proposed for calculation of ei-
ther cooling rates or exhumation rates from thermochrono-
metric data. The simplest method is by using the relationship
between age and elevation (Fig. 2a) (Wagner and Reimer,
1972; Wagner et al., 1979; Parrish, 1983; Fitzgerald and
Gleadow, 1988; Fitzgerald et al., 1995). This relationship ex-
ploits the fact that path length from the depth of closure to

the surface increases with elevation. Provided that the clo-
sure isotherm is horizontal and the exhumation rate is spa-
tially constant over the sampling domain, the relationship is
monotonic, with the slope giving the exhumation rate. Sam-
pling across elevation also requires sampling horizontally, so
an important assumption is that sample points are closely
located in space, typically within a few kilometres of each
other, so that exhumation rates and the depth to the closure
isotherm do not differ between points. Application of this
method also requires that surface relief has not significantly
perturbed the depth to the closure isotherm (e.g. Lees, 1910;
Stüwe et al., 1994; Mancktelow and Graseman, 1997; Braun,
2002a, b; Ehlers, 2005).

The second method for estimating exhumation rate is
by calculation of a cooling rate using more than one ther-
mochronometric system (e.g. Harrison et al., 1979; Dodson
and McClelland-Brown, 1985; Hurford, 1986). This method
has a long history of use for metamorphic cooling histories
in orogenic belts, where it is referred to as the two-mineral
or mineral-pair method and has identical application to low-
temperature systems and erosional cooling to the surface. By
using two thermochronometric systems and taking the dif-
ference between closure temperatures and ages, one can cal-
culate a cooling rate (Fig. 2b). To convert the cooling rate
to an exhumation rate requires a thermal model or knowl-
edge of the geotherm, and if the geotherm is not linear, vari-
ations in cooling rate may not have corresponding changes
in exhumation rate. For example, if the geotherm is convex
upward due to upward advection of heat, a constant rate of
exhumation may manifest itself as an increase in cooling rate
as rock nears the surface. Cooling rates should thus never
be directly converted to exhumation rates without consid-
ering variations in the thermal gradient with depth (Moore
and England, 2001). Different closure temperatures are used
to resolve the time taken to pass from one closure depth to
another or from the shallowest closure depth to the surface
(Reiners and Brandon, 2006) (Fig. 2b).

Resolution of an exhumation rate history from ther-
mochronometric ages is thus determined by the range of
ages, the number and range of the closure temperature and
the distribution of elevation of samples (Fig. 1). This de-
scription of resolution differs from other problems in param-
eter estimation in that the resolution is determined by the
value measured, i.e. the age, in addition to the location of
a measurement. The estimation problem is to determine an
exhumation rate in both space and time. However, the ages
measured at a particular point in space determine how much
time can be resolved and the number of thermochronome-
ters combined with the elevation distribution determine how
many time intervals can be resolved.

The integral nature of thermochronometric data (Eq. 1)
implies that even time intervals without ages are sampled,
if not fully resolved. For example, the “low-resolution” re-
gion of Fig. 1a contains no young ages within the interval,
but the older ages at that location constrain the erosion rate
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Figure 1. (a) Illustration of how the distribution of thermochronometric ages constrains exhumation rate in time and for different exhumation
rates. Discrete time intervals as used in an inverse model are indicated. Hypothetical ages are shown for six thermochronometer systems
with different closure temperatures. Age–elevation relationships extend the age range for a single thermochronometer as shown by ellipses
enclosing samples with the same symbol. Note that there is no resolution for times greater than the oldest age at a site. For time intervals
younger than the youngest age, only a single (low-resolution) time interval can be resolved. (b) Example of how erosion rate is estimated
over an unsampled time interval through the use of older ages. Assumed change in rate at 2 Ma with the youngest age being 4 Ma. Red curve
is for an increase in rate; blue curve is for a decrease. (c) Inferred erosion rates using the two-mineral method. Note that the change in each
case is underestimated but still detected.

over the last time interval. To illustrate this, Fig. 1b and c
show an example of how a change in erosion rate at 2 Ma
would still be resolved by a 4 Ma age combined with older
ages and using the two-mineral method. Without ages falling
directly on the time of a change in rate, the change is not pre-
cisely resolved, but it is still detected. In this example, a 4 Ma
age would detect an increase or a decrease in erosion rate but
with half (ignoring the non-linear relationship between age
and erosion rate) the magnitude and spread over time.

A third method for determining a cooling or exhumation
rate uses a thermal model that calculates the thermal history
of exhumed rocks by solving the advection–diffusion equa-
tion for prescribed parameters (e.g. rate of exhumation, ther-
mophysical properties, and boundary and initial conditions).
Application of a thermal model permits estimation of the
geotherm including depths to closure temperatures, and with
this information, single ages (Willett and Brandon, 2013) or
multiple ages with elevations can be combined into a single
equivalent of an age–elevation relationship, greatly increas-
ing the time span and details of the exhumation history re-
solved by data (Fig. 2c) (Reiners and Brandon, 2006).

2.2 Spatial correlation bias

In order to increase the applicability of thermochronometers,
it is necessary to amalgamate data spatially. Even an age–
elevation profile is a collection of data across some spatial
region. Important questions in these methods are over what
distance is this valid, and are there unintended consequences
to spatial averaging? In particular, it has been suggested that
spatial variations in age can be mistakenly combined to pro-
duce an inference of temporal change. For example, if eleva-
tion and erosion rate covary over some region, amalgamat-
ing ages might produce a linear elevation trend but not one
that reflects the average erosion rate. With spatial variation in
erosion rates, it is possible to combine the ages in a way that
would mimic an increase in erosion rate with time (Willen-
bring and Jerolmack, 2016; Schildgen et al., 2018). However,
there are many ways in which thermochronometric ages can
be averaged or combined to construct an erosion rate history,
so it is important to evaluate methods to establish potential
bias from specific assumptions.

To frame this problem, we show a thought experiment
in Fig. 2d and e, similar to the one set up by Willen-
bring and Jerolmack (2016). Figure 2d shows ages from
three thermochronometers exhumed at a constant rate and
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Figure 2. Methods for combining thermochronometric ages with variability due to spatial variations in exhumation rate or elevation. Squares
and circles represent thermochronometers from independent systems as in Fig. 1. (a) Plot of age against elevation for three, effectively co-
located data. Slope is an estimate of exhumation rate. (b) Multi-thermochronometer method for determining exhumation rate over two
intervals by measuring cooling rate between time of passage of closure temperature. (c) Combining elevation and multi-thermochronometer
methods, using a thermal model to calculate closure depths. (d) Hypothetical age distribution for three thermochronometers across a region
including three spatial domains with different exhumation rates. Exhumation rates are at the regional average and at plus or minus some
deviation, σ , from the average. Limit of resolution shows the age below which no change in exhumation rate can be resolved. (e) Several
proposed methods for averaging the ages of (d) to produce an exhumation rate. “Average 1” represents the average rate of all nine ages and
is an unbiased estimate of the regional median rate. Average 1 is also obtained by taking the median age for each closure temperature and
converting this to a rate. “Average 2” is obtained by averaging only the ages that fall within a specific time window. “Average 3” is obtained
by averaging the rates from all ages older than a specific time. Methods in (a)–(c) and “Average 1” in (e) are unbiased estimates of local
or regional median exhumation rate, although the resolved time span varies. Averaging methods 2 and 3 in (e) are biased, although over
different time spans.

set at three different closure depths. We define three sets of
ages, each of which experienced exhumation at a different
rate: at the average rate and varying from the average by a
value of σ but in opposite directions. These data can be re-
garded as coming from three regions, each exhuming at a
different but steady rate. For simplification, we will keep the
closure depth constant and assume no elevation differences
for the ages, although a range in elevation is equivalent to in-
dependent closure temperatures. The ages define three lines;
the slope of each gives the local exhumation rate (Fig. 2e).
Willenbring and Jerolmack (2016) (their Fig. 3) defined a de-

viation in age rather than exhumation rate, but their example
is otherwise equivalent.

There are many ways in which these data can be anal-
ysed and erosion rates derived, mostly depending on how
much variability in the exhumation history one attempts to
resolve and with what spatial resolution. If one recognizes
that these data come from three independent areas, data from
each area, i.e. a–c, d–f, or g–i, define an exhumation history
that is steady in time, and any regression of age and depth to
the closure isotherm gives the correct erosion rate value, with
temporal resolution determined by how many data are avail-
able at each location. If one fails to recognize that these data
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have independent exhumation rates, they will be averaged,
but there are many ways that this can be done. The simplest
way is to average the rates from all nine points shown as
“Average 1” in Fig. 2b. This gives an unbiased, i.e. correct,
measure of the regional median erosion rate but with no time
resolution. To resolve time variation requires averaging sub-
sets of the data, for example by taking a regression of the data
in Fig. 2d with a moving window or with a piecewise con-
stant slope. Willenbring and Jerolmack (2016) argued that
there is a limit to resolution at short times (shown as a fine
dashed line in Fig. 2d and e), so that the region below this
limit is unsampled. They calculated an average exhumation
rate as the expected value of the measured rates, integrated at
a fixed time but excluding the region below this limit; their
average is shown as “Average 2” in Fig. 2e.

However, using a constant time window to average rates
(Fig. 2d) or to regress closure depth against time (Fig. 2d)
presents some statistical problems. Time is not the inde-
pendent variable in this problem. The time information is
entirely from measured thermochronometric ages, which
makes time a dependent variable, so one should not regress
depth against age. In fact, if one regresses age against depth
(Fig. 2d) with a moving depth window, one obtains the cor-
rect, unbiased regional mean erosion rate (Fig. 2e, Aver-
age 1). Any change in the average erosion rate will be de-
tected with resolution determined by the number of sampled
closure depths.

A second aspect of this problem reflects the fact that ther-
mochronometric data represent an integral quantity, namely
the integral of the exhumation rate (Eq. 1) from the time of
closure to the present day. As such, a moving window in time
that includes only ages that fall into that window (Average 2)
does not include the constraint provided by the older ages.
For this reason, Average 2 in Fig. 2 has, to our knowledge,
never been used in thermochronometry studies, and methods
such as that of Herman et al. (2013) that are based on the
integral as shown in Eq. (1) do not default to this condition.

Recognizing the integral nature of a thermochronometric
age, all data older than a time of interest should be included
in the determination of the rate across that interval. Apply-
ing this method gives Average 3 in Fig. 2e. This average is
unbiased at younger times. If there is an upper limit to the
closure temperatures or elevation, the average is biased for
early times that are undersampled at high erosion rates. The
bias is downward with respect to the regional average but
only at times early in the exhumation history. For example,
in Fig. 2d and e the average is biased for times prior to the
age of point C, the oldest age in the region of high uplift rate.

However, the main problem with the regional averages as
shown in Fig. 2 is that spatial averaging invariably leads to
cases where it is impossible to fit the data. If data with a com-
mon closure temperature and elevation but variable ages are
combined, a physical model, based on exhumation down a
temperature gradient, cannot fit all the data. If an old age is
fit well, the younger age cannot be fit simply by increasing

the cooling rate. A sample at this location has already closed
with respect to that thermochronometer and, as an integral
quantity, it cannot go back and close again. This is evident in
Fig. 2d, which as a plot of age against depth to the closure
isotherm should exhibit a monotonic function of age against
depth if there is a common exhumation history. There is no
monotonic functional fit to these nine ages. Variations in ei-
ther elevation or closure temperature will result in ages dis-
tributed along one of the three lines in Fig. 2d but do not pro-
duce a monotonic function, except in the special case where
age perfectly covaries with elevation, even across zones of
differing exhumation rates.

What should be clear from this exercise is that bias is not
inherent to thermochronometric data, nor is it an inevitable
consequence of spatial averaging. Bias is inherent to the
method used to analyse the data. It should also be clear that
the problems with bias often arise from trying to derive too
much information from too few data. If an analysis attempts
to derive a multistep cooling history from ages using a single
thermochronometric dating method and ages have no path
length differences due to variations in elevation, it will fail.
If an analysis is used to derive a regional exhumation rate,
constant over space and time, any number and value of ages
can be used and most analyses will yield an unbiased esti-
mate of the average rate. This is a classic trade-off problem
in estimation theory. The number of data and their distribu-
tion across space and time must be matched to the complex-
ity of the exhumation history that is to be inferred. In other
words, the distribution of the data determines the complexity
of the solution that can be resolved as well as any potential
bias. Analysis of bias cannot be separated from the question
of resolution. In the following sections, we present a full bias
and resolution analysis of the method of Herman et al. (2013)
to assess method behaviour under conditions of spatial gra-
dients in exhumation rate.

3 GLIDE inversion method and error analysis

The method of Fox et al. (2014), which we present in the
following sections, was designed to combine the principles
of Fig. 2a–c and was used in Herman et al. (2013). This
approach is described in brief in this section, along with
an analysis of the sources and propagation of error in the
method. Finally, we examine the potential sources of error in
post-processing treatment of the parameter estimates.

3.1 Inversion of spatially distributed data

Fox et al. (2014) introduced a method to invert spatially
distributed thermochronometric data into maps of exhuma-
tion rate histories. The method includes a thermal model to
predict temperature, closure depths and thermochronomet-
ric ages, an inversion scheme based on a Bayesian parameter
model in which model parameters are assumed to have Gaus-
sian distributions about a prior value. Parameter estimates are
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found as the maximum likelihood solution based on this prior
model and assumed Gaussian errors in the observed data
(e.g. Franklin, 1970; Jackson, 1979; Tarantola and Valette,
1982; Tarantola, 2005; Menke, 2012). This method was im-
plemented in the program called GLIDE (Fox et al., 2014).

The method is based on a forward model to predict tem-
perature, thermochronometric ages and closure depths. This
includes a numerical solution to the transient advection–
diffusion equation, including the upward advection due to
erosion. The solution is based on a Crank–Nicolson finite-
difference method to solve the advection–diffusion equation
assuming a fixed temperature condition on the Earth’s sur-
face and a fixed heat flux applied at the base of the ther-
mal lithosphere (Fox et al., 2014). The numerical solution
is 1D but includes the 3D lateral heat flow induced by sur-
face topography (Lees, 1910; Birch, 1950; Stüwe et al., 1994;
Mancktelow and Grasemann, 1997; Braun, 2002a, b), which
is applied through a spectral method to solve for an equiva-
lent flat surface with variable temperature. The second part of
the forward model consists of deriving closure temperatures,
which are then related to corresponding closure depths using
the thermal model. Closure temperatures are estimated using
the approach proposed by Dodson (1973), kinetic parameters
for the Dodson equation from the literature (e.g. Reiners and
Brandon, 2006) and a cooling rate predicted from the internal
thermal model.

To simplify the estimation problem, Fox et al. (2014) cast
the forward problem in a linear form, which is possible if
the data are defined in terms of depth rather than time. As a
linear problem, it lends itself well to least-squares optimiza-
tion methods (Legendre, 1805). This technique has been of-
ten used and significantly developed in geophysics, and it has
been applied to complex problems (e.g. Franklin, 1970; Law-
son and Hanson, 1974; Jackson, 1976, 1979; Menke, 2012;
Tarantola and Valette, 1982; Tarantola, 2005). In the simple,
linear form, one equation is defined for each age but with the
full time span resolved by the age broken into multiple time
intervals. The exhumation rates for these time intervals are
the unknown parameters. This results in an underdetermined
problem in that there are multiple time intervals but only a
single age at each point. For a single age, the forward model
is expressed as

Ae = zc, (2)

where A is simply a vector containing multiple entries of the
time interval length, with enough of them to sum to the age,
including a partial time interval (e.g. Fig. 1), e is a vector
of unknown exhumation rate values over those intervals and
zc is a vector for the depth of the closure temperature as de-
termined from the thermal model. The inclusion of the ther-
mal solution makes the problem non-linear, as the advection
term of the temperature equation includes the erosion rate
inferred from the data. However, because the geotherm is al-
ways monotonic, this non-linearity is weak, and convergence
occurs rapidly with a direct iteration, particularly if erosion

rates do not vary much from the prior estimate which is used
as the starting condition.

The measured age appears in the problem only as the sum
of the vector components of A. To address the argument
made above that a single age can only resolve a single time
interval, we include a probability constraint on each param-
eter in the form of Bayesian prior information included as a
Gaussian prior model, comprising an expected mean value
and variance for each exhumation rate on each time inter-
val. For the simple, single-age problem, this has the effect of
providing equal weighting to each time interval, so that the
value of e for each time interval is equal and the multiple
time intervals act as a single time interval. For a multiple-age
problem, each age provides one row vector that is combined
into a matrix A, where we link all the individual solutions
by assuming a spatial correlation structure that links the ex-
humation rate for a specific time interval but retains no cor-
relation across time. With the Bayesian prior constraints, the
linear optimized solution is defined as

epost = eprior+
(

CAt(ACAt
+Cε

)−1
)(

zc−Aeprior
)
, (3)

where A is a matrix that includes a row for each age, C is
the prior covariance matrix, or model covariance, that encap-
sulates the spatial correlation structure, Cε is the data co-
variance (which is a diagonal matrix that represents errors in
the measured ages, converted to an equivalent uncertainty in
closure depth), zc is a vector of the sample closure depths,
eprior is a vector that represents the mean prior exhumation
rate, and epost is the inferred, i.e. posterior, exhumation rate,
which is a vector of estimated exhumation rates at each data
location for each time interval in A. The exhumation rates
are shown as maps of epost during each time interval.

From Eq. (3), one can define the “inverse operator” H as

H= CAt(ACAt
+Cε

)−1
, (4)

and each element of C is given by

C(ij )= σ 2 exp
(
−
dij

L

)
, (5)

where σ 2, L and dij are the prior variance, the correlation
length scale and the separation distance between samples, re-
spectively. These parameters, together with the mean erosion
rate for each parameter, constitute the prior model that must
be specified as part of the inverse model construction.

This inverse model formulation thus treats each age as an
independent estimate of the closure depth at a single point.
If two or more ages from different thermochronometers are
collocated, they independently constrain their corresponding
closure depth (Fig. 2b). Elevation is taken into account as
data through its effect on the distance between the closure
depth and the sample location (Fig. 2c). Because there is an
underlying thermal model, the relationship between erosion
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rate, exhumation path and predicted age obeys the physi-
cal constraint that a rock can only pass through its closure
temperature once. The imposed spatial correlation on ero-
sion rates links the temperature solutions in space, thereby
allowing nearby data to be combined either as multiple real-
izations of the same closure depth or, if from different ther-
mochronometers, as estimates of different closure depths,
thereby resolving a variable-rate cooling history.

3.2 Error analysis

There are a number of standard methods to assess the qual-
ity of a solution. The two metrics used by Fox et al. (2014)
are the posterior variance and the resolution. The posterior
covariance matrix is given by

Cpost = C−HAC (6)

and provides a measure of how the uncertainty in a param-
eter is reduced from its prior value. The prior is regarded as
an estimate of the parameter, so following the addition of
data, the uncertainty, expressed through this variance, must
be lower. The diagonal terms of Cpost are the variance of a
given parameter, with off-diagonals giving the covariances.
As a quality measure, we will show the normalized posterior
variance, which is the posterior variance normalized by the
prior variance, so that the mapped quantity for the ith param-
eter is

σi =

√
C(ii)post√
C(ii)prior

. (7)

The other quality metric, resolution, needs more explanation.
If we take the true solution, the forward model (Eq. 2), and
assume that there is uncorrelated measurement noise associ-
ated with each datum, the depth to the closure temperature
can be expressed as

zc = Aetrue+ ε,

where ε is a vector of noise values and etrue are the true values
of the parameters.

