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Abstract. Estimation of erosion rate is an important component of landscape evolution studies, particularly
in settings where transience or spatial variability in uplift or erosion generates diverse landform morphologies.
While bedrock rivers are often used to constrain the timing and magnitude of changes in baselevel lowering, hill-
top curvature (or convexity), CHT, provides an additional opportunity to map variations in erosion rate given that
average slope angle becomes insensitive to erosion rate owing to threshold slope processes. CHT measurement
techniques applied in prior studies (e.g., polynomial functions), however, tend to be computationally expensive
when they rely on high-resolution topographic data such as lidar, limiting the spatial extent of hillslope geo-
morphic studies to small study regions. Alternative techniques such as spectral tools like continuous wavelet
transforms present an opportunity to rapidly document trends in hilltop convexity across expansive areas. Here,
we demonstrate how continuous wavelet transforms (CWTs) can be used to calculate the Laplacian of elevation,
which we utilize to estimate erosion rate in three catchments of the Oregon Coast Range that exhibit varying
slope angle, slope length, and hilltop convexity, implying differential erosion. We observe that CHT values calcu-
lated with the CWT are similar to those obtained from 2D polynomial functions. Consistent with recent studies,
we find that erosion rates estimated with CHT from both CWTs and 2D polynomial functions are consistent
with erosion rates constrained with cosmogenic radionuclides from stream sediments. Importantly, our CWT
approach calculates curvature at least 103 times more quickly than 2D polynomials. This efficiency advantage of
the CWT increases with domain size. As such, continuous wavelet transforms provide a compelling approach to
rapidly quantify regional variations in erosion rate as well as lithology, structure, and hillslope sediment transport
processes, which are encoded in hillslope morphology. Finally, we test the accuracy of CWT and 2D polynomial
techniques by constructing a series of synthetic hillslopes generated by a theoretical nonlinear transport model
that exhibit a range of erosion rates and topographic noise characteristics. Notably, we find that neither CWTs nor
2D polynomials reproduce the theoretically prescribed CHT value for hillslopes experiencing moderate to fast
erosion rates, even when no topographic noise is added. Rather, CHT is systematically underestimated, producing
a power law relationship between erosion rate and CHT that can be attributed to the increasing prominence of
planar hillslopes that narrow the zone of hilltop convexity as erosion rate increases. As such, we recommend
careful consideration of measurement length scale when applying CHT to estimate erosion rate in moderate to
fast-eroding landscapes, where curvature measurement techniques may be prone to systematic underestimation.
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1 Introduction

The morphology of landscapes adjusts to conform to exo-
genic perturbations such as uplift and climate as well as spa-
tial variations in lithology, geologic structure, and biology.
As such, numerous studies have taken advantage of land-
scape morphology to estimate rates and timing of perturba-
tions to these landscape properties. In bedrock rivers, for in-
stance, geomorphic transport laws have been formulated to
allow for linkages between landscape form and process, in-
cluding from measurements such as channel steepness and
χ , a metric that integrates drainage area along a channel pro-
file (Kirby and Whipple, 2001; Perron and Royden, 2013;
Royden and Perron, 2013). These tools have been effectively
utilized to estimate and map spatial variations in uplift, quan-
tify the timing and rates of landscape transience and uplift
history, and predict drainage basin reorganization (e.g., Barn-
hart et al., 2020; Dietrich et al., 2003; Fox, 2019; Kirby and
Whipple, 2001, 2012; Roberts and White, 2010; Willett et
al., 2014; Wobus et al., 2006).

Similarly, hillslope geomorphic transport laws formulated
for soil-mantled landscapes allow for estimation of uplift and
erosion rates as well as prediction of the migration of hill-
crests in response to landscape transience (Forte and Whip-
ple, 2018; Mohren et al., 2020; Mudd, 2017; Mudd and
Furbish, 2007, 2005; Roering, 2008; Roering et al., 2007,
2001, 1999). Over 100 years ago, it was proposed that hill-
slope form, specifically slope and curvature, may be an ef-
fective predictor of erosion rate, as hillslopes steepen and
lengthen to accommodate increases in baselevel lowering
(Gilbert, 1909, 1877). However, hillslopes do not continue
to steepen as baselevel lowering progressively increases to
faster and faster rates (e.g., Howard, 1994; Penck, 1953;
Schumm, 1967; Strahler, 1950). Rather, hillslope gradients
approach a threshold value as erosion rate increases, such
that gradient becomes invariant and insensitive to further in-
creases in baselevel lowering (Andrews and Bucknam, 1987;
Burbank et al., 1996; DiBiase et al., 2012; Larsen and Mont-
gomery, 2012; Montgomery, 2001; Roering et al., 1999). In
such cases, sediment flux varies nonlinearly with slope due
to threshold-dependent processes such as landsliding as well
as granular creep (BenDror and Goren, 2018; Deshpande et
al., 2021; DiBiase et al., 2012; Ferdowsi et al., 2018; Gabet,
2000; Larsen and Montgomery, 2012; Montgomery, 2001;
Ouimet et al., 2009; Roering et al., 2001).

Despite the insensitivity of hillslope gradient in rapidly
eroding landscapes, soil-mantled hillslopes remain an effec-
tive record of landscape transience and uplift. Specifically,
hilltop curvature continues to respond to baselevel lowering
when uplift and erosion rates are high, even as slope be-
comes insensitive to ever-increasing erosion rate (Hurst et
al., 2012; Mohren et al., 2020; Roering et al., 2007). For
a one-dimensional hillslope at steady state, erosion rate, E

[L T−1], can be estimated as

E =−
ρs

ρr
DCHT, (1)

where ρs and ρr are the density of soil and bedrock [M L−3],
respectively, D is the soil transport coefficient or diffusivity
[L2 T−1], and CHT is curvature at the hilltop [L−1] (Roer-
ing et al., 2007). Using this formulation, Hurst et al. (2012)
demonstrated in the Sierra Nevada, California, that CHT
records erosion rate in both low-relief, low-slope headwa-
ter catchments of the Feather River as well as in high-relief
catchments that have already adjusted to a faster baselevel
lowering rate where hillslopes approach a threshold angle.
Similarly, Hurst et al. (2013) observed that hillslopes that are
translating through an uplift gradient along the San Andreas
Fault actively steepen and become sharper (CHT becomes
more negative) as they traverse the zone of high uplift and
hillslope gradients become invariant. The hillslopes then de-
cay (i.e., slopes become gentler and curvatures become less
sharp) as they reenter the region of low background uplift
(Hurst et al., 2013). Similarly, Clubb et al. (2020) observed
that steep channels and sharp hilltops record uplift along
the Mendocino Triple Junction in northern California, and
they note that the lag in hillslope response time relative to
the bedrock channels records the northward migration of the
Mendocino Triple Junction.

Past studies that couple geomorphic transport laws and
hilltop curvature have typically relied on curvature calculated
from 2D polynomial functions fit to the topographic surface
(PFTs; i.e., polynomials fit to topography; e.g., Roering et
al., 1999). While a variety of polynomial forms and types
of curvature (i.e., tangential, planform, Laplacian, etc.) have
been utilized (e.g., Minár et al., 2020; Moore et al., 1991),
Hurst et al. (2012) found that six term functions were suf-
ficient for measuring curvature to estimate erosion rate.
Specifically, Hurst et al. (2012) used least squares regression
to fit a surface, z, to topography such that

z= ax2
+ by2

+ cxy+ dx+ ey+ f, (2)

where curvature, or more specifically the Laplacian of eleva-
tion, ∇2z, is denoted as

∇
2z= 2a+ 2b. (3)

To reduce the impact of topographic roughness due to
stochastic sediment transport and surface perturbations such
as boulders and tree throw pits as well as noise in the digi-
tal topographic data, they applied the PFT over a scale, λ (L
in Hurst et al., 2012), which defines the size of the square
polynomial kernel that is fit to the surface. The value of
λ [L] can be obtained by analysis of the scale dependency
of roughness metrics (e.g., Hurst et al., 2012; Roering et
al., 2010). As elaborated in the methodology proposed by
Hurst et al. (2012), the PFT is not required to pass through
any digital elevation model (DEM) nodes; hence, λ can be
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understood as a smoothing scale, thus measuring the back-
ground CHT and removing topographic noise.

While the application of PFTs has proven useful for cal-
culating curvature to estimate erosion rate and predict spa-
tial and temporal variations in uplift (e.g., Clubb et al., 2020;
Godard et al., 2020; Hurst et al., 2019, 2013, 2012; Mohren
et al., 2020; Roering et al., 2007), PFTs are computation-
ally cumbersome, hindering large-scale exploitation of high-
resolution topographic datasets that have become increas-
ingly available. Here, we demonstrate that 2D continuous
wavelet transforms (CWTs) provide an alternative and com-
putationally efficient approach to calculating hilltop curva-
ture, operating at least 102 to > 103 times faster than PFTs,
with the relative efficiency advantage of CWTs increasing
with the size of digital elevation models. We establish the
similarity of the output CWT CHT values to those produced
by PFTs, and we compare estimated erosion rates calcu-
lated from CHT values to erosion rates measured with cos-
mogenic radionuclides (CRNs) in catchments in the Oregon
Coast Range. In addition, we test the relative accuracy of
the CWT and PFT approaches by applying them to synthetic
hillslopes with known erosion rates generated by a nonlin-
ear transport model and superimposed topographic noise. We
find that both techniques systematically underestimate CHT
at moderate to high erosion rates and appear to approximate
a square root relationship between CHT and erosion rate as
erosion rate increases, consistent with a recent study (Gabet
et al., 2021).

2 Study site: Oregon Coast Range

We selected the Oregon Coast Range (OCR) to compare
CWTs and PFTs as hilltop curvature measurement tech-
niques, as it is a region that has been extensively studied
in the geomorphic literature, exhibits relatively uniform to-
pography over intra-catchment scales while exhibiting di-
versity in hillslope form and erosion rate across the axis of
the range, and has negligible spatial variability in climate.
The OCR is an unglaciated humid landscape that parallels
the Cascadia Subduction Zone and is characterized by cool,
wet winters when the majority of the annual 1–2 m of pre-
cipitation falls, and warm, dry summers (PRISM Climate
Group, 2016). The dominant tree populations are composed
of Douglas-fir (Pseudotsuga menziesii) and western hemlock
(Tsuga heterophylla) that reside on hillslopes that are soil-
mantled throughout the range. Soils are thickest in collu-
vial hollows and unchannelized valleys (∼ 1–2 m), thinnest
(∼ 0.5 m) on planar hillslopes and hilltops, and are primar-
ily produced stochastically through tree throw and bioturba-
tion (Dietrich and Dunne, 1978). Colluvial hollows are pe-
riodically evacuated by shallow landslides that mobilize into
debris flows (Benda and Dunne, 1997; Dietrich and Dunne,
1978; Penserini et al., 2017; Stock and Dietrich, 2003).
Erosion rates, measured using techniques including CRNs,

14C dating, and fluvial and colluvial sediment flux, usually
cluster at approximately 0.1 mm yr−1 (Balco et al., 2013;
Bierman et al., 2001; Heimsath et al., 2001; Penserini et
al., 2017; Reneau and Dietrich, 1991), though these rates
can temporally and spatially vary dramatically (Almond et
al., 2007; Marshall et al., 2015; Sweeney et al., 2012). Av-
erage OCR erosion rates approximately correspond with up-
lift rates calculated from abandoned marine terraces, rang-
ing from < 0.05 to > 0.4 mm yr−1 (Kelsey et al., 1996), as
well as from fluvial strath terraces which range from 0.1
to 0.3 mm yr−1 (Personius, 1995), which has led to sugges-
tions that the OCR may approximate steady state. Nonethe-
less, deviations from uniform erosion have been noted based
on morphologic trends as well as soil properties (Almond et
al., 2007; Sweeney, et al., 2012).

