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Abstract. We examine the influence of incision thresholds on topographic and scaling properties of landscapes
that follow a landscape evolution model (LEM) with terms for stream-power incision, linear diffusion, and uni-
form uplift. Our analysis uses three main tools. First, we examine the graphical behavior of theoretical relation-
ships between curvature and the steepness index (which depends on drainage area and slope). These relationships
plot as straight lines for the case of steady-state landscapes that follow the LEM. These lines have slopes and
intercepts that provide estimates of landscape characteristic scales. Such lines can be viewed as counterparts
of slope–area relationships, which follow power laws in detachment-limited landscapes but not in landscapes
with diffusion. We illustrate the response of these curvature–steepness index lines to changes in the values of
parameters. Second, we define a Péclet number that quantifies the competition between incision and diffusion,
while taking the incision threshold into account. We examine how this Péclet number captures the influence of
the incision threshold on the degree of landscape dissection. Third, we characterize the influence of the incision
threshold using a ratio between it and the steepness index. This ratio is a dimensionless number in the case of the
LEM that we use and reflects the fraction by which the incision rate is reduced due to the incision threshold; in
this way, it quantifies the relative influence of the incision threshold across a landscape. These three tools can be
used together to graphically illustrate how topography and process competition respond to incision thresholds.

1 Introduction

Processes that shape landscapes leave topographic signa-
tures, which can often be visualized by plotting different to-
pographic metrics against one another. An example is the re-
lationship between river gradient and drainage area, which
has been used to analyze landscapes and river profiles, as
well as to diagnose the processes that shape them (e.g., Mont-
gomery and Foufoula-Georgiou, 1993; Howard, 1994; Mont-
gomery and Dietrich, 1994; Dietrich et al., 2003). For exam-
ple, the stream-power incision model predicts that if tecton-
ics, climate, and rock properties are uniform, then bedrock
rivers should approach a steady state in which their gradient
scales as a power law of drainage area (e.g., Tucker, 2004;
Lague, 2014). This power-law scaling implies that river gra-

dient data should plot as a straight line against drainage area
data on logarithmic axes. The properties of this line can give
estimates of properties of the landscape; e.g., its slope gives
the concavity index (Whipple, 2004). Plotting synthetic topo-
graphic data from landscape evolution models (LEMs) helps
to illustrate the effects of different model formulations or pa-
rameterizations. For example, including a threshold in the in-
cision term of an LEM affects the resulting slope–area line
(e.g., Tucker, 2004; Lague et al., 2005; Deal et al., 2018).

In the case of landscapes that are influenced by diffu-
sion, topographic slope does not scale as a power function
of drainage area (e.g., Howard, 1994). Thus, slope and area
data from these landscapes do not plot as straight lines. In
Theodoratos et al. (2018), we presented a counterpart rela-
tionship for the case of landscapes produced by an LEM that
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includes linear diffusion (along with stream-power incision
and uplift). This relationship predicts that in steady state, cur-
vature and the steepness index (which depends on drainage
area and slope; e.g., Whipple, 2001) plot as a straight line
against each other on linear (i.e., non-logarithmic) axes. The
slope and intercept of this line depend on characteristic scales
of length and height of the landscape, which in turn de-
pend on the relative strengths of the processes that shape it.
Thus, this relationship predicts a link between topographic
and scaling properties of landscapes that follow the LEM.

Here, we demonstrate an example of the explanatory
power of plots of the curvature–steepness index relation-
ship. Our example shows that these plots can visualize to-
pographic and scaling effects of incision thresholds. Incision
thresholds can markedly influence erosion, as shown by nu-
merous studies. For instance, incision thresholds can influ-
ence the relationship between river gradient and the uplift
rate (e.g., Snyder et al., 2003), the dependence of long-term
erosion rates on the average, variability, and duration of pre-
cipitation events (e.g., DiBiase and Whipple, 2011; Scher-
ler et al., 2017), and the dynamics of migrating knickpoints
(e.g., Lague, 2014). Here, we are not further elaborating on
the insights of these studies. Instead, we focus on the effects
of incision thresholds on the competition between incision
and diffusion and on the topographic and scaling properties
of landscapes reflecting this competition. The topographic
and scaling effects that we examine have been studied be-
fore (e.g., Montgomery and Dietrich, 1992; Howard, 1994;
Tucker, 2004; Perron et al., 2008). Here, however, we present
a novel, purely graphical method to identify, quantify, and
interpret these effects based on the relationship between cur-
vature and the steepness index.