With the inverse operator, H (Eq. 4), the posterior estimate
of the parameters from Eq. (3) in terms of the true parameters
is given as

epost = eprior+HA
(
etrue− eprior

)
+Hε,

or, subtracting the true parameters from each side, we obtain
the error in the estimate as

epost− etrue = (HA− I)
(
etrue− eprior

)
+Hε, (8)

where I is the identity matrix. There are two components to
the error. The second term, Hε, represents the propagation of
noise into the estimate. The first term is what is referred to
as the “resolution error” or “resolution bias” in the parameter

estimate (Jackson, 1979). The closeness of HA to the iden-
tity matrix determines the quality of the estimate. If HA is
equal to I and the noise is negligible, the estimate is equal
to the true parameters. If HA is null or at least has all terms
much less than 1, the resolution goes to 0 and epost = eprior,
meaning the new, posterior estimate, is the same as the prior
value; we have not added information by including the data.

The matrix quantity, HA, is thus fundamental to assess-
ing resolution errors, and this is referred to as the resolution
matrix:

R=HA. (9)

The resolution matrix represents how effectively the model
can be inverted to recover the true parameters. Failure to re-
cover the true solution is bias, which, if we neglect the error
due to noise in the data, can be written as

epost− eprior = R
(
etrue− eprior

)
. (10)

As with the error expression above, if R is the identity ma-
trix, every parameter is perfectly resolved. However, this will
never be the case, nor is it even ideal. There remains the sec-
ond term in Eq. (9) for the propagation of noise, Hε. To min-
imize this term, H should be as small as possible, and it is not
possible to satisfy both HA= I and H= 0. Furthermore, as
posed, the thermochronometry problem is massively under-
constrained, and the only way to get a meaningful solution is
to add additional information inherent to age–elevation rela-
tionships and multiple thermochronometers by spatial aver-
aging of nearby data.

The resolution matrix has dimensions of (m×m), where
m is the number of parameters in the problem, i.e. the number
of time intervals sampled by data times the number of data.
With reference to Eq. (11), there is one row corresponding to
each parameter estimate. This row has m entries, each entry
corresponding to one of the erosion rates at some other loca-
tion and/or another time interval. Again, if that row has only
the diagonal value equal to 1 and the remainder of the row
were equal to 0, the estimate would be exactly correct. The
other entries in a row corresponding to erosion rates within
the same time interval but at other spatial points comprise a
set of weighting factors that define the spatial averaging for
that parameter. This corresponds to a spatial resolution kernel
(Backus and Gilbert, 1968). The remaining row entries give
the contributions from other time intervals, either at the same
data location or at other locations. These values give a type of
leakage of information across time intervals, or what Ory and
Pratt (1995) referred to as contamination kernels. Both space
averaging and time averaging are unavoidable and not nec-
essarily bad, but both kernels should be tracked. The spatial
resolution kernel is relatively simple as it is dominated by
local data but supplemented by data within the spatial cor-
relation structure. Resolution kernels typically resemble the
correlation function, which falls off exponentially. The con-
tamination kernels are much more complex as they reflect the
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number of data and the ages and thus the time intervals sam-
pled. To simplify portrayal of these large matrices, Fox et
al. (2014) suggested integrating over the spatial dimension.
This collapses the resolution kernel onto the parameter point
while keeping the area of the kernel as the value of what we
called the temporal resolution. The quantity mapped by Fox
et al. (2014), Herman et al. (2013) and in this paper is thus
not the diagonal of the resolution matrix, R, but this inte-
grated value. As such, it does not give a measure of the spa-
tial resolution, only a sense of the temporal resolution, that is,
how well the time interval is resolved in the neighbourhood
of the point of interest and how much contamination enters
from the other time intervals.

Another important point regarding models with poor res-
olution is the nature of the bias. Again, this depends on the
resolution matrix. The parameter estimate is given by Eq. (3)
as

epost = eprior+H
(
zc−Aeprior

)
,

which implies that the prior information is being treated as
data. Expanding, it can be expressed in terms of the resolu-
tion matrix as

epost =Hzc+ (I−R)eprior. (11)

This shows that the parameter estimate is a weighted average
of the data and the prior model, with the weights dependent
on the resolution. At high resolution, R is close to I and the
prior plays no role. At low resolution, R is close to 0, H is
close to 0, and the estimate will go to the prior.

Perhaps the simplest illustration of how resolution in time
reflects parameterization is the effect of time interval length.
With reference to Fig. 1, consider the case of inversion of
a single age with no neighbours. If the age falls within the
youngest time interval, the resolution of that time interval
will be equal to 1.0. For example, with time intervals of
10 Ma and an observed age of 8 Ma, the time interval of 10 to
0 Ma at that location will be well resolved and equal to 1. If,
however, the same age is inverted with a parameterization in-
cluding a time interval length of 5 Ma, there are now two rel-
evant time intervals (0 to 5 Ma and 5 to 10 Ma), and the res-
olution of exhumation in each time interval will be 0.5. The
estimated exhumation rate with each parameterization will
be identical; only the resolution value will change. A simi-
lar result is obtained with larger inversions involving spatial
correlation. A larger correlation length will always increase
the numerical values of resolution, whereas the time interval
number will always decrease the resolution. This does not
imply that the solution is “better” as the correlation length
increases, nor is it because more data are averaged. It simply
reflects the fact that the parameter is no longer a local ex-
humation rate but is a regional average and is therefore easier
to resolve, much as the standard error on the slope of a linear
regression is always smaller than the standard deviation of
the data about the regressed line.

In addition to the resolution errors and the noise propa-
gation errors, there is a third type of error in inverse mod-
els, model error. This refers to errors in the model param-
eterization and its lack of ability to represent the physical
processes giving rise to the data. Model error is perhaps the
most difficult error to estimate as it emerges as the result of
complexities in the real world that are intentionally simpli-
fied or ignored to make the problem tractable. Often these
complexities are unknown, so the model error cannot easily
be treated through error analysis. For example, if we build a
thermokinematic model with a structural block that is uplift-
ing with a constant rate but in reality the region of the model
has three independent blocks with different uplift rates, our
model has error. We might obtain the correct average up-
lift rate with our single-block model, but it is impossible to
find three independent uplift rates with one parameter, so our
model is biased. Thermokinematic models constructed so as
to have a small number of parameters, e.g. a few tectonic
blocks, with fault orientations specified, tend to have large
model errors because they cannot express the generality of
the behaviour needed to fit to data. Underdetermined mod-
els, such as implemented in GLIDE, where there are more
parameters than data (each data point has several time inter-
vals contributing to its value), tend to have little or no model
error from the kinematic parameterization.

There are a number of other potential model errors in
the thermochronometry inversion problem as used here. First
is the thermal physics underlying the geotherm calculation.
Boundary conditions and initial conditions for the geotherm
are important unknowns but are specified, not parameterized,
so if specified wrongly they can introduce model error. The
effect of advection on a geotherm is included, but this is also
unknown for the parts of the space and time domain where
the upward velocity is not resolved by age data. A second
model error comes through the kinetics of thermochronomet-
ric closure to daughter product loss. We have used a closure
temperature formulation, which is an approximation. Closure
temperature has implicit assumptions of monotonic cooling
and first-order Arrhenius kinetics. Fission track annealing
can be approximated by first-order kinetics, but not partic-
ularly well, and this introduces error. In addition, the kinetic
parameters and model for each thermochronometric system
are assumed and fixed for each model, so complexities such
as compositional effects or uranium damage effects on diffu-
sion or track annealing might not be correctly implemented.
The third potential model error is the statistical spatial corre-
lation model implicit to GLIDE. Spatial correlation imposes
a smoothness in space on the erosion rate, and this could fail
to capture all the variability in nature and thus introduce bias
into the solution. This correlation bias is, however, not a sim-
ple model error, as it is a “soft” constraint. Smoothness is
only through a correlation, not a parameterization, so it must
be balanced against fitting the data. Depending on the num-
ber and quality of the data, where quality is relative to the
strength of the spatial correlation, specified by the prior pa-
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rameter variance, smoothness may or may not be forced on
the solution. This is a much weaker constraint than for ex-
ample in thermokinematic models with rigid blocks, where
the parameterization imposes equivalence instead of correla-
tion within each block. The model bias is thus linked to the
resolution bias, and they must be analysed together.

To summarize for the purposes of our analysis in the fol-
lowing section, the complete error has three components,
model errors, resolution errors, and random noise errors:

epost− etrue = εM+ εR+ εN. (12)

The first two, model and resolution errors, constitute bias,
and the third is the stochastic noise propagation. The latter
two are defined in Eq. (9). The first two will be analysed in
Sect. 4 of this paper. Stochastic noise propagation will not be
investigated in this study.

3.3 Errors in post-estimation parameter analysis

Results of the inversion method described above are typically
presented as maps of erosion rate across particular time inter-
vals along with the corresponding normalized posterior vari-
ance in the exhumation rate and the diagonal value of the
resolution matrix, integrated over the spatial dimension as
described above. In many cases, these model results are sub-
jected to additional analysis to increase their utility, and it can
be important to document the propagation of error through
any post-inversion analysis.

For example, the study of Herman et al. (2013) was di-
rected towards the question of erosion rate change during the
Quaternary, so results were summarized by taking the ratio
of values across two time intervals, 6 to 4 Ma and 2 to 0 Ma.
Herman et al. (2013) intended this to be only an illustrative
presentation of the results. However, this analysis was gen-
eralized by Schildgen et al. (2018) into a metric that they
called “normalized erosion rate difference”, denoted NR in
this paper, such that

NR=
(e2− e1)

max(e1,e2)
, (13)

where e2 is the erosion rate in the 2–0 Ma time interval
and e1 is the erosion rate in the 6–4 Ma time interval. For
this to serve as an interpretation tool, it is important that
the error and resolution analysis are propagated through this
operation, otherwise this information is lost, in particular
given that the ratio of two variables is a biased operation
(Marsaglia, 1965). Bias in a ratio follows from the fact that
a 1/y function is non-linear, going to infinity as y goes to
0. A perturbation towards a positive value thus has a smaller
effect than a perturbation towards a smaller, i.e. closer to 0,
number. The effect becomes larger as the mean y becomes
smaller. The overall ratio is thus biased towards high num-
bers, with an effect most pronounced where y is small.

In the context of the changing erosion rate problem this
means that the normalized erosion rate difference is intro-
ducing a bias towards an erosion rate increase, which is not
a good characteristic for a metric when the point of the exer-
cise is to search for bias towards erosion rate increases in
the inversion methodology. Nonetheless, we will calculate
this quantity, NR, throughout this paper. However, we will
provide a corresponding quality measure by propagating the
posterior parameter variance into this metric. This is diffi-
cult to do for a general posterior distribution, but we can de-
rive an expression if we assume that the erosion rates have
variances that are Gaussian and correlated, so that correlated
variables, E1 and E2, with expected values, e1 and e2, vari-
ances, σ 2

1 , σ 2
2 , and covariance, σ1,2, one can find an approx-

imation of the variance and covariance of a function of the
variables from the Taylor series expanded about the expected
value of the function. Provided that the expected value of the
function is the function evaluated at the expected value, the
variance is approximated by

σ 2
= E

{[
f ′2 (e2,e1) (E2− e2)+ f ′2 (e2,e1) (E1− e1)

]2}
= f ′

2
2 (e2,e2)σ 2

2 + 2f ′2 (e2,e1)f ′1 (e2,e1)σ 2
1,2

+ f ′
2
1 (e2,e1)σ 2

y .

Note that we drop the maximum value evaluation for sim-
plicity, assuming that E2 is the larger value. The alternative
case where E1 is larger is easily reproduced following the
same analysis. This gives the function

f (E2,E1)=
E2−E1

E2
,

with the first-order Taylor expansion for f about the mean
and partial derivatives

f ′2 =
E1

E2
2
,

f ′2 =
−1
E2
.

We obtain the variance of the function (Eq. 14) as

σ 2
= e2

1e
−4
2 σ 2

2 − 2e1e
−3
2 σ 2

1,2+ e
−2
2 σ 2

1 . (14)

As is the case with the bias in the expected value of the ratio,
the variance of the normalized erosion rate difference scales
with the mean erosion rates raised to some negative power.
Thus, it is very sensitive to the estimated exhumation rates,
and will grow rapidly in regions where the function values
are small. The variance goes to infinity as the erosion rate
goes to 0. This analysis does not provide an estimate of the
bias, but at least the variance estimate will give a sense as to
where the NR has introduced the largest bias.
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4 Synthetic data tests for resolution and model
errors

One of the fundamental tools for analysis of an inverse model
is to generate synthetic data using a forward model and then
to invert those data to investigate how effectively the original
parameters can be recovered. A careful model construction
with a suite of experiments is capable of evaluating sources
as well as magnitudes of error. In this section, we present a
comprehensive set of tests designed to isolate and identify
sources of error in the GLIDE method for erosion history
estimation.

4.1 Synthetic data tests and sources of error

We demonstrated above (Eq. 13) that errors can be classified
as one of three types: (1) model bias, (2) resolution bias or
(3) propagated noise from observed data. In this paper, we
will ignore (3), although these errors can be important for
estimation problems, especially for low-quality data. Model
bias (1) is difficult to identify in natural cases, but in a syn-
thetic test, it can be identified by eliminating resolution errors
and noise errors, for example by using many, accurate, data.
The most important error is likely to be resolution bias (2).
Resolution bias is a function of the data distribution in space
and time and so can be assessed by constructing and compar-
ing multiple data sets as well as by examining the resolution
matrix structure.

Synthetic data models have been used in two studies
to analyse errors in the GLIDE inversion method. Fox et
al. (2014) showed one model with two contrasting zones of
uplift and showed very good recovery of the original pa-
rameters. In contrast, Schildgen et al. (2018) presented three
forward-inverse tests (their Figs. ED 2, 4 and 5) in which they
found very large errors identified as a difference between the
input and inferred parameters. It is important to determine
whether the errors identified by Schildgen et al. (2018), and
referred to as spatial correlation bias, are model errors or res-
olution errors, because the tests for each type of error are dif-
ferent. Model errors should not be dependent on the quantity
or quality of the data. A model error cannot be eliminated
by adding more or higher-quality data. It represents a fail-
ure of the model to represent reality, not a failure of the data
to recover that reality, so no amount of data will eliminate
the error. On the other hand, if errors are resolution errors,
one must analyse the characteristics of the data distribution
in space and time to assess under what conditions these errors
arise. The presence of large resolution errors in one model or
one data set cannot be generalized to other models or other
natural data sets, because resolution errors are unique to the
distribution of the data in space, elevation and, foremost in
the thermochronometry problem, the values of the ages. Res-
olution errors can be recognized by high sensitivity to data; if
the addition or removal of data changes the result, it suggests
that there are significant resolution errors so that additional

data will improve the estimate. In the following sections, we
conduct a complete error analysis, separate model bias from
resolution bias, and establish the importance of each.

4.2 Synthetic data tests for model errors in correlation
structure

Model errors are any errors arising from the construction
of the forward model and its inability to correctly predict
the data. For example, the correlation structure implicit to
GLIDE could produce an overly smooth erosion rate func-
tion that does not fit the age data; this would constitute a
model error. Errors in the thermal model would be another
type of model error, and we will investigate this in Sect. 4.5.
For brevity, we will not investigate systematics in the closure
age calculations or other potential model errors.

Testing model errors in GLIDE is complicated by the fact
that GLIDE is not strictly linear (Sect. 3.1). The geotherm
calculated in GLIDE depends on the erosion rate for the ad-
vective component to heat transfer. Its inclusion requires an
iteration in order to solve simultaneously for the tempera-
ture, the advection and the erosion rate. The non-linearity is
not strong because the geotherm is always monotonic and at
low erosion rates advection is negligible. However, in a syn-
thetic data test, it creates a complex response to errors from
other causes, complicating interpretation and isolation of er-
rors, particularly because the main test of our analysis in-
cludes an extreme erosion condition with 36 Myr of erosion
at 1 mm yr−1. To simplify the problem, we start our analy-
sis with a suite of models that removes this non-linearity by
fixing the geotherm for the full model simulation. Later in
this paper, we will restore the transient geotherm calculation
to show how the non-linearity affects the error. By breaking
the models into these two sets of experiments, we can more
accurately isolate the source of errors.

To evaluate errors, we construct the same test presented in
Fig. ED2 of Schildgen et al. (2018), referred to as the western
Alps case. This model has two regions, each with different
but constant and steady exhumation rates and separated by a
vertical fault crossing the domain diagonally. The true solu-
tion is shown by the colour of the inset boxes in Fig. 4a and d
and is 1.0 mm yr−1 in the north-west and 0.25 mm yr−1 in
the south-east. Six synthetic data sets were constructed using
up to five thermochronometric systems and either the fixed
geothermal gradient model (Fig. 3a–d) or the full transient
thermal model (Fig. 3e and f). The model topography is taken
from a region of the western Alps and the sample age distri-
bution roughly corresponds in pattern to the Alpine data set.

To isolate model errors, it is necessary to remove resolu-
tion errors. With reference to Eq. (9), resolution errors can be
eliminated by one of two ways, either by obtaining a model
with R= I or by setting eprior = etrue. Either of these will
result in nullifying the entire contribution of the resolution
errors. Because we have no data errors (measurement noise),
the only remaining errors will be the model errors (Eq. 13).
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Figure 3. Synthetic age data sets for model bias and resolution tests, comprising two zones with differing erosion rates. Colours represent
ages from different thermochronometer systems corresponding in closure temperature to green: AHe, blue: AFT, yellow: ZHe, red: ZFT
and black: muscovite 40Ar/39Ar. Data sets A–D (a–d) were generated using a constant geothermal gradient. Data sets E and F (e, f) were
generated using the GLIDE transient thermal model with a flux boundary condition. (g) Observed ages from the Alps to show that the number
of data and age ranges are similar to all synthetic data models.