We pinpointed catchments in the OCR that exhibit a
range of hilltop curvatures for analysis. Specifically, we fo-
cus on Hadsall Creek (43.983◦ N, 123.823◦W), the North
Fork Smith River (NFSR; 43.963◦ N, 123.811◦W), and
Bear Creek (44.181◦ N, 123.371◦W). Hadsall Creek and
the NFSR are catchments in the central OCR that share
a drainage divide (Fig. 1a). Hadsall Creek is character-
ized by steep channels and hillslopes with evenly spaced
ridges and valleys where incision is dominated by debris
flows (Penserini et al., 2017; Fig. 2a). Contrastingly, the
NFSR, which is erosionally isolated from baselevel by an
Oligocene-age gabbroic dike that has pinned the fluvial
channel, exhibits comparatively gentle channel and hills-
lope angles as well as longer soil residence times (Sweeney
et al., 2012; Fig. 2b). CRN measurements have recorded
catchment-averaged erosion rates at Hadsall Creek and the
NFSR of 0.113±0.018 and 0.058±0.0054 mm yr−1, respec-
tively (recalculated from Penserini et al., 2017; Table 1). We
also utilize hillslopes within three small sub-catchments that
drain to Bear Creek (Fig. 1b), a tributary to the Long Tom
River on the eastern margin of the OCR in the southwest-
ern Willamette Valley (WV). Hillslopes within Bear Creek
and the western margin of the WV exhibit gentle slopes,
weathered soils with long residence times > 150 kyr (Al-
mond et al., 2007), and are bounded by broad alluviated
valleys (Fig. 2c). We additionally report a newly collected
CRN-derived catchment-averaged erosion rate for the north-
ern Bear Creek subcatchment that we study here (Fig. 1b).

The spatial proximity of Bear Creek, Hadsall Creek, and
the NFSR makes them well-suited to compare CHT measure-
ment techniques, as other factors that may influence mor-
phology, such as climate and lithology, remain relatively in-
variant. All three catchments are within the Tyee Formation,
a ∼ 3 km thick sequence of gently dipping Eocene turbidite
deposits characterized by a sequence of sandstone and silt-
stone interbeds (Baldwin, 1956; Heller and Dickinson, 1985;
Lovell, 1969). While variability in sandstone–siltstone ratios
in the Tyee Formation results in latitudinal north–south vari-
ations in deep-seated landsliding (Roering et al., 2005), our
three study sites are within sufficient proximity to each other
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Figure 1. Oregon Coast Range study sites. Note the drainage divide
(red) between catchments that flow directly to the Pacific Ocean
and those that flow east into the Willamette River, which then flows
northward to the Columbia River. (a) Hadsall Creek and the North
Fork Smith River (NFSR). (b) The three catchments that flow to
Bear Creek. Arrows in (a, b) denote river flow direction. Repre-
sentative (Rep.) hilltop selected so that it approximates the average
curvature for the catchment when compared to curvature measure-
ments taken for all hilltops.

such that lithologic variability in setting hillslope morphol-
ogy should be limited. In addition, while common elsewhere
in the OCR (Franczyk et al., 2019; LaHusen et al., 2020;
Roering et al., 2005), the sites we have selected for analy-
sis do not exhibit pronounced evidence of deep-seated land-
slides, which may bias CHT values, complicating comparison
to known erosion rates from CRN analysis. As such, Hadsall
Creek, the NFSR, and Bear Creek provide an ideal spectrum
of hillslopes that allows for assessment of CHT measurement
techniques (Fig. 2).

3 Methods

3.1 Curvature calculation: polynomial fit and continuous
wavelet transform

We used PFTs to calculate curvature of the Hadsall and Bear
Creeks and NFSR lidar DEMs as enumerated in Eqs. (2)
and (3). Each DEM has a grid spacing of 0.9144 m (3 ft). The
lidar for Bear Creek was collected in 2009 (average point
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Figure 2. Oregon Coast Range hillslope profiles. Example lidar
hillshades of hillslopes from Hadsall Creek (a), the North Fork
Smith River (b; NFSR), and Bear Creek (c). Red lines in hill-
shades correspond to the hillslope profiles in right column. Note
that hillslope profiles have the same horizontal scale, allowing for
clear visualization of the difference in hillslope relief between sites.
Each sample hillslope profile corresponds to the representative hill-
top in each catchment (yellow lines in Fig. 1). Note that at the
rapidly eroding Hadsall Creek and NFSR, the hillslopes have at-
tained threshold gradients and are near-planar. CHT, however, still
reflects the difference in erosion rate between sites.

density: 8.14 pulses m−2, ground density: 1.36 pulses m−2),
and the lidar at Hadsall Creek and NFSR was collected in
2014 (average point density: 10.41 pulses m−2, ground den-
sity 0.54 pulses m−2). (See “Code and data availability” for
access information to lidar data.) In order to identify and re-
move the topographic impact of stochastic sediment trans-
port processes such as tree throw, we calculated PFT curva-
ture rasters using variable kernel sizes, corresponding to a
range of smoothing scales, specifically for λ= 5–141 m (the
diameter of the polynomial kernel requires odd dimensions).
These values of λ are informed by the requirements of the
CWT, which we discuss below. For the PFT, λ is the diame-
ter of the smoothing window.

In contrast to PFTs, CWTs are computationally efficient
and can provide a variety of outputs depending on the anal-
ysis and type of wavelet used (e.g., Foufoula-Georgiou and
Kumar, 1994, and references therein). Here, we applied a 2D
CWT using the Ricker wavelet (often known as the Mexican
hat wavelet). The Ricker wavelet has been used in geomor-
phology to map and estimate landslide ages based on surface
roughness (Booth et al., 2009; LaHusen et al., 2020), iden-
tify dominant landforms at particular wavelengths (Struble et
al., 2021), and extract channel heads and drainage networks
(Lashermes et al., 2007; Passalacqua et al., 2010) and other

topographic spectral analyses including mapping faults and
predicting lithospheric thickness (e.g., Audet, 2014; Jordan
and Schott, 2005; Malamud and Turcotte, 2001). In applying
the Ricker wavelet, we take advantage of a useful property
of convolutions that allows for simultaneous removal of to-
pographic noise and calculation of derivatives. Specifically,

∂

∂x
(f ∗h)=

∂f

∂x
∗h= f ∗

∂h

∂x
, (4)

where f is some function (topography in our case), h is a
smoothing function (2D Gaussian for instance), and ∗ rep-
resents the convolution. Hence, for the case of calculating
derivatives of topography, Eq. (4) implies that applying a
low-pass filter to topography and then taking the derivative
(left term of Eq. 4) is identical to taking the derivative of to-
pography and smoothing the outputs (middle term), which
is correspondingly equivalent to taking the derivative of the
smoothing function and using that function to smooth topog-
raphy (right term; Lashermes et al., 2007). The application of
the Ricker wavelet to calculate land surface curvature is akin
to the rightmost term in Eq. (4), albeit by taking the second
derivative of the smoothing function.

The Ricker wavelet is the negative second derivative of a
2D Gaussian function [L−2], which is given as

g(x,y)=
1

2πs2 exp
[
−

(u− x)2
+ (v− y)2

2s2

]
, (5)

where (u, v) and s [L] (σ in Lashermes et al., 2007) de-
fine the location and size, specifically the standard devia-
tion, of the Gaussian function, respectively (derivative of a
Gaussian, DoG, wavelets constitute a wavelet family). The
Ricker wavelet, ψ [1 L−4], as the negative, second derivative
of Eq. (5), then, is defined as

ψ(x,y)=
1
πs4

(
1−

1
2

(
(u− x)2

+ (v− y)2

s2

))
exp[

−

(
(u− x)2

+ (v− y)2)
2s2

]
. (6)

The generalized 2D CWT of topography, z, at location (u, v),
then is given as

C(s,u,v)=
1
s

∫
∞

−∞

∫
∞

−∞

z(x,y)ψ
(
x− u

s
,
y− v

s

)
dxdy. (7)

Equation (7), notably, is a convolution of z and ψ , expressed
as

C(s,u,v)= z(x,y)∗ψ
(
x− u

s
,
y− v

s

)
, (8)

where ∗ represents the convolution. The output wavelet coef-
ficients, C, of the Ricker wavelet from Eq. (8) provide a mea-
sure of the low-pass filtered Laplacian over the input scale of
interest (Foufoula-Georgiou and Kumar, 1994; Lashermes et
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al., 2007) that we use to estimate curvature of extracted hill-
tops (CHT).

Similar to the application of PFTs to estimate erosion
rate, it is necessary to select a measurement scale that ef-
fectively smooths over stochastic sediment transport pertur-
bations and noise that is inherent to topographic datasets and
DEMs and does not represent long-term morphology reflec-
tive of baselevel lowering (Hurst et al., 2012; Roering et
al., 2010). Thus, it is important to utilize an appropriately
scaled wavelet, s (akin to a kernel size), to generate curvature
values that are appropriate to represent CHT. Several defini-
tions for the smoothing scale of a DoG wavelet exist. Tor-
rence and Compo (1998) define the smoothing scale, λ [L],
for an mth DoG as

λ=
2πs√
m+ 1

2

. (9)

For the Ricker wavelet, m= 2. Under the Torrence and
Compo (1998) definition, λ is determined by the scale, s,
at which the wavelet power spectrum applied for a partic-
ular function with a known frequency (i.e., a cosine func-
tion) attains a maximum value. Alternatively, Lashermes et
al. (2007) define the Ricker wavelet smoothing scale as the
inverse of the wavelet’s band-pass frequency, such that

λ=
√

2πs. (10)

To clarify, while λ represents the physical scale at which to-
pography is smoothed, s specifically defines the scale of the
wavelet function and is related to the physical smoothing
scale through Eqs. (9) and (10) and is not interchangeable
with λ. While the Torrence and Compo (1998; TC98) and
Lashermes et al. (2007; L07) λ definitions generate similar
smoothing scales, the output Laplacian values may be suffi-
ciently diverse to produce significantly different erosion rate
estimates depending on the choice. Thus, we utilize both def-
initions by selecting a range of λ and solving for s using both
Eqs. (9) and (10) in order to apply the CWT, which we then
compare to the curvature values produced from the PFT.