In Theodoratos et al. (2018), we dimensionally analyzed a
frequently used LEM with terms for uplift, linear diffusion,
and stream-power incision without an incision threshold.
In Theodoratos and Kirchner (2020), we added an incision
threshold to this LEM and dimensionally analyzed it. Here,
we summarize the definitions of characteristic scales and
dimensionless numbers that emerged from the dimensional
analyses of these two LEMs in Sect. 2. Then, in Sect. 3, we
show that these characteristic scales and dimensionless num-
bers have a geomorphologic meaning that can be expressed
graphically using plots of curvature vs. the steepness index.
The graphical explanatory power of these plots is further
highlighted by comparing plots of LEMs with and without
an incision threshold (Figs. 1 and 2).

2 Stream-power incision and linear diffusion LEMs

2.1 Governing equations

The LEM without an incision threshold follows the govern-
ing equation (e.g., Howard, 1994; Dietrich et al., 2003):

∂z

∂t
= −K

√
A|∇z| +D∇2z+U. (1)

Figure 1. Relationship between curvature and the steepness index
in steady-state topography without an incision threshold. We plot a
straight line defined by Eq. (10) or (11), which describes how curva-
ture should be related to the steepness index if the landscape follows
the LEM (Eq. 1) and is in steady state. This line is parameterized
by the characteristic scales of length and height (lc and hc; Eqs. 3
an 4); its slope is 1/l2c , its horizontal-axis intercept is

√
A|∇z| = hc,

and its vertical-axis intercept is ∇2z= −κc (where κc is a char-
acteristic curvature defined as hc/l

2
c ; Eq. 8). These intercepts re-

veal topographic properties of special points in a landscape, namely
the steady-state curvature of drainage divides and the steady-state
steepness index of hillslope–valley transitions. The characteristic
length lc quantifies the competition between knickpoint advection
and diffusion and predicts how landscape dissection scales with the
parameters. Thus, the slope of the curvature–steepness index line
visually expresses how dissected a landscape is. Note that the line’s
slope can be represented either as K/D = 1/l2c units of curvature
per 1 unit of steepness index or 1 unit of curvature per D/K = l2c
units of steepness index. For simplicity, we use the latter notation to
express the slopes of the lines in Figs. 2–4.

This equation gives the rate of elevation change ∂z/∂t as
the sum of three terms, namely (a) stream-power incision
K
√
A|∇z|, whereK is the incision coefficient, A is drainage

area, and |∇z| is topographic slope; (b) linear diffusion
D∇2z, where D is the diffusion coefficient and ∇2z is the
Laplacian curvature; and (c) the uplift rate U . We assume
that Eq. (1) has base dimensions of horizontal length L,
height H (which we treat as dimensionally distinct from L),
and time T. All quantities in Eq. (1) have dimensions that are
combinations of L, H, and/or T, which we show in Table 1.

