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Abstract. Soil thickness plays a central role in the interactions between vegetation, soils, and topography, where
it controls the retention and release of water, carbon, nitrogen, and metals. However, mapping soil thickness, here
defined as the mobile regolith layer, at high spatial resolution remains challenging. Here, we develop a hybrid
model that combines a process-based model and empirical relationships to estimate the spatial heterogeneity of
soil thickness with fine spatial resolution (0.5 m). We apply this model to two aspects of hillslopes (southwest-
and northeast-facing, respectively) in the East River watershed in Colorado. Two independent measurement
methods – auger and cone penetrometer – are used to sample soil thickness at 78 locations to calibrate the local
value of unconstrained parameters within the hybrid model. Sensitivity analysis using the hybrid model reveals
that the diffusion coefficient used in hillslope diffusion modeling has the largest sensitivity among all input
parameters. In addition, our results from both sampling and modeling show that, in general, the northeast-facing
hillslope has a deeper soil layer than the southwest-facing hillslope. By comparing the soil thickness estimated
between a machine-learning approach and this hybrid model, the hybrid model provides higher accuracy and
requires less sampling data. Modeling results further reveal that the southwest-facing hillslope has a slightly
faster surface soil erosion rate and soil production rate than the northeast-facing hillslope, which suggests that
the relatively less dense vegetation cover and drier surface soils on the southwest-facing slopes influence soil
properties. With seven parameters in total for calibration, this hybrid model can provide a realistic soil thickness
map with a relatively small amount of sampling dataset comparing to machine-learning approach. Integrating
process-based modeling and statistical analysis not only provides a thorough understanding of the fundamental
mechanisms for soil thickness prediction but also integrates the strengths of both statistical approaches and
process-based modeling approaches.

1 Introduction

The soil layer is an element of the critical zone where wa-
ter, carbon, nitrogen, and other elements exchange between
air and plants and the subsurface. The thickness of a soil
layer regulates the hydrologic response, including surface
and base flow runoff, water partitioning, evapotranspiration,
plant-available water, and water and nutrient residence time
(Fan et al., 2019). It also determines hillslope stability (or
landslide potential), channel initiation, drainage density, and
other geomorphic processes (Dietrich et al., 1995). More-

over, soils hold the largest reservoir of organic carbon in the
terrestrial ecosystem and function as a reservoir of other ele-
ments’ accumulation, sequestration, and biogeochemical re-
actions (Grant and Dietrich, 2017; Tokunaga et al., 2019).
Therefore, an accurate soil thickness map can improve the
estimation of water, carbon, nitrogen, and other elements dy-
namics for hydrologic and biogeochemical modeling (Car-
valhais et al., 2014; Fan et al., 2019; Li et al., 2020; Patton
et al., 2019; Pelletier et al., 2016). However, mapping soil
thickness remains one of the key uncertainties in land sur-
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face process models because of the complexity of factors that
affect soil thickness (Jackson et al., 2017; West et al., 2012;
Pelletier et al., 2018; Tesfa et al., 2009).

The soil layer, here defined as the mobile regolith layer,
extends from the land surface to the top of the saprolite layer
or bedrock (if there is no saprolite layer). Process-based ge-
omorphologic models describe the soil thickness with mass
conservation based on the balance between (1) soil transport
(i.e., erosion and deposition) on the land surface and (2) soil
production resulting from the bedrock-to-soil or saprolite-
to-soil weathering at the bottom of the soil layer (Catani et
al., 2010; Dietrich et al., 1995; Heimsath et al., 2001, 1997;
Nicótina et al., 2011; Roering et al., 1999, 2001; Tesfa et
al., 2009). These two processes are controlled by vegetation
cover, topographic gradient, biogenic processes, and climate
forcing. The surface soil transport is expressed as a diffusive-
like process, either linear or nonlinear, with topographic gra-
dient (Grant and Dietrich, 2017; Pelletier and Rasmussen,
2009; Temme and Vanwalleghem, 2016; Vanwalleghem et
al., 2013). The soil production rate is usually expressed as
relationships of exponential decay (Heimsath et al., 1997) or
“bell-shaped” along soil depth (Heimsath et al., 2009; Pel-
letier and Rasmussen, 2009). However, previous studies have
focused exclusively on erosional areas near ridges where the
erosion rate keeps pace with soil production rate. In areas
where the topography has convergent (mostly depositional)
zones, which are commonly revealed in a Light Detection
and Ranging (lidar) digital elevation model (DEM) for high
spatial resolution modeling, these mechanistic models fail to
capture the full soil thickness distribution. The missing part
of soil thickness estimation in convergent areas underlines
the need for a hybrid approach that couples mechanistic and
empirical methods to map soil thickness.

Many studies have used curvature – defined as the second-
order derivative of elevation – as a proxy for soil thickness
(Patton et al., 2018; Tesfa et al., 2009) because hillslope cur-
vature has an inverse (either linear or nonlinear) relation-
ship with soil production rate based on mass conservation
laws (Dietrich et al., 1995; Heimsath et al., 1997; Jackson et
al., 2017). However, some studies show that curvature is a
secondary or less significant variable than other topographic
or land cover features in predicting soil thickness (Roering et
al., 2010; Shangguan et al., 2017; Taylor et al., 2013; Tesfa
et al., 2009). In addition, curvature is proven to show a weak
correlation to soil thickness in catchments with high curva-
ture variability (Patton et al., 2018). One of the reasons that
curvature fails to be the dominant explanatory variable could
be that curvature is sensitive to the DEM resolution even
among adjacent hillslopes (Patton et al., 2018; Pelletier and
Rasmussen, 2009). Moreover, because the relationship be-
tween curvature and other features are difficult to generalize
or transfer from one study site to another site, it is not ideal
to rely on curvature alone to estimate soil thickness. Despite
this, the derivation of an empirical relationship may serve the

needs for partial areas in a landscape such as zones with con-
vergent topography (Patton et al., 2018).