As a first test (Fig. 4), we attempt to produce a model with
R= I. In principle, this requires an infinite number of data,
but it will be adequate to simply use a large data set, with
ages distributed across the time span of interest (Fig. 3a).
The first model results are shown in Fig. 4. These show that
the parameters are recovered very well with this data set. The
largest errors are in the peripheral regions that have no data,
suggesting that these errors are due to inadequate data cover-

age and so constitute resolution errors. For a perfect test for
model errors, we should add more data to these regions. Sim-
ilarly, some smoothing of the solution is visible across the
fault boundary, but this occurs primarily where there are no
ages near the boundary on one side or the other of the fault.
This smoothing extends less than one correlation length into
the adjacent domain and occurs in all time intervals nearly
equally; i.e. both the 2–0 and 6–4 Ma time intervals have a
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Figure 4. Synthetic data test for model errors. The true solution is constant exhumation rate through time, with a high exhumation rate
(1 mm yr−1) in the upper-left corner and low exhumation rate (0.25 mm yr−1) in the lower-right corner, identical to the test proposed by
Schildgen et al. (2018). Inset boxes in (a) and (d) show the true solution. The thermal model is replaced with a constant geothermal gradient
to remove potential errors associated with the geotherm calculation. The correlation length scale (30 km) is given by the black bar in (a).
Other parameters are given in Table 1. Synthetic ages are shown in Fig. 3a and (i), where the size of the point corresponds to one of four
closure systems, AHe, AFT, ZHe, or ZFT; these are calculated with a constant geothermal gradient in both the forward thermal and inverse
models. Data points in (a) and (d) show age locations with ages less than 6 Ma as black diamonds and ages greater than 6 Ma as white circles.
Black data points in (b), (c), (e) and (f) show the locations of ages that fall inside the respective time interval. Estimated exhumation rate
is shown with the temporal resolution and posterior variance for the time intervals indicated. (g) and (h) show the normalized exhumation
rate difference (NR) and its posterior 2σ error. The true solution is recovered very well in the centre region, where data density is high. No
spurious acceleration is visible.
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small amount of smoothing, so that the net result with re-
spect to inferred acceleration (Fig. 4g) is 0. In fact, there is
no trace of spurious acceleration in either the high uplift or
low uplift region throughout the model. We calculated the
NR (Eq. 14); values are all very close to 0 throughout the do-
main (Fig. 4g). Interestingly, the variance on the NR is very
large in the lower-right half of the domain. This is due to a
combination of the lower resolution of this region and the
low erosion rate given the dependence of the variance on the
erosion rate (Eq. 16). Also interesting is the lack of any ac-
celeration in the low erosion rate domain. There are no ages
younger than 6 Ma in this domain, so it does not have ideal
resolution, similar to the left-hand side of Fig. 1 with poor
resolution for the last 6 Myr. Although we are mainly ad-
dressing model errors, this example indirectly addresses the
resolution question. According to the spatial correlation hy-
pothesis, the well-resolved, high erosion rates of the upper-
left region should be averaged into the late time intervals to
the lower-right region. This has not happened in spite of the
low resolution. This is an illustration of the importance of the
integral nature of thermochronometric ages (Fig. 1). Older
ages constrain the integrated erosion rate at their location,
so any inappropriate averaging of the high erosion rates to
the north-west into the solution in the south-east would re-
sult in a misfit to these ages.

For this first test, the smoothing errors that do occur are a
function of the spatial correlation, but only weakly. In Fig. 5,
we show another version of the model of Fig. 4, using the
same data set (Fig. 3a) but with a longer correlation length
of 100 km, compared to 30 km in Fig. 4. The results are only
slightly different. In fact, the solution in the peripheral re-
gions is improved with the larger correlation length. There is
likely more smoothing around the diagonal fault, but the dif-
ference is so small that it is not readily visible in Fig. 5. Res-
olution is higher, but this is because of the definition of the
parameters as regional averages, not as local erosion rates.
Even with a strong spatial correlation, there is no inappropri-
ate averaging of the high erosion rates into the region of low
erosion rate. Therefore, there is no spatial correlation bias,
no inappropriate spatial averaging, and no spurious accelera-
tion.

As a second test for model error, we eliminate the resolu-
tion error by the second method, i.e. setting the prior model
equal to the known, true solution. From Eq. (9), this ensures
that the resolution errors are 0, and we are left with only
model errors. The previous model used a data set with very
high density in order to force the resolution matrix to be close
to I. In this second test, high resolution is not needed, so we
use a sparser data set, shown in Fig. 3c. This is not a trivial
test. There is no reason why a model with the correct prior
will obtain a posterior solution that is exactly the same. In
fact, this is one of the best tests for model bias, because if
the test shows errors, these errors indicate a failure in the
model, not errors or inadequacies in the data. For example,
if the correlation structure is forcing excessive smoothness

onto the solution, this will emerge as error in this test. Re-
sults are shown in Fig. 6 and are conclusive; there is essen-
tially zero error in this model. Even the peripheral regions
with no data, which were not well fit in Fig. 6, show no error.
The model shows that there is no model bias associated with
the spatial correlation structure. If there are errors in the in-
version methodology, they are linked to the resolution of the
data and thus to the data distribution. This result establishes
that the real issue in these and, likely, most thermochrono-
metric models, is in determining how many data, and in what
configuration, are required to constrain a solution and how to
recognize and bound resolution errors. This is the subject of
the next section.

4.3 Synthetic data tests for resolution errors

The tests in Sect. 4.3 showed conclusively that there is no
model bias in the method of Herman et al. (2013). However,
an estimation problem with sparse data such as most ther-
mochronometry problems will be dominated by resolution
errors, and model behaviour with sparse data is a much more
interesting and important question. In this section, we con-
duct a suite of tests to determine any potential systematics in
resolution errors in the GLIDE inversions.

Resolution errors are easy to calculate but difficult to gen-
eralize, because each natural or model data set has a unique
distribution in space, elevation and time and therefore unique
resolution errors that must be evaluated individually. In the
current problem, we are trying to estimate a field quantity
(erosion rate) over two spatial dimensions and time, so this
is a 3D estimation problem. It is further complicated by the
fact that time resolution is controlled entirely by the value
of the thermochronometric ages, so we have no experimental
control on time resolution, other than by application of differ-
ent thermochronometers with different closure temperatures.
Age variations with elevation increase the time range and
are equivalent to having multiple thermochronometer sam-
ples with different closure temperatures in this regard, but
we will not extensively investigate this aspect of the prob-
lem. Given the complexity of possible data characteristics
(number, spatial distribution, elevation distribution, closure
temperatures, a proper analysis of any specific erosion rate
function requires tens to hundreds of experiments. However,
by conducting models with a variety of data sets reflecting a
range of data sparsity, we can establish the general behaviour
of the system and should detect any sort of systematic errors
such as a common tendency towards false acceleration.

There is a second purpose to these models. Now that we
have established that errors will be errors of resolution, we
should assess how well our posterior metrics of resolution
and variance characterize this error. Knowing where we have
error is in some ways more important than the error itself, as
this determines the utility of the analysis in the real world,
where we do not know the “correct” answer. We would like
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Figure 5. Synthetic data test for model error with a correlation length scale of 100 km. The true solution is the constant exhumation rate
through time, with a high exhumation rate (1 mm yr−1) in the upper-left corner and a low exhumation rate (0.25 mm yr−1) in the lower-right
corner identical to the test proposed by Schildgen et al. (2018). Inset boxes in (a) and (d) show the true solution. The thermal model is
replaced with a constant geothermal gradient to remove potential error in the geothermal calculation. The correlation length scale is given
by the black bar in (a). Other parameters are given in Table 1. Synthetic ages are shown in (i), where the size of the point corresponds to one
of four closure systems, AHe, AFT, ZHe, or ZFT; these are calculated with a forward thermal model identical to the inverse model. See the
caption to Fig. 6 for additional details. The correlation length scale is more than 3 times that used in Fig. 4.
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Figure 6. Synthetic data inversion test using reduced data density Set C (Fig. 5) and a prior erosion rate of 1.0 mm yr−1 in the north-
western corner and 0.25 mm yr−1 in the south-eastern corner. This is equivalent to the true erosion rate used to generate the synthetic ages.
Other inversion parameters in Table 1. See the Fig. 4 caption for other formatting details.
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to know how well we are able to bound our estimates and
where they are unreliable.

The results in Figs. 4 and 5 have already told us something
of the importance of resolution. They provide evidence that
with good data coverage, we will recover the proper solu-
tion with little bias. In fact, the models in Figs. 4 and 5 are
not particularly of high data density. The south-eastern cor-
ner has no ages under 6 Ma, which implies poor resolution
for the 6 to 0 Ma time interval. The high uplift region is
well resolved because we generated ages for five independent
thermochronometers with different closure kinetics. The syn-
thetic data are well distributed across time to resolve the tem-
perature history over the last 10 Ma (Fig. 3a). There is also
an increase in age range for each thermochronometer due to
the elevation spread, and this provides additional resolution
through the age–elevation relationship. However, prior to the
oldest age in the high uplift area, there is no information, so
local resolution goes to 0, and there will be a transition from
poor to good resolution through time.

We illustrate the importance of age range by conducting
inverse model experiments with a second, sparser data set
to test the impact on parameter recovery, error, and posterior
statistics. Figure 7 shows an inversion experiment using Data
Set B (Fig. 3b and Table 1), which has a good age distribu-
tion but very few data distributed across space. In spite of the
sparsity of data, the solution recovery is very good, with the
central region around the data accurately estimated. Periph-
eral regions are again poorly resolved, but there is no false
acceleration emergent from these errors.

The importance of the posterior statistics becomes ap-
parent with this model. The region of a well-resolved ero-
sion rate in the 2 to 0 Ma time interval is small, and the
high values of the resolution statistic surround the data well
(Fig. 7b). The maximum resolution is about 0.6, but values of
about 0.4 define the accurate solution. The reduced variance
plot (Fig. 7c) is more conservative and indicates only a few
points where the variance has been reduced to below 0.5. The
erosion rate in the 6 to 4 Ma time interval is poorly resolved,
with almost the entire model under a value of 0.4.

We constructed another data set (Set C) with better spa-
tial coverage but poor temporal coverage (Fig. 5c) to demon-
strate how resolution is dominated by the values of the
ages (Fig. 8a). Data Set C has no high-temperature ther-
mochronometers, so all ages in the high uplift zone are less
than 6 Ma. Losing the high-temperature systems seriously
degrades the quality of the solution. Time intervals older
than 6 Ma are almost fully unresolved. The solution accu-
racy matches the resolution, with a reasonably good solution
in the 2 to 0 Ma time interval and a poor solution in the other
time intervals. In the slow-uplifting region, the solution is
uniformly poorly resolved but not highly inaccurate.

The poor resolution of this model is useful for demonstrat-
ing another important characteristic of Bayesian models such
as GLIDE. As shown in Eq. (12), as the resolution goes to 0,
so does the inverse operator, and the solution will revert to

the prior solution. This is what we observe in Fig. 8a, where
the prior model has a uniform value of 0.35 mm yr−1. Ev-
erywhere in the model where the resolution is low, the ero-
sion rate reverts to a value of 0.35 mm yr−1. This is particu-
larly apparent in the earlier time intervals where there are no
ages controlling the rate; the erosion rate here has nearly uni-
formly taken the prior value. The corresponding resolution is
near 0 and the variance is not reduced below its prior value,
so it is clear that this is not a resolved parameter. We confirm
this finding by running the same inversion, with different val-
ues of the prior erosion rate. Figure 8b and c show models
with Data Set C and all other parameters as in Fig. 8a, except
that the prior erosion rate is set to 0.65 and 1.65 mm yr−1,
respectively. The differences between these models demon-
strate the influence of the prior on the estimate. The regions
of the model with low resolution are sensitive to the prior,
but the bias depends on why the resolution is low. If there
are no older ages constraining a time interval, as in Fig. 1a,
right column, the solution takes a value at or near the prior. If,
however, resolution is low but there are still older ages con-
straining the average erosion rate, as in Fig. 1a, left column,
the solution takes an average erosion rate consistent with the
older ages. If there is a dependence on the prior model, it is
weak. Regions with good resolution, for example the central
part of the high uplift region from 2 to 0 Ma, have little to no
dependence on the prior. The solution in these areas is robust
in that time interval. However, in the high uplift region the
earlier time intervals are poorly resolved; even the 6 to 4 Ma
interval has no point with resolution higher than 0.4, and at
this level of resolution, it still shows sensitivity to the prior
model. The low erosion rate region is less sensitive to the
prior because the ages, which are all over 10 Ma, constrain
the average erosion rate over these time intervals. However,
individual time intervals are not resolved. Given the sensi-
tivity to the prior and the low values of resolution and vari-
ance, the low-erosion rate region in these models should be
regarded as unresolved, whereas parts of the high erosion rate
region could be regarded as marginally acceptable.

The model of Fig. 6 can be included with the models of
Fig. 8 to define a suite of four examples where the only in-
version parameter that has changed is the prior value of the
erosion rate. Note that the resolution and posterior variance
do not change between these four models, because these met-
rics depend on the data and the prior variances but not the
prior erosion rate. The same is not true for the variance of
the NR because of its dependence on the value of the erosion
rates. Surveying the solutions of all four of these models, we
see that the range of outcomes for the NR is very wide, from
no acceleration (Fig. 8) to acceleration everywhere (Fig. 8a
and b) to neutral or deceleration in the high uplift zone with
acceleration in the low uplift zone (Fig. 8c). This range of
behaviour is the result of combining the poorly resolved 6 to
4 Ma interval with the well-resolved 2 to 0 Ma time inter-
val. The former depends on the prior model and the latter
is reasonably robust and accurate. Although interpretation of
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Figure 7. Synthetic data inversion test using reduced data density Set B (Fig. 3b). Data have good coverage in time but poor coverage in
space. Prior erosion rate is 0.35 mm yr−1. Other inversion parameters in Table 1. See the Fig. 4 caption for other formatting details.
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Table 1. Parameters and results for synthetic data models.

Figure Data Correlation Prior Notes Results
length erosion

rate

Figure 4 Set A 30 0.35 Fixed geotherm No error
326 data
5 systems

Figure 5 Set A 100 0.35 Fixed geotherm No error
326 data High correlation length
5 systems

Figure 6 Set C 30 True solution Fixed geotherm No error
143 data Poor temporal coverage
3 systems

Figure 7 Set B 30 0.35 Fixed geotherm No error
48 data Poor spatial coverage
4 systems

Figure 8 Set C 30 0.35 Fixed geotherm Large errors
143 data 0.65 Poor temporal coverage for small prior
3 systems 1.65 Small errors for

large prior

Figure 9 Set D 30 0.35 Fixed geotherm No errors
160 data 1.0 Uniform spatial coverage
5 systems All data removed from low uplift

Figure 11 4 systems 30 1.65 Fixed geotherm No error
Constant gradient in erosion rate

Figure 12 Set E 30 0.35 Transient thermal model No error
326 data
5 systems

Figure 13 Set F 30 0.35 Transient thermal model Moderate error
42 data Sparse data
5 systems

the NR with this variability would be problematic, this prob-
lem is largely avoidable by noting the error in the NR. The
variance in the NR is almost always large, indicating that
the values entering the ratio have large uncertainty, and so
the NR itself is highly uncertain. The low uplift rate region
never has a standard deviation under 0.5, indicating that the
NR is never resolved in this region. The high uplift rate re-
gion has a lower standard deviation on the NR and could be
considered to be on the edge of resolved, and in fact it is these
regions that appear resolved by the other metrics as well. The
solution is moderately accurate here, although there are still
dependencies on the prior, so we would interpret this solution
as marginally reliable.

As a final test of resolution errors, we directly test the in-
fluence of the ages from the low uplift rate region on the
high uplift rate region by removing all ages from the low up-
lift rate region and inverting the remaining ages. This should
remove any spatial correlation bias, leaving only resolution

bias. For this test, we constructed an additional synthetic
data set that had a more uniform spatial distribution to illus-
trate spatial smoothing effects without a superimposed data
density effect (Set D) (Fig. 3d). Figure 9 shows three mod-
els using this data set. There are two models in the leftmost
columns using the full Data Set D but different values of the
prior erosion rate of 0.35 and 1.0 mm yr−1. Resolution and
reduced variance do not depend on the prior erosion rate and
so are applicable to both models. On the right is a model with
all data removed from the low uplift rate region. This model
has a prior erosion rate of 0.35 mm yr−1. We do not show
the corresponding model with the half data set and a prior
of 1.0 mm yr−1 because it returns exactly and uniformly the
correct erosion rate of 1.0 mm yr−1. To provide a more com-
plete temporal view, we show seven time intervals reaching
14 Ma, where the first ages appear in the high uplift zone.
The full data model evolves much as the other models above.
The fast uplift rate region has no resolution in the early his-
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Figure 8.

tory because there are few or no ages that sample this part of
space–time parameter space. Solutions depend strongly on
the prior value and resolution and variance reduction charac-
teristics are low. As time progresses and ages begin to appear
in the fast-uplift area (12 to 6 Ma), the resolution increases
and the accuracy of the inferred erosion rate increases. By
6 Ma, there are sufficient ages on each side of the fault, so
that the erosion rate is correctly inferred. There is smooth-
ing across the fault, but this error diminishes as resolution
increases at younger times.

The right three columns of Fig. 9 show the estimated ero-
sion rates for inversion of only the data in the north-western
(high erosion rate) region. The result is almost identical to
the model with the full data set and low prior (compare
columns 1 and 5). Both solutions still have large errors in
the early time steps where there are few data constraints, but
their similarity indicates that these are resolution errors, not
spatial averaging errors. There are differences in predicted

erosion rates, but these are limited to the immediate prox-
imity of the fault (less than one correlation length). As in
other models of our paper, the spatial correlation errors are
largest where there are no data near the fault, indicating that
the spatial correlation is not averaging age data so much as
interpolating empty space between the data. Spatial smooth-
ing is also visible in the high prior, full data set model, again
limited to the immediate vicinity of the fault. There are much
larger errors in the low erosion rate region, but these are res-
olution errors in the half data set model introduced by the
removal of all data from this region.

4.4 Trade-offs and age misfit

Estimated erosion rates in the GLIDE model represent a bal-
ance between three factors: (1) fit to the age data, (2) con-
sistency with the prior probability model, and (3) averaging
with nearby data in space. A parameter estimate is a weighted
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Figure 8. Synthetic data inversion test using reduced data density Set C (Fig. 3c). Data have moderately good coverage in space but poor
coverage in time. Prior erosion rate is (a) 0.35 mm yr−1, (b) 0.65 mm yr−1, and (c) 1.65 mm yr−1. (d) Temporal resolution and reduced
variance applicable to all three models. (e) Age data. Other inversion parameters in Table 1. See the Fig. 4 caption for other formatting
details.

average of these three types of data where the weights are a
function of the correlation length parameter, the data vari-
ance (assumed errors in the ages) and the prior erosion rate
variance. In particular, the averaging between the prior model
and the data is controlled by the ratio of the data variance to
the parameter variance, which serves as a regularization or
damping parameter for the problem. We saw above that in
the absence of data constraints, the parameters revert to the
prior model. Similarly, if the data number or quality goes
to infinity, the ratio between the data variance and the prior
variance is small and the solution will be required to fit the
data. This suggests an additional test that can be conducted to
estimate the relative importance of spatial smoothing or low-
resolution reversion to the prior model. Data residuals, that
is, the difference between predicted ages and observed ages,
provide a metric for relative weighting between data fit and
the other two factors, spatial smoothing and fit to the prior.

We demonstrate this characteristic with the age residu-
als from the full data model of Fig. 9; residuals are shown
in Fig. 10a. As we discussed with reference to Fig. 2, it is
not possible to fit different ages with a common tempera-
ture history if they have the same elevation above the closure
isotherm, so where spatial averaging is occurring, it appears

as a difference between predicted and observed ages. This
is also true for errors resulting from excessive weight on the
prior. Where the prior model is pulling the parameter esti-
mate towards a false value, the age will no longer be fit. Fig-
ure 10a shows two groups of large residuals in age. These
correspond to the youngest ages in the low erosion rate zone
and the oldest ages in the high erosion rate zone. The resid-
uals are opposite in sign. The misfit of the low erosion rate
ages is a spatial correlation effect. The predicted ages are too
young because of smoothing of the high erosion rates into
the low erosion rate zone during the late time steps when res-
olution to the south-east is low. The large residuals all come
from data close to the boundary fault, where one can see the
erosion rate errors as edge smoothing in Fig. 9; ages in this
region are misfit. The residuals in the high uplift region are
different. They include the spatial correlation errors but also
a bias to the prior given that the prior erosion rate is low.
We can try to separate these by changing the prior model.
However, rather than changing the prior erosion rate, which
has a large effect on the estimated parameters, we ran a new
model where we increased the prior variance on the erosion
rate. By increasing the variance, the influence of the prior is
reduced and the relative weight of the age data is increased.
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Figure 9.
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Figure 9. Synthetic data inversion test using reduced data density Set D (Fig. 3d). Prior erosion rate is 0.35 and 1.0 mm yr−1. In the right
column, all age data from the low uplift region (south-east) are removed. Other inversion parameters in Table 1. See the Fig. 4 caption for
other formatting details. The similarity in the NW region of the two models shows that there was no spatial averaging of older ages into the
high uplift region.