Note that the incision term K
√
A|∇z| is a special case

of the more general incision term KAm(|∇z|)n. As we ex-
plained in Theodoratos et al. (2018), dimensional analysis of
an LEM with generic exponentsm and nwould lead to equiv-
alent results as the analysis of Eq. (1), but these results would
be expressed with much more complicated mathematical for-
mulas. Therefore, in Theodoratos et al. (2018) we focused on
the case of exponents m= 0.5 and n= 1, and we presented
the results for generic m and n in an appendix. Likewise, in
the current study, the main presentation focuses on the case

Earth Surf. Dynam., 9, 1545–1561, 2021 https://doi.org/10.5194/esurf-9-1545-2021



N. Theodoratos and J. W. Kirchner: Graphically interpreting landscape properties 1547

Table 1. Descriptions and dimensions of the terms, variables, and parameters in the governing equations (Eqs. 1 and 2). Dimensions are
expressed in terms of the model’s fundamental dimensions of horizontal length L, vertical length (height) H, and time T.

Symbol Description Dimensions

∂z/∂t Total rate of elevation change at a point (x,y) HT−1

Rates of elevation change due to
−K
√
A|∇z| stream-power incision (in Eq. 1) HT−1

−K(
√
A|∇z| − θ ) threshold-limited stream-power incision (in Eq. 2) HT−1

D∇2z linear diffusion HT−1

U uplift HT−1

(x,y) Horizontal coordinates L
z Elevation H
t Time T

A Drainage area L2

|∇z| Topographic slope HL−1

∇
2z Laplacian curvature HL−2

K Incision coefficient T−1

D Diffusion coefficient L2 T−1

U Uplift rate HT−1

θ Incision threshold H
√
A|∇z| Steepness index H

of m= 0.5 and n= 1, and in Appendix A we demonstrate
that our graphical method is also valid for the case of generic
exponents m and n.

Following Perron et al. (2008), we can add an incision
threshold to the LEM by recasting the incision term as
K(
√
A|∇z| − θ ), where θ is the incision threshold. This for-

mulation assumes that the incision rateK
√
A|∇z| is reduced

everywhere by the constant quantityKθ . The LEM examined
here is based on the assumption that sediment transport is
detachment-limited. Thus, it does not include deposition, and
negative incision rates would not be meaningful. Therefore,
the incision term is set to zero where the termK(

√
A|∇z|−θ )

would be negative, i.e., where
√
A|∇z| ≤ θ , and the govern-

ing equation becomes

∂z

∂t
=

{
D∇2z+U,

√
A|∇z| ≤ θ

−K(
√
A|∇z| − θ )+D∇2z+U,

√
A|∇z|> θ

. (2)

The incision threshold θ has the same dimensions as√
A|∇z|, i.e., dimensions of H.
Equation (2) assumes that precipitation rates are con-

stant in time and uniform in space, and it incorporates cli-
matic effects into the incision coefficient K . Other LEMs
use stochastic precipitation to drive their incision terms (e.g.,
Tucker, 2004, Whipple, 2004; Lague et al., 2005; DiBiase
and Whipple, 2011; Deal et al., 2018). The incision thresh-
olds of these LEMs define limiting values of shear stress or
stream power, below which no incision occurs. At any given
location in the landscape, these limiting values might be ex-
ceeded during some stochastic events and not exceeded dur-

ing other events, depending on their intensities. By contrast,
in the case of the LEM that we examine, the assumption
of constant and uniform precipitation implies that any given
combination of drainage area A and slope |∇z| would lead to
the same value of stream power (or shear stress) for any storm
event (as all events would be equal), and this value of stream
power would either be above or below the incision threshold.
In this idealized case, defining a topographic threshold based
on
√
A|∇z| is exactly equivalent to defining a threshold of

stream power (or shear stress).
We acknowledge that the LEMs with stochastic precipi-

tation allow much more realistic integration of incision rates
over time compared to the LEM that we examine here. There-
fore, these LEMs are more appropriate for studying the influ-
ence of incision thresholds on erosion rates compared to the
LEM that we use. However, our study has a different focus.
Our study focuses on how the incision threshold θ influences
topographic and scaling properties of landscapes and on how
this influence can be graphically expressed with curvature–
steepness index lines. For these tasks, the simplified formu-
lation of the incision term of Eq. (2) is more practical. It may
be possible in future work to extend this approach to include
incision thresholds driven by stochastic precipitation.
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Table 2. Summary of definitions and formulas used in this study.