Here we present a hybrid model that combines a process-
based model with empirical relationships to explore the fun-
damental mechanisms of soil thickness and estimate the spa-
tial variability. The advancement embodied in this hybrid
model is that it generalizes the calculations needed to predict
soil thickness and is therefore applicable to various sites. In
the methodology section, we introduce our hybrid modeling
approach and relevant concepts such as curvature calculation
with different DEM smoothing methods, sensitivity analy-
sis of model parameters, and a machine-learning approach
as a comparison with the hybrid model. This model was ap-
plied with a high-resolution DEM (i.e., 0.5 m) at two adjacent
mountainous hillslopes in the East River watershed in Col-
orado, USA. Data from field observations at this site allow
for calibration of the model. We first investigate the impacts
of DEM resolution on the topographic curvature, an essential
variable in this hybrid model, and then discuss the sensitivity
of parameters to determine the importance of each parame-
ter. The spatial maps of soil thickness, surface transport rate,
and soil production rate are then presented. A random forest
machine-learning model is used to correlate and predict soil
thickness based on topographic and vegetation features and
is compared with the hybrid model.

2 Methodology

2.1 Hybrid modeling approach

We introduce a hybrid approach that couples two methods –
a mass conservation law (Dietrich et al., 1995; Roering et al.,
1999, 2001; Yan et al., 2019) and an empirical relationship
(Patton et al., 2018) – to overcome the limitations of each in-
dividual method. The mass conservation method is suitable
for a divergent topography where erosion is the dominant
process, while the empirical relationship is applied to a con-
vergent topography where deposition is the dominant pro-
cess. In this hybrid model, seven parameters (Table 1) need
to be calibrated for a specific hillslope area. In addition, we
synthesize methods that are used to investigate the impacts
of DEM resolution on topographic curvature, which is a key
input variable for soil thickness in the empirical relationship.
A diagram that highlights the workflow is shown in Fig. S1.

2.1.1 Mass conservation method

The mass conservation equation of soil thickness that com-
bines soil surface transport and soil production processes can
be expressed as follows:

∂h

∂t
= P −∇ · qd −∇ · qs, (1)

where h is soil thickness [L], t is time [T], P is soil pro-
duction rate [L/T], qd and qs is the volume flux of sedi-
ment transport per unit width resulting from diffusion-driven
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Table 1. Parameters used for fitting models of north-facing and south-facing hillslopes.

Symbol Physical meaning unit Value range North-facing hillslope South-facing hillslope

ho Normalized soil depth m 0.12–0.22a,b,c,d,e 0.20 0.18

Po Potential weathering rate or the
maximum bedrock weathering
rate

m/yr 4.0× 10−5–1.4× 10−4b,c,d,e 1.0× 10−4 6.0× 10−5

h Spatially mean soil thickness
among depositional areas

m 0.33–0.61f 0.55 0.44

a The slope of the linear relation-
ship between curvature and
soil thickness among deposi-
tional areas

m2 42–55f 50 45

Kd Topography diffusion coeffi-
cient, which is controlled by
vegetation cover, grain size, an-
imal disturbance, etc.

m2/yr 3.6× 10−4–2.4× 10−3e,g 1.18× 10−3 1.8× 10−3

Ks Soil erodibility by overland
flow erosion, which is con-
trolled by overland flow rate,
soil cohesiveness, grain size,
etc.

m/yr 1.0× 10−2–1.0× 10−5h 1× 10−5 2× 10−5

Ethre The threshold value of annual
soil thickness erosion rate that
determines which model to use
– mass conservation method or
Patton’s method

m/yr 2.0× 10−7–3.2× 10−6 2× 10−6 1.4× 10−6

a We defined h as the distance along the normal direction to the land surface, which gives e−hcosθ/ho , where θ is the slope of the land surface in degrees (Pelletier and Rasmussen,
2009). In this case, ho is adjusted to include cosθ when referring to other literature. b Heimsath et al. (1997). c Heimsath et al. (2000). d Heimsath et al. (2005). e Dietrich et
al. (1995). f Patton et al. (2019). g Fernandes and Dietrich (1997). h Kilinc and Richardson (1973).

and overland flow-driven erosion, respectively [L2/T]. The
diffusion-driven soil transport rate ∇ · qd is the outcome of
combining wind erosion, biogenic disturbance, soil creep,
and rain drop splash. On steep slopes, the following nonlinear
slope-dependent transport law is often used for topographic
analysis and numerical experiments and has been success-
fully demonstrated by field studies and laboratory experi-
ments (Andrews and Bucknam, 1987; Perron, 2011; Roering
et al., 1999, 2001):

qd =−
Kd∇η

1− (∇η/Sc)2 , (2)

where Kd is the diffusion coefficient [L2/T ] and Sc = 1.25
(Roering et al., 1999) is a critical surface slope. The equation
implies that when the slope (∇η) is far less than Sc, the re-
lationship between diffusion flux and slope is almost linear;
when the slope approaches Sc, qd increases rapidly.

The overland flow-driven soil transport rate ∇ · qs is ex-
pressed as the spatial divergence of stream power (Yan et
al., 2019):

∇ · qs =
qs,out−6qs,in

ds
, (3a)

qs =Ks(HwS)β , (3b)

whereKs is the soil erodibility coefficient [L2−α/T ], S is the
slope along-flow direction [–], and β is an empirical constant
for surface erosion, where β = 1.68 (Yan et al., 2019). Hw is
surface water depth [L], which is expressed in a 2-D diffusive
form (Lal, 1998):

∂Hw

∂t
=
∂

∂x

(
Dh
∂Hw

∂x

)
+
∂

∂y

(
Dh
∂Hw

∂y

)
, (4)

whereDh is a diffusion coefficient controlled by water depth,
land surface gradient, and Manning’s coefficient (Lal, 1998;
Yan et al., 2019).