The residuals for this model are shown in Fig. 10b. The mis-
fit to the ages in the low erosion rate region is unchanged,
but the residuals in the high uplift region are now close to 0.
This indicates that we have obtained a more accurate solution
with decreased weight on the prior, identifying that the errors
in the high erosion rate region were dominated by resolution
errors and bias to the prior. The prior variance in all the mod-
els so far has been small (standard deviation of 0.1), which
implies a strong influence of the prior on low-resolution time
steps.

The large residuals reflect the transition from poorly re-
solved time steps to well-resolved time steps. The model of
Fig. 9 as well as several of the models using Data Set A
have inaccurate parameter recovery for the high uplift rate
zone in the 6 to 10 Ma range. This is surprising given that
the model included a relatively large number of ages across
this interval. An explanation is provided by the data resid-
ual analysis. The ages that are misfit in Fig. 10a are in this
6 to 10 Ma range. It is apparent that the estimated solution
has a strong tendency to stay at the prior value rather than
fit these ages. During the early history, there are no ages to
constrain the high uplift rates, so the solution stays at the low
value of the prior. During progressively younger time steps,
the high uplift zone ages begin to appear and pull the so-
lution towards the correct, high value. However, during this
transition (approx. 10–6 Ma in this model) the number of
ages is insufficient to counter the weight of the prior. Only
as more young ages come into the problem (approx. 8–4 Ma)

can the ages pull the solution fully from the prior to the cor-
rect value. The number of ages required to obtain an accu-
rate solution is large compared to most natural examples, but
this is a consequence of the extreme conditions of this syn-
thetic model. In the high uplift zone, the true erosion rate is
7 SD (standard deviations) away from the prior erosion rate
for the full 30 Ma of the model run. These conditions place
a strong demand on the data in order to balance the effect of
the prior model which is far from the true solution. Even the
tens of data present in Data Set A or D over the 6 to 10 Ma
window were not sufficient. By increasing the prior variance
(Fig. 10b), we have reduced the weight of the prior; the ages
are again fit, and the erosion rates are estimated accurately.
Most natural cases, without such an extreme erosion rate his-
tory, would require fewer data to counterweight the prior and
obtain the correct solution. Normally in a model study with
such a large variation in erosion rates, we would have in-
creased the prior variance so that fewer data were needed to
achieve an accurate solution, but we thought it important to
keep the inversion conditions of Herman et al. (2013), even
for these extreme models. As is always the case, an artifi-
cial model cannot be directly translated into a prediction of
behaviour in a natural case. What can be taken from these
models is that there will always be a transition between a
poorly resolved time interval, where an estimate is influenced
by the prior model and a well-resolved interval where age
data are sufficient to constrain the solution to the correct so-
lution. Where that transition is depends on the number and
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Figure 10. (a) Data misfit for the left model in Fig. 9. Prior erosion rate is 0.35 mm yr−1; prior standard deviation of the erosion rate is
0.1 mm yr−1. (b) Inverse model of the same data but with a prior standard deviation of the erosion rate of 1.0 mm yr−1. Reduced residuals in
(b) show that the errors were due to bias in the prior, not spatial averaging.

precision of data and the relationship between the true solu-
tion and the assumed prior model and must be estimated on
a case-by-case basis from characteristics such as resolution
metrics and data residuals.

An important caveat to all the models in this section is that
the analysis applies only to the case where data are accurate
and consistent with the forward model. In nature, this will
not be the case, as there will always be differences in cooling
processes or diffusion kinetics that are not accounted for in
the model. In this case, estimated parameters may be pulled
in directions other than to the prior or to the true solution.
For this reason, some regularization of the model and misfit
to the data is always desirable.

4.5 Synthetic data models for an erosion rate gradient

The models thus far have all considered the case of a sharp
discontinuity in erosion rate. The other common case, hy-
pothesized to be important in creating false inferences of ero-
sion rate increase, is a gradient in erosion rate and thus age.
We reconstructed a simple example of a gradient model by
generating ages using a constant gradient of erosion rate from
0.1 to 1.0 mm yr−1 across a 90 km domain (Fig. 11b). We
generated ages using four thermochronometers but no varia-
tions in elevation. Data were generated on a regular grid to
avoid non-generalizable effects arising from randomized po-
sitions and elevations. This model is effectively 1D, but we
portray results in map form to be consistent with the other
models. A fixed geotherm was used to avoid model errors.
Results are shown in Fig. 11, with additional models in Ap-
pendix A. The true solution is recovered nearly perfectly over
the last 6 Ma. As with the other models, as resolution deterio-
rates back in time, the solution reverts to the prior parameters

(Fig. A2). We constructed a suite of models using subsets of
the data and changing the prior model and correlation length
(Figs. A3–A6). In all cases, in the absence of data constraints,
the solution reverts to the prior, but there is no evidence for
spatial correlation errors. Larger correlation lengths actually
improve the model predictions, which is not surprising given
that a constant gradient in a function corresponds to perfect
spatial correlation. Interesting in these models is that it is the
older, zircon ages that provide the best constraints on the ero-
sion rate history. The absence of young ages does not lead to
large errors in the case where the exhumation rate is steady.
Provided that there are older ages to constrain the long-term
average exhumation rate, there is no tendency to a false ac-
celeration (Fig. A4).

These models are consistent in their result. There is no vis-
ible effect of spatial averaging and no false inference of an in-
crease in erosion rate due to spatial averaging along the age
gradient. There are resolution errors for early time intervals
that are poorly sampled by ages, where the solutions revert to
the prior model, but for young time steps that are poorly re-
solved but have older, high closure-temperature ages, the so-
lution remains accurate because it is constrained by the older
ages that provide an integral constraint on the erosion rate.
This result reflects the two principles we expressed above.
First, correlation is not equivalence, and a linear variation in
erosion rate implies perfect correlation of erosion rates with-
out requiring that they be equal or averaged. Second, ero-
sion rates cannot vary to fit neighbouring ages without a large
misfit to local ages. For a steady erosion rate with a spatial
gradient, any temporal variations in erosion rate that do not
satisfy the integral constraint will result in age misfit, so there
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Figure 11. Synthetic data model for a gradient in erosion rate varying from 0.1 mm yr−1 on the left edge to 1.0 mm yr−1 on the right edge.
True solution and data locations are shown in (b). Ages are shown in (c). All four thermochronometers are given at each data location. There
are no variations in elevation. Inverse solutions for the last three time intervals shown in (a). Other models including for subsets of data
shown in Appendix A.
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is no statistical advantage in creating an erosion rate history
with a false increase in rate.

4.6 Synthetic data models for errors in the thermal
model

All models above use a thermal model that has been sim-
plified from the normal, transient model incorporated into
GLIDE. This was done to remove the coupling between the
thermal model and erosion rates that can lead to complex er-
ror propagation. At low erosion rates, heat advection is small
and the effect on the geotherm is small, but the test model we
are using includes a region with an erosion rate of 1 mm yr−1

for 36 Myr, so the advective component of the heat flux is
large and the geothermal gradient increases by a factor of
nearly 4 (Fig. 3). This is extreme compared to the real world,
where such large erosion rates are rarely sustained for long,
but as a test case, extreme conditions are acceptable. How-
ever, unless the high uplift area has thermochronometers with
very high closure temperatures, ages are unlikely to exceed
15 Ma (Fig. 3), which leaves the first 20 Ma of the thermal
history unconstrained. In the absence of data constraints, the
erosion rate reverts to the prior value. For any synthetic test
with a low prior erosion rate, the geothermal gradient will be
badly in error, leading to errors in the erosion rate. Geotherm
errors are primarily a non-linear, and often negative, mul-
tiplier to errors in the erosion rate. For example, if erosion
rates early in a thermal history are too low because of a low
prior, the geothermal gradient will be too low and the late
history erosion rates will be too high to compensate and fit
the data ages.

To demonstrate some of these effects, we generated two
synthetic data sets using the full transient model internal to
GLIDE (Sets E and F, Fig. 3e and f). Set E has good tem-
poral coverage in the high uplift region but poor coverage of
the low uplift region. Set F has poor spatial coverage for the
entire domain. To demonstrate that the thermal model does
not introduce any model errors, we first invert Data Set E
with the prior model set equal to the true solution. As above,
and following Eq. (12), this eliminates the resolution errors,
leaving only model error; results are shown in Fig. A6. As
in all other models with the prior solution set equal to the
true model, the true solution is recovered nearly perfectly, so
there are no model errors or method bias. By setting the prior
model to the true model, the thermal model is now correct,
meaning that it is equivalent to the model used to generate the
ages, so there are no model errors arising from spatial cor-
relation, data smoothing, the geotherm calculation or other
sources related to the model. Any errors in subsequent mod-
els are due to data inadequacy, i.e. resolution, and resolution
errors amplified by subsequent errors in the thermal model.

As a second experiment, we inverted Data Set E using a
prior erosion rate of 0.35 mm yr−1 (Fig. 12). The data distri-
bution and number in this model are close to those of Data
Set A, so we expect the resolution errors to be small (see

Fig. 6), but errors are considerably larger. The difference is
the amplification due to model error in the geotherm. Errors
are largest on the high uplift side of the fault but are present
on both sides. Estimated erosion rates are significantly larger
than the true values. This is a consequence of an estimated
geothermal gradient that is too low. Although the errors are
large, they produce a false deceleration, not an acceleration.
This indicates that not only is the average gradient in the
geotherm incorrect, but also that the curvature is incorrect.
Because of the error in the geothermal gradient and curva-
ture, a low prior (as used in Herman et al., 2013) is likely
to produce a false deceleration in regions of sustained high
uplift, although we would not over-generalize this result.

As an additional test of mixing resolution errors with
model errors, we decimated the test data set to make a sparse
data set, although we kept the temporal range appropriate for
the time range of interest (Fig. 3f). Inverting with the low
prior value (Fig. 13) gave a result similar to Fig. 12, although
the spatial domain was much noisier, with highs and lows
depending on the data locations and values. Where Fig. 12
shows a uniform deceleration, Fig. 13 shows a mix of accel-
eration and steady regions, with the best resolution indicated
for the steady regions. Resolution metrics show that the 6 to
4 Ma time interval is only marginally resolved, whereas the
2 to 0 Ma time interval is well resolved.

Thermal model errors are difficult to identify in the pos-
terior statistics. A systematic geotherm error does not ap-
pear in either resolution or posterior variance metrics, and
regions that these metrics indicate as well resolved can have
very large errors. This is different from the resolution errors,
which were well characterized. The best solution to this prob-
lem in natural problems is to minimize model errors by cal-
ibrating the final geothermal gradient against modern heat
flow measurements (Willett and Brandon, 2013). In some
cases, pressure–temperature–time constraints from metamor-
phic assemblages might serve the same purpose, but the time
component is necessary if the geotherm is transient. In the
synthetic data models of this paper, we could have calibrated
each model to the final gradient used to generate the ages
and we would have obtained much more accurate models, but
following the methodological principle of isolating error and
variables, we chose rather to hold the initial condition con-
stant for all models. Again, we would like to emphasize the
point that the synthetic data models presented here are not
intended to simulate actual applications, nor do they repre-
sent the way in which the inverse model would be applied to
a natural example; they are numerical experiments intended
to give insight into the performance of the methodology and
sources of errors.
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Figure 12. Synthetic data inversion test using synthetic Data Set E calculated using the full, transient thermal model internal to GLIDE
(Fig. 3). The prior erosion rate is 0.35 mm yr−1. Other inversion parameters in Table 1. See the Fig. 4 caption for other formatting details.
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Figure 13. Synthetic data inversion test using synthetic Data Set F calculated using the full, transient thermal model internal to GLIDE but
sparse data (Fig. 3). The prior erosion rate is 0.35 mm yr−1. Other inversion parameters in Table 1. See the Fig. 4 caption for other formatting
details.
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5 Tectonics and spatial variability in
thermochronometric ages

In this section, we turn our attention from error analysis
to discuss spatial variability in thermochronometer ages in
tectonic settings as characterized by both thermokinematic
models and natural data studies. The synthetic data experi-
ments (Sect. 4) showed that spatial gradients, or spatial dis-
continuities, introduce no significant errors, systematic or
otherwise, to the GLIDE model inversion, provided data cov-
erage is adequate. We also showed that data adequacy is
defined more by the temporal coverage provided by multi-
ple thermochronometers and the elevation distribution rather
than the spatial coverage of samples, so it is somewhat
of a misdirection to stress spatial variability. Nonetheless,
having extensive regions of spatially uniform exhumation
rates increases the probability that one can obtain good age–
elevation profiles or can combine age data from indepen-
dent thermochronometers that are not perfectly co-located
and still achieve good resolution. The resolving capability
of data is determined by the complexity of the erosion rate
field being sampled, so resolution should be evaluated in the
context of tectonic variability. The following sections discuss
spatial variability and age patterns from the modelling liter-
ature, make an evaluation of age variability and resolution
in a set of natural examples, taken from the original study
of Herman et al. (2013), and, finally, provide a discussion of
how one can, or cannot, differentiate between tectonic and
climatic variability impacts on erosion rate.

5.1 Tectonic settings and age gradients

There has been considerable work done with thermokine-
matic and thermodynamic models to provide prediction of
the relationship between erosion rate and thermochronomet-
ric ages (e.g. Mancktelow and Grasemann, 1997; Stüwe and
Hintermüller, 2000; Ehlers and Farley, 2003; Braun, 2002b;
Braun et al., 2012; Nettesheim et al., 2018; Koptev et al.,
2019). Many of these studies have demonstrated that, even
in complex tectonic settings, there are broad regions char-
acterized by constant rates of exhumation and thus constant
thermochronometric age. It should be noted that when we
speak of gradients in age in kinematic models, we refer only
to gradients in cooling age, where the cooling is related to
the last phase of orogeny and exhumation. In any tectonic
setting, there is a contrast between active areas exhibiting
young cooling ages and the surrounding regions unaffected
or weakly affected by current tectonics (e.g. the pre-orogenic
ages of Willett and Brandon, 2002). Pre-orogenic ages are
typically tens if not hundreds of millions of years old, and
such ages are either removed from the analysis if they are
older than the model runtime or, if left in, have minimal
effect, given that an age whose exhumation spans multiple
time intervals, devoid of other ages, has little influence on
the young history, e.g. Fig. 11. In addition, the fundamental

concepts of the thermal model, including the definition of a
closure temperature, are predicated on monotonic cooling, so
multiple heating episodes cannot be resolved.

Some examples of tectonic settings and the predicted dis-
tribution of cooling ages are illustrated in Fig. 14, taken di-
rectly from the literature cited in the caption. In extensional
settings (Fig. 14a), most exhumation occurs by erosion on
uplifted footwall blocks of normal faults. Footwalls are of-
ten tilted or flexed in response to unloading during fault slip,
so one would expect a gradient in exhumation rate with the
highest rates found near the fault. One of the most studied
normal-fault systems is the Wasatch Fault in Utah, which has
extensive thermochronometry data, including both AFT and
AHe data (Armstrong et al., 2003) and a complete suite of
thermokinematic models (Ehlers et al., 2001, 2003). These
studies demonstrated footwall tilt and a gradient of exhuma-
tion rate but also showed that at high rates of exhumation,
the gradients in age were reduced to the point that they could
barely be resolved. This was supported by the observations.
Within 20 km of the fault, AFT ages were constant within er-
ror (Armstrong et al., 2003). AHe ages showed a small gra-
dient, which, after correction for elevation effects, resulted
in a difference of about 3 Ma over a 20 km transect. The
low spatial gradients are a consequence of the high rate of
exhumation, which compresses the age–exhumation rate re-
lationship. The Wasatch studies are most notable for their
extensive sampling with two thermochronometers (AFT and
AHe), and it is the age difference between AFT and AHe
that resolves a temporal change in erosion rate (Ehlers et al.,
2003). Ehlers et al. (2003) found a small decrease in exhuma-
tion rate in the last 5 Ma, whereas Herman et al. (2013) found
a small increase; this difference is due to the difference in the
closure kinetics assumed by each of these studies.

Thrust ramps (Fig. 14b) have also seen considerable atten-
tion due to the high exhumation rates and common occur-
rence of young ages. A number of thermokinematic models
have been published based on ramp-flat, fold-fault kinemat-
ics (Whipp et al., 2007; Lock and Willett, 2008; Herman et
al., 2010; Coutand et al., 2014; McQuarrie and Ehlers, 2015,
2017). These models consistently show that a constant-dip
ramp produces a broad zone of constant uplift rate and thus,
with a steady surface elevation, a region of constant age.
The hanging wall at the lower end of the ramp is typically
bounded by a fault-bend fold whose geometry controls the
wavelength of a transition from the ramp zone of constant
age to the hinterland where there is no exhumation and thus
inherited ages. If the up-dip limit of the ramp feeds into a
flat, there is a fault-bend fold whose geometry controls the
transition from the ramp zone of constant age to the foreland
zone of inherited ages. If the ramp reaches the surface and all
remnants of the fault-propagation fold are eroded, there can
be a narrow zone of older ages in the hanging wall exposed
to cooling into the footwall, but otherwise, there is a sharp
transition between the cooling zone and inherited ages in the
foreland. Gradients in cooling age associated with fault mo-
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Figure 14. Tectonic settings in which thermokinematic modelling has established extensive regions of nearly constant exhumation rates.
Dashed line shows an isochron (line of constant age). (a) Normal-fault footwall block (Ehlers et al., 2003). (b) Thrust ramp (Lock and
Willett, 2008; McQuarrie and Ehlers, 2015, 2017). (c) Orogenic wedge (Batt and Braun, 1997; Willett and Brandon, 2002; Fuller et al.,
2006).

tion are young to old from the centre of the ramp to the thrust
but are steep, short and rarely observed in the field.

Orogenic or accretionary wedges have also been much
studied, although the complexity of their internal deforma-
tion makes it difficult to generalize. One must also differ-
entiate between models that assume a surface erosion rate
and allow this to drive kinematics (Dahlen and Barr, 1989;
Batt et al., 2001) and those that allow the surface erosion
rate to be freely determined with the deformation (Willett,
1999; Batt and Braun, 1997; Fuller et al., 2006; Michel et
al., 2018, 2019). Summarizing some of the latter, Willett and
Brandon (2002) made the explicit point that within the de-
forming wedge, rock uplift rates will be constant to maintain
self-similar growth and that exhumation rates and ages will
also be constant unless some surface process acts indepen-
dently of the rock uplift associated with wedge growth. Their
summary figure included nested reset zones of constant age
(Willett and Brandon, 2002) (Fig. 14c). The prowedge of an
orogenic belt (right-hand side of Fig. 14c) is characterized by
an unreset frontal zone where particle paths are too shallow
to permit heating above closure temperatures. The transition
to the reset zone can be in either prowedge or retrowedge and
can be either discrete, associated with a single structure, or
diffuse, often exhibiting partially reset ages, but it is rarely
defined by a spatially extensive gradient of reset ages.