Description Definition Equation

Characteristic length lc =
√
D/K (3)

Characteristic height hc = U/K (4)

Characteristic time tc = 1/K (5)

Characteristic area Ac = l
2
c =D/K (6)

Characteristic gradient Gc = hc/lc = U/
√
DK (7)

Characteristic curvature κc = hc/l
2
c = U/D (8)

Incision-threshold number Nθ =Kθ/U (9)

Curvature–steepness index relationship, without θ ∇
2z= (K/D)

√
A|∇z| − (U/D) (10)

Curvature–steepness index relationship, without θ ∇
2z= (1/l2c )

√
A|∇z| − κc (11)

Curvature–steepness index relationship, with θ

{
∇

2z= −κc,
√
A|∇z| ≤ θ

∇
2z= (1/l2c )

√
A|∇z| − (1+Nθ )κc,

√
A|∇z|> θ

. (12)

Fraction of incision rate reduction 1−8=

1,
√
A|∇z| ≤ θ

θ√
A|∇z|

,
√
A|∇z|> θ

. (22)

Threshold factor 8=

0,
√
A|∇z| ≤ θ

1− θ√
A|∇z|

,
√
A|∇z|> θ

. NA

Flow path length l: the distance along flow paths from a point to the farthest ridge NA

Diffusion timescale tD =
l2

D
(13)

Kinematic wave celerity, without θ c =K
√
A NA

Incision timescale, without θ tI = l/c = l/(K
√
A) (14)

Péclet number, without θ Peθ=0 = tD/tI =
√
Al
l2c
=

√
A
√
Ac

l
lc

(15)

Kinematic wave celerity, with θ c =

{
0,

√
A|∇z| ≤ θ

K
√
A−Kθ/|∇z|,

√
A|∇z|> θ

. (17)

Incision timescale, with θ tI = l/c =

+∞,
√
A|∇z| ≤ θ

l/
(
K
√
A−Kθ/|∇z|

)
,
√
A|∇z|> θ

. (18)

Péclet number, with θ Pe=

0,
√
A|∇z| ≤ θ

√
A
√
Ac

l
lc
−Nθ

l
lc
Gc
|∇z|

,
√
A|∇z|> θ

. (20)

Péclet number, with θ Pe=

0,
√
A|∇z| ≤ θ(

1− θ√
A|∇z|

) √
Al
l2c
,
√
A|∇z|> θ

. (23)

NA: not available.

2.2 Characteristic scales

The two governing equations (Eqs. 1 and 2) can be non-
dimensionalized using characteristic scales of length, height,
and time (lc, hc, and tc) defined as (Theodoratos et al., 2018;
Theodoratos and Kirchner, 2020)

lc =
√
D/K, (3)

hc = U/K, (4)
tc = 1/K. (5)
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Figure 2. Effects of incision threshold on steady-state topogra-
phy as reflected in the curvature–steepness index line. We show
curvature–steepness index lines of landscapes with and without an
incision threshold using black and gray, respectively (see Eqs. 11
and 12). The gray line in this figure is identical to the line in
Fig. 1. Adding an incision threshold to the LEM changes the re-
sulting steady-state topography, as indicated by the differences be-
tween the gray and black lines. The black line consists of two seg-
ments. The horizontal segment corresponds to points where inci-
sion is fully suppressed by the threshold. This horizontal segment
is at ∇2z= −κc, which is the vertical-axis intercept of the gray
line. This shows that the hilltop curvature (the most negative cur-
vature value in the landscape) spreads to points on hillslopes be-
yond drainage divides. Thus, hillslopes become more convex due
to the threshold. The inclined segment of the black line is par-
allel to the gray line and at a horizontal distance θ to its right.
Thus, the horizontal-axis intercept is increased from hc to hc+ θ
due to the threshold; i.e., the hillslope–valley transition occurs at a
larger steepness index value. This increase corresponds to a larger
drainage area A and/or steeper slope |∇z|, both of which are con-
sistent with the steepening of landscapes and the decrease in their
drainage density by the incision threshold. In the case of the LEM
that includes an incision threshold, the degree of landscape dis-
section is expressed by the length scale