The soil production rate function has been developed to
calculate only the development of mobile soil (it excludes
the immobile saprolite layer) (Heimsath et al., 1997). The
calculation of the soil production rate makes use of two as-
sumptions: (1) production rate exponentially decreases with
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soil thickness, and (2) production rate has a humped rela-
tionship (or a “belly-shape”) along soil depth (Dietrich et al.,
1995; Heimsath et al., 2001; Pelletier and Rasmussen, 2009).
Because the humped relationship is not yet well validated by
field observations, in this study we rely only on the exponen-
tial model to represent soil production rate:

P =
ρr

ρs

1
cosθ

Poe
−hcosθ/ho , (5)

where ρr and ρs are bedrock and soil bulk density, respec-
tively, [M/L3]. The mean value of the soil bulk density at
sampling sites is 0.948 [g/cm3], and the bedrock bulk density
for weathered shale from our deep samples is estimated to be
1.26 [g/cm3]. Po [L/T ] and ho [L] are empirical constants
for soil production, and θ is the slope of the land surface in
degree [–] because the direction of soil thickness is perpen-
dicular to the land surface.

Under the assumption of steady-state conditions, which
have been observed in several mountainous area studies (Di-
etrich et al., 1995; Vanwalleghem et al., 2013), we can solve
soil thickness from the mass conservation equation. The va-
lidity of this assumption for the site studied here will be pre-
sented in Sect. 3. By adopting this assumption, the soil thick-
ness (h) can be solved from the mass conservation equation
(Eq. 1) as follows:

ρr

ρs

1
cosθs

Poe
−hcosθ/ho −∇ · qd−∇ · qs = 0. (6)

The soil thickness value h can be directly solved here be-
cause ∇ ·qd and ∇ ·qs are independent of soil thickness. One
issue that arises here is that there is no real number for soil
thickness if ∇ · qd+∇ · qs < 0 where there is a continuous
depositing of surface soil. Therefore, we introduce Patton’s
method (Patton et al., 2018) in depositional areas to over-
come this drawback in the following section.

2.1.2 An empirical approach for depositional areas

Based on field measurements among five mountainous wa-
tersheds, Patton et al. (2018) found that soil thickness has a
linear relationship with curvature:

h= a∇ ·∇η+h, (7)

where h is the spatial mean value of soil thickness and a is
a constant value which is determined by having a negative
linear relationship with the standard deviation of curvature.
In our model, we take a as an independent parameter instead
of being calculated based on curvature, which adds one more
degree of freedom to the model.

2.1.3 Investigation of the lidar DEM smoothing range for
curvature

In the empirical equation (Eq. 7), the curvature (∇ ·∇η) is
the only spatial variable that determines the soil thickness.

Further, the topographic curvatures are very sensitive to the
resolution of the DEM. If the grid size of the DEM is large,
then the topography could be over-smoothed, thus underes-
timating the actual curvature. On the other hand, if the grid
size of elevation is small, then there could be temporary pits
or burrows in the topography, which can result in large lo-
cal curvature values that do not represent the soil production
processes. To identify a reasonable range of DEM resolution
for calculating ∇ ·∇η, we explored three approaches to re-
produce the DEM by (1) smoothing the DEM over space, (2)
polynomial fitting of the DEM, and (3) smoothing the DEM
over time. The smoothed DEM is for calculating curvature
in the imperial method only (Eq. 7), and the rest of all other
calculations (Eqs. 1–6) still use the original lidar DEM as the
input.

Smoothing of the DEM over space is done by replacing the
value of a 2-D grid cell with the mean value of its surround-
ing neighbors. The size of its neighbor cells follows 31x (8
neighbors), 51x (24 neighbors), 71x (48 neighbors), . . . ,
(2N + 1)1x ((2N + 1)2

− 1 neighbors), respectively, where
1x is the original resolution (i.e., 0.5 m) and N is an integer;
following this, a moving window replaces the value of every
single 2-D grid cell in the 0.5 m lidar. The polynomial fitting
of the DEM is achieved by fitting a second-order polynomial
to grid cells within a specified radius and repeating this at
each grid cell within the study area. For example, the eleva-
tion is fitted by η = a1x

2y2
+b1x

2y+b2xy
2
+c1x

2
+c2y

2
+

dxy+e1x+e2y+f , where a1, b1b2c1, c2d , e1, e2, and f are
parameters to fit the polynomial curve. The curvature value
is ∇ ·∇η = 2c1+2c2. The DEM smoothing over time is per-
formed by discretizing the diffusion equation ∂η

∂t
=Kd∇·∇η,

which gives ηn = η1+1t×Kd6
n−1
i=1 ∇ ·∇ηi , where subscript

i, 1, and n denote the time step. A longer time period (higher
n value) results in a smoother topography, so the DEM is
smoothed into different levels with different n values. To
the authors’ knowledge, the smoothing over time approach
is new and original in this study.

2.1.4 Combine the mass conservation method with the
empirical method

For the mass conservation equation, the steady-state assump-
tion is used for the soil thickness estimation in the assump-
tion that the soil production balances the physical erosion,
as used in other studies (Pelletier and Rasmussen, 2009;
Pelletier et al., 2016; Dietrich et al., 1995). Therefore, the
mass conservation method with the steady-state assumption
can be used to solve the soil thickness at erosional sites but
has a limitation at depositional sites (Eq. 6, Dietrich et al.,
1995). Patton’s method is better adapted to depositional sites.
However, it can provide negative values of soil thickness
at erosional sites where there are zones with high negative-
curvature values. In addition, in a low gradient and diver-
gent area, if the soil transport rate is assumed as a linear
relationship with curvature (i.e., ∇ · qd =−Kd∇ ·∇η, and
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∇ ·qs = 0.0), then Eq. (6) can be further simplified in that the
soil thickness has a natural logarithm relationship with curva-
ture (i.e., h=−m× ln (∇ ·∇η)+C, wherem and C are con-
stant parameters that can be calibrated from field sampling
data. However, Patton’s method (Patton et al., 2018) always
assumes a linear relationship between soil thickness and cur-
vature. This may be why his empirical relationship does not
work very well in the erosional areas. However, this can be
compensated for by using the mass conservation method.