We applied the CWT and PFT for λ values that corre-
spond to the scales at which topographic noise manifests in
topographic data. The CWT can only be applied for s > 1,
which for DEMs with a grid spacing of ∼ 1 m with the odd-
dimensions constraint of the PFT, places a lower λ limit of
5 m. We additionally tested larger λ (up to 141 m) to iso-
late the consistency between the CWT and PFT. For each
smoothing scale, λ, for which we calculated curvature, we
solved for s in Eqs. (9) and (10) to construct the appropriately
sized Ricker wavelet (Eq. 6). We then applied the CWT to the
OCR lidar DEMs for smoothing scales of 5–141 m (same as
PFT) and produced CHT values for the CWT and PFT meth-
ods, denoted as CHT-W and CHT-P, respectively.

3.2 Computational efficiency of curvature values

We compared the efficiency of calculating curvature with
a PFT to the CWT, including both definitions of wavelet
smoothing scale, λ (TC98 and L07; Eqs. 9, 10). We mea-
sured curvature for λ= 5–197 m in MATLAB on a personal
laptop with 16 GB of RAM (2.60 GHz CPU). To account for
potential variations in calculation time that may result from
variable landscape morphology, we utilized sample regions
of the Hadsall Creek and Bear Creek DEMs, as they repre-
sent the high and low erosion rate end members of our test
sites. Each DEM was a 513× 513 single precision grid (32-
bit float) with a cell size of 0.9144 m.

We also tested how DEM size affects the relative speed
of the CWT and PFT algorithms. We selected a DEM of size
682×682 pixels from the Hadsall Creek catchment and mea-
sured curvature for λ= 5–101 m. We then calculated curva-
ture for the same λ on the northwest quadrant of the 682×682
pixel DEM, corresponding to a 341×341 pixel medium-sized
grid. Finally, we calculated curvature for λ= 5–101 m on the
northwest quadrant of the medium-sized DEM, correspond-
ing to a 171× 171 pixel grid.

3.3 Hilltop extraction

We calculated curvature at every pixel of our DEMs, but CHT
requires limiting curvature values to hilltop pixels. There-
fore, we extracted hilltop masks in MATLAB with the DI-
VIDEobj function of TopoToolbox (Scherler and Schwang-
hart, 2014), restricting extracted first-order divides to those
with lengths exceeding 800 m (Schwanghart and Scherler,
2020). We further refined the hilltop masks by only consider-
ing locations whereCHT is negative (convex) and where local
hillslope gradient is less than 0.4, above which a greater pro-
portion of hillslope sediment transport can be classified as
nonlinear. We manually removed drainage divides mapped
in low-relief valley bottoms and where flow routing is inter-
rupted by roads, which are common in the OCR and intro-
duce noisy high-magnitude curvatures. While the signature
of deep-seated landslides is generally absent from our study
catchments, if it appeared in the DEM that there has been a
history of bedrock slope instability, we filtered hilltops prox-
imal to mapped landslides. We also did not consider hilltops
that may exhibit prominent asymmetry due to disequilibrium
with neighboring drainage basins. Thus, at Hadsall Creek
and NFSR, we neglected all hilltops at the main drainage di-
vide (Fig. 1a). At the Bear Creek catchments, we similarly
removed all hilltops at the main drainage divide (the north-
east divide in Fig. 1b) except for those that border adjacent
catchments that are likely experiencing the same baselevel
imposed by Bear Creek (southwest divide in Fig. 1b). Fi-
nally, to visualize the scale-dependency of CHT and reduce
potential noise in CHT measurements for full catchments ob-
scuring curvature scaling breaks (Hurst et al., 2012; Roering
et al., 2010), we selected a single representative hilltop in
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each catchment (Figs. 1, 2), chosen such that it approximates
the average curvature for the catchment when compared to
curvature measurements taken for all hilltops (Fig. 3). The
selected representative hilltop spans 234 m at Hadsall Creek
(average gradient 0.23), 149 m at NFSR (average gradient
0.14), and 274 m at Bear Creek (average gradient 0.11).

3.3.1 Erosion rates estimated from hilltop curvature

We applied the CWT and PFT to the Hadsall Creek, NFSR,
and Bear Creek lidar DEMs and calculated curvature. We
utilized the hilltop masks to extract curvature at the hilltops
(CHT). In the OCR, Roering et al. (2010) observed a scaling
break in curvature at 15 m, corresponding to the length scale
below which pit and mound topography dominate the sur-
face morphology. We observe similar scaling breaks in hill-
top curvature for selected hilltops at λ≈ 15–20 m (Fig. 3),
though we note that the clarity of this scaling break de-
pends on the size of the study area and consistency, or lack
thereof, of small pit and mound topography in a landscape.
Thus, while the scaling break that distinguishes the effec-
tive scale at which topographic noise is filtered out may dif-
fer between the DEMs and catchments we analyze here, we
find that the scaling breaks do not clearly or systematically
differ from those observed by Hurst et al. (2012) and Roer-
ing et al. (2010; Fig. 3). Thus, we used a smoothing scale of
λ= 15 m for the PFT and CWT in each OCR catchment to
estimate erosion rate as enumerated in Eq. (1). We assumed
that ρs

ρr
= 0.5 and D = 0.003 m2 yr−1, a hillslope diffusivity

estimated for the OCR (Roering et al., 1999, 2007). We com-
pared the mean and variance of these estimated erosion rates
to CRN-derived erosion rates in each OCR study catchment.

3.3.2 Erosion rates from cosmogenic radionuclides

To test the efficacy of CHT as a proxy for erosion rate, we
compare erosion rates estimated from CHT to those estimated
from CRNs in stream sediments. We collected stream sedi-
ments from the western tributary to Bear Creek that we study
here (Fig. 1b; 44.186◦ N, 123.375◦W) to estimate erosion
rate with cosmogenic 10Be (Balco et al., 2013; Heimsath et
al., 2001). We used the online calculator CRONUS (Balco et
al., 2008) to calculate erosion rate for the sample, which in-
corporates the material from the upstream drainage area and
assumes steady erosion over the CRN integration timescale
(Tables 3, 4). We additionally recalculate the erosion rates
for Hadsall Creek and NFSR from the CRN data previously
reported by Penserini et al. (2017; Tables 2, 3).

3.4 Construction of synthetic hillslopes to test CHT
measurements

We utilized synthetic hillslopes generated from a theoreti-
cal model to compare the accuracy of hilltop curvature cal-
culated using the PFT and CWT as well as test how well
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Figure 3. Curvature extracted from representative hilltop at Hadsall Creek, NFSR, and Bear Creek for a range of λ. Upper row (a, d, g) is
CHT measurements, second row (b, e, h) is the standard deviation of CHT, and the bottom row (c, f, j) is the interquartile range of CHT. Note
that the scaling break that identifies where tree throw pits are filtered out depends on the size of the considered hillslope and consistency of
pit–mound topographic in a landscape. Here, though, a break exists at λ≈ 15 m for Hadsall Creek (especially apparent in standard deviation
and interquartile range) and the NFSR and Bear Creek at λ≈ 11–20 m (note that second break at ∼ 60 m in Bear Creek corresponds to the
introduction of concave valleys). These scaling breaks are generally consistent with those observed for the OCR by Roering et al. (2010) and
are visible for CWT and PFT λ definitions. L07: Lashermes et al. (2007); TC98: Torrence and Compo (1998).

Table 3. Recalculated CRN erosion rates. We used the CRONUS online calculator (Balco et al., 2008) to determine catchment-averaged
erosion rates from 10Be in stream sediment. The samples from Hadsall Creek and NFSR are recalculated from the 10Be data presented by
Penserini et al. (2017). Reported CRN error is from external uncertainty.

Catchment Location Concentration Error Erosion rate Error Notes
(atoms g−1 quartz) (atoms g−1 quartz) (mm yr−1) (mm yr−1)

Hadsall Creek 43.985◦ N, 123.824◦W 33766.10 (10Be) 4666.26 (10Be) 0.113 0.018 Recalculated from

NFSR 43.964◦ N, 123.811◦W 70902.91 (10Be) 3408.59 (10Be) 0.058 0.0054 Penserini et al. (2017)

these approaches can predict erosion rate. We used the func-
tional form for a 1D hillslope experiencing nonlinear diffu-
sion given as

z=
DS2

c
2(ρr/ρs)E

[
ln

1
2


√√√√√1+

2
(
ρr
ρs

)
Ex

DSc

2

+ 1




−

√√√√√1+

2
(
ρr
ρs

)
Ex

DSc

2

+ 1
]
, (11)

where E is the erosion rate calculated using Eq. (1) [L T−1],
Sc is the threshold, or critical, slope angle, and x is dis-
tance along the hillslope profile (Roering et al., 2007). We
extended the hillslope profile solution perpendicular to the
x axis to construct a 2D synthetic hillslope on a 201×201 m
grid (Figs. 8, 9, and S2 in the Supplement). Odd hillslope

dimensions ensure the existence of a hilltop pixel in the mid-
dle of the domain. We utilized the PFT and CWT, includ-
ing both CWT definitions for the wavelet scale λ (Eqs. 9,
10; TC98, L07), to calculate CHT-W and CHT-P of the syn-
thetic hillslopes for several different scenarios. Specifically,
we considered various dimensionless erosion rates,E∗, given
by

E∗ =
2E
(
ρr
ρs

)
LH

DSc
=

2CHTLH

Sc
, (12)

where LH is hillslope length (Roering et al., 2007). In test-
ing the ability of the CWT and PFT to predict hilltop curva-
ture, we generate hillslopes with a range of E∗ values that
can account for variations in E, CHT, LH, and Sc. For in-
stance, low (high) E∗ values may correspond to low (high)
E, CHT, or LH as well as high (low) Sc, or some combination
thereof. We specifically tested E∗ values of 1, 10, 30, and
100. While E∗ = 100 is an extreme case and may only be
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Table 4. New CRN erosion rate at Bear Creek. We used the CRONUS online calculator (Balco et al., 2008) to determine catchment-averaged
erosion rates from 10Be in stream sediment at Bear Creek. Reported CRN error is from external uncertainty.

Catchment Location Mean Shielding Quartz Be 10Be/9Be 10Be concentration Erosion
elevation factor weight∗ carrier (×10−13) (atoms g−1 quartz) rate

(m) (g) weight (mm yr−1)
(mg)

Bear Creek 44.186◦ N, 123.375◦W 240 1 25.02 221 6.338± 0.1175 400833± 8011.37 0.008± 0.0007

∗ Assumed a density of 2.6 g cm−3.

rarely observed in natural landscapes that are eroding rapidly
and also manage to maintain a soil mantle, such as badlands,
E∗ values of 1, 10, and 30 have been readily observed in
multiple landscapes. For instance, Hurst et al. (2012) ob-
served E∗ values in the Sierra Nevada, California, as high as
30, but most measured hillslopes exhibitedE∗ < 10. Hurst et
al. (2013) similarly observed at the Dragon’s Back along the
San Andreas Fault that E∗ ranges from 5 to 30, reflecting a
strong uplift gradient. E∗ along coastal California has been
noted as .10 along the Mendocino Triple Junction (Clubb et
al., 2020), .8 further south along the Bolinas Ridge (Hurst
et al., 2019), and ranging from 1–2 at Gabilan Mesa (Roer-
ing et al., 2007). Finally, in the OCR, past studies have ob-
served that E∗ ≈ 10 (Marshall and Roering, 2014; Roering
et al., 2007).