√
1+Nθ lc (see Eq. 21),

where Nθ is a dimensionless incision-threshold number (Eq. 9).
The square of this length scale is (1+Nθ )l2c , which is equal to
(hc+ θ )/κc, the ratio of the two intercepts of the black line. The
quantity (1+Nθ )l2c is the reciprocal of the slope of the black dashed
line that connects the two intercepts. Thus, by comparing the slope
of this auxiliary line and of the gray curvature–steepness index line,
we can graphically express the effect of the incision threshold on
landscape dissection, as shown by the white arrow.

We summarize these and other definitions for this presen-
tation in Table 2. The characteristic scales lc, hc, and tc can
be viewed as intrinsic properties of a landscape in the sense
that they depend exclusively on the values of the parame-
tersK ,D, and U and not on extensive properties of the land-
scape such as the size of its domain or its maximum relief.

We present geomorphologic interpretations of these charac-
teristic scales in Sect. 3.

By combining lc, hc, and tc we can define additional char-
acteristic scales (Theodoratos et al., 2018). For example,
given that drainage areas A have dimensions of L2, we can
define a characteristic area Ac as the square of the character-
istic length:

Ac = l
2
c =D/K. (6)

Likewise, we can define a characteristic gradient Gc as

Gc = hc/lc = U/
√
DK (7)

and a characteristic curvature κc as

κc = hc/l
2
c = U/D. (8)

2.3 Incision-threshold number Nθ

In Theodoratos and Kirchner (2020), we derived a dimen-
sionless number, whose definition and interpretation we sum-
marize here. Dimensional analysis of the governing equation
with an incision threshold θ (Eq. 2) yielded the dimension-
less grouping of parameters Kθ/U . Specifically, all terms in
Eq. (2) give rates of elevation change and have dimensions of
HT−1. Therefore, to non-dimensionalize Eq. (2), we divided
all of its terms by the uplift rate U . The quantity Kθ , which
is included in the incision term in Eq. (2) and gives the re-
duction in the rate of incision due to the threshold, also has
dimensions of HT−1. Therefore, dividing the incision term in
Eq. (2) by U yielded the dimensionless ratio Kθ/U . We de-
fined this dimensionless ratio as an incision-threshold num-
ber Nθ :

Nθ =Kθ/U. (9)

This analysis led to a dimensionless version of Eq. (2) that
includes only one parameter: the incision-threshold num-
ber Nθ . This implies that Nθ is a control on the topography
of landscapes that follow Eq. (2). Specifically, model land-
scapes that have equal incision-threshold numbers Nθ can be
set up such that they follow geometrically similar evolutions.
Model landscapes that have different Nθ cannot evolve ge-
ometrically similarly, and their topographies differ in ways
that depend on their Nθ values. Simulation results illustrat-
ing these points are presented in Theodoratos and Kirchner
(2020).

We proposed two interpretations of the incision-threshold
number Nθ in Theodoratos and Kirchner (2020). First, Nθ is
defined as the incision rate reductionKθ relative to the uplift
rate U (Eq. 9). The uplift rate U can be viewed as a char-
acteristic rate of elevation change because it is equal to the
ratio of the characteristic height to the characteristic time,
i.e., U = hc/tc (Eqs. 4 and 5). Consequently, Nθ is a nor-
malized incision rate reduction with respect to U . Second,
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if we rearrange Eq. (9) as Nθ = θ/(U/K), then we can in-
terpret Nθ as giving the magnitude of θ relative to the pa-
rameter ratio U/K . Thus, the definition of Nθ shows that
incision thresholds from different landscapes should not be
compared to each other according to their own values but in-
stead according to their values relative to the ratio U/K of
each landscape.