We combine the two methods by applying the mass con-
servation method to most erosional sites and then applying
the empirical method to all depositional sites and a poten-
tially small portion of erosional sites where the curvature val-
ues are negative but close to zero. The threshold value used
to separate these two methods is represented as Ethre [L/T ]
(Ethre ≥ 0):{
∇ · qd+∇ · qs >Ethre, mass conservation,
∇ · qd+∇ · qs ≤ Ethre, Patton’s method, (8)

where the threshold, Ethre, is a condition of the soil erosion
rate and equal to or larger than zero value. If ∇ ·qd+∇ ·qs >

Ethre at a 2-D grid cell, then this cell must be an erosional
site; if ∇ ·qd+∇ ·qs ≤ Ethre, then this cell can be either a de-
positional site (if∇·qd+∇·qs ≤ 0) or a slightly erosional site
(if 0< ∇ · qd+∇ · qs ≤ Ethre). In most of areas, a divergent
topography corresponds to erosional areas and vice versa for
depositional areas. However, here we use the transport rate
instead of the curvature as the criteria to choose between the
two methods because there are possibly sites that are conver-
gent but erosional where overland flow erosion is stronger
than the diffusive deposition. In other words, areas where
∇ ·qd+∇ ·qs ≤ 0, it must be a convergent area and undergo-
ing deposition, but if it is a convergent area, it is unnecessary
to be ∇ · qd+∇ · qs ≤ 0. In addition, we assign Ethre ≥ 0 in-
stead of equal to zero, aiming to provide more flexibility to
switch between the two methods. Overall, Ethre is supposed
to be very close to zero. We conducted a grid search to cali-
brate the parameters and discuss the corresponding posterior
distribution of parameters in Sect. 4.3.

2.2 Sensitivity analysis of the model parameters

We introduce the Morris one-step-at-a-time (OAT) method
for a sensitivity analysis of parameters used in the hybrid
model. Given the uncertainty of the input parameters (Ta-
ble 1), we applied the Morris OAT method to quantify pa-
rameter sensitivity (Campolongo et al. 2007; Morris, 1991).
The Morris method provides global sensitivity indices over
the parameter space at a relatively limited computational cost
(Wainwright et al., 2014). With a set of k parameters {x} in
that {xi |i = 1,2, . . .,k}, the output from the combined model
is f ({x}). The Morris method first generates a randomly as-
signed set of parameters in a discrete parameter space and
then changes one parameter at a time. The (k+ 1) simula-
tions are required to complete one path, which has one fixed

parameter but changes all other parameters. This path is re-
peated for randomly generated parameter sets, with the total
run being r(k+ 1) where the number of paths is r . By nor-
malizing parameters and uniformly spacing from 0 to 1 with
(p− 1) intervals, the elementary effect is given as follows:

EEi =
1
τ

f (x1,x2, . . .,xi−1,xi +1+ xi+1, . . .,xk)− f (X)
1

, (9)

where τ is a scaling factor, {x} is a randomly selected param-
eter set, and the fixed increment1= p/ (2(p− 1)) (Campo-
longo et al., 2007).

Here, we use iTOUGH2 (Wainwright et al., 2014) to gen-
erate sets of parameters. Then we sample r(= 20) elemen-
tary effects for each parameter. The standard deviation (σ )
and absolute of the mean value (|µ|) of elementary effect of
each parameter can be used to investigate the importance and
nonlinearity in the combined model. To avoid the influence
of non-monotonicity when some effects cancel each other out
(Campolongo et al., 2007), we use the absolute mean value
instead of the mean value in this study. Our work focuses on
the sensitivity of how soil thickness is dictated by landscape
characteristics such as the hillslope diffusion coefficient, soil
erosion coefficient, and the saprolite-to-soil weathering ca-
pacity.

2.3 Random forest regression

In addition to the hybrid modeling approaches, we use a
machine-learning approach random forest (Breiman, 2001)
to predict the soil thickness for comparison purposes to the
hybrid method. The features to train the model are topo-
graphic and land cover data obtained from remote sensing.
The random forest analysis also helps to identify important
predictors for soil thickness. Random forest is capable of
averaging the generated regression trees from bootstrapped
subsampled data. This algorithm is nonparametric by assum-
ing no specific data distribution ahead of time (Hastie, 2001).
We use the “sklearn” Python package for this study.

The random forest algorithm input dataset comprises topo-
graphic and land cover features, including aspect, gradient,
curvature, topographical flow accumulation, normalized dif-
ference vegetation index (NDVI), canopy water content, to-
pographical position index (TPI), etc. (Brodrick et al., 2020;
Chadwick et al., 2020; Goulden et al., 2020) at 10 m res-
olution and smoothing with a moving window at different
sizes (e.g., 30, 50, and 90 m) (See Table S1 for the full list of
features). Because the field observations have limited sam-
pling points (78), we use the leave-one-out cross-validation
method (Efron, 1982) where the number of folds equals the
number of instances in the dataset. The random forest algo-
rithm is applied once for each instance, using all other in-
stances as a training set and using the selected instance as a
single-item test set.
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3 Study site description and data sampling

Our study site is within the East River watershed, which rep-
resents a typical headwater mountainous watershed in the
upper Colorado River basin in Colorado. The East River
watershed is a test bed aiming to improve predictions of
hydrology-driven biogeochemical activities. There is a focus
on this watershed because it hosts a wide spectrum of veg-
etation cover and features various hydrologic and geomor-
phologic processes. It is a headwater to the Colorado River
that supplies 1 in 10 Americans with water for municipal us-
age and irrigation for over 22 000 km2 (Hubbard et al., 2018).
This ∼ 126.5 km2 watershed has a continental climate with
long, cold winters and short, cool summers, with monthly
mean temperature ranging from −9.2 to 9.8 ◦C. The annual
precipitation, based on 3 years of monitoring (2015–2018),
is between 659 and 750 mm, the majority of which falls as
snow, followed by mid- to late-summer monsoonal rainfall.