In addition, to account for natural topographic rough-
ness that the CWT and PFT smooth over to estimate CHT,
we introduce noise to the synthetic hillslopes in the form
of white (β = 0), pink (β =−1), and red, or Brownian,
(β =−2) noise, where β is spectral slope. White noise de-
notes a random surface where all wavenumbers (frequencies)
have equal amplitude, or spectral power. Conversely, spectral
power density varies inversely (β =−1) with wavenumber
for pink noise such that low wavenumbers have higher in-
tensity. Similarly, red noise exhibits higher spectral power
at low wavenumbers but more dramatically than for pink
noise. While hillslope spectra will vary between landscapes
and likely exhibit a combination of different spectral slopes
depending on the scale of analysis, red noise surfaces gen-
erally best describe topographic noise in natural landscapes
while white noise surfaces are comparatively the least likely
(e.g., Booth et al., 2009; García-Serrana et al., 2018; Mar-
shall and Roering, 2014; Pelletier and Field, 2016; Perron et
al., 2008). We generated each noisy surface of values nor-
mally distributed about 0 with the standard deviation ranging
from −1 m (pits) to 1 m (mounds; Konowalczyk, 2021). For
each type of noise, we tested how the amplitude of the noise
affects calculated CHT by scaling the noise distributions
(±1 m) by 0.1 %, 0.5 %, and 5 % of hillslope length (LH =

100 m). In other words, we test cases where the standard de-
viation of the noise, σ , is σ = 0.001LH,σ = 0.005LH, and
σ = 0.05LH, corresponding to 1σ values of 10 cm, 50 cm,
and 5 m, respectively. While topographic noise with a dis-
tribution of amplitudes with a standard deviation of 5 m is

likely unphysical for soil-mantled landscapes, this extreme
case allows us to clearly test how different topographic pa-
rameters affect calculated values of E∗ and how well each
measurement technique can filter out noise.

4 Results

4.1 Computational efficiency of CWT and PFT curvature
calculation

We find that the CWT is dramatically more efficient at calcu-
lating hilltop curvature than the PFT. Curvature calculation
time depends on smoothing scale, λ, with large kernel sizes
taking longest for both the PFT and CWT. Specifically, we
compared curvature calculation times for the PFT and CWT
in selected portions of the Hadsall Creek and Bear Creek
catchments for λ= 5–197 m. We find that for the 513× 513
single precision grid, the PFT takes ∼ 4–4.5 s to calculate
curvature at the smallest scales and∼ 30 s to calculate curva-
ture at larger scales. Measurement time does not vary greatly
between the fast and slowly eroding landscape DEMs. By
comparison, for λ= 5–197 m, both the CWT L07 and TC98
definitions for λ calculate curvature at the smallest scales in
∼ 0.0039–0.004 s while at larger scales they calculate curva-
ture in ∼ 2.2–2.3 s. Comparing the two techniques, we find
that at the smallest smoothing scales (λ= 5 m) the CWT op-
erates > 103 times faster than the PFT, while at larger scales
where λ approaches 200 m, the CWT still outpaces the PFT
by over an order of magnitude (Fig. 4a, b).

In addition to the CWT outpacing the PFT at a large
range of λ in two landscapes exhibiting contrasting mor-
phology, we observe that the relative speed of the CWT
to the PFT increases with DEM size. Specifically, we find
that for the smallest DEM for which we calculated curva-
ture (171× 171 grid), the CWT is ∼ 500 times faster than
the PFT when λ= 5 m and is ∼ 10 times faster than the PFT
when λ= 101 m (Fig. 4c). As DEM size increases, the com-
putational advantage of the CWT increases such that for the
large DEM (682× 692 grid), the CWT operates > 103 times
faster than the PFT when λ= 5 m and∼ 30 times faster when
λ= 101 m (Fig. 4c).
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Figure 4. Speed of the CWT compared to the PFT for differ-
ent smoothing scales, λ. (a, b) Relative speed of the CWT to the
PFT for small portions (513× 513 single precision grid, cell size
of 0.9144 m) of the Hadsall and Bear Creek catchments, quantified
as the ratio of CWT/PFT processing time. Thus, for each smooth-
ing scale, each point can be interpreted as the CWT being n times
faster than the PFT. At small λ, the CWT is> 1000 times faster than
the PFT. The CWT remains > 100 times faster than the PFT until
λ≈ 30 m, a scale that is usually larger than most smoothing scales
utilized in CHT calculation. (c) Relative speed of the CWT to PFT
for DEMs of various size in Hadsall Creek for λ= 5–101 m. Largest
DEM is 682×682 pixels. The medium-sized DEM is the upper-left
quadrant of the large DEM (341×341 pixels), and the small DEM is
upper-left quadrant of medium DEM (171× 171 pixels). Note that
the CWT increases in relative speed as DEM size increases. L07:
Lashermes et al. (2007); TC98: Torrence and Compo (1998).

4.2 Similarity of CHT-P and CHT-W

We utilized 2D CWTs and PFTs to calculate CHT-W and
CHT-P for a range of λ in the OCR catchments of Had-
sall Creek, NFSR, and Bear Creek. We find that CHT-W and
CHT-P are similar when using λ values of 5–30 m. Specif-
ically, Fig. 3 compares output CHT-W using both λ length

scale definitions (Eqs. 9, 10) and CHT-P for the representative
hilltop in each catchment. Mean measured CHT-W and CHT-P
values differ the most at small smoothing scales, where
signal-to-noise ratio (topographic noise to underlying CHT)
is highest (Fig. 3a, d, g). At these small smoothing scales,
the standard deviation of CHT-P is larger than that of CHT-W
(Fig. 3b, e, h). Mean CHT-W values for both L07 and TC98
λ definitions are similar, as are the output standard devia-
tions (Fig. 3). However, we observe that mean CHT-W calcu-
lated using the TC98 definition of λ is lower in magnitude
than that of L07 (Fig. 3; Table 1). This is not unexpected,
however, since λ, as defined by TC98 in Eq. (9), is effec-
tively smaller than that of L07 defined in Eq. (10), for a given
wavelet scale, s. Figure 5 compares the output CHT measure-
ments from each technique by plotting CHT for individual
DEM nodes for λ= 15 m. If measurements from each tech-
nique are in agreement, their output CHT values should plot
as a 1 : 1 line. Indeed, CHT-W for TC98 λ is lower than that
of L07 for both the representative hilltop and all mapped hill-
tops, with the largest deviation occurring on the sharpest hill-
tops (Fig. 5c, f, i). Similarly, mean CHT-W (TC98 and L07)
is lower than CHT-P, particularly for high-magnitude curva-
tures. Nevertheless, the output values from each definition
do not vary dramatically, particularly when considering the
CHT for DEM nodes corresponding to representative hilltops
(Fig. 5).

We additionally plot probability density functions (PDFs)
of measured CHT-W and CHT-P for each catchment (Figs. 6,
S1). Notably, the shape of each PDF is similar between mea-
surement techniques but is shifted along the x axis due to the
variable definitions of λ. This shift is a further illustration of
the deviation from a 1 : 1 relationship between each measure-
ment technique as observed in Fig. 5. Similar to the greater
deviation between calculated CHT at curvature extrema in
Fig. 5, we observe greater offset between PDFs in the distri-
bution tails, while the peaks remain similar. We observe this
consistency between PDF peaks reflected in the mean CHT
of the PDFs, which are similar regardless of measurement
technique (Fig. 6; Tables 1, 2).

4.3 Erosion rate calculated with CHT and cosmogenic
radionuclides

We utilized CHT for λ= 15 m to estimate erosion rate. Ero-
sion rates calculated from CHT-P and CHT-W for all mapped
hilltops and the representative hilltop in each catchment can
be found in Table 2. We observe that CHT-P and CHT-W pro-
duce expected relative pattern of erosion rate in our OCR
catchments. That is, calculated erosion rate from CHT is
fastest at Hadsall Creek and slowest at Bear Creek, as re-
vealed by our cosmogenic erosion rate data (Fig. 6, Ta-
ble 2). Notably, we observe that CHT-generated erosion rates
(mean± standard deviation) fall within or near the measure-
ment uncertainty of the CRN erosion rate for both the rep-
resentative hilltop and all hilltops (Table 2). For instance,
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Figure 5. Comparison of CHT calculation methods for λ= 15 m. Black dots correspond with curvature measured at nodes for all mapped
hilltops (roads, landslides, valley bottoms, etc. removed). Red points correspond with the representative hilltop nodes (Fig. 1). Perfect agree-
ment between measurement techniques would plot as 1 : 1 line (black line). Recall that more positive (lower magnitude) CHT corresponds
with more gentle hillslopes (upper-right corner). See text for details. L07: Lashermes et al. (2007); TC98: Torrence and Compo (1998).

CRN-measured erosion rates are 0.113± 0.018 mm yr−1 at
Hadsall Creek, 0.058± 0.0054 mm yr−1 for the NFSR, and
0.008± 0.0007 mm yr−1 at Bear Creek (Tables 3, 4). Sim-
ilarly, for the case of the representative hilltop and us-
ing the TC98 λ definition, we find CHT-calculated erosion
rates of 0.178± 0.030 mm yr−1 at Hadsall Creek, 0.088±
0.025 mm yr−1 for the NFSR, and 0.007± 0.005 mm yr−1 at
Bear Creek. The rates calculated with the PFT and L07 λ
definition are similar, whether considering the representative
hilltop or all mapped hilltops in each catchment (Table 2;
Figs. 6, 7, S1). Finally, we observe linear correlation between
CHT-calculated and CRN-measured erosion rates at our OCR
catchments (E = 0.88CHT+0.002), consistent with the rela-
tionship between CHT and E expected in Eq. (1) (Fig. 7).
Furthermore, the diffusivity we infer from the slope of this
relationship is 0.002± 0.0004 m2 yr−1 (taking into account

ρs
ρr
= 0.5), a value consistent with diffusivities measured else-

where in the OCR (Roering et al., 1999).