3 Graphical illustrations of topographic and scaling
effects of the incision threshold

3.1 Defining a steady-state topographic relationship
between the steepness index and curvature

In Theodoratos et al. (2018), we presented a relationship
that describes the steady-state topography of landscapes that
evolve according to Eq. (1). Specifically, if we set ∂z/∂t = 0
and we solve the governing equation for curvature ∇2z, we
obtain

∂z/∂t = 0 : ∇
2z= (K/D)

√
A|∇z| − (U/D). (10)

The quantity
√
A|∇z| is equal to the steepness index (defined

as Am/n|∇z| for drainage area and slope exponents m and n;
e.g., Whipple, 2001). For this reason, we refer to Eq. (10) as
the curvature–steepness index relationship.

In a coordinate system in which the steepness index
(
√
A|∇z|) and curvature (∇2z) are plotted on the horizon-

tal and vertical axes, respectively, Eq. (10) plots as a straight
line (for example, see Fig. 1, which we describe in more
detail further below). Equation (10) is a testable, quanti-
tative prediction; if a landscape is in steady state and has
evolved according to Eq. (1), then curvature should plot as
a straight line against the steepness index. Furthermore, this
line can give estimates of the parameters K , D, and U be-
cause its slope is K/D, and its intercepts are ∇2z= −U/D

and
√
A|∇z| = U/K . While we have not validated this pre-

diction with data, Eq. (10) is a rearranged version of Eq. (5)
in Perron et al. (2009), which has been successfully tested
with real-world landscape data and has been used to estimate
model parameters. Testing Eqs. (10), (11), and (12) as well
as Figs. 1 and 2, which are described further below, would be
a reasonable next step after the current study.

3.2 Characteristic scales and the curvature–steepness
index relationship

If we substitute the characteristic scales lc and κc for the pa-
rameter ratios K/D and U/D, then the curvature–steepness
index relationship (Eq. 10) becomes

∂z/∂t = 0 : ∇
2z= (1/l2c )

√
A|∇z| − κc. (11)

As this equation shows, an interpretation of lc and hc is that
they control steady-state topography. Specifically, for a land-
scape to be in steady state, drainage area A, topographic

slope |∇z|, and curvature ∇2z must obey Eq. (11), which
is parameterized by the characteristic scales lc and κc or,
equivalently, by lc and hc because κc = hc/l

2
c (Eq. 8). We can

graphically illustrate the control of lc and hc on the topogra-
phy by plotting the curvature–steepness index line described
by Eq. (11). As Fig. 1 shows, the properties of such a line
are controlled by lc and hc; specifically, its slope is 1/l2c , and
its intercepts are ∇2z= −κc = −hc/l

2
c and

√
A|∇z| = hc.

Note that the slope of this line can be represented either as
K/D = 1/l2c units of curvature per 1 unit of steepness index
or 1 unit of curvature perD/K = l2c units of steepness index.
For simplicity, we use the latter notation to express the slopes
of the curvature–steepness index lines in Figs. 2–4.

Likewise, the curvature–steepness index relationship that
corresponds to the LEM with an incision threshold θ is con-
trolled by the characteristic scales lc and κc. This relation-
ship, however, is also controlled by the incision-threshold
number Nθ . To derive this relationship, we set ∂z/∂t = 0
in Eq. (2), and we solve it for ∇2z. When we do this for
the second subdomain (where

√
A|∇z|> θ ), we encounter

the ratio Kθ/D. This ratio can be rewritten as Kθ/D =
(Kθ U )/(U D)=Nθ κc (Eqs. 8 and 9). Thus, we obtain the
curvature–steepness index relationship:

∂z/∂t = 0 :

{
∇

2z= −κc,
√
A|∇z| ≤ θ

∇
2z= (1/l2c )

√
A|∇z| − (1+Nθ )κc,

√
A|∇z|> θ

. (12)

We plot this equation in Fig. 2 in black, and for compari-
son we also plot the curvature–steepness index line without
an incision threshold (Eq. 11) in gray. The black line con-
sists of two segments that correspond to the two subdomains
in Eqs. (2) and (12). The first segment is horizontal and de-
scribes a uniform steady-state curvature value of ∇2z= −κc
for points with

√
A|∇z| ≤ θ , where incision is fully sup-

pressed by the threshold and only diffusion and uplift oper-
ate. The second segment is inclined and corresponds to points
with
√
A|∇z|> θ where all three processes operate.