We consider opposite facing hillslopes to determine
whether the variability in meteorological forcing drives dif-
ferences in the soil thickness (Pelletier et al., 2018). Our
study sites (Fig. 1a) include northeast- and southwest-facing
hillslopes (for simplicity, referred to as north-facing and
south-facing hillslopes) connected to a floodplain (Fig. S2)
spanning a total of 0.4 km2 and located with an elevation
range from ∼ 2755 to 2922 m at ∼ 38.93◦ N latitude and
∼ 106.95◦W longitude. The differences in slope and as-
pect drive differences in hillslope energy balance, snowmelt
timing, and vegetation seasonal dynamics. The south-facing
slope shows a thinner snowpack resulting from episodic melt
events scattered throughout the winter and spring, whereas
the north-facing slope develops a thicker seasonal snowpack
that primarily melts during a large snowmelt event occurring
over several weeks in spring (Hinckley et al., 2014). Based
on the field campaigns in 2019, soils in this area are com-
posed of 15 % sand, 47 % silt, and 38 % clay. Several remote
sensing products available at this site were used in this study
including 0.5 m lidar DEM and topographic and vegetation
features (Table S1).

The last glacial advance and retreat in the upper Col-
orado River basin is dated between 16.1 and 20.8 ka (Brug-
ger, 2010). Glacial deposits are mapped at many locations
throughout the watershed (Gaskill, 1991; Fig. S3), but they
are rather isolated and have a limited spatial extent, includ-
ing in the area analyzed in this study. A former study at the
same site analyzed 40 hand-augured soil cores and showed
progressive changes in color and texture among soil, weath-
ered zone, and unweathered bedrock with depth (Wan et
al., 2019). Further, among the total of five wells drilled at
the site, none of them reported the presence of a glacial de-
posit (Tokunaga et al., 2019; Wan et al., 2019). It is likely
that the glacial legacy scoured the valley to bedrock and that
the glacial retreat reset the “clock” for soil formation mostly
via in situ bedrock weathering and (to a lesser extent) via
colluvial deposition.

Soil thickness was measured at 78 locations across the
north- and south-facing slopes. Many studies dig soil pits
or use augers to distinguish the contact layer between mo-
bile and immobile regolith layers (Catani et al., 2010; Heim-
sath et al., 1997; Patton et al., 2018; Pelletier and Rasmussen,
2009). Here, we chose two independent methods to measure
the soil thickness of the two hillslopes. We used an auger
to drill and sample 78 points within the two hillslopes and
used a dynamic cone penetrometer technique (CPT) (Vanags
et al., 2004) to measure two transects along each side of the
hillslopes, sampling 54 locations in total (Fig. 1a).

At this study site, we used and compared both auger and
CPT measurements to estimate soil thickness. The CPT mea-
surements provide a vertical profile of soil resistance for a
soil column. We tested the accuracy of the CPT measure-
ment and found that the CPT (i) shows the largest change
in resistance when entering weathered bedrock and (ii) can
be stopped very sharply only in the presence of a boulder,
in which case the resistance is so strong that the measure-
ment was deemed suspicious and repeated nearby. Because
the CPT may not clearly identify the potential presence of
moraine deposits, we also visually inspected the soil and
saprolite materials extracted by the auger. From the auger, the
transition zone from soil to the saprolite or bedrock is based
on the material size and color of retrieved samples (Fig. S4).
When the auger reaches the bedrock shale, it cannot penetrate
easily. We believe our measurement is relatively accurate
and efficient, which provides a consistent assessment of soil
thickness over space in comparison to other existing meth-
ods. Figure 1b–e show the relationship between soil thick-
ness estimated from auger, CPT, and local elevation. There
is a high variation in soil thickness from local to hillslope
scales. To fully take advantage of all the sampling data, we
used auger data to fit values for CPT (Fig. S5). The CPT and
auger data are mostly in agreement. For soil thicknesses less
than∼ 0.5 m, the CPT data are slightly higher than the auger,
and for soil thickness larger than ∼ 0.5 m, the CPT data are
slightly lower.

4 Results and discussion

In this section, we first investigate the scaling issues from
DEM resolution with curvature and then discuss the sensi-
tivity of all the parameters used in this hybrid model. Next,
we show both the soil thickness predictions based on the hy-
brid model with the optimal curvature and the soil thickness
results from the random forest machine-learning approach.
Finally, we discuss the relationship between soil thickness,
surface transport rate, and weathering rate as determined by
the hybrid model.
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Figure 1. Study site and soil thickness observation. (a) Study site in the East River watershed, CO, USA. The lidar DEM is 0.5 m (Goulden
et al., 2020). (b–e) Soil thickness measured by auger (orange dots) and cone penetrometer (CPT) (green cross) data along four transect lines.
The CPT data are presented as natural logarithm. The CPT-inferred vertical profiles of resistance values at each surveyed location have been
interpolated along the transects by using a kriging method. The dashed lines are estimated soil thickness by averaging the auger and CPT
measurements.

4.1 Model parameterization of curvature with different
smoothing techniques of DEM

The topographic curvature is the key variable for estimating
the soil thickness for the empirical approach. However, cur-
vature is an inherently resolution-dependent topographic fea-
ture that is derived from a DEM. A 0.5 m DEM can provide
“noises” for the results of curvature. The goal here is to deter-
mine the optimal DEM resolution for curvature to match with
the sampling data, and the smoothing methods provided here
are only for the calculation of curvature. To investigate the
optimal resolution of the DEM for calculating curvature, we
tested three approaches as explained in Sect. 2.1.3: smooth-
ing the DEM over space, polynomial fitting of the DEM, and
smoothing the DEM over time. For smoothing over space,
the elevations of original 0.5 m DEM were replaced by uti-
lizing the mean elevation of the surrounding adjacent cells
at the range of 1.5, 2.5, . . . , and 13.5 m. For the polynomial
fitting, the diameter is also chosen over the same range and
intervals as the way of smoothing the DEM. For smoothing
over time, the evolution period of the topography is taken

as 0, 0.25, 0.5, . . . , 3.25 kyr. We compare the root-mean-
square deviation (RMSD) between the sampling results and
simulation results of soil thickness as an indicator of the opti-
mal resolution for calculating the curvature (Fig. 2). The sets
of parameters used for each spatial or temporal resolution
are determined by comparing with the field sampling data,
with each parameter increasing linearly from the minimum
value to the maximum (the same datasets as in the Morris
OAT method). We chose the set of parameters which gives
the smallest RMSD.