4.4 Testing of CHT extraction with synthetic hillslopes

We calculated CHT-P and CHT-W for a series of synthetic hill-
slopes with a range of dimensionless erosion rates, E∗, and
topographic noise (Figs. 8, 9). We observe that the ability
of the CWT and PFT to reproduce the defined curvature at
particular λ depends on the dimensionless erosion rate, E∗,
though the type and magnitude of added noise contributes
to uncertainty in appropriate λ values to be used to calcu-
late erosion rate. We focus on synthetic hillslopes where no
noise has been added (i.e., σ = 0 cm) as well as where noise
amplitude σ = 0.5 % LH, as the magnitude of noise in this
case (σ = 50 cm) is a reasonable physical approximation of
noise and surface roughness in natural landscapes (e.g., Mar-
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Figure 6. Probability density functions of CHT (bottom x axis) and
erosion rate calculated using Eq. (1) (top x axis) for the represen-
tative hilltop at each OCR field site. See Fig. S1 for all mapped
hilltops version. Note the agreement between each CHT calculation
method. Further, note the dramatic variability in CHT between sites
(all panels use same x axis; inset in panel c more clearly displays
distribution of CHT at Bear Creek). Small vertical lines at bottom
of each panel represent the mean of the plotted distribution (Ta-
ble 2). Note that positive CHT values are not permitted in the output
PDF (c). L07: Lashermes et al. (2007); TC98: Torrence and Compo
(1998).

Figure 7. CRN erosion rate vs. CHT. CRN erosion rates for Bear
Creek (slow E), NFSR (moderate E), and Hadsall Creek (fast E)
against the absolute value of CHT for the representative hilltop in
each catchment. Filled symbols are mean E and CHT values, and
error bars correspond to the standard deviation of CHT and external
uncertainty in CRN erosion rate measurements (Tables 1, 3). Note
that error bars may be smaller than the size of the mean symbol for
Bear Creek samples. L07: Lashermes et al. (2007); TC98: Torrence
and Compo (1998).

shall and Roering, 2014; Pelletier and Field, 2016; Roth et
al., 2020). The cases where noise amplitude is defined by
σ = 0.1 % LH (σ = 10 cm) and σ = 5 % LH (σ = 5 m) can
be found in the Supplement (Figs. S5–S10).

4.4.1 Slowly eroding synthetic hillslopes, E∗ = 1

We observe that for E∗ = 1, both the PFT and CWT reason-
ably predict the model-defined CHT (and thusE) at moderate
smoothing scales. Specifically, when σ = 0.5 % LH, CHT-W
and CHT-P converge on the defined CHT when λ&9–11 m for
white noise, λ&15–19 m for pink noise, and λ&13 m for red
noise (Fig. 10b–d). At smaller λ, the signal-to-noise ratio
is too high for noise to be adequately filtered by either the
PFT or CWT. This mirrors past results in natural landscapes,
where a sufficiently large smoothing scale must be selected
to smooth over topographic noise and recover an accurate
CHT (Hurst et al., 2012; Roering et al., 2007). Notably, when
E∗ = 1, the hillslopes are not sufficiently steep to approach
Sc (Figs. 8, 9). Thus, even at the largest smoothing scales,
the CWT and PFT accurately record curvature (Fig. 10a–d).
In natural landscapes, however, valley bottoms will introduce
positive curvatures, which will cause an increase in curva-
ture (i.e., become less negative), at smoothing scales that ap-
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Figure 8. Synthetic hillslopes constructed using Eq. (11). Upper row shows pink noise surfaces that are added to the original hillslope form
(left column); yellow colors correspond with positive deviations from the hillslope (convex noise) and blue with negative deviations (concave
noise). Each row of hillslopes corresponds with range of dimensionless erosion rates, from E∗ = 1–100. Note the increased prominence of
planar hillslopes as E∗ increases; the z axis on each plot may differ. Noise does not vary with E∗; thus the magnitude of noise relative to
hillslope relief is more visually apparent at lower E∗ (see σ = 5 % LH column for clear example). Note that all results in Fig. 10c, g, k, and
o correspond with the third column here (σ = 0.5 % LH). See the Supplement for corresponding figures for σ = 0.1 % LH and σ = 5 % LH
cases.

proach the hillslope length, which has also been utilized to
constrain an optimal smoothing scale (Hurst et al., 2012), and
which we observe in OCR catchments (Fig. 3a, d, g).

We observe that the uncertainty in CHT, which we de-
fine as the standard deviation of CHT along the hilltop, is
highest at the smallest smoothing scales (Figs. S3, S4). No-
tably, we observe for all noise types that at small smoothing
scales of λ= 5–∼ 13 m, CHT-P exhibits higher uncertainty
than CHT-W. As λ increases, the uncertainty in CHT-P and
CHT-W diminishes as topographic noise is progressively fil-
tered. Because red noise includes higher spectral power at
long wavelengths, we observe that the decrease inCHT uncer-
tainty occurs at larger smoothing scales, converging towards
0 at scales of > 17 m (Fig. S4).

We find that when no noise is added to the synthetic hill-
slopes, CHT-P and CHT-W accurately predict CHT at all scales
(Fig. 10a). While there is some deviation between measured
and defined CHT at larger scales, this deviation is exception-
ally small (< 0.5 %) and is primarily a result of edge ef-
fects that may not be fully clipped for both the CWT and
PFT at the edge of the synthetic hillslope domain. Uncer-
tainty in CHT-W and CHT-P is near 0 when no surface noise is
added, with deviations again primarily due to the presence of
edge effects that are not fully clipped off at the hillslope tips

(Fig. S4). Finally, we observe that for a given style and am-
plitude of added topographic noise, the uncertainty in CHT
does not vary with changes in E∗ (Fig. S4). We do not vary
topographic noise as a function of E∗, so equal uncertainty
over a range of E∗ values indicates that variable hillslope
form as defined by E∗ does not affect the uncertainty in CHT
along the hilltop. Given the convolutional form of the CWT
in Eq. (8) and the distributive property of convolutions, given
as

f ∗(h+ k)= (f ∗h)+ (f ∗k), (13)

where f is the wavelet, h is the synthetic hillslope, and k is
surface noise, the standard deviation of CHT remaining con-
stant as a function of E∗ is not unexpected.

4.4.2 Moderate to fast eroding synthetic hillslopes,
E∗ ≥ 10

We observe that both the CWT and PFT produce biased CHT
as E∗ increases. The deviation between the model-defined
and measuredCHT progressively grows for largerE∗. Specif-
ically, for the case of λ= 15 m, when E∗ = 10, we find that
CHT-W and CHT-P are within ∼ 10 % of the defined CHT,
with modest dependencies on the type of topographic noise
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Figure 9. Synthetic hillslopes constructed using Eq. (11). Same as Fig. 8, but with red noise added (see the Supplement for white noise
example). Upper row shows red noise surfaces added to the original hillslope form (left column); yellow colors correspond with positive
deviations from the hillslope (convex noise) and blue with negative deviations (concave noise). Each row of hillslopes corresponds with
dimensionless erosion rates from E∗ = 1–100. Note the increased prominence of planar hillslopes as E∗ increases. Noise does not vary with
E∗; thus the magnitude of noise relative to hillslope relief is more visually apparent at lower E∗ (see σ = 5 % LH column for clear example).
Note that compared to Fig. 8, the surface noise exhibits longer wavelength noise, made apparent by larger concave and convex regions. Note
that all results in Fig. 10d, h, i, and p correspond with the third column here (σ = 0.5 % LH). See the Supplement for corresponding figures
for other σ = 0.1 % LH and σ = 5 % LH cases.

(Fig. 10f, g, h). However, CHT-P and CHT-W are underesti-
mated by > 20 % for E∗ = 30 hillslopes and by 60 % for
E∗ = 100 slopes when λ= 15 m. This deviation occurs for
hillslopes constructed with topographic noise of all types as
well as the synthetic hillslopes without added noise (Fig. 10i–
l). Even for small λ, we observe that CHT is systematically
underestimated. For the case of E∗ = 30, we observe that
CHT-W and CHT-P deviate by 10 %–25 % for λ < 15 m, with
the smallest λ (∼ 5–7 m) exhibiting the least deviation, with
CHT-P and CHT-W falling within ∼ 10 % of the known CHT.
CHT is reasonably recovered at λ= 5 m for the red noise
E∗ = 30 hillslope, despite the noise dominating CHT-W and
CHT-P when λ= 5 m for the E∗ = 1, 10 hillslopes. Given the
added noise is constant between E∗ values, this accurate re-
covery of CHT for E∗ = 30 when λ= 5 m may indicate that
planar hillslopes introduce curvature values sufficiently near-
zero to cancel out the positive (concave) noise. For λ > 15 m,
we observe that CHT is underestimated by at least 25 % for
all E∗ = 30 hillslopes and > 60 % for E∗ = 100 hillslopes.
As λ increases, this deviation systematically grows such that
when λ= 35, CHT is underestimated by half for E∗ = 30
hillslopes and ∼ 80 % for exceptionally narrow hillslopes
where E∗ = 100 (Fig. 10i–p). Importantly, we observe these

major deviations for the hillslopes with no added noise as
well, indicating that topographic noise is not solely responsi-
ble for biased CHT.

5 Discussion

Application of CWTs and PFTs to measureCHT and estimate
erosion rate in soil-mantled landscapes such as the OCR pro-
duces erosion rate values that are in agreement with those
collected from CRNs in stream sediments, though with dra-
matically disparate efficiencies. Yet, we also observe that
while both techniques accurately reproduce hillslope mor-
phology in synthetic landscapes experiencing modest dimen-
sionless erosion rates, both techniques exhibit systematic
bias where dimensionless erosion rate is moderate to high,
calling into question the accuracy of past estimates of erosion
rate in landscapes that are experiencing moderate to rapid
erosion rates. Nevertheless, CWTs are an exciting tool to be
added to hillslope geomorphometric analyses, particularly as
high-resolution topographic datasets continue to grow and
classification of topographic roughness, particularly on the
hillslope scale, continues to improve.
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Figure 10. Ratio of CHT of synthetic hillslopes where E∗ = 1, 10, 30, and 100 measured at various smoothing scales, λ, with no noise added
(first column), σ = 0.5 % LH white noise (second column), pink noise (third column), and red (Brownian) noise (fourth column). Ratio of
CHT is quantified as the quotient of the CHT-W or CHT-P and the model-specified CHT. Black horizontal line in each panel corresponds with
where the measured CHT equals the actual synthetic CHT (i.e., ratio= 1). Points that plot above the line correspond with locations where
CHT is overestimated (sharper hilltops than expected); points that plot below are underestimations (broader hilltops that expected). See text
for details but note the systematic underestimation of CHT as E∗ increases, even for the surface with no added noise. Dashed vertical line
indicates λ= 15 m. Note that y axis differs between E∗ = 1 plots. L07: Lashermes et al. (2007); TC98: Torrence and Compo (1998).