Equations (11) and (12) and Figs. 1 and 2 show that the
characteristic scales lc, hc, and κc describe the steady-state
topography at points of special interest (see also Theodoratos
et al., 2018). Furthermore, some effects of incision thresholds
on landscape properties can be visualized by comparing the
curvature–steepness index lines with and without an incision
threshold (black and gray lines in Fig. 2).

First, the vertical-axis intercept of the curvature–steepness
index line without an incision threshold (Fig. 1, Eq. 11) cor-
responds to ridges and drainage divides, which have A= 0
and/or |∇z| = 0, i.e.,

√
A|∇z| = 0. This intercept shows that

the steady-state curvature of ridges and drainage divides is
∇

2z= −κc = −U/D (see also Roering et al., 2007; Perron
et al., 2009). Note that −κc is the most negative value of cur-
vature. The horizontal segment of the black line in Fig. 2 (de-
scribed by the first subdomain in Eq. 12) expresses the fact
that, in landscapes with an incision threshold θ , the points
with
√
A|∇z| ≤ θ have the same steady-state curvature as

ridges and drainage divides, i.e., the most negative value of
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Figure 3. Graphical illustration, using curvature–steepness index lines, of how parameters influence landscape properties. The three plots
show how curvature–steepness index lines respond to increases in the uplift rate U , incision coefficient K , and diffusion coefficient D.
(a) An increase in U parallel-shifts the line to the right and downward. This makes the vertical-axis intercept smaller (more negative) and the
horizontal-axis intercept bigger, showing that ridges become more convex and that gradients become steeper (i.e., relief becomes higher). The
line’s slope remains 1/l2c , indicating that the scale of dissection does not change. (b) An increase inK rotates the line counterclockwise around
the vertical-axis intercept. This makes the horizontal-axis intercept smaller and the line’s slope bigger, showing that gradients become gentler
(i.e., relief becomes lower) and that the landscape becomes more dissected (i.e., the scales of dissection become smaller). (c) An increase in
D rotates the line clockwise around the horizontal-axis intercept. This moves the vertical-axis intercept closer to zero and decreases the line’s
slope, showing that ridges become less convex and that the landscape becomes less dissected (i.e., the scales of dissection become larger).

curvature. This shows that adding an incision threshold to the
LEM results in more convex hillslopes (e.g., Howard, 1994;
Theodoratos and Kirchner, 2020).

Second, the curvature–steepness index line without an in-
cision threshold (Fig. 1, Eq. 11) has a horizontal-axis inter-
cept of

√
A|∇z| = hc. This intercept corresponds to points

with curvature ∇2z= 0, which can be viewed as defining
the transition between hillslopes and valleys (e.g., Howard,
1994). Thus, points with a steepness index equal to the char-
acteristic height hc can be used to map hillslope–valley tran-
sitions (Theodoratos et al., 2018). Adding an incision thresh-
old θ to the LEM makes landscapes steeper and decreases
the drainage density; i.e., it makes first-order basins bigger
(e.g., Montgomery and Dietrich, 1992; Howard, 1994; Per-
ron et al., 2008). These two effects lead to steeper gradients
|∇z| and larger drainage areas A at hillslope–valley transi-
tions. Specifically, as Fig. 2 shows, the horizontal-axis inter-
cept increases from

√
A|∇z| = hc (gray line) to

√
A|∇z| =

hc+ θ (black line).