The point of these examples is to demonstrate that tectonic
activity is not, in and of itself, evidence for spatial variabil-
ity of thermochronometric ages. All tectonic settings contain
extensive domains with constant or near-constant ages. Fur-
thermore, there is a well-known effect of age compression at
high rates of exhumation whereby thermochronometric ages
become less sensitive to changes in exhumation rate as the
rates increase (Ehlers et al., 2001). At high exhumation rates,
even large changes in exhumation cannot be resolved by ages
with typical measurement uncertainty, whereas temporal dif-
ferences, i.e. due to changes in elevation or closure tempera-
ture, do not suffer from this compression effect. The conse-
quence is that regions with the young ages needed to resolve

Plio-Pleistocene cooling have little sensitivity to spatial vari-
ations in age and require good temporal coverage, as we will
illustrate in the sections below.

5.2 Spatial patterns of exhumation and acceleration:
example from the western Alps

Given the insights into potential sources of error in the in-
verse models (Sect. 4) and tectonic causes of age gradients,
or the lack thereof (Sect. 5.1), we turn next to the natural
examples to assess where there is potential systematic error.
The synthetic models of Sect. 4 were conclusive in show-
ing that there is no model bias but that resolution errors and
their amplification through thermal model errors could lead
to specific errors. We conduct an analysis of the resolution
errors for a number of the original sites, which are specific to
each site and data set. In addition, we use these examples to
demonstrate problems that arise through the use of the pro-
posed NR metric as an interpretation tool.

The Alps have served as an important example for the ap-
plication of GLIDE (Fox et al., 2015, 2016; Schildgen et al.,
2018), so we will continue this focus here. Figure 15 shows
the GLIDE inversion estimate of exhumation rate, together
with resolution metrics and the normalized erosion rate dif-
ference. The ages used in the inversion are shown in Fig. 15l.
They are also shown in Fig. 15a–i, plotted within the time in-
terval into which they fall, to give a better sense as to which
time intervals are constrained. Exhumation rates are well
constrained throughout the external Alps, which lie north-
west of the Penninic line fault (PLF in Fig. 15). There are
numerous ages that fall within the 6 to 0 Ma range as well as
older ages in both the external and internal Alps, south-east
of the PLF.

There is a clear increase in erosion rate in the external
Alps, closely associated with the young ages. North-west of
the Penninic line, exhumation rates are notably higher in the
2 to 0 Ma time interval (Fig. 15a), defining an acceleration
with respect to the previous time intervals. The high ero-
sion rates are centred on the high external Alps, where the
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Figure 15.

youngest ages are clustered. This zone of high erosion rate
has numerous ages in the 6 to 4 Ma time interval, which
is a typical age for the AFT samples from the region. The
ZFT ages are older (8 to 16 Ma), and AHe ages are younger
than 6 Ma. Erosion rates in this region are thus well resolved
across all time intervals.

The good resolution of the Alpine ages can be confirmed
by comparison to the model results shown in Figs. 4–9, 12
and 13. To properly make a comparison between the models
and the natural example, one must estimate the data density
in both space and time and select the model with synthetic
data distribution most similar to the natural example. With
the data density of the Alps, the closest models are those us-
ing Data Set A or E (Fig. 3). Even here, the true age distri-
bution for the Alps is likely better than any age distribution
of the models, because the extremely high and sustained ero-
sion rate in half of the synthetic model domain compresses
the model ages into a narrow time range. Nonetheless, the
models all show that with the data coverage of the natural
Alps, we expect only small resolution errors with a very well-
resolved history in the external Alps to the north-west, a re-
solved average erosion rate with no resolution of late change

in erosion rate in the internal Alps to the south-east and a
smoothed transition between the two.

The region of accelerated erosion south-east of the Pen-
ninic line in Fig. 15 is larger than the counterpart in the syn-
thetic models (e.g. Fig. 12). There are several reasons for
this. First, the data resolution of the synthetic models and the
natural data are not identical, so there are resolution errors
throughout the natural example and direct comparison with
the model will never be perfect. Second, the uplift functions
are very different, and this affects the temporal resolution.
The vertical fault with 13 km of relative offset in the synthetic
data example makes a good synthetic test, but it should not
be mistaken for the actual uplift pattern in the Neogene Alps,
which has no major active structures (Egli and Mancktelow,
2013). Finally, and most importantly, the synthetic model and
actual Alps differ in that the external Alps do have an accel-
eration in exhumation, whereas the synthetic model does not.
The increase in erosion rate in the external Alps is robust and
well resolved by its local ages. Smoothing of this signal from
the external Alps during each independent time interval into
the surrounding regions, i.e. south-east of the PLF, give the
appearance of an acceleration in these regions. The synthetic
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Figure 15. Erosion rate history in the western Alps based on analysis from Herman et al. (2013) and Fox et al. (2015, 2016). (a–c) Inferred
erosion rate between 2 and 0 Ma, with temporal resolution and posterior variance. (d–f) Inferred erosion rate between 4 and 2 Ma, with
temporal resolution and posterior variance. (g–i) Inferred erosion rate between 6 and 4 Ma, with temporal resolution and posterior variance.
(j) Normalized erosion rate difference (Eq. 14) and (k) 2σ error in the normalized erosion rate difference (Eq. 16). Inversion parameters are
similar to Herman et al. (2013). A prior erosion rate of 0.35 mm yr−1 and a correlation length scale of 30 km have been used. In (a), (d) and
(g) the black diamonds indicate ages less than 6 Ma; white dots indicate ages older than 6 Ma. In resolution and variance plots the ages that
fall within that time interval are shown as black circles. PLF is the Penninic line fault.

model had no acceleration in the high uplift region, so any
smoothing of the high uplift area into the low uplift area was
equal over each time interval.

It should also be noted that even if there were a sharp
boundary between young and old ages from the external to
internal Alps, it would not be at the Penninic line as por-
trayed in this paper and Schildgen et al. (2018). There are a
number of ages younger than 4 Ma south-east of the Penninic
line faults (most clearly seen in Fig. 17e and h), and these ex-
tend the high uplift zone to the south. The high uplift zone in
Fig. 15a continues south-east into the internal Alps for a dis-
tance of less than one correlation length beyond the south-

ernmost young ages. This is the same smoothing effect we
observed in the synthetic data models (e.g. Fig. 4 or Fig. 12).

The NR map (Fig. 15j) gives a very different story. The
maximum acceleration is shown in the middle of the study
area centred on a region with almost no age data younger
than 6 Ma. Furthermore, the high acceleration region is large,
covering the entire internal Alps at a value larger than the
external Alps, where most of the young ages are found. It
is this relationship that was the basis of the conjecture of
Schildgen et al. (2018) for inappropriate spatial averaging,
as there is no intuitive basis for this large acceleration zone
centred on a data gap rather than on the data. However, it
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Figure 16.

is here that the shortcomings of a plot based on the NR ra-
tio emerge. Comparison between the erosion rate maps and
the normalized erosion rate difference map show that the two
have very little in common. The offset in maximum values is
the most obvious, but the extent of the large values of NR far
to the south and east is peculiar given the data distribution
and the lack of deviation in erosion rates from the prior value
of 0.35 mm yr−1 through most of the south-east of the study
area. The problem is not in the erosion rate maps; it is appar-
ent only in the normalized erosion rate difference maps. The
problem is further clarified by looking at the error associated
with the NR (Fig. 15k). It shows that the lowest variance in
the NR is centred on the external Alps, where the data den-
sity is highest and the erosion rates are best resolved. The
variance in NR increases rapidly to the south-east, with high
values encompassing most of the internal Alps. The shift of
the locus of NR relative to its error and its underlying param-
eters is a feature of a ratio expression where the quantity in
the denominator has a wide range of values. Regions where
the denominator is small, i.e. the internal Alps, have a large
ratio but also increasing sensitivity to error in the denomina-

tor. This effect creates a bias, a bias that is manifested as a
false acceleration in regions of low erosion rates.

As with the synthetic data models, a test of the resolu-
tion can be provided by checking for sensitivity to the prior
model. We reran the Alpine data inversion using a prior ero-
sion of 1.35 mm yr−1 (Fig. 16). As expected, the peripheral
regions all have a high erosion rate reflecting the higher prior.
However, the central external Alps are almost unchanged,
reflecting the high resolution. The high-resolution contours
(above 0.5 to 0.6) mark the region that is robust against
changes in the prior. The internal Alps to the south-east hold
their lower erosion rate because of the older ages. There are
also somewhat higher erosion rates at all time intervals in the
external Alps. This is a model effect due to a difference in the
geothermal gradient between the two models, in response to
the increased advection of the early history in the high prior
model.

As an even more direct test of the hypothesis that the in-
ferred acceleration is an artefact of mixing regions, we pro-
duced another inverse model for the Alps, but in this case,
we omitted all the data from the internal Alps in the south-
east, thus inverting only the data from the external Alps,
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Figure 16. Erosion rate history in the western Alps based on analysis from Herman et al. (2013). The model is identical to that of Fig. 15
except that the prior erosion rate is taken to be uniform at a value of 1.35 mm yr−1.

similarly to the synthetic data model in Fig. 11. Results are
shown in Fig. 17. Comparing the inverse model of all the data
(Fig. 17a–c) to the model of just the external Alpine data
(Fig. 17d–f), one can see that the solutions in the external
Alps are essentially identical, proving that there is no influ-
ence of the old ages to the south-east on the erosion rate es-
timates in the north-west. This result is consistent with what
we found in the comparable synthetic data example (Fig. 11).

These three models are conclusive; the acceleration found
in the Alps is not the product of inappropriate spatial averag-
ing. In the external Alps it is well resolved by the local data
which span the time span of interest. In the internal Alps, the
erosion rates over this time span are poorly resolved, and so
the solution from the north-west is smoothed into this area
but not sufficiently that the older ages of this region are mis-
fit.

5.3 Analysis of other natural examples for an increase
in exhumation rates

According to the reanalysis of Schildgen et al. (2018), of the
32 sites identified in the Herman et al. (2013) study as show-
ing sufficient thermochronometric data to resolve an erosion
rate history over the past 6 Ma, 23 of them were what they
called “spurious”. Furthermore, for those cases that were not
spurious and many sites that were argued to be spurious, they
interpreted the cause as either “tectonic” or “glacial”, where
glacial refers to Quaternary changes in erosion rate associ-
ated with the onset of glaciation. This second point will be
discussed later (Sect. 6.2). The first issue, whether or not re-
sults are justified or spurious, will be assessed here. Although
Schildgen et al. (2018) applied a variety of criteria as to what
constitutes a spurious result, we will focus here only on the
question of potential spatial correlation bias, where this is de-
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Figure 17. Erosion rate history in the western Alps excluding all data south-east of the Penninic line fault (PLF) (d–f) compared to history
including all data (a–c) (identical to Fig. 15). All inversion parameters are identical. The erosion rates and observed increase in erosion rates
in the external Alps are virtually indistinguishable between the two models, confirming that the solution in the north-western external Alps
and the observed acceleration is determined by the local data.

fined as inappropriate spatial averaging of data resulting in a
false acceleration.

To clarify how to address spatial averaging and its impact
on the conclusions of erosion rate change, we suggest that
this should be posed as a set of questions. Are the local data
sufficient to resolve an increase or are unrelated data from
large distances being used, and is an inferred increase ro-
bust with respect to the method of analysis? A spurious result
should be limited to an artefact that arises only because of the
inappropriate combination of data, model bias, or resolution
errors. For the case of a spurious acceleration, a better anal-
ysis or knowledge of the “true solution” would reverse the
conclusion. This definition does not include smoothing er-
rors if that smoothing includes an area that exhibits a true ac-
celeration based on its local data. Smoothing errors are easily
recognized and, if removed, either by a better analysis or sim-
ply masking parts of the domain, the conclusions would be

unchanged; an acceleration would be inferred in any case. In
this sense, results are not regarded as being area dependent;
the definition of an artefact must apply to the best-resolved
parts of the study area, not just peripheral regions. Thus, the
errors in Fig. 10a and b would constitute a spurious acceler-
ation, but the acceleration inferred for the transition between
the external and internal Alps in Figs. 15–17 would not be
regarded as spurious because it would not arise without the
existence of a neighbouring region with a resolved and true
increase in erosion rate.

The previous section presented the Alps as an example of
this reanalysis. As a second example of site interpretation,
the Nanga Parbat region of the western Himalayan syntaxis
is analysed, with results shown in Fig. 18. In order to un-
derstand how resolution arises, we have plotted the age data
in different ways. First, the full age distribution is shown as
a histogram (Fig. 18l). This shows that there are five ther-
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Figure 18. Erosion rate history for the western Himalayan syntaxis in the region of Nanga Parbat. Estimate based on analysis from Herman
et al. (2013). Inferred erosion rates (a, d, g) for three time intervals, from 6 Ma to present, shown along with the temporal resolution (b, e, h)
and reduced variance (c, f, i). (j) NR and its associated error (k) are also shown. (l) Histogram shows age distribution broken out by the
thermochronometric system. Inversion parameters are similar to Herman et al. (2013). Erosion rate plots include ages less than 6 Ma as black
diamonds and ages greater than 6 Ma as white dots. Resolution and variance plots include the ages that fall within the respective time interval.
An inverse model with all data from outside the massif omitted is shown as Fig. A7. There is no appreciable difference in the result.

mochronometers with ages bracketing the time span of in-
terest. It is important to show how many ages bracket each
time interval, so these are shown in the resolution and vari-
ance plots. All ages greater than 6 Ma are shown in white
on the erosion rate maps, values less than 6 Ma as black di-
amonds. Taken together, these maps give a good sense as to
which data are constraining which erosion rates. The fact that

the resolution and variance plots mirror the data reflects local
support of resolution. These figures miss the additional reso-
lution provided by elevation range, but this information can
be visualized indirectly from dispersion in the age histogram.
Figure 18 shows that the core region of the Nanga Parbat
syntaxis is well resolved by the local data. With five ther-
mochronometers yielding ages under 10 Ma, the resolution

Earth Surf. Dynam., 9, 1153–1221, 2021 https://doi.org/10.5194/esurf-9-1153-2021



S. D. Willett et al.: Bias and error in modelling thermochronometric data 1189

of the exhumation history is excellent. There are older ages
outside the massif, so to confirm that these are not inappro-
priately influencing the solution, we removed all ages from
outside the syntaxis core and reran the inversion. Results are
shown in Fig. A7 and are essentially unchanged. We could
also change the prior model or the correlation length and the
conclusions would be unchanged. The acceleration is the re-
sult of effectively co-located data from five thermochrono-
metric systems and is not an artefact of the method or of
inappropriate averaging, and so by our definition it is not
spurious. This result is consistent with the model of Fig. 11,
which shows that with data coverage of this density, old ages
from other regions have no influence on the solution in well-
resolved regions. The region with resolution above a value
of 0.4 or perhaps 0.5 includes all the ages less than 6 Ma and
none of the region with no ages under 6 Ma and would be re-
garded as well resolved. In contrast, the map of NR has lost
all the information regarding resolution (Fig. 18j). It shows
simply a broad, long spatial wavelength increase. However,
the error on NR shows that the resolved part of this map is
also restricted to the Nanga Parbat core region (Fig. 18k).
This region also shows a clear increase in erosion rate with
time. We also note that previous studies using different ap-
proaches found the same result, including this increase in rate
(Zeitler, 1985; Thiede and Ehlers, 2013).

A third example with good spatial and temporal coverage
is the Olympic Mountains of north-western Washington State
(Fig. 19). Here there are three thermochronometers providing
coverage of the 10 Ma to present-day time span and a fourth
providing a longer timescale average rate. These data are
dominantly from the central core of the mountain belt with
older, largely unreset, ages found in the western region where
it has been argued that the combination of lower erosion rates
and shallow particle trajectories through the orogenic wedge
result in a frontal unreset zone (Brandon et al., 1998; Paz-
zaglia and Brandon, 2001). The GLIDE inversion delineates
a well-resolved circular region in the core of the mountain
belt centred on the data, with ages falling into all three time
intervals. The region is resolved by local data and, as the syn-
thetic models show, with resolution at this level, old ages far
removed from the resolved region have no influence on the
erosion rate history (Fig. 11). The Olympics provide a par-
ticularly good example of the distortion that occurs through
application of the NR operator. The NR field (Fig. 19j) shows
maximum values offset to the north-west relative to the data.
This is an artefact of the division operator, as shown by the
error on the NR which remains centred on the data. Con-
sideration of the NR map in isolation could lead to the in-
terpretation that the acceleration is a consequence of spatial
averaging, but this would be incorrect.

As a fourth example, the Marlborough region of New
Zealand (NZ) is one of the most complex tectonic settings
considered in these studies. This complexity leaves much
latitude for interpretation. In addition, the data are sparse,
with only two thermochronometers applied in the region

(Fig. 20). The tectonic complexity includes changing rates
of fault slip on a system of oblique but dominantly strike-slip
faults, which could result in local changes in erosion rate that
are not characteristic of the region as a whole. The youngest
AFT ages are all found south of the Wairau and Alpine faults
and north of the Hope or even Clarence faults (see Schildgen
et al., 2018, Fig. S16). These are supplemented by a hand-
ful of ZFT ages in the 2 to 10 Ma range. In fact, there are
three distinct local areas where there are nearly co-located
ZFT and AFT of the correct age to constrain the erosion
rate history from 6 Ma to the present; these are visible as the
three nearly co-linear points in the 6 to 4 Ma resolution or
variance plots of Fig. 20. Not coincidentally, the best resolu-
tion and variance reduction occurs along an axis connecting
these three points (e.g. Fig. 20k). The two southern points sit
on a common tectonic block and the northern point on a sec-
ond block. However, the data on each of these blocks are suf-
ficient to resolve an erosion rate history with no contribution
from data points outside these blocks. This case is thus anal-
ogous to the models of Fig. 4 or Fig. 12, where there are two
adjacent blocks, one with a good distribution of ages from
multiple thermochronometers and one with only old ages.
Just as there was no averaging across the fault in those mod-
els, we see little evidence for averaging across the fault in this
natural case. An appropriate threshold for the resolution and
reduced variance would both be about 0.5 to capture these
three regions and only these regions with no major inclusion
of the other tectonic blocks. Again, the NR is diffuse, broad
and offset from its error, so it does not reflect the important
characteristics of the inverse model result. In contrast, the
correct threshold value of the resolution (0.5) or, even better,
a similar value of the reduced variance would nearly follow
the block-limiting faults.