5.1 CHT measurement and erosion rate estimation in
natural landscapes: Oregon Coast Range

We utilized CWTs and PFTs to estimate erosion rate in
a landscape that has been thoroughly studied in past ge-
omorphology studies. Encouragingly, CHT-calculated ero-
sion rates in Hadsall Creek, NFSR, and Bear Creek re-
produce CRN-measured erosion rates from each site. We
also observe, however, that some variability in measured
CHT reinforces the need to use caution when selecting hill-
tops at which curvature will be extracted, especially in
landscapes where topographic noise, including from anthro-
pogenic sources such as roads, as well as landslides and vari-
able lithology, may introduce inaccurate measurements of
curvature. Indeed, despite careful selection of hilltops, cal-
culated CHT exhibits a wide range of values (Figs. 5, 6, S1).
Fortunately, the catchments we have sampled here exhibit
few to no deep-seated landslides and are mapped entirely
within the Tyee Formation, which exhibits little variability
over small spatial scales. Also, while there are numerous for-
est and logging roads throughout the OCR, they are easily
identifiable in lidar data and are limited to a small portion of
hilltops. Hence, while haphazard selection of hilltops with-
out a predefined methodology for trimming hilltops should
be avoided, our observed agreement between estimated ero-
sion rates for all selected hilltops in a catchment and repre-
sentative hilltops emphasizes that mild to moderate trimming
of hilltop masks is sufficient for estimating an accurate ero-
sion rate (Table 2, Figs. 6, S2). Finally, agreement between

TC98 and L07 λ definitions and CRN erosion rates suggests
that either definition is reasonable for calculating CHT. How-
ever, careful and informed selection of λ when calculating
erosion rate remains paramount.

5.2 Rapid calculation of CHT

We have demonstrated that CWTs calculateCHT > 103 times
faster than PFTs at smoothing scales of λ= 5 m (for a 513×
513 single precision grid). At smoothing scales often uti-
lized to estimate CHT (∼ 10–30 m), the CWT operates> 102

times faster (Fig. 4). Even at the largest smoothing scales we
test (up to 197 m), the CWT operates ∼ 14–15 times faster
than the PFT. Importantly, the computational advantage of
the CWT increases with DEM size (Fig. 4c) such that the
∼ 103 computation time advantage that we observe should
be considered a minimum, as most landscape analyses utilize
DEMs larger than the grids we test here. While PFT compu-
tation times can often be substantially reduced by limiting
curvature calculation to the hilltops, this dramatic difference
in curvature calculation time opens many doors for utilizing
hilltop curvature in topographic analyses of landscapes that
require consideration of large spatial scales. What’s more,
the ability of the CWT to operate so efficiently on high-
resolution lidar data does not necessitate that coarse data be
used to analyze large regions, as has generally been the case
for past geomorphic analyses of regional- and continental-
scale bedrock rivers. Rather, the ability of the CWT to calcu-
late hilltop curvature over large spatial scales with such speed
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means that the limiting factor for large landscape analyses
where lidar data are available is not the operating time of the
measurement technique but rather the ability of existing sys-
tems to store vast quantities of high-resolution topographic
data and curvature-related products! In addition to CHT mea-
surement, the rapidity of the CWT will allow for large-scale
analyses of other types of curvature and landscape char-
acteristics well-suited to spectral analyses including map-
ping landslides (Booth et al., 2009; LaHusen et al., 2020),
quantifying surface roughness (Doane et al., 2019; Roth et
al., 2020), and mapping landforms (Black et al., 2017; Clubb
et al., 2014; Passalacqua et al., 2010; Perron et al., 2008;
Struble et al., 2021).

5.3 CHT underestimated in moderate to fast-eroding
landscapes

We find that both the CWT and PFT are unable to repro-
duce accurate CHT at moderate to fast dimensionless erosion
rates. Disagreement between measured and defined CHT for
a given E∗ can be conceptualized primarily as a biasing of
curvature measurement as hilltops progressively narrow and
steepen in response to faster erosion rates. Specifically, since
we utilize a nonlinear diffusion framework to construct the
synthetic hillslopes (Eq. 11), planar side slopes begin to de-
velop and advance towards the hilltop as the hillslope gra-
dient approaches the critical slope angle, Sc, at moderate to
fast E∗. The formation of planar hillslopes means, by defi-
nition, that curvature does not accurately reflect CHT along
the entire hillslope length, as would be the case for a slowly
eroding broad hillslope with constant curvature (i.e., linear
diffusion). The E∗ = 1 synthetic hillslope, while also con-
structed with Eq. (11), can be approximated as experienc-
ing linear diffusion, as slopes are not sufficiently steep to
approach Sc and develop planarity. In this case, even as λ
increases, CHT-W and CHT-P accurately recover the actual
CHT. We observe that at these slow erosion rates (E∗ = 1–
10), the main obstacle to recovering an accurate CHT is to-
pographic noise (Fig. 10a–h). As we have applied here, and
has been previously demonstrated (Hurst et al., 2012; Roer-
ing et al., 2007), careful selection of a λ sufficiently large to
remove such noise, but not so large such that concave valley
bottoms introduce positive curvatures, still allows for accu-
rate calculation of CHT, particularly for E∗ = 1. By contrast,
in cases where E∗ is sufficiently high to develop planar side
slopes, once λ reaches a sufficiently high value to remove
topographic noise, the CWT and PFT kernels have become
sufficiently large to incorporate planar slopes into the curva-
ture measurements, thus underpredicting the actual value of
CHT. In these cases, topographic noise is a secondary imped-
iment to accurate CHT measurement, preventing utilization
of a sufficiently small λ that avoids planar hillslopes. Fur-
thermore, if E∗ is sufficiently large, planar side slopes may
appear close enough to the hilltop to disqualify almost any
smoothing scale, which is clear from our synthetic hillslopes

with no added noise (Fig. 10e, i, m). Importantly, even for
E∗ = 10, planar slopes begin to bias CHT (Fig. 10e).

The grid resolution of digital topographic data has been
recognized to affect measurements of topographic curvature
and hillslope sediment flux (e.g., Ganti et al., 2012; Grieve
et al., 2016b). However, the deviation between known and
measured CHT we note here is intrinsic to the form of hill-
slopes that are described by the nonlinear diffusion model.
As E∗ increases and the hilltop undergoes a concomitant
increase in CHT, a smaller λ is ideally required to avoid
the planar side slopes and accurately calculate CHT. Un-
fortunately, however, λ can only be decreased so much be-
fore topographic noise and stochastic and disturbance-driven
processes begin to overwhelm the calculated curvature val-
ues (Hurst et al., 2012, 2013; Roering et al., 2007; Figs. 3,
10). As such, increasing the resolution of topographic data,
while desirable for characterizing hillslope sediment trans-
port processes, will not by itself alleviate the systematic de-
viation between measured and model-specified CHT, as such
high-resolution data will also be recording the stochastic sig-
nals that deviate from the underlying hillslope form (Roth et
al., 2020). However, improved characterization of the distri-
bution of roughness and microtopography in landscapes and
how they may vary with erosion rate may provide a remedy
for estimating erosion rate from topography and defining a
better-informed λ, particularly in landscapes where hilltops
are conspicuously sharp and where topographic resolution
continues to improve.

Importantly, we stress that neither CWTs nor PFTs are, at
this time, capable of accurately estimating hilltop curvature
at moderate to high E∗, even when λ is small (Fig. 10). We
observe that the CWT and PFT systematically underpredict
CHT when E∗ = 100 (Fig. 10m–p). However, we acknowl-
edge that E∗ values of 100 are perhaps unreasonably high
for most natural landscapes, with perhaps a few notable ex-
ceptions (e.g., Taiwan, Himalaya, New Zealand). More so,
soil production limits (e.g., DiBiase et al., 2012; Heimsath et
al., 1997; Montgomery, 2007; Neely et al., 2019) imply that
these settings may exhibit processes that are not well repre-
sented with the soil creep model employed here. Regardless,
the CWT and PFT clearly underpredict CHT when E∗ = 30
and exhibit underpredicted CHT when E∗ = 10, even in the
most ideal case when synthetic hillslopes have no added
noise. Similar values of E∗ have been recorded in numerous
natural landscapes (Clubb et al., 2020; Grieve et al., 2016a;
Hurst et al., 2019, 2013, 2012; Marshall and Roering, 2014;
Roering et al., 2007). Finally, the addition of topographic
noise to our hillslopes serves to increase uncertainty in mea-
surement of CHT (Figs. 10, S4, S7, S10) but does not result
in systematic over- or underestimation.
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5.4 Does hilltop curvature vary linearly with erosion
rate?

The systematic underestimation of CHT that we observe here
has important implications for interpreting erosion rates and
hillslope surface processes in natural soil-mantled landscapes
that are not eroding slowly. Specifically, our results here urge
caution when applying hilltop curvature measurement tech-
niques to natural soil-mantled landscapes eroding at mod-
erate to rapid rates and where hilltops are correspondingly
sharp. While CHT has been found to generally agree with in-
dependently calculated erosion rates following Eq. (1), the
measurement artifact we have observed here calls into ques-
tion the accuracy of calculated erosion rates from CHT in nat-
ural landscapes in past studies. Recent observations put for-
ward by Gabet et al. (2021) show that hilltop curvature varies
with the square root of erosion rate, which implies a square
root relationship between hillslope diffusivity, D, and ero-
sion rate, representing a deviation from the long-held view
that CHT varies linearly with erosion rate (Eq. 1). Here we
use a synthetic hillslope simulation to explore whether these
findings may be influenced by a systematic bias in the estima-
tion of CHT due to the formation of planar side slopes prox-
imal to hilltops as described above (Fig. 10). Specifically,
we followed the methodology laid out by Gabet et al. (2021)
and reproduced a CHT–E relationship from synthetic hill-
slopes with no added noise. While Gabet et al. (2021) con-
structed synthetic hillslope profiles to account for the effect
of grid spacing on calculated CHT, we additionally consider
the role of smoothing scale, λ, on estimation of CHT. In or-
der to facilitate comparison, we initially selected λ= 14 m,
the same scale that Gabet et al. (2021) applied at each of
their field sites, to calculate CHT. We constructed a series of
synthetic hillslopes described by Eq. (11) for E∗ = 1–100,
which corresponds to erosion rates of∼ 0.01–1 mm yr−1 (for
D = 0.003 m2 yr−1). To constrain how hillslope diffusivity
modulates the erosion rate at which CHT is underestimated,
we also tested a range of diffusivities, spanning D = 0.001–
0.005 m2 yr−1 (assuming ρs

ρr
= 0.5). We used the CWT to cal-

culate curvature; a PFT could be used as well, which would
be consistent with the Gabet et al. (2021) methodology. How-
ever, as we have demonstrated, CHT-P and CHT-W are similar
for both natural hillslopes and synthetic hillslopes with no
added noise (Figs. 3, 10).