Different smoothing methods and study sites correspond
to their own optimal DEM resolution for curvature (Fig. 2).
For example, in this study the north-facing hillslope shows
the best fitting with 4.5 m DEM smoothing over space, but
the south-facing hillslope corresponds to 8.5 m. Other stud-
ies that calculate curvature with various spatial smoothing
constraints show the highest accuracy in model predictions
with smoothing ranging between 3 and 10 m (Patton et al.,
2018; Tesfa et al., 2009). The polynomial fitting and smooth-
ing over time show the same best fitting results among the
two hillslopes, which is 8.5 m and around 2 kyr, respectively.
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Figure 2. Smoothing techniques to find the best resolutions of
DEM for curvature. For the smoothing over time approach, the time
step is 1 year; the diffusion coefficient, Kd, is 11× 10−3 m2/yr and
18× 10−3 for the north-facing and south-facing hillslopes, respec-
tively. Nf stands for north-facing hillslope, and Sf stands for south-
facing hillslope.

Overall, smoothing the DEM over time provides the small-
est RMSD with a relatively high efficiency compared to the
other two approaches. Smoothing over time provides rela-
tively constant and stable results for both hillslopes. There-
fore, in this study, we use the DEM smoothed over time at
year 2 kyr to calculate curvatures. However, we still use the
original lidar DEM for the mechanistic model of soil thick-
ness.

4.2 Global sensitivity analysis

We apply the Morris OAT method to investigate the global
sensitivity of the seven parameters (Table 1) in the hybrid
model. For each parameter, we calculate the absolute of the
mean elementary effect, |µ|, in that the higher number rep-
resents higher importance, and the standard deviation of the
elementary effect, σ , which represent the nonlinearity effect
or interactions with other parameters (Fig. 3). Each dot repre-
sents an evaluation of one parameter at one sampling site. In
general, the parameters in the mass conservation model have
higher |µ| values, meaning that they have a more significant
impact on soil thickness than the parameters in the empirical
model. The diffusion coefficient, Kd, is the most important
factor (high |µ| value and high nonlinearity (σ )) and thus
should be carefully calibrated. It represents soil diffusive-
like processes such as soil creeping and biogenic activities.
The normalized soil depth (ho) is also has a higher |µ| value,
which suggests that it is a very important factor but more
linear than Kd due to its relatively small σ . These factors
imply that the diffusive process is the most important trans-
port mechanism for hillslope soil erosion rather than the soil
erosion from overland flow on the surface of a soil layer (Di-
etrich et al., 1995; Nicótina et al., 2011; Roering et al., 1999,
2001). They also imply that the normalized soil depth is the
most important parameter for estimating the soil production
rate at the bottom of the soil layer. The two parameters from

Figure 3. Sensitivity analysis of the seven parameters in the hybrid
model. Parameters h, Ethre, and a are in Patton’s method and ho,
Bp , log(Kd), and log(Ks ) are in the mass conservation method. The
solid and dashed lines are fitted linear-regression lines to reveal the
relationship between the standard deviation (σ ) of the elementary
effect and the absolute of the mean (|µ|) of the elementary effect
for the mass conservation method and Patton’s method, respectively.
Each dot is at one sampling location per parameter.

the empirical method, a and h, are used for soil depositional
areas. The sensitivity of a and h are nearly linear (since σ is
close to zero), but when the soil thickness reaches an upper
limit (2 m in our model) this causes a nonlinear increase in
soil thickness and hence a rapid increase in σ .

4.3 Hybrid data–model soil thickness predictions and
their comparison to measurements

At erosional sites, the erosion from the land surface can be
balanced out by the soil formation from the bottom; there-
fore, the soil thickness may reach a steady-state condition.
By coupling soil thickness with landscape evolution, we
found that the soil thickness reaches a dynamic steady state
after approximately 25 kyr at this study site (Fig. S6), which
is consistent with other studies in mountainous areas (Diet-
rich et al., 1995; Vanwalleghem et al., 2013). This implies
that the current soil thickness in the East River watershed
may have already reached a steady-state condition since the
last glacial legacy. Here, we only focus on the steady-state
condition at erosional sites because they are where we ap-
ply the mass conservation equation. For depositional sites,
the soil gradually accumulates on the land surface; mean-
while, the soil weathers slowly at the bottom. Therefore, the
soil thickness is supposed to continuously increase (Dietrich
et al., 1995). Due to the complexity of soil depositional en-
vironments, such as expansion or compression of soils, we
consider using an empirical relationship as appropriate for
the soil thickness at depositional areas.

A spatial map of soil thickness that compares modeling
predictions and observation results is shown in Fig. 4. In gen-
eral, the soil thickness of the north-facing hillslopes is greater
and has higher variation than that of the south-facing hill-
slopes. Specifically, soil thickness of the south-facing side
ranges from about 0.2 to 1 m, with a mean value of 0.55 m,
while on the north-facing side, the soil thickness ranges from
0.15 to 1.5 m, with a mean value of 0.67 m. We use the sam-
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Figure 4. Soil thickness map. (a) Spatial map of soil thickness from
modeling. Panels (b1) and (b2) show a comparison between model
and field measurements for the south-facing and north-facing hill-
slopes, respectively. The error bars along the x axis are the differ-
ences between auger and CPT data. Gray and green dots present
the bottom of the sampling site as bedrock and saprolite, respec-
tively. The correlations, RMSEs, and p values are 0.71, 0.18 m, and
4.2×10−4 and 0.77, 0.19 m, and 2.32×10−10 for south-facing and
north-facing hillslopes, respectively. Note that the sampling points
in the floodplain zone are excluded because our hybrid model aims
to predict the soil thickness in hillslopes.

pling data from both the auger and the CPT to calibrate the
seven parameters (Table 1) for the south-facing and north-
facing hillslopes separately. One explanation for the mis-
match between modeling and field observations (Fig. 4b)
could be that parts of the hillslopes are on terraces. These
areas may have fluvial deposits on ancient floodplains before
they were turned into terraces (Yan et al., 2018).