The important point illustrated by this NZ example is that
it is the existence of collocated ages from different ther-
mochronometers that increases the resolution to the point
that we would interpret them as a well-constrained erosion
rate history. There are several regions to the north and south
of the resolved region that also have a number of ages under
6 Ma, but these regions have exclusively AFT ages, and ages
from a single thermochronometric system are insufficient to
bring resolution into an acceptable range. It is the sampling
of different closure temperatures at different times that deter-
mines the resolution and the erosion rate history. It is not a
combination of ages from a single thermochronometer sam-
pling different erosion rate histories from across the entire
region. Instead, we see most of the region at or near the prior
value, with the exception of the tectonic block between the
Wairu and Hope faults, which shows rapid uplift in the last
2 Ma. Again, we conclude that there is no spurious acceler-
ation as an artefact of the method. The predicted model is
consistent with all the ages, the predicted accelerated uplift
is limited to one or at most two tectonic blocks, and the data
constraining that history are identifiable and have a common
history.
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Figure 19. Erosion rate history for the Olympic Mountains of north-western Washington State, USA. Estimate based on analysis from
Herman et al. (2013). Inferred erosion rates (a, d, g) for three time intervals, from 6 Ma to present, shown along with the temporal resolu-
tion (b, e, h) and reduced variance (c, f, i). (j) NR and its associated error (k) are also shown. (l) Histogram shows age distribution broken
out by thermochronometric system. Inversion parameters are similar to Herman et al. (2013). Erosion rate plots include ages less than 6 Ma
as black diamonds and ages greater than 6 Ma as white dots. Resolution and variance plots include the ages that fall within the respective
time interval.

As a fifth and final example, we consider the data from
the Fiordland region of New Zealand (Fig. 21). In contrast to
the Marlborough region, the data coverage here is excellent,
with widely distributed AFT and AHe ages, most of which
are younger than 10 Ma, as well as some older ZFT and ZHe
ages. The ages fall nearly uniformly across the centre of the
region within all three time intervals of interest (Fig. 21), re-

sulting in resolution values approaching 1.0 in many places
within all three time intervals. A threshold resolution value
of 0.5 would enclose the region with data; a slightly smaller
number would include more of the surrounding areas but
would not change the interpretation. The NR is again off-
set from the data, with the locus of its largest values shifted
to the south-east, so any direct interpretation of its spatial
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Figure 20. Erosion rate history for the Marlborough region, New Zealand. Estimate based on analysis from Herman et al. (2013). Inferred
erosion rates (a, d, g) for three time intervals, from 6 Ma to present, shown along with the temporal resolution (b, e, h) and reduced vari-
ance (c, f, i). (j) NR and its associated error (k) are also shown. (l) The histogram shows age distribution broken out by thermochronometric
system. Inversion parameters are similar to Herman et al. (2013). Erosion rate plots include ages less than 6 Ma as black diamonds and ages
greater than 6 Ma as white dots. Resolution and variance plots include the ages that fall within the respective time interval.
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Figure 21.

distribution would be misleading. There is some structure to
the erosion rate pattern, for example higher rates in the north
across the full 6 Ma interval, but in general the erosion rates
are regionally consistent and show an acceleration in the last
2 Ma. This result is based on local ages, is resolved by the
temporal distribution of ages from four thermochronometers
and cannot be considered spurious.

6 Discussion

6.1 Bias, errors and resolution in GLIDE

The central question investigated in this paper is whether
there is a systematic error in the methodology of Fox et
al. (2014) and Herman et al. (2013) that resulted in an ap-
parent acceleration in inferred erosion rates. As we argue
above, this question can only be addressed if one identi-
fies the source of errors within the analysis. We have dis-
sected the possible source of errors and shown that, ne-
glecting measurement errors, which should not be system-
atic, there are three potential sources of error: (1) model er-
rors due to the parameterization including spatial correlation
smoothing; (2) model errors due to incorrect prediction of
the near-surface geotherm; and (3) resolution errors that re-

sult from inadequate data coverage of space and time. The
synthetic data forward-inverse models presented above show
that (1) do not exist in any important form, although they are
evident in smoothing of sharp boundaries, that (2) are a po-
tentially serious source of error in erosion rates but do not
predict a systematic tendency towards acceleration, and that
(3) can be large but depend on the individual data distribu-
tion as well as the prior model parameters and also have no
generalizable tendency towards acceleration.

Resolution errors are the result of data inadequacies, pri-
marily in time, where multiple thermochronometric systems
or elevation dispersion are needed in order to give a range
of ages adequate to resolve a temperature history. Although
every data set has a unique distribution and therefore unique
resolution errors, we were able to make some generalizations
through analysis of a range of data examples. First, we found
that with a large number of data, distributed appropriately in
age, all errors, including resolution errors, go to 0. In fact, it
did not require a particularly large number of data to obtain
excellent estimates in our tests, provided the age coverage
is appropriate (Fig. 9). Nor was there any evidence for in-
appropriate spatial averaging in high-density models. There
was smoothing of sharp boundaries, but even here, this oc-
curred primarily where data were insufficient to resolve the
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Figure 21. Erosion rate history for the Fiordland region of New Zealand. Estimate based on analysis from Herman et al. (2013). Inferred
erosion rates (a, d, g) for three time intervals, from 6 Ma to present, shown along with the temporal resolution (b, e, h) and reduced vari-
ance (c, f, i). (j) NR and its associated error (k) are also shown. (l) Histogram shows age distribution broken out by the thermochronometric
system. Inversion parameters are similar to Herman et al. (2013). Erosion rate plots include ages less than 6 Ma as black diamonds and ages
greater than 6 Ma as white dots. Resolution and variance plots include the ages that fall within the respective time interval.

boundary. As data density decreases, resolution errors be-
come larger. If data are too few, there are large resolution
errors, not surprising as data are required to resolve com-
plexity in either space or time. The distribution of data in
time is much more important than the distribution in space,
at least with relatively simple patterns of erosion rate (com-
pare Figs. 7 and 8). Errors in the analysis with sparse data
followed a specific pattern. Areas with poor resolution and
no older ages revert to the erosion rate values of the Bayesian
prior model. Regions with poor resolution but older ages take
a solution steady in time and consistent with the integral con-
straint provided by the older ages. As data are added to the
inversion, the solution is always a balance between the prior
model and the erosion rates needed to fit the data. The res-
olution matrix and its integrated value reflects the weights
given to the data relative to the prior. If the prior is equal to
the true rate, there is no error (Figs. 6 and A6). Distal data

play a minimal role in this averaging process. The weighting
between fitting the data and remaining near the prior is set
by the parameter variance. Overfitting to the prior model is
evident in data residuals.

The idea that spatial differences in age, i.e. a combination
of old and young ages from distinct regions, will always, or
even frequently, combine to produce an apparent increase in
erosion rate is false. Models in this paper were consistent
in demonstrating this point. The reason why this argument
fails is that there is no temperature history that can fit multi-
ple data that have different ages but the same distance to the
closure isotherm (a combination of closure temperature and
sample elevation). An inverse method based on optimization
of age prediction and including variable exhumation in both
space and time will therefore favour spatial variability over
temporal variability. With reference to Fig. 2d and e, a model
with spatially variable erosion rates can fit all ages perfectly,
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but there is no common exhumation history that can fit all
ages by including excessive and false changes in time. An
exhumation history forced to combine disparate ages but op-
timizing fit to the ages might tend towards lower rates in the
early history and higher rates in the later history, dependent
on the fitting criterion, but it will never fit the ages well. This
points to the importance of using data residuals to test for
model bias as shown in the example of Fig. 10. If there is sig-
nificant spatial averaging or excessive weighting of the prior
model, the ages are badly fit. A model that fits all ages well
can only do so by accurately resolving spatial variations in
erosion rate. The GLIDE method, based on the soft constraint
of spatial correlation but designed to optimize age fit, has
a strong statistical tendency towards spatial variation rather
than temporal variation.

Given that resolution errors are the primary concern with
thermochronometric data modelling, it is important to quan-
tify resolutions for specific data sets and estimate resolu-
tion errors. For this reason, much of the study of Herman
et al. (2013) and related papers (e.g. Fox et al., 2015, 2016;
Jiao et al., 2017) has estimated resolution errors, investigated
sensitivity to the prior model parameters (see the Supple-
ment to Herman et al., 2013) and developed new statistics
such as the temporal resolution matrix as an integral of the
resolution kernel (Fox et al., 2014). The synthetic models in
this paper show that the resolution metrics do a good job in
delineating relative resolution. Resolution remains a relative
measure, and determining a precise confidence level a pri-
ori is not possible but can be estimated based on spatial pat-
terns, the relationship with sample locations, fit to the age
data and sensitivity to the prior. As a relative measure, res-
olution scales with other parameters, including correlation
length and assumed prior variances.

Although resolution errors do not tend to produce a false
acceleration, there are combinations of data and prior model
that can lead to a false acceleration. For example, in the case
of isolated young ages, less than 2 Ma, with a low prior, the
young ages give a high rate of erosion in the last time in-
terval, and if there are no higher closure temperature data
nearby, the earlier time intervals will take a value near the
prior, leading to an apparent acceleration. However, the early
time intervals will not be well resolved, so this should be rec-
ognized for what it is, a mix of resolved and unresolved time
intervals. The danger is that the resolution does not have an
absolute level, so there is a chance that early time intervals
will be at the margin of acceptable, even though the con-
straining data are either too old or too far away to constrain
the erosion rate well. For this to occur it requires an unfor-
tunate combination of ages in both space and time. Ages
must have a very specific distribution in order to raise the
resolution value but not pull the erosion rate away from the
prior value. The danger of this combination was recognized
by Herman et al. (2013), which is in part why Herman et
al. (2013) made a comparison of the 6–4 Ma time interval and
the 2–0 Ma time interval rather than the 4–2 Ma time interval

and the 2–0 Ma time interval. Comparing the last two time
intervals is easier and would still make the point that Qua-
ternary climate change might have impacted erosion rates.
However, it is much more difficult to resolve two time inter-
vals with a gap between them, so the 6–4 Ma time interval
was used in order to make a more conservative estimate of
potential accelerations by imposing a stricter condition on
the resolution.

One case that we did not present in the modelling study
was the extreme poor resolution that results when all data
come from a single thermochronometric system. We have
conducted simulations to evaluate this, but the results were
as one would expect. It is impossible to find a resolved tem-
perature history with a single thermochronometer, with the
exception of a fortuitous elevation distribution, in which case
the estimate is both resolved and accurate. This is not surpris-
ing. When a thermal model is used as the basis of the analysis
and all ages have a common closure temperature, there is no
means of resolving more than one point in time, as can easily
be recognized by the principles shown in Figs. 1 and 2 and
shown in Herman et al.’s (2013) Fig. ED3. This is why most
sites identified by Herman et al. (2013) as having sufficient
resolution have ages from more than one thermochronome-
ter, and those that do not have an advantageous elevation dis-
tribution.

The other major source of error in forward and inverse
modelling of thermochronometric data is in the determina-
tion of the crustal geotherm. Erosion rates derived from ther-
mochronometric data depend on the geothermal gradient just
as strongly as they depend on the measured age (Moore and
England, 2001; Ehlers, 2005; Reiners and Brandon, 2006;
Willett and Brandon, 2013), so it is essential that thermal
models are accurate. By linking the thermal advection in
GLIDE to the erosion rates derived from the ages, geotherm
errors become part of the model errors in the tests of this pa-
per. Geotherm errors were occasionally large in the synthetic
data models, although this was in part a consequence of the
extreme erosion rate scenario used in these tests and the fact
that the true model was often far from the prior. This leads
to a large error in the geotherm if old ages do not exist to
constrain advective heating. An acceleration or deceleration
as determined by multiple thermochronometers depends, not
on the gradient, but on the curvature of the geotherm. A false
acceleration would be obtained if the predicted geotherm has
less curvature than reality (England and Molnar, 1990), but a
systematic error in the gradient affects all rates equally and
therefore does not lead to a false acceleration. This effect was
demonstrated in Fig. 12, where the gradient was too low, so
the estimated erosion rates were too high, but there was no
false acceleration. In fact, the error produced a false deceler-
ation.

Transience in lithospheric geotherms is a consequence of
many geodynamic and surface processes. Crustal thicken-
ing or thinning lead to downward and upward advection,
respectively, as well as changes in the distribution of heat
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production within the lithospheric column. Erosion leads to
upward advection of heat. These transient states of the ther-
mal lithosphere persist for tens to hundreds of millions of
years, reflecting the timescale of equilibration of the ther-
mal lithosphere (Sclater and Francheteau, 1970; McKenzie,
1978; England and Thompson, 1984; Furlong and Chapman,
2013). Modelling methods sometimes approximate litho-
spheric transience with a thermal boundary condition at a
shallower depth in the lithosphere, often because of compu-
tational limitations, but this should always be recognized as
an approximation. A basal boundary condition can be either
a constant temperature or constant gradient (also referred to
as a constant flux condition based on Fourier’s law) and can
be applied at a material point, e.g. at the base of the crust,
which moves up or down with time, or at a spatial point,
e.g. at a constant depth. A constant gradient has the advan-
tages that the time to a new steady state is longer than the
fixed temperature approximations and is therefore closer to
that of the full physical problem. The constant gradient and
material point boundaries have the advantage that advective
heating or cooling through the boundary is approximated, by
changing temperature in the former, and changing position
in the latter, making these appropriate conditions to be ap-
plied in the shallow lithosphere. The worst approximation is
a constant temperature applied at a constant depth. A fixed
temperature suppresses advective heat flux across the bound-
ary, so that if applied at a shallow depth in the lithosphere,
energy is not conserved within the lithosphere, the geother-
mal gradient is suppressed and the timescale of transience is
greatly reduced.

The 1D thermal model of GLIDE will fully account for
the transience due to vertical advection in response to surface
erosion. With erosion rate as a general function of space, it is
also capable of resolving lateral variations in exhumation in
response to spatial variations in tectonic displacements. The
model misses lateral conduction of heat, but given that this
becomes important only very close to faults with high and
sustained rates of displacement, this is a small restriction on
solution validity.

In practice, avoiding geotherm errors in thermochrono-
metric studies is best done by estimating and incorpo-
rating the modern geothermal gradient obtained by heat
flow studies and (if available) other geologic evidence
for pressure–temperature conditions at depth. If the final
geotherm from the inverse model is calibrated to the ob-
served final geotherm, errors at the time of age closure will
be small, even with a simplistic thermal model.

6.2 Summary of problems in Schildgen et al. (2018)

The primary hypothesis of Schildgen et al. (2018) is that
there exists a “spatial correlation bias” in all the results of
Herman et al. (2013). The analysis above found no evidence
for systematic bias, so it is important to evaluate why Schild-
gen et al. (2018) came to such different conclusions.

Schildgen et al. (2018) presented a series of forward-
inverse model experiments similar to those presented in
Sect. 4 of this paper. However, those models all showed large
errors throughout the spatial domain that were not evident in
the results of our experiments. The data sets were not iden-
tical in terms of data locations and the values of the ages, so
resolution varied between models but not sufficiently to ac-
count for the large differences, particularly as we presented a
range of models with varying resolutions. The source of the
discrepancy lies in the way in which Schildgen et al. (2018)
calculated the thermal histories and ages used for the exper-
iment. Schildgen et al. (2018) used an independent model to
generate the synthetic data (Pecube, Braun et al., 2012) and
a second model to invert those data in their model tests (in-
ternal GLIDE thermal model, Fox et al., 2014). Both codes
include advection, conductive heat transport and a 3D rep-
resentation of surface topography and so are capable of re-
producing identical results. However, Schildgen et al. (2018)
applied different boundary conditions in the forward and in-
verse models. In the forward model using PECUBE, they ap-
plied a constant temperature boundary condition at 30 km,
whereas GLIDE uses a constant flux boundary condition.
These are fundamentally different conditions and result in
different geotherms. By using one geotherm to generate syn-
thetic age data and a second geotherm to invert those data, it
becomes impossible to recover the original exhumation rates.

To demonstrate the importance of constant temperature
vs. flux boundary conditions, we calculate geotherms using
the parameters Schildgen et al. (2018) used for their first ex-
ample, the western Alps, although the conclusions apply to
all tests. The differences in a 1D version of these two models
are shown in Fig. 22, which includes the same initial geother-
mal gradient and exhumation rate of 1 mm yr−1, appropriate
for the high erosion rate region of the model. With such a
high exhumation rate, the geotherm in the Pecube model has
reached steady state by 20 Ma but at a low average gradi-
ent suppressed by the fixed temperature boundary condition
which restricts the advective heat transport from the mantle.
In contrast, the flux boundary condition predicts a higher av-
erage geothermal gradient and remains in a transient state as
the temperature in the lower lithosphere has not yet reached
its final value. The difference in the depth to the closure tem-
perature for all low-temperature systems is up to several kilo-
metres.

To illustrate the age disparities that result from such dif-
ferent basal boundary conditions, we regenerated the ages
using the exhumation rates of the Alps synthetic model but
using the thermal model assumptions made in GLIDE, as-
suming a flux boundary condition and a total length of time
of 36 Myr. We calculated the ages for both high and low up-
lift rate regions. The predicted ages are significantly different
(Fig. 23), with the Schildgen et al. (2018) ages systemati-
cally older by up to a factor of 2. This difference is due to
the lower thermal gradient and deeper closure temperature
depths predicted from a constant temperature boundary con-
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Figure 22. Influence of the basal boundary condition on the
geothermal gradient. (a) Two models are shown. Both initiate at a
constant gradient (black) and with identical thermophysical proper-
ties. The blue line is the geotherm after 20 Myr assuming an ex-
humation rate of 1 mm yr−1 and using a fixed temperature at a
depth of 30 km. By 20 Ma, the geotherm has reached a steady state.
The red lines are the transient geotherms for an exhumation rate of
1 mm yr−1 and using a flux boundary condition applied at 30 km.
Steady state will not be reached for another ca. 50 Ma. In GLIDE,
ages are predicted on one of the red curves through the course of the
model run. Schildgen et al. (2018) used synthetic ages calculated us-
ing the blue geotherm, inverted them using temperatures predicted
from the red geotherms, and concluded that the failure to recover
the correct exhumation rate demonstrated a problem with spatial
correlation in the GLIDE inversion method.

dition (compare blue and red curves in Fig. 22). In addition,
the systems with higher closure temperatures are affected
more strongly, and the magnitude of the error increases.

The use of different thermal models for the forward and
inverse models invalidates this exercise as conducted by
Schildgen et al. (2018). The inverse model will do a good
job in fitting the ages, but it can only do so by producing the
“wrong” erosion rate. Furthermore, because the errors in the
synthetic ages have increased bias, that is, they get system-
atically larger with increasing closure temperature, the inver-
sion is likely to infer an increase in erosion rate with time in
order to fit these ages. The impact on GLIDE-inferred ero-
sion rates from these age errors cannot be assessed exactly
because of the coupling between erosion rate and advection.
The error in the ages results in an error in the advective heat
transport, so the resultant geotherm will differ from that of
Fig. 22, but it is clear that the errors will be large, and it is no
surprise that the results presented in Schildgen et al. (2018)
ED Figs. 3, 5 and 6 show large errors. However, rather than
being an artefact of the inversion methodology or an effect of
spatial averaging of erosion rates, this is an inevitable con-
sequence of introducing a large methodological error into

Figure 23. Comparison between ages predicted with Pecube using
a constant temperature boundary condition at 30 km (Braun et al.,
2012) and GLIDE (Fox et al., 2014) using a flux boundary condi-
tion at 30 km. The ages were generated assuming the same exhuma-
tion rates (i.e. 1 mm yr−1 north-west of the Penninic line fault and
0.25 mm yr−1 south-east of the Penninic line fault). Green points
are AHe ages, blue points are AFT ages and red points are ZFT
ages. The two exhumation rate zones are represented by circles
(1 mm yr−1) and diamonds (0.25 mm yr−1), respectively. Outliers
in the lower-right corner were likely placed on the wrong side of
the fault in one of the models and were removed from the inverse
analysis.

the experiment design by calculating ages incorrectly. This is
confirmed by the fact that the experiments conducted above
(e.g. Figs. 4, 7, 9, 11 and 12) show nothing comparable to the
errors in Schildgen et al. (2018).