We observe that erosion rate and CHT do not vary lin-
early as expected from Eq. (1) for all erosion rates (Fig. 11).
While the relationship between erosion rate and measured
hilltop curvature (we plot the absolute value, |CHT|, to allow
visualization of positive values) is linear as expected from
Eq. (1) for slow erosion rates of 0.01–0.08 mm yr−1 (for the
case of D = 0.003 m2 yr−1), the measured and actual syn-
thetic values of |CHT| begin to clearly diverge for erosion
rates > 0.08 mm yr−1 (Fig. 11a), though some deviation ex-
ists at erosion rates as low as ∼ 0.03 mm yr−1 (Fig. 11b;
blue squares). This deviation occurs at even slower erosion

rates for D = 0.001 m2 yr−1, specifically at erosion rates of
∼ 0.02–0.03 mm yr−1 (Fig. 11a). As this deviation increases
with erosion rate (and E∗), it approximates a square root
relationship between erosion rate and hilltop curvature. Im-
portantly, the erosion rate at which this deviation occurs is
heavily dependent on smoothing scale and diffusivity. For the
range of tested diffusivities (D = 0.001–0.005 m2 yr−1) and
for λ= 14 m and λ= 20 m, we plotted the ratio of measured
CHT to the actual CHT (Fig. 11b). We find that for smallerD,
the deviation between measured and model-defined CHT oc-
curs at slower erosion rates, while λ dictates the magnitude
of deviation (Fig. 11b). For instance, for D = 0.001 m2 yr−1

and λ= 14 m, we find that CHT is underestimated by> 10 %
for erosion rates &0.04 mm yr−1, and when λ= 20 m, CHT
is underestimated by > 15 % for that same erosion rate of
0.04 mm yr−1. Thus, while the erosion rates at which we
observe significant deviation between measured and model-
defined CHT tend to be higher than those found in many soil-
mantled landscapes (for D = 0.003 m2 yr−1 and λ= 14 m)
(Montgomery, 2007), including those tested by Gabet et
al. (2021), the strong dependency of this deviation on dif-
fusivity and smoothing scale warrants caution in interpre-
tations of nonlinear relationships between hilltop curvature
and erosion rate. Furthermore, without a priori knowledge of
the diffusivity, determination of the magnitude ofCHT under-
estimation is challenging to ascertain from topographic data
alone (Fig. 11b). Importantly, the underestimation in CHT we
note here is independent of topographic noise and surface
roughness. Incorporation of such roughness will introduce
additional uncertainties. We encourage future work to inves-
tigate climatic and other factors that dictate hillslope diffu-
sivity and the potential coupling between diffusivity and ero-
sion rate (e.g., Richardson et al., 2019), although care must
be taken to ensure that observed relationships do not result
from measurement artifacts that deviate from the true under-
lying hillslope form.

Current hilltop curvature measurement techniques do not
have a well-defined capability to filter topographic noise that
is inherent to all landscapes and topographic datasets while
maintaining an unbiased value of CHT at high values of E∗

where nearly planar (i.e., negligible curvature) side slopes
become increasingly proximal to hilltops. Essentially, the
zone of hilltop convexity becomes exceedingly narrow (and
thus difficult to estimate) as E∗ increases. As such, estimates
of erosion rates using Eq.(1) should be considered minimum
erosion rates, particularly in landscapes with conspicuously
sharp hilltops (Fig. 10). These results strongly motivate fu-
ture investigation of the structure of topographic noise in
landscapes due to underlying processes such as tree throw
and other sources of bioturbation, as well as noise inher-
ent to digital topographic data. Improved understanding of
the structure of topographic surface roughness may facili-
tate future accurate morphologic estimates of erosion rate in
moderate- to fast-eroding landscapes.
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Figure 11. (a) The absolute value of CHT plotted against erosion rate for synthetic hillslopes constructed for E∗ = 1–100, corresponding to
erosion rates of ∼ 0.01–1 mm yr−1 for diffusivities ranging from D = 0.001–0.005 m2 yr−1 (ρs

ρr
= 0.5). Crosses correspond with the actual

CHT for each synthetic hillslope constructed for a given E∗. Squares are CHT-W, using the L07 λ definition. In this case λ= 14 m. Note the
linear relationship between CHT and erosion rate at small erosion rates, in agreement with Eq. (1). As erosion rate increases, the relationship
between measured CHT and E is no longer linear but could be potentially expressed as a power law. The erosion rate at which this deviation
occurs is visualized in panel (b). An example square root relationship is plotted at these erosion rates for reference (Gabet et al., 2021). Note
example synthetic hillslopes profiles (for D = 0.003 m2 yr−1) spanning the range of erosion rates on right side of panel (y axes of profiles
differ). (b) Ratio of measured CHT and the actual model-defined CHT for synthetic hillslopes constructed for E∗ = 1–100 using a range
of diffusivities (D = 0.001–0.005 m2 yr−1, LH = 100 m) and measured with λ= 14 m (same as panel a) and λ= 20 m. For each case, the
measured CHT deviates from the known value as erosion rate increases. The erosion rate at which this deviation occurs depends on diffusivity
and smoothing scale, λ. Dashed line corresponds to where CHT is underestimated from the true value by 10 %.

6 Conclusions

We utilized 2D continuous wavelet transforms to calculate
hilltop curvature in three catchments in the Oregon Coast
Range that exhibit a diversity of hillslopes. We found that
the measured hilltop curvature values are comparable to
those calculated from fitting 2D polynomial functions to
topography to calculate curvature, a method that has been
commonly applied elsewhere. Both techniques produce es-
timates of erosion rate that are consistent with those in-
dependently constrained from cosmogenic radionuclides in
stream sediments. Specifically, we find that erosion rate cal-
culated with the CWT is∼ 0.156±0.055 mm yr−1 in Hadsall

Creek, 0.1±0.05 mm yr−1 in the North Fork Smith River, and
0.01±0.008 mm yr−1 in three small catchments that drain to
Bear Creek. We further find that the 2D continuous wavelet
transform operates 102 to > 103 times faster than the 2D
polynomial when applied at smoothing scales that are com-
monly used for calculating hilltop curvature (∼ 5–30 m). We
additionally find that the computational advantage of the 2D
continuous wavelet transform increases as digital elevation
models become larger. This dramatic disparity in operation
time opens numerous doors for widespread topographic anal-
ysis as high-resolution topographic data become increasingly
available.
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We additionally test the accuracy of both the wavelet trans-
form and polynomial by constructing synthetic hillslopes
following a nonlinear diffusive hillslope geomorphic trans-
port law. Synthetic hillslopes were constructed with and
without added surface noise of various types (white, pink,
red/Brownian) and exhibited various forms corresponding to
a range of dimensionless erosion rates. We find that both the
wavelet transform and polynomial are able to reproduce hill-
top curvature for slow dimensionless erosion rates (E∗ = 1–
10). However, we also observe that both techniques produce
underestimated values of CHT when E∗ ≥ 10, as planar hill-
slopes begin to systematically bias the calculated curvature at
the hilltop. While this is in part due to the required smooth-
ing of topography to remove added noise, which in natural
landscapes is due to stochastic transport processes as well as
noise inherent in digital topographic data, we also find that
curvature is underestimated on synthetic hillslopes where
there is no added noise. At moderate to high dimensionless
erosion rates (E∗ = 30–100), we find that hilltop curvature
is systematically underestimated as hillslopes become pro-
gressively narrower near the hilltop. This systematic devi-
ation from the defined and measured hilltop curvature has
key implications for predicting erosion rates in soil-mantled
landscapes. In landscapes eroding at moderate to rapid rates,
erosion rates calculated with hilltop curvature should be con-
sidered a minimum. Finally, we demonstrate that underesti-
mation of synthetic hilltop curvature at moderate to fast ero-
sion rates results in apparent power law and square root re-
lationships between erosion rate and hilltop curvature. This
previously observed relationship from natural hillslopes has
led to suggestions that hillslope diffusivity may also vary as
the square root of erosion rate. Our results here, however,
demonstrate that this may be a measurement artifact intro-
duced by planar hillslopes biasing hilltop curvature measure-
ments as hilltops progressively narrow and steepen, not sim-
ply due to poor data resolution. Future hillslope geomorphic
work must more clearly characterize the roughness of soil-
mantled hillslopes and develop methods that smooth and re-
move topographic noise while maintaining an unbiased hill-
top curvature measurement, if hilltop curvature is to be ap-
plied in rapidly eroding landscapes.
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system of definitions of land surface (topographic) curva-
tures, with implications for their application in geoscience
modelling and prediction, Earth-Sci. Rev., 211, 103414,
https://doi.org/10.1016/j.earscirev.2020.103414, 2020.

Mohren, J., Binnie, S. A., Ritter, B., and Dunai, T. J.: De-
velopment of a steep erosional gradient over a short
distance in the hyperarid core of the Atacama Desert,
northern Chile, Global Planet. Change, 184, 103068,
https://doi.org/10.1016/j.gloplacha.2019.103068, 2020.

Montgomery, D. R.: Slope distributions, threshold hillslopes, and
steady-state topography, Am. J. Sci., 301, 432–454, 2001.

Montgomery, D. R.: Soil erosion and agricultural sustain-
ability, P. Natl. Acad. Sci. USA, 104, 13268–13272,
https://doi.org/10.1073/pnas.0611508104, 2007.

Moore, I. D., Grayson, R. B., and Ladson, A. R.: Digital ter-
rain modelling: A review of hydrological, geomorphologi-
cal, and biological applications, Hydrol. Process., 5, 3–30,
https://doi.org/10.1002/hyp.3360050103, 1991.

Mudd, S. M.: Detection of transience in eroding landscapes: De-
tection of Transience in Eroding Landscapes, Earth Surf. Proc.
Land., 42, 24–41, https://doi.org/10.1002/esp.3923, 2017.

Mudd, S. M. and Furbish, D. J.: Lateral migration of hillcrests in
response to channel incision in soil-mantled landscapes, J. Geo-
phys. Res., 110, F04026, https://doi.org/10.1029/2005JF000313,
2005.

Mudd, S. M. and Furbish, D. J.: Responses of soil-mantled hill-
slopes to transient channel incision rates, J. Geophys. Res., 112,
F03S18, https://doi.org/10.1029/2006JF000516, 2007.

Neely, A. B., DiBiase, R. A., Corbett, L. B., Bierman, P. R., and
Caffee, M. W.: Bedrock fracture density controls on hillslope
erodibility in steep, rocky landscapes with patchy soil cover,
southern California, USA, Earth Planet. Sc. Lett., 522, 186–197,
https://doi.org/10.1016/j.epsl.2019.06.011, 2019.

Oregon Lidar Consortium and Oregon Department of Geology and
Mineral Industries: available at: https://www.oregongeology.org/
lidar/, last access: 14 September 2021.

Ouimet, W. B., Whipple, K. X., and Granger, D. E.: Beyond
threshold hillslopes: Channel adjustment to base-level fall in
tectonically active mountain ranges, Geology, 37, 579–582,
https://doi.org/10.1130/G30013A.1, 2009.