3.3 Quantifying and visualizing the effect of the incision
threshold on the scales of landscape dissection

In Theodoratos et al. (2018), we derived an interpretation of
the characteristic length lc by analyzing the competition be-
tween the advection and diffusion of elevation perturbations
(e.g., knickpoints), which gives rise to ridges and valleys and
controls their characteristic sizes (e.g., Smith and Bretherton,
1972; Howard, 1994; Perron et al., 2008). Following Perron
et al. (2008, 2009, 2012), we quantified the relative strength
of advection vs. diffusion using a Péclet number (Pe). The

definition of our Péclet number differs somewhat from that
of Perron et al. Specifically, our definition includes a length
scale l that we termed flow path length and that we defined
as the distance along flow paths from a given point to the
farthest ridge.

The Péclet number is defined (e.g., Perron et al., 2008) as
the ratio of a diffusion timescale tD to an incision timescale tI,
each of which gives a measure of the strength of the respec-
tive process. Specifically, a diffusion timescale can be de-
fined as (e.g., Perron et al., 2008)

tD =
l2

D
. (13)

This timescale characterizes diffusive propagation over a dis-
tance l. In Theodoratos et al. (2018), to define tI, we first cal-
culated the celerity c that corresponds to the incision term
in Eq. (1), which is a kinematic wave term (e.g., Whipple
and Tucker, 1999). This celerity is equal to c =K

√
A. Per-

turbations can be assumed to be advected at this celerity
(e.g., Berlin and Anderson, 2007; Perron et al., 2008). Lague
(2014) has criticized this assumption because it does not take
into account the effects of knickpoints on hydraulics (e.g., on
stream width) and their feedbacks on the rate of knickpoint
propagation, especially in the presence of incision thresh-
olds. While we acknowledge this limitation, we nonetheless
assume that the rate of knickpoint advection is equal to the
celerity c in Eq. (17) because our current focus is on inter-
preting the characteristic scales lc, hc, and tc that pertain to
Eqs. (1) and (2), which do not describe hydraulics explicitly.
Therefore, in Theodoratos et al. (2018), we defined the inci-
sion timescale tI as the ratio of the flow path length l, which
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Figure 4. Graphical illustration, using curvature–steepness index lines, of how an incision threshold and parameters control landscape
properties. The four plots show how curvature–steepness index lines respond to increases in the incision threshold θ , uplift rate U , incision
coefficient K , and diffusion coefficient D. (a) An increase in the incision threshold θ parallel-shifts the line to the right. Note the difference
with the shift in (b), which is to the right and downward. The shift in (a) makes the horizontal segment of the line longer and the horizontal-
axis intercept bigger, showing that the zones of maximum convexity become wider, gradients become steeper, and drainage areas of valley
heads become larger. The curvature value of the horizontal segments and the line’s slope remain unchanged. The increase in the horizontal-
axis intercept changes its ratio to the vertical-axis intercept, which expresses the degree of landscape dissection as explained in Sect. 3.3.
This ratio can be visualized by the dashed auxiliary lines that connect the horizontal- and vertical-axis intercepts, and the change in the value
of the ratio can be visualized by the rotation of these lines. (b) An increase in the uplift rate U shifts the line to the right and downward.
This makes the vertical-axis intercept smaller (more negative) and the horizontal-axis intercept bigger, showing that ridges become more
convex and that gradients become steeper (i.e., relief becomes higher). The changes in these two intercepts are not proportional and thus
their ratio changes. This change can be visualized in the inset, where we plot the auxiliary lines such that they share the same starting point.
This shows that the degree of landscape dissection changes when U is increased, whereas it did not change in the case of the LEM without
an incision threshold (see Fig. 3). (c) An increase in the incision coefficient K rotates the inclined segment of the line counterclockwise
around its intersection with the horizontal segment. The horizontal segment remains unchanged. Thus, the horizontal-axis intercept becomes
smaller, which shows that gradients become gentler and the landscape becomes more dissected