The second part of the Schildgen et al. (2018) critique was
a reinterpretation of the age data and the Herman et al. (2013)
results through their proposed NR maps. This analysis is also
problematic because of the problem discussed above with the
use of a ratio in evaluating two values with errors. The divi-
sion of two random variables is a biased operation, and this
bias is towards larger numbers as the denominator becomes
small. The methodology used by Schildgen et al. (2018) was
thus to take the results of Herman et al. (2013), reprocess
them using a biased operator (NR), identify that the resultant
map contains bias and conclude that the original analysis was
flawed. Furthermore, because they did not propagate uncer-
tainty through their NR operator, they lost all relative and
absolute uncertainty. The NR bias has a tendency to shift the
locus of the largest values of acceleration towards regions
with low average erosion rates because of the effect of divi-
sion by small numbers. The result is a systematic shift and
amplification of the signal found by Herman et al. (2013)
(e.g. Figs. 15 to 21), so that the locus of high values always
sits offset from the data locations and the best-resolved part
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of the signal. Some of these regions were likely, incorrectly,
included in the Herman et al. (2013) analysis, and the ratio
error does skew the final results in Herman et al. (2013) but
not enough to change the sign of the signal, as we demon-
strate below. The ratio error was much more important to the
Schildgen et al. (2018) analysis because their major conclu-
sion, that there exists a spatial correlation bias, was based on
an interpretation of the spatial pattern of the NR, a pattern
that is badly distorted with respect to the original findings of
Herman et al. (2013).

The danger in interpretation of the NR map was illustrated
by the example of the Alps (Figs. 15 and 16). The distortion
of the NR with respect to the data and the inversion predic-
tions was clear, with the highest values of the NR offset from
the data by tens of kilometres. By interpreting the spatial pat-
tern directly, Schildgen et al. (2018) hypothesized that the
inversion method was averaging data from the internal and
external Alps with their differing exhumation histories. We
tested this hypothesis and found it to be false (Fig. 17).

This was not an isolated example. In case after case,
Schildgen et al. (2018) interpreted the spatial pattern of the
NR in terms of spatial averaging of age data. For the Nanga
Parbat region, they wrote that “the linear inversion performed
by ref. 6 [Herman et al., 2013] suggests a broad zone of late
Cenozoic erosion-rate increases both within and outside the
massif. This result is a consequence of combining data from
inside and outside the NPHM [Nanga Parbat-Haramosh Mas-
sif], across the active bounding fault zones”. We tested this
hypothesis (Fig. A7) and again found that it is false. The data
local to the Haramosh Massif are sufficient to resolve the full
history, including the acceleration, with no need to include
data from outside the massif (Fig. A7).

The Olympic Mountains of north-western Washington
State provided an example of an increase in exhumation rate
resolved by four thermochronometers, co-located in the core
of the mountain belt (Fig. 19). However, the NR map shows
the largest increases in exhumation rate offset from the data,
and Schildgen et al. (2018) directly interpreted the spatial
pattern of the NR field, stating that “the global inversion
found normalized increases in exhumation rates . . . with the
largest increases in the region with the steepest spatial gradi-
ent in ages (Fig. S11c). This difference likely arises because
the vertical exhumation paths assumed in the linear inversion
model used by ref. 6 [Herman et al., 2018] are inappropriate
for this setting, and because data that experienced disparate
exhumation histories were combined.” We see the same er-
ror made as in the Alps and Nanga Parbat; the largest, well-
resolved, erosion rate increase occurs on top of the co-located
ages from three thermochronometers, not where the steep-
est spatial gradients occur. The hypothesized combination of
disparate exhumation histories is conjecture based on inter-
pretation of distal, often statistically insignificant, parts of the
NR map. The spatial gradient in age is not expected to have
any effect on the result as shown by the model in Fig. 11 and
in any case is located away from the well-resolved regions.

More recent and independent work modelling the Olympic
thermochronometric data (Michel et al., 2018, 2019) investi-
gated the effects of 3D thermokinematics and found that re-
sults did not differ significantly from 1D models. They found
the same acceleration as Herman et al. (2013). The accelera-
tion is real, based on local data, not an artefact, and there is
no basis for referring to this result as spurious.

Fiordland, New Zealand, is very similar to a high-density
data set sampled across the high-relief mountain range. The
data, the inversion result, the resolution indices, and the un-
certainty in the NR ratio all indicate a signal centred on the
data (Fig. 21a–i and k). Only the NR breaks this pattern with
an offset to the south-east (Fig. 21j). In this case, there are
not even other data to the south-east to call on for inappropri-
ate spatial averaging. However, Schildgen et al. (2018) still
assess this acceleration as spurious, stating that “the broad
zone of increased exhumation rates is probably at least partly
linked to correlating samples across active (or recently ac-
tive) faults.”, with “peak values frequently occurring in areas
of relatively low relief”, so it is evident that they are putting
weight on the large values of the NR rather than focusing on
the resolved values, which are directly over the high topog-
raphy and young ages. Although there may be some effect
of faults at short wavelengths (Sutherland et al., 2009), there
is no evidence that these would create some fictitious arte-
fact in acceleration rather than simply being averaged as in
Fig. 2. Short-wavelength variations provide no explanation
for either the observed acceleration or for the offset of the
maximum values of the NR with respect to the data. We find
no justification for the assignment of “spurious” to the origi-
nal finding of Herman et al. (2013).

We could continue to discuss each example covered by
Schildgen et al. (2018) in their Table 1 and data supplement,
but we have reviewed all the sites, and the results are the
same as the examples above. In each case, the only evidence
presented for a spatial correlation bias is the spatial pattern
within the NR map and its relationship with the data distri-
bution.

Although the main concern of this paper is the hypoth-
esized existence of a spatial correlation bias, Schildgen et
al. (2018) also discussed other potential issues in the analy-
sis of Herman et al. (2013). Their assessment and attribution
of “spurious” to a specific site result in Herman et al. (2013)
were based on a mixture of criteria, so the meaning varies
from site to site. The classification from their assessment
includes the following: (1) data errors through inclusion of
inappropriate data; (2) model errors, for example interpret-
ing settings that have 2D kinematics with GLIDE’s spatially
variable, 1D exhumation model; (3) localized valley incision,
rather than regionally constant erosion; and (4) inappropri-
ate spatial averaging. The last is the main topic of this pa-
per. The first, data errors, are certainly present in the Herman
et al. (2013) study. With nearly 18 000 data, some are un-
doubtedly not simple cooling ages. The issue is how many,
how to identify them and, most importantly, what impact
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their removal would have on the Herman et al. (2013) result.
The first two issues are challenging, often subjective; the last
is a straightforward test, requiring the removal of question-
able data and rerunning the inversion. However, Schildgen et
al. (2018) did no testing for the importance of data errors.
They hypothesized many potential problems but tested none
of them, so even if data errors are real, we have no sense
of how they impacted the inversion results. Lacking any evi-
dence that they are significant to the GLIDE results, we will
not address these in this paper. Model errors due to complex
kinematics, exhumation or cooling paths are also suggested
to be a source of error, but as with the data errors, no tests of
this hypothesis were constructed by Schildgen et al. (2018).
To test this would require comparing 2D or 3D thermokine-
matic models to the spatially variable 1D model of GLIDE
for individual sites. Results from such tests are difficult to in-
tuit given that the thermal model in GLIDE is not simply 1D
but includes 3D topography effects through an analytical for-
mulation and 2D variation in vertical velocity, advection and
diffusion. Missing are only horizontal components of advec-
tion and diffusion, and these are typically small compared to
the former. Until these tests have been completed, the im-
portance of model errors remains speculative. The models
presented above suggest that there is no important impact of
spatial gradients (Fig. 11) or age offsets (Figs. 4 to 10) on
GLIDE results, at least not independent of the question of
data resolution.

Localized valley incision is particularly problematic as a
criterion for a spurious increase in erosion rate. Schildgen
et al. (2018) argue that because the volume of sediment re-
moved by valley incision is less than that removed by spa-
tially uniform erosion, the Herman et al. (2013) result is
“spurious”. However, Herman et al. (2013) made no predic-
tion of sediment yield. Herman et al.’s (2013) predictions
were for erosion rate and change in erosion rate at the site
of thermochronometric age measurement, with the princi-
pal prediction being for the direction of change. Although
changes in sediment yield are one of the implications of the
Herman et al. (2013) result, it is not the only one. If the Her-
man et al. (2013) results were exclusively reflecting deep val-
ley incision, they would still be an important metric of a glob-
ally widespread change in surface erosional processes and
rates, such as an increased importance of valley glacial inci-
sion. Most importantly, the occurrence of deep valleys does
not invalidate the thermochronometry analysis; erosion rates
in the valley remain accurate, even if the valleys are transient
and morphologically young (Braun, 2002a). The rates might
not apply to the entire landscape, for example to the upper
parts of the landscape, but, on average, the erosion rate of
the region must increase if the valley incision rate increases,
and given that determination of the sign of the change in ero-
sion rate is the primary objective, an overestimation of the
affected area has no impact on the conclusions of Herman
et al. (2013) or this paper. In our view, the local valley inci-
sion identified by Schildgen et al. (2018), rather than being a

refutation of the result of Herman et al. (2013), should be re-
garded as a confirmation that Herman et al. (2013) correctly
determined the sign of the change.

It should be noted that, apart from the synthetic data mod-
els, which were calculated with the wrong geotherm, Schild-
gen et al. (2018) is an interpretation, not an analysis. There is
no reproducible methodology. It is an interpretation of past
studies, including Herman et al. (2013), and an assessment
of the raw data. This type of analysis is susceptible to an-
other type of bias, not yet discussed, which is known as con-
firmation bias. This emerges when some observations are
selectively used and others selectively ignored in order to
support a preconceived hypothesis. We see ample evidence
for this bias throughout the Schildgen et al. (2018) inter-
pretation. Because their working hypothesis was that the in-
creases in erosion rate found by Herman et al. (2013) were
a consequence of spatial gradients in ages from single ther-
mochronometric systems, often averaging data from large
distances, these conditions were searched for and often ex-
aggerated. This is perhaps most evident in their portrayal of
the thermochronometric expression of tectonic structures. In
Fig. 14, we presented several settings which have extensive
thermokinematic modelling work, establishing age patterns
which are best characterized as showing constant or near-
constant ages over extensive spatial domains. Schildgen et
al. (2018) presented a summary of these same settings in
their Fig. 1 but with all figures depicting steep age gradients.
These gradients do not appear in the original studies cited
above, nor, as far as we can determine, in any of the studies
cited in their paper. For the normal-fault model, the shallow
gradient reported by Ehlers et al. (2003) is exaggerated to the
maximum possible gradient with an isochron perpendicular
to the surface, implying footwall tilt, not of the 10 to 15◦

observed, but of 90◦, something that does not occur in this
setting. For both the thrust ramp and the orogenic wedge,
the zones of constant age have been replaced with a gradi-
ent younging towards the bounding ramp. The literature has
no support for this gradient. With a thrust ramp there is ei-
ther no gradient or a slight increase in age due to footwall
cooling but never a decrease in age. In fact, the Schildgen
et al. (2018) versions of the ramp and wedge settings im-
ply a normal sense of shear across the ramp hanging wall or
across the entire retrowedge (a rock at the ramp fault is mov-
ing faster than a rock in the orogen interior), and such a strain
rate field has never been observed or emerged from a model.
The natural settings indicated in their figure are similarly in-
correct. New Zealand is not a simple thrust ramp but rather is
in a transpressional setting, so the ages do young towards the
foreland, but the kinematics are not those of a simple ramp,
and any thermokinematic model fit to those ages has had to
include more complicated kinematics with multiple blocks
or internal deformation (e.g. Beaumont et al., 1996; Herman
et al., 2009). The central Himalaya have been much studied,
with a number of papers arguing that the ages are constant
across the major structural ramp (Burbank et al., 2003; Her-
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man et al. 2010). As with rapidly moving normal faults, this
is partially a consequence of compression of the age–erosion
rate relationship at a high erosion rate (Whipp et al., 2007;
Thiede et al., 2009; Thiede and Ehlers, 2013). For the accre-
tionary wedge model, rather than showing the youngest ages
in the retrowedge (Fig. 16f), the Olympics have no reset ages
(Batt et al., 2001), the Apennines have distinctly older ages
towards the retro-deformation front with the youngest ages
in the core of the mountain belt (Thomson et al., 2010b),
Taiwan has constant ages (Willett et al., 2003; Fellin et al.,
2017), and the Alborz as a transpressional system has no sys-
tematic pattern, with most ages unreset (Ballato et al., 2015).
Thus, the age gradients depicted in Fig. 1 of Schildgen et
al. (2018) and hypothesized in their interpretation are per-
plexing because a figure intended to illustrate spatial patterns
of ages has altered those patterns from the original studies,
adding characteristics that do not exist in the original studies.
Such bias also exists in their site-by-site assessment, where
their interpretation contradicts many previous works using a
variety of other analysis methods that found increases in ex-
humation rate (e.g. Zeitler et al., 1982; Ehlers et al., 2006;
Thiede and Ehlers, 2013; Michel et al., 2018; Vernon et al.,
2008; Shuster et al., 2005; Sutherland et al., 2009; Thom-
son et al., 2010a, b; Avdeev and Niemi, 2011; Shuster et al.,
2011; Ballato et al., 2015; Bracciali et al., 2016). In each
of these cases, the original study results were rejected, and
Schildgen et al. (2018) designated the outcome as spurious
with little explanation and no objective tests as a basis for
this contradiction.

6.3 Climate or tectonics – chicken or egg, revisited

A final and important question in any study addressing the
impact of climate change on erosion rate is differentiating be-
tween changes in erosion rate due to changes in tectonic pro-
cesses from changes in erosion rate resulting from changes
in climatically modulated surface processes. Although this
question is not exclusive to thermochronometry, it remains
fundamental to the interpretation of any analysis (Kirby,
2018).

In their study, Schildgen et al. (2018) found that, in cases
where there is an increase in erosion rate, none were con-
clusively climate-driven, and there were no more than two
or three that were even potentially influenced by climate
change. This is a surprising conclusion, not so much that
tectonics appears to dominate, but that such an assessment
would even be attempted. Unravelling the effects of tecton-
ics and climate-modulated erosion has been regarded as one
of the unsolved challenges in Earth science over the last
30 years and is commonly referred to as the “chicken-or-
egg” paradox within the field (Molnar and England, 1990;
Zhang et al., 2001; Molnar, 2004). This problem is regarded
as a paradox because of the feedback between erosion and
tectonic uplift. An increase in erosion rate due to climatic
factors leads to an increase in rock uplift due to isostatic un-

loading. If that uplift manifests itself through surface defor-
mation, tectonics becomes the consequence of erosion, not
the cause. The alternative, that internal stress change drives
a change in tectonic deformation rate and thus erosion rate,
cannot be differentiated from the isostatic response scenario;
observations are essentially identical. Erosion rates and tec-
tonic activity are nearly always correlated, but there is no ba-
sis to assign cause to one and response to the other because of
the strong feedback between deformation and gravitational
unloading.

Quantifying tectonic influence on exhumation rates is
often conducted using thermokinematic models, which
combine models of tectonic displacements with ther-
mal advection–diffusion models in order to predict ther-
mochronometric ages. However, these cannot be used to test
the relative importance of climate-change-driven erosion and
tectonic-driven erosion. The feedback between erosion and
tectonics is based on stress changes in response to erosional
unloading, and thermokinematic models have no stress cal-
culations. Stress modelling including the impact of erosion
on deformation requires use of a dynamic model, and al-
though these have been applied to tectonics–erosion coupling
and thermochronometry prediction (e.g. Batt et al., 2001;
Fuller et al., 2006; Bendick and Ehlers, 2014), their inability
to predict specific realizations of stochastic processes, such
as brittle fault formation, or river basin geometry precludes
their use for specific site studies.

For these reasons, Herman et al. (2013) made no attempt to
attribute cause to erosion rates or accelerations at any given
site. This was regarded as an unanswerable question. Rather,
the argument was that there were so many sites that showed
an acceleration that a coincidence of a tectonic cause was not
likely and Quaternary climate change leading to enhanced
erosion rates was a more probable explanation for skewing
the direction of the change (Molnar, 2004). Some sites may
well have had an increase in tectonic uplift rate, in particular
in young mountain belts like Taiwan or the Southern Alps of
New Zealand, where there is independent evidence for the ac-
celeration of orogenesis. However, independent proof of the
cause of a change in tectonic uplift rate is difficult to obtain
and is nearly always circumstantial in nature. There is too
much subjectivity involved with such a complex problem, so
Herman et al. (2013) simply kept all sites and evaluated the
composite. In an unbiased and constantly changing world,
half the sites would be expected to show an increase and half
a decrease.

In contrast, Schildgen et al. (2018) offered an assessment
as to the cause of each change in exhumation rate. They pre-
sented no new methodology nor any solution to the problem
of establishing cause and effect in a system with feedback.
Their paper joins quite a few others that have missed the dif-
ference between cause and correlation (Molnar, 1990), but it
is surprising that Schildgen et al. (2018) give such a definitive
answer to such an elusive question.
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Any interpretation of cause is also complicated by the fact
that the primary means to date or establish rates of tectonic
processes over million-year timescales is thermochronome-
try. To use thermochronometry to establish tectonic defor-
mation rates to explain thermochronometric cooling rates
is circular. There are few other methods to date rates of
deformation. In some isolated cases geochronology can be
used, for example on syn-tectonic volcanic flows, but re-
ally the only independent method capable of resolving tec-
tonic deformation rates across a 5 Ma timescale with enough
precision to identify changes in rate is sedimentary growth
strata with established bio- or magneto-stratigraphy. These
do not exist at any but a handful of the sites studied in
both papers because most sites are in highly exhumed, often
crystalline-cored mountain belts. An exception is the Alps,
where constraints on the tectonic activity in the Alps also
come from the peripheral foreland basins, the Molasse Basin,
and the Po Basin, both of which show Quaternary rock up-
lift, indicating that erosion has recently begun to outpace
tectonic crustal thickening leading to flexural isostatic re-
bound (Champagnac et al., 2007, 2009; Willett, 2010). The
frontal fold and thrust belts on both sides of the Central Alps
ceased motion in the Pliocene sometime prior to 3.4 Ma in
the Jura (Bolliger et al., 1993; Becker, 2000) and in the early
Pliocene for the Lombardic thrust belt, as evident in growth
strata and thrust-sealing post-tectonic sediments of the Po
Basin (Fantoni et al., 2001; Willett et al., 2006). The ma-
jor structures, including the Mont Blanc shear zone, Mont
Blanc back-thrust, and Penninic thrust had also ceased mo-
tion by the end of the Miocene (Egli and Mancktelow, 2013).
The geologic evidence thus points to the cessation of tec-
tonic activity throughout the Alps over the last 5 Ma, at the
same time that the erosion rates are increasing in the exter-
nal Alps. Similarly, the Apennines show a decrease in the
frontal-thrust propagation rate over the last few million years,
anti-correlated with an increase in exhumation rate (Boc-
caletti et al., 2010).