We use the sampling data from auger and the CPT to cal-
ibrate the model parameters (Table 1) for the south-facing
and north-facing hillslopes separately. The calibration is per-
formed using a grid search approach where the model loops
through the entire parameter space with six evenly distributed
values for each parameter. The range of each parameter is
based on the literature and shown in Table 1. The overland
flow coefficient Ks is not included in this process because
it is not sensitive to soil thickness (Fig. 3). The ranges of
the remaining six parameters are based on the literature and
shown in Table 1. We created an ensemble of the soil thick-
ness based on 66(= 46646) combinations of parameter sets.
We then calculate the root-minimum-square error (RMSE)
between the simulated and measured soil thickness across
the site. Each set of parameters corresponds to an RMSE,
and the distribution of the RMSE as a function of the param-
eters is shown in Fig. S7. The global minimum can be de-
fined as the set of parameters that provide the lowest RMSE.
In this specific study site, we find a unique set of parameters

that provide the global minimum with the grid search study.
Moreover, when the threshold of RMSE decreases, the num-
ber of samples with RMSE below this threshold decrease and
converges to the global minimum. This result indicates the
absence of other potential strong minima, and we can there-
fore identify the set of the parameters that provides the global
minimum. In addition, we have applied a Bayesian approach
to estimate the posterior distribution of parameters, as well
as the maximum a posterior estimates (see the Supplement
for more information). We find that the maximum a poste-
riori estimates (Fig. S8) also correspond to the global min-
imum of the RMSE. Moreover, among the posterior distri-
bution of each parameter, Po and Ethre are closer to uniform
in the south-facing hillslope than the north-facing hillslope.
The reason for this may be that the north-facing hillslope
has more sampling points, which provides a better estima-
tion than the south-facing hillslope.

The difference in soil thickness between the two hillslopes
is evident. This is controlled by insolation due to the topo-
graphic aspect. The air temperatures and potential evapotran-
spiration rates produce significantly different microclimates
that determine the structure of different ecosystems and sur-
face process regimes. Weathered shale under the soil layer
appears to be mechanically weaker on the north-facing slope
because of the thicker saprolite layers (Fig. 4b), which results
in less resistance during excavations in the field sampling.
This implies that thicker soil depth results from a higher soil
water content associated with a longer snowmelt period in the
north-facing hillslope. The thicker soil depth in turn provides
a higher water storage capability, a higher concentration of
fine particles, and more biomass, which leads to a positive
feedback (Pelletier et al., 2018; Roering et al., 2010).

4.4 Predictive value of landscape features for estimating
soil thickness

We evaluate the correlation between soil thickness from sam-
pling and other landscape features obtained from remote
sensing data (Fig. 5). Among about 18 topographic and land
cover features with various spatial resolutions, we generated
∼ 50 topographic matrices (Table S1). The top five topo-
graphic matrices, correlating with soil thickness higher than
25 %, from high to low are topographic position index (TPI),
curvature, slope degree, topographic wetness index (TWI),
and elevation. Other factors such as NDVI (normalized dif-
ference vegetation index), leaf mass area, and canopy liquid
water do not show obvious correlation with soil thickness.
This is consistent with other studies that commonly use the
environmental variables such as TWI, elevation, and curva-
ture as the most highly correlated variables in the geosta-
tistical interpolation of soil thickness (Hengl et al., 2004;
Kuriakose et al., 2009; Shangguan et al., 2017; Taylor et
al., 2013). Among the five highest correlated features, TPI
and curvature have the highest correlation (−0.87), which
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implies that the local relief of ridges and valleys is scalable
with the size of the corresponding local curvature.

Since we have a limited number of soil samples (78), we
use the five most highly correlated features as a collection
of metrics to perform the random forest modeling. We use
the random forest model with leave-one-out cross-validation
to predict the soil thickness and compare with the hybrid
modeling results (Fig. 6). The result shows that the hybrid
model (RMSE= 0.196 m) outperforms the Random Forest
model (RMSE= 0.225 m) by ∼ 13 %. The comparable per-
formance between random forest and the hybrid model sug-
gests that (1) the correlations of soil thickness with topo-
graphic metrics are the major driving factors and that (2) the
hybrid model is applicable to other sites given similar soil
types and topography, without requiring many datasets given
the application of process-based laws. To improve the results
from machine learning, one may need to collect more data
from additional sampling points. However, the advantages of
this hybrid model are that there are only seven parameters
to calibrate and that fewer sampling points are required. The
extension to other watersheds is also easier with the hybrid
approach. This hybrid method also provides higher accuracy
than Patton’s method in this study site, particularly at very
thin or thicker soil layers (Fig. S9). Finally, we note that the
hybrid modeling approach not only provides the soil thick-
ness distribution but also other outputs from the model, in-
cluding the surface soil transport and soil production rates,
as discussed below.

4.5 Relationship between soil thickness, soil surface
transport rates, and soil production rates in two
aspects

One of the advantages of this hybrid model compared with
machine-learning models is that we can obtain the spatial
maps of surface soil transport rates (Fig. 7) and soil produc-
tion rates (Fig. 8). The probability density functions (PDFs)
show that, in general, the south-facing hillslope has a thinner
soil thickness and a faster erosion rate than the north-facing
hillslope (Fig. 7b). On the south-facing hillslope, where so-
lar radiation is sufficient, soil moisture is a limiting fac-
tor that controls vegetation cover in the coupled hydro–bio–
geomorphological processes. In contrast, on the north-facing
hillslope where solar radiation is limited, the energy be-
comes a limiting factor of critical zone processes (Pelletier et
al., 2018). The higher potential evaporation of south-facing
hillslopes results in lower mean soil moisture and thinner
vegetation cover, thus triggering feedbacks that result in a
higher surface soil erosion rate. Moreover, on the south-
facing hillslope, the lower interception of rainfall due to thin-
ner vegetation cover and more sand material from the soil
texture (Fig. S10) also increases sediment mobilization by
raindrop impacts.