Passalacqua, P., Do Trung, T., Foufoula-Georgiou, E., Sapiro,
G., and Dietrich, W. E.: A geometric framework for
channel network extraction from lidar: Nonlinear diffu-
sion and geodesic paths, J. Geophys. Res., 115, F01002,
https://doi.org/10.1029/2009JF001254, 2010.

https://doi.org/10.5194/esurf-9-1279-2021 Earth Surf. Dynam., 9, 1279–1300, 2021

https://doi.org/10.1002/esp.209
https://doi.org/10.1306/AD462B37-16F7-11D7-8645000102C1865D
https://doi.org/10.1306/AD462B37-16F7-11D7-8645000102C1865D
https://doi.org/10.1029/2011JF002057
https://doi.org/10.1126/science.1241791
https://doi.org/10.1016/j.epsl.2019.06.018
https://doi.org/10.1016/j.rse.2004.08.013
https://doi.org/10.1016/j.jsg.2012.07.009
https://github.com/MarcinKonowalczyk/randnd/
https://doi.org/10.1126/sciadv.aba6790
https://doi.org/10.1038/ngeo1479
https://doi.org/10.1029/2007GL031140
https://doi.org/10.1130/0016-7606(1969)80[9:TFUTAT]2.0.CO;2
https://doi.org/10.1130/0016-7606(1969)80[9:TFUTAT]2.0.CO;2
https://doi.org/10.1029/2000JE001333
https://doi.org/10.1002/2013JF003004
https://doi.org/10.1126/sciadv.1500715
https://doi.org/10.1016/j.earscirev.2020.103414
https://doi.org/10.1016/j.gloplacha.2019.103068
https://doi.org/10.1073/pnas.0611508104
https://doi.org/10.1002/hyp.3360050103
https://doi.org/10.1002/esp.3923
https://doi.org/10.1029/2005JF000313
https://doi.org/10.1029/2006JF000516
https://doi.org/10.1016/j.epsl.2019.06.011
https://www.oregongeology.org/lidar/
https://www.oregongeology.org/lidar/
https://doi.org/10.1130/G30013A.1
https://doi.org/10.1029/2009JF001254


1300 W. T. Struble and J. J. Roering: Hilltop curvature as a proxy for erosion rate

Pelletier, J. D. and Field, J. P.: Predicting the roughness
length of turbulent flows over landscapes with multi-
scale microtopography, Earth Surf. Dynam., 4, 391–405,
https://doi.org/10.5194/esurf-4-391-2016, 2016.

Penck, W.: Morphological Analysis of Landforms, Macmillan, In-
dianapolis, Indiana, 1953.

Penserini, B. D., Roering, J. J., and Streig, A.: A morphologic proxy
for debris flow erosion with application to the earthquake defor-
mation cycle, Cascadia Subduction Zone, USA, Geomorphology,
282, 150–161, https://doi.org/10.1016/j.geomorph.2017.01.018,
2017.

Perron, J. T. and Royden, L.: An integral approach to bedrock
river profile analysis, Earth Surf. Proc. Land., 38, 570–576,
https://doi.org/10.1002/esp.3302, 2013.

Perron, J. T., Kirchner, J. W., and Dietrich, W. E.: Spec-
tral signatures of characteristic spatial scales and nonfrac-
tal structure in landscapes, J. Geophys. Res., 113, F04003,
https://doi.org/10.1029/2007JF000866, 2008.

Personius, S. F.: Late Quaternary stream incision and up-
lift in the forearc of the Cascadia subduction zone, west-
ern Oregon, J. Geophys. Res.-Sol. Ea., 100, 20193–20210,
https://doi.org/10.1029/95JB01684, 1995.

PRISM Climate Group: PRISM Climate Group: Oregon State
University, Corvallis, OR, USA, available at: https://prism.
oregonstate.edu (last access: 14 September 2021), 2016.

Reneau, S. L. and Dietrich, W. E.: Erosion rates in the southern Ore-
gon Coast Range: Evidence for an equilibrium between hillslope
erosion and sediment yield, Earth Surf. Proc. Land., 16, 307–322,
https://doi.org/10.1002/esp.3290160405, 1991.

Richardson, P. W., Perron, J. T., and Schurr, N. D.: Influences of cli-
mate and life on hillslope sediment transport, Geology, 47, 423–
426, https://doi.org/10.1130/G45305.1, 2019.

Roberts, G. G. and White, N.: Estimating uplift rate histories from
river profiles using African examples, J. Geophys. Res., 115,
B02406, https://doi.org/10.1029/2009JB006692, 2010.

Roering, J. J.: How well can hillslope evolution models “explain”
topography? Simulating soil transport and production with high-
resolution topographic data, Geol. Soc. Am. Bull., 120, 1248–
1262, https://doi.org/10.1130/B26283.1, 2008.

Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for
nonlinear, diffusive sediment transport on hillslopes and impli-
cations for landscape morphology, Water Resour. Res., 35, 853–
870, https://doi.org/10.1029/1998WR900090, 1999.

Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Hillslope evolu-
tion by nonlinear, slope-dependent transport: Steady state mor-
phology and equilibrium adjustment timescales, J. Geophys.
Res., 106, 16499–16513, https://doi.org/10.1139/t01-031, 2001.

Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Characterizing
structural and lithologic controls on deep-seated landsliding: Im-
plications for topographic relief and landscape evolution in the
Oregon Coast Range, USA, Geol. Soc. Am. Bull., 117, 654–668,
https://doi.org/10.1130/B25567.1, 2005.

Roering, J. J., Perron, J. T., and Kirchner, J. W.: Func-
tional relationships between denudation and hillslope
form and relief, Earth Planet. Sc. Lett., 264, 245–258,
https://doi.org/10.1016/j.epsl.2007.09.035, 2007.

Roering, J. J., Marshall, J., Booth, A. M., Mort, M., and
Jin, Q.: Evidence for biotic controls on topography and
soil production, Earth Planet. Sc. Lett., 298, 183–190,
https://doi.org/10.1016/j.epsl.2010.07.040, 2010.

Roth, D. L., Doane, T. H., Roering, J. J., Furbish, D. J.,
and Zettler-Mann, A.: Particle motion on burned and vege-
tated hillslopes, P. Natl. Acad. Sci. USA, 117, 25335–25343,
https://doi.org/10.1073/pnas.1922495117, 2020.

Royden, L. and Perron, J. T.: Solutions of the stream power
equation and application to the evolution of river lon-
gitudinal profiles, J. Geophys. Res.-Earth, 118, 497–518,
https://doi.org/10.1002/jgrf.20031, 2013.

Scherler, D. and Schwanghart, W.: Drainage divide networks –
Part 1: Identification and ordering in digital elevation models,
Earth Surf. Dynam., 8, 245–259, https://doi.org/10.5194/esurf-
8-245-2020, 2020.

Schumm, S. A.: Rates of Surficial Rock Creep on Hill-
slopes in Western Colorado, Science, 155, 560–562,
https://doi.org/10.1126/science.155.3762.560, 1967.

Schwanghart, W. and Scherler, D.: Short Communication: Topo-
Toolbox 2 – MATLAB-based software for topographic anal-
ysis and modeling in Earth surface sciences, Earth Surf.
Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014
(available at: https://topotoolbox.wordpress.com/download, last
access: 14 September 2021).

Stock, J. and Dietrich, W. E.: Valley incision by debris flows: Evi-
dence of a topographic signature, Water Resour. Res., 39, 1089,
https://doi.org/10.1029/2001WR001057, 2003.

Strahler, A. N.: Equilibrium theory of erosional slopes approached
by frequency distribution analysis; Part 1, Am. J. Sci., 248, 673–
696, https://doi.org/10.2475/ajs.248.10.673, 1950.

Struble, W. T.: HilltopCurvature, GitHub [code], available at: https:
//github.com/wtstruble, last access: 14 September 2021.

Struble, W. T., Roering, J. J., Dorsey, R. J., and Ben-
dick, R.: Characteristic Scales of Drainage Reorganiza-
tion in Cascadia, Geophys. Res. Lett., 48, e2020GL091413,
https://doi.org/10.1029/2020GL091413, 2021.

Sweeney, K. E., Roering, J. J., Almond, P., and Reckling, T.: How
steady are steady-state landscapes? Using visible–near-infrared
soil spectroscopy to quantify erosional variability, Geology, 40,
807–810, https://doi.org/10.1130/G33167.1, 2012.

Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Anal-
ysis, B. Am. Meteorol. Soc., 79, 61–78, 1998.

Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., and Chen,
C.-Y.: Dynamic Reorganization of River Basins, Science, 343,
1248765–1248765, https://doi.org/10.1126/science.1248765,
2014.

Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spy-
ropolou, K., Crosby, B., and Sheehan, D.: Tectonics from topog-
raphy: Procedures, promise, and pitfalls, in: Special Paper 398:
Tectonics, Climate, and Landscape Evolution, Geological Soci-
ety of America, 55–74, https://doi.org/10.1130/2006.2398(04),
2006.

Earth Surf. Dynam., 9, 1279–1300, 2021 https://doi.org/10.5194/esurf-9-1279-2021

https://doi.org/10.5194/esurf-4-391-2016
https://doi.org/10.1016/j.geomorph.2017.01.018
https://doi.org/10.1002/esp.3302
https://doi.org/10.1029/2007JF000866
https://doi.org/10.1029/95JB01684
https://prism.oregonstate.edu
https://prism.oregonstate.edu
https://doi.org/10.1002/esp.3290160405
https://doi.org/10.1130/G45305.1
https://doi.org/10.1029/2009JB006692
https://doi.org/10.1130/B26283.1
https://doi.org/10.1029/1998WR900090
https://doi.org/10.1139/t01-031
https://doi.org/10.1130/B25567.1
https://doi.org/10.1016/j.epsl.2007.09.035
https://doi.org/10.1016/j.epsl.2010.07.040
https://doi.org/10.1073/pnas.1922495117
https://doi.org/10.1002/jgrf.20031
https://doi.org/10.5194/esurf-8-245-2020
https://doi.org/10.5194/esurf-8-245-2020
https://doi.org/10.1126/science.155.3762.560
https://doi.org/10.5194/esurf-2-1-2014
https://topotoolbox.wordpress.com/download
https://doi.org/10.1029/2001WR001057
https://doi.org/10.2475/ajs.248.10.673
https://github.com/wtstruble
https://github.com/wtstruble
https://doi.org/10.1029/2020GL091413
https://doi.org/10.1130/G33167.1
https://doi.org/10.1126/science.1248765
https://doi.org/10.1130/2006.2398(04)

	Abstract
	Introduction
	Study site: Oregon Coast Range
	Methods
	Curvature calculation: polynomial fit and continuous wavelet transform
	Computational efficiency of curvature values
	Hilltop extraction
	Erosion rates estimated from hilltop curvature
	Erosion rates from cosmogenic radionuclides

	Construction of synthetic hillslopes to test CHT measurements

	Results
	Computational efficiency of CWT and PFT curvature calculation
	Similarity of CHT-P and CHT-W
	Erosion rate calculated with CHT and cosmogenic radionuclides
	Testing of CHT extraction with synthetic hillslopes
	Slowly eroding synthetic hillslopes, E*=1
	Moderate to fast eroding synthetic hillslopes, E*10


	Discussion
	CHT measurement and erosion rate estimation in natural landscapes: Oregon Coast Range
	Rapid calculation of CHT
	CHT underestimated in moderate to fast-eroding landscapes
	Does hilltop curvature vary linearly with erosion rate?

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