6.4 Potential improvements to the study of Herman et
al. (2013)

The study of Herman et al. (2013), like any study, could be
improved. With the insights of several years of additional
work using the inversion method, we have learned much that
could be applied to the global assessment (Ballato et al.,
2015; Herman and Brandon, 2015; Fox et al., 2015, 2016;
Margirier et al., 2016; Yang et al., 2016; Bertrand et al., 2017;
Jiao et al., 2017; Siravo et al., 2019; Vincent et al., 2020).
However, the substantive changes that we would make would
be to the way we handled the post-processing of the results.
We see no major problems with the inverse method, but the
treatment of the resultant erosion rate fields has some errors.

First, it is worth clarifying what the conclusions of Herman
et al. (2013) were. The Herman et al. (2013) study analysed
exhumation rates globally but selected only regions that had

temporal resolution above a specified limit, primarily requir-
ing a significant number of ages under 5 Ma. This limited the
analysis to sites with high erosion rates, most of which are
tectonically active. The null hypothesis tested by Herman et
al. (2013) was that these specific regions, individually or col-
lectively, have had no change in erosion rate over the past
ca. 5 Ma. The analysis was applied to age locations but then
transferred to a set of regularly spaced grid points for visu-
alization. They found that over 80 % of sites with sufficient
resolution had experienced an increase in erosion rate over
the past 6 Ma. It is important to note that such an analysis
does not provide global erosion rates and was never intended
to provide an estimate of global erosion rates over any time
frame. A correlation with global climate change and global
sediment flux was made under the explicitly stated assump-
tion that the high erosion rate, mountainous areas make a
significant contribution to global rates. This comparison was
made in time but not by volume.

In post-processing results, Herman et al. (2013) summa-
rized the magnitude of the change in erosion rate by taking
two time intervals (6–4 and 2–0 Ma), taking their ratio on
a point-by-point basis and compiling their distribution into a
histogram (Herman et al., 2013, Fig. 2). This approach is sub-
ject to the same ratio bias as the normalized difference used
by Schildgen et al. (2018). A ratio analysis should not be
used when the goal is to estimate the magnitude of a change,
the range of values and uncertainty is large and some values
are approaching 0.

This bias is avoided by using a difference instead of a ra-
tio. We demonstrate this by recalculating the change in ero-
sion rate found by Herman et al. (2013), replacing the ratio
of the 6–4 Ma time interval and the 2–0 Ma interval with a
simple difference between the two (Fig. 24). We have done
this for three values of the resolution cut-off, all larger than
the 0.25 used in Herman et al. (2013). The principal effect
of the change to a difference is to truncate the distribution
reported in Herman et al. (2013) by removing the largest val-
ues. These large values were the consequence of small but
uncertain numbers in the denominator of the ratio. However,
the general form of the distribution and the positive mean
remain the same as in Herman et al. (2013). The principal
result of Herman et al. (2013) is thus unaffected by this bias.

Resolution and other posterior variables depend on a wide
range of data parameters and inverse model parameters, so
their absolute value is often scalable. In particular, they are
subject to the well-known trade-off in inverse theory between
resolution and variance reduction. To reduce the effects of
noise in the data, resolution is sacrificed through spatial av-
eraging. The trade-off is between a well-resolved average
parameter and a poorly resolved local parameter. High res-
olution corresponds to less reduction of noise variance. The
degree of regularization of the model also comes into the
absolute values of the resolution and variance. This comes
primarily through the damping that occurs by setting a noise
variance on the data (Eq. 3). The regularization is determined
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Figure 24. Recalculation of the global change in erosion rate be-
tween 6–4 and 2–0 Ma from the inversion results of Herman et
al. (2013). Change is expressed as the difference between the ero-
sion rate inferred for each of these time windows. Results are shown
using three values for the resolution cut-off, from 0.3 to 0.5.

by the ratio of the noise variance and the prior parameter vari-
ance.

As the resolution cut-off is increased, the number of re-
solved points is reduced (Fig. 25). With a cut-off value of
bias of 0.5, there are fewer than 200 points worldwide. How-
ever, these remain distributed globally, and a resolution cut-
off of 0.4 gives over 500 points with a much broader spa-
tial distribution. The mean change in erosion rate increases
slightly with the increase in the resolution cut-off value. This
indicates that the increase in erosion rate is defined by the
best-resolved points, and the effect of a lower-resolution cut-
off is primarily to include more of the peripheral regions,
where this signal is smoothed into surrounding regions.

A better approach to that taken by Herman et al. (2013) or
our analysis in Figs. 24 and 25 would be to assess resolution
individually for each local data set. Because the number of
data and data density vary from site to site, a constant value
of the temporal resolution metric used as a threshold does not
result in constant confidence in the erosion rate estimate, and
the uniform resolution cut-off used by Herman et al. (2013)
is not the best approach. An individual site assessment using
the various metrics for resolution, including sensitivity to the
prior model, data residuals and age maps as we have shown
in this paper, would yield a more consistent level of confi-
dence in local estimates. It is essential that such local site
assessment be guided by recognition of the source of errors,
as we have identified in Sect. 4 above. Otherwise, errors of
unknown origin could be misidentified, for example as spa-
tial averaging.

A change in the resolution analysis would not change the
conclusions of Herman et al. (2013). The best-resolved parts
of the models are the ones with multiple thermochronometers
or elevation gradients, and it is these that serve as the basis
for the signal of increasing erosion rate. Herman et al. (2013)
did check for sensitivity to the prior (see the Supplement to
their paper) and took into account data distributions and mul-
tiple posterior metrics, so the interpretation is fundamentally
sound, and we see no reason to alter the conclusions of the
original paper. The primary advantage of an improved res-
olution analysis would be to obtain a better estimate of the
areas affected by changing erosion rates.

There is one bias in the Herman et al. (2013) study that has
not appeared in any of the critiques of the paper. Sites with
high erosion rates will be more likely to have experienced
a recent acceleration than deceleration; sites with low mod-
ern rates are more likely to have experienced a deceleration
in the recent past, and because low-rate sites are removed
from the analysis due to lower resolution and because ero-
sion rates cannot be negative, this does create a bias in the
analysis suite of Herman et al. (2018). For a given modern
erosion rate, there is some probability as to what the ero-
sion rate would be at any point in the past, i.e. at 2 Ma, and
this probability will be skewed because of non-negativity and
truncation of low rates. We believe this skewness will be
small because tectonic-driven erosion rate changes are heav-
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Figure 25. Distribution of points where thermochonometric ages permit resolution of a change in erosion rate from 6 Ma to the present based
on the inverse model analysis of Herman et al. (2013). Changes are expressed as a difference with distribution of values shown in Fig. 24.
Each frame contains points above a specified resolution cut-off.

ily damped by geomorphic processes and isostasy (Whipple
and Meade, 2006), but we acknowledge there are few data
and no systematic treatment of this problem. This is a bias in
the median change, i.e. the mean or median of the distribution
of Fig. 24, and if this distribution were closer to the zero me-
dian, we would have investigated it in Herman et al. (2013).
However, this is no bias in the result at any individual site,
and so it is not the main topic of the current paper.

6.5 Data requirements for resolving late Cenozoic
changes in erosion rate

There are several lessons learned from this exercise with re-
gards to the ability of thermochronometric data to resolve
changes in erosion rate over the last 5 Ma as well as for the
physical conditions that would optimize future experimental
design and case studies to address this problem.

First, temporal resolution is key for resolving erosion his-
tories from thermochronometer data. To resolve a change in
erosion rate in time requires a minimum of two ages with
different depths to closure, requiring a distribution in eleva-
tion or differences in closure temperature. To resolve a Plio-
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Pleistocene change requires at least two ages of less than
5 Ma. Although high-relief profiles can provide good time
records using a single chronometer, it is primarily through
the use of multiple chronometers that an exhumation his-
tory with a change in rate can be resolved. Current low-
temperature dating methods are limited to fission track dat-
ing and (U−Th)/He dating of apatite and zircon, but the
range of sampled temperature can be expanded through the
use of track length measurements or the use of grain size,
composition or crystal damage diffusion models (Flowers
et al., 2009). New methods incorporating models of helium
diffusion profiles in apatite (e.g. 4He/3He thermochronome-
try, Shuster and Farley, 2004) or new ultra-low-temperature
methods (e.g. OSL thermochronometry, King et al., 2016)
will also greatly improve the ability to resolve young histo-
ries.

Second, the absolute value of the exhumation rate is im-
portant for resolving an erosion history. Because current
methods have a limited range of closure temperature, to ob-
tain ages under 5 Ma requires high rates of exhumation. High
geothermal gradients also result in lower ages, but the range
of values of heat flow is small compared to the potential
range of values of exhumation rate. Obtaining young ages
restricts study to regions experiencing rates of exhumation
over about 0.1 mm yr−1.

Third, the need for high rates of exhumation necessarily
pushes studies of exhumation rates into tectonically active ar-
eas, where the high relief and high rock uplift rates result in
sufficiently high rates of exhumation. Tectonic activity does
not preclude the resolution of temporal changes in exhuma-
tion rate. If there are spatial variations in exhumation rate,
the number of data required to resolve both spatial and tem-
poral variability increases, but there is no reason to presume
that an analysis will fail to distinguish between spatial and
temporal variability. It is important that temporal sampling
does not inadvertently covary with spatial variability, for ex-
ample by collecting higher-temperature thermochronometers
from one region and lower-temperature chronometers from
another region with differing exhumation histories. Provided
that age–elevation profiles are obtained over a small area or
multiple thermochronometers are available from a common
location, temporal and spatial variability can be resolved.

Finally, there is no escape from the chicken-and-egg prob-
lem for identifying the underlying cause of variable erosion
rates. Tectonic changes that drive a change in erosion rate or
conversely erosion rate changes driving a change in tectonic
uplift rate through isostasy cannot be distinguished. The best
one can do is make a circumstantial case based on spatial
limitations. For example, if an increase in erosion rate is ob-
served with a geometric relationship with faults with inde-
pendently determined activity and such a rate change is not
observed in neighbouring regions, that provides circumstan-
tial evidence that tectonics is changing independently of cli-
mate. However, it is important that there be a control case,

i.e. a neighbouring region with no change in rate. Without a
control, a single site cannot be used to argue cause and effect.

7 Conclusions

An extensive error analysis of the thermochronometric age
inversion method of Herman et al. (2013) (GLIDE) yielded a
number of conclusions, many of which are relevant to other
studies based on thermal modelling of thermochronometric
ages for cooling or exhumation histories. We summarize as
follows.

1. The only significant model errors in GLIDE are associ-
ated with the calculation of the geotherm, demonstrat-
ing the importance of calibration against modern heat
flow measurements or past P-T-t constraints and inclu-
sion of appropriate physical boundary conditions. The
importance of an accurate thermal model should not be
underestimated.

2. Resolution errors are present in all thermochronometric
age inversions but vary from effectively 0 with high data
coverage to very important with sparse data. Temporal
coverage, i.e. a wide range of ages with different closure
temperatures or elevations, is much more important for
constraining resolution than spatial distribution. At low
resolution, solutions tend towards the prior value speci-
fied in the inversion unless there are older ages present
that constrain the long-term erosion rate.

3. Posterior error metrics including resolution and poste-
rior variance provide an accurate measure of resolution
errors. Other valuable tests for resolution include sensi-
tivity to the prior and analysis of data residuals. Metrics
are relative, not absolute, measures. Posterior metrics do
not accurately reflect model (e.g. geotherm) errors.

4. The spatial correlation bias hypothesized in Schildgen
et al. (2018) does not exist in any significant way. There
is spatial smoothing of exhumation estimates across dis-
continuities, but even these vanish with sufficient data.
Gradients in exhumation rate resulted in no spatial av-
eraging errors.

5. It is possible to obtain errors with false increases in ero-
sion rate as resolution errors, but only for specific com-
binations of ages and the prior model. As resolution er-
rors, they are characterized by bias to the prior, not spa-
tial averaging, and are recognizable through the resolu-
tion statistics and sensitivity to the prior.

6. The basis for the conclusions of the Schildgen et
al. (2018) paper was a combination of incorrect cal-
culation of the ages used in their test models, post-
processing of GLIDE inversion results using a biased
operator, and a set of subjective interpretations, hypoth-
esized but untested.
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7. The original conclusions of Herman et al. (2013) re-
main largely valid. The interpretation as to the under-
lying cause as tectonic or climate change is, as it was in
the original publication, open. The question as to the ad-
equacy of the sample size to characterize global changes
also remains open. The adequacy of the data to resolve
changes at specific sites remains open to further assess-
ment. However, we find no evidence for a bias in the
analysis method, no systematic errors in the analysis
method, or any reason to disregard the conclusions of
that study.
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Appendix A: Additional synthetic data models

As a second test for a spatial correlation bias towards false
acceleration, we investigate the case of a constant gradient
in exhumation rate. We set up a test data set based on a
constant gradient varying from 0.1 to 1.0 mm yr−1 across a
90 km domain. There is no variation in the north–south di-
rection, so the test case is effectively 1D, although we will
show results in the form of 2D maps to be consistent with
the other examples. We apply a regular grid of sample points
across the domain, where we calculate ages from four ther-
mochronometers. There is no elevation variation across the
domain, so time resolution is determined exclusively from
the closure temperatures of the various thermochronometers.
Compared to the synthetic data models with the fault in the
main paper, this model is simpler and more structured, thus
making it simpler to identify sources of error and direct data–
parameter relationships.

The erosion rate function and the synthetic ages are shown
in Fig. A1. There are no ages under 2 Ma but many ages be-
tween 2 and 4 Ma, including some just over 2 Ma, which pro-
vides good resolution of both of the last two time steps.

Inversion of all data using GLIDE with a 30 km correlation
length is shown in Fig. A2. We conducted two inversions,
one with a prior erosion rate of 0.35 mm yr−1 and one with
a prior erosion rate of 1.0 mm yr−1. The model has a runtime
of 30 Ma, but we show only the last five time steps in Fig. A2.
The last three time steps of this model are shown in Fig. 12.
The temporal resolution and the reduced variance do not de-
pend on the prior erosion rate and so are shown only once.
Figure A2 shows that the solution is recovered very well for
the 6 to 0 Ma time intervals. There is no significant error in
these three intervals. In the 10 to 6 Ma time intervals there is
a significant error in the regions of high uplift rate, but only in
the case of the low prior. The sensitivity to the prior indicates
that this is a resolution error, occurring because of the lack of
age control on the fast-uplifting area during early time steps.

We consider only a subset of the data in an inverse model
shown in Fig. A3, where the input data include only the two
apatite systems. The solution reflects the change in resolu-
tion. The last two time intervals (4 to 0 Ma) are accurately
reproduced, but the earlier time steps, now lacking any age
constraints in the high uplift region, have significant errors
in the high uplift zone, which is unsampled at early times.
These errors are not present for the high prior model, indi-
cating that these are resolution errors.

Figure A4 shows an inversion of only the zircon ther-
mochronometric data. With older, high-temperature ages, the
young time steps are poorly resolved but in spite of this are
accurately estimated. This reflects the integral nature of the
thermochronometric ages; an old age constrains the mean ex-
humation rate over its history, so for a case like this with a
steady exhumation rate, the older ages provide an accurate
estimate. The low resolution of the younger time steps re-
flects the lack of information regarding change over this time

Figure A1. (a) Synthetic age data and (b) age locations with the
applied erosion rate field. Erosion rate has a constant gradient in-
creasing from 0.1 mm yr−1 on the western edge to 1.0 on the eastern
edge of the region. Ages are generated for four thermochronomet-
ric systems at each spatial point: apatite (U−Th)/He, apatite fission
track, zircon (U−Th)/He, and zircon fission track methods.

interval, so if there would be changes over the last two or
three time steps, these would not be resolved. However, there
is no sensitivity to the prior for these time steps because of
the constraint provided by the old ages.

As a final test, we increased the correlation length from
30 to 100 km to try to increase spatial averaging and induce
a spatial correlation bias (Fig. A5). There was essentially no
effect.

We conducted an additional test of the Alpine Data Set E
using a prior model equal to the true model (Fig. A6). As in
all other cases, the parameters are recovered almost perfectly.

We conducted an experiment on the data from the Nanga
Parbat region of the Himalaya to investigate whether or not
data external to the massif had an inappropriate influence on
the erosion rate inversion (Fig. A7). On the left of the figure is
a model using all the data from the region. On the right is an
inversion of only the data from the syntaxis core. Solutions
within the core are essentially identical.
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Figure A2.
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Figure A2. GLIDE inversion of data including all four thermochronometric age systems. Each spatial point in the left column maps has
four ages. Two inversions were run using a prior erosion rate of 0.35 mm yr−1 (left column) and a prior erosion rate of 1.0 mm yr−1 (second
column). Resolution and reduced variance do not depend on the prior and are shown in the third and fourth columns, respectively. Ages that
fall within the respective time interval are shown in the resolution and variance plots. The true solution is shown in Fig. A1.
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Figure A3.
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Figure A3. GLIDE inversion of data including only the two apatite thermochronometric age systems. Each spatial point in the left column
maps thus has two ages. Two inversions were run using a prior erosion rate of 0.35 mm yr−1 (left column) and a prior erosion rate of
1.0 mm yr−1 (second column). Resolution and reduced variance do not depend on the prior and are shown in the third and fourth columns,
respectively. Ages that fall within the respective time interval are shown in the resolution and variance plots. The true solution is shown in
Fig. A1.
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Figure A4.
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Figure A4. GLIDE inversion of data including only the two zircon thermochronometric age systems. Each spatial point in the left column
maps thus has two ages. Two inversions were run using a prior erosion rate of 0.35 mm yr−1 (left column) and a prior erosion rate of
1.0 mm yr−1 (second column). Resolution and reduced variance do not depend on the prior and are shown in the third and fourth columns,
respectively. Ages that fall within the respective time interval are shown in the resolution and variance plots. The true solution is shown in
Fig. A1.
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Figure A5.
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Figure A5. GLIDE inversion of data including all four thermochronometric age systems. Two inversions were run using a correlation length
scale of 30 km (left) and 100 km (right). Both runs use a prior erosion rate of 0.35 mm yr−1. Resolution and reduced variance are shown in
the second and third columns for each model, respectively. Ages that fall within the respective time interval are shown in the resolution and
variance plots. The true solution is shown in Fig. A1.
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Figure A6. Synthetic data inversion test using synthetic Data Set E calculated using the full, transient thermal model internal to GLIDE
(Fig. 5). Prior erosion rates of 1.0 mm yr−1 in the north-western corner and 0.25 mm yr−1 in the south-eastern corner are used. This is
equivalent to the true erosion rate used to generate the synthetic ages. Other inversion parameters in Table 1. See the Fig. 6 caption for other
formatting details.
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Figure A7.
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Figure A7. Erosion rate history for the western Himalayan syntaxis in the region of Nanga Parbat using all data from Herman et al. (2013)
and a second model using only ages from within the massif as defined by the Main Mantle Fault. Inferred erosion rates for three time intervals,
from 6 Ma to present, are shown along with the temporal resolution and reduced variance. Erosion rate plots include ages less than 6 Ma as
black diamonds and ages greater than 6 Ma as white dots. Resolution and variance plots include the ages that fall within the respective time
interval. Note that there is essentially no difference in the solutions.
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