The contribution of overland flow-driven soil transport
(erosion and deposition) to the soil thickness formation is

minor compared to the diffusion-driven soil transport. The
water depth reaches steady-state after about 6 d with a con-
stant rainfall intensity (i.e., 363 mm/yr) in the study area
(Fig. S11a). We apply this spatial map of the water depth
to drive the soil transport by overland flow (Eq. 3). The soil
transport rate from overland flow mostly happens in the wa-
ter pathways, which have no ponding after snow melting and
storm events. The ratio of the soil transport rate from over-
land flow to the total soil transport rate is mostly less than
1 % in the two hillslopes (Fig. S11b). This minor impact from
overland flow also explains why the parameterKd is not sen-
sitive in this hybrid model.

The south-facing hillslope corresponds to a higher actual
soil production rate than the north-facing hillslope, which is
consistent with transport rates in that the south-facing hill-
slope has a higher erosion rate. One should note that the
soil production rate here is different from bedrock weather-
ing rate, which is controlled by water table dynamics (Wan
et al., 2019). The actual soil production rate is controlled by
the soil thickness and potential production rate, Po (Eq. 5). A
thinner soil layer (south-facing) results in a faster actual soil
production rate. A high evapotranspiration and rapid vertical
infiltration result in lower Po. Po on the south-facing hills-
lope is slower than the north-facing hillslope (Table 1) due
to the microclimate differences between the two hillslopes.
On south-facing hillslopes, more of the incoming precipita-
tion is lost to evapotranspiration, which results in less water
available for runoff and infiltration (Tran, et al., 2019). In
addition, the south-facing slopes experience brief periods of
rapid vertical transport following snowmelt events and are
drier overall than north-facing slopes (Hinckley et al., 2014).

Pelletier et al. (2013) uses an energy-based variable, effec-
tive energy and mass transfer (EEMT), which is a function
of precipitation, temperature, and vapor pressure deficit, to
quantify the potential rate of bedrock breakdown into soils.
Their study also suggests that, under comparable climatic
conditions, north-facing hillslopes have a higher EEMT,
leading to higher Po. However, the thicker soil thickness off-
sets the impact of Po in that thicker soil thickness results in
slower actual soil production rate. This is a possible reason
why the north-facing hillslope has slower actual soil produc-
tion rate even though it has a higher Po.

5 Conclusion

Soil thickness plays a central role in the feedbacks among
surface–subsurface water flow, vegetation, soil production,
drainage density, and topography, and these in turn control
soil thickness. In this study, we developed a data-driven hy-
brid model approach to predict the spatial distribution of soil
thickness. The hybrid model that we introduced in this study
overcomes the drawbacks of both mass conservation laws
and empirical relationships. To the authors’ knowledge, this
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Figure 5. Correlation analysis between soil thickness and the top five most highly correlated topographic features. TPI is 10 m resolu-
tion topographic position index, curvature is 10 m resolution curvature, slope is 10 m resolution slope degree, TWI is the 10 m resolution
topographic wetness index, and elevation is the 1 m resolution DEM.

Figure 6. Comparison between observed and predicted soil thick-
ness. Note that ML indicates a machine-learning-based simulation,
Simu indicates the hybrid model simulation, and RMSE stands for
root-mean-square error.

is the first study to use a hybrid approach to estimate soil
thickness.

Our results show that this hybrid model provides slightly
better accuracy than the random forest model (by ∼ 13 %)
on soil thickness estimation. According to both the hybrid
and random forest models, soil thickness is more strongly

Figure 7. Map of soil surface transport rate. (a) Spatial map of soil
transport rate from modeling results. (b1, b2) Relationship between
soil thickness and transport rate for the south-facing and north-
facing hillslopes, respectively. Positive values of transport rate rep-
resent deposition, while negative values represent erosion. The or-
ange dots represent the soil thickness from field measurements.
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Figure 8. Map of soil production rate. (a) Spatial map of soil bot-
tom (either bedrock or saprolite) production rate from modeling re-
sults. (b1, b2) Relationship between soil thickness and natural log-
arithm of soil production rate for the south-facing and north-facing
hillslopes, respectively. The orange dots represent the soil thickness
from field measurements.

controlled by topographic metrics than vegetational features.
The sensitivity analysis of the input parameters (seven in to-
tal) show that the diffusion coefficient of hillslope erosion is
the most sensitive parameter. We found that smoothing the
lidar DEM over time has a higher efficiency than smooth-
ing it over space to obtain the optimal topographic curvature
values, which provides the least error between the modeling
results and sampling soil thickness.

This hybrid model is a flexible, generally applicable ap-
proach to predicting soil thicknesses. The hybrid model, with
only seven parameters for calibration, can provide a rela-
tively realistic soil thickness map at other study sites mak-
ing use of a relatively small number of samples. It can also
provide additional output as compared to machine-learning
algorithms, including surface soil transport and soil produc-
tion rates.

Based on field observation and the hybrid model simula-
tion, the north-facing hillslope promotes deeper soil depth
than the south-facing hillslope as a result of the different in-
solation at different aspects. The model analysis suggests that
the south-facing hillslope has a slightly faster actual surface
transport rate and actual soil production rate than the north-
facing hillslope. The potential soil production rate is higher
on the north-facing hillslope, caused by relatively dense veg-
etation cover, less solar radiation, and wetter surface soil ma-
terial as fundamentally controlled by aspect.

The limitation of the hybrid modeling approach devel-
oped here is that it would fail in alluvial depositional sites
(i.e., floodplains) where topography is controlled primarily
by flooding events (Yan et al., 2018) and strong human in-
tervention landscapes where the surface topography is inten-

sively reshaped for farming and other purposes (Kuriakose et
al., 2009; Yan et al., 2020). Integrating process-based mod-
eling, inverse modeling, and statistical analysis provides a
thorough understanding of the fundamental mechanisms for
soil thickness prediction in hillslopes. Although the exam-
ple applications in this paper are at two hillslopes, this hy-
brid model framework should have little limitation when an-
alyzing soil-mantled mountainous hillslopes after calibration
with sampling dataset.

Code and data availability. The dataset and code used in the hy-
brid model are openly available at http://doi.org/10.5281/zenodo.
4445383 (Yan, 2021).
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10.15485/1618131 (Brodrick et al., 2020) and https://doi.org/10.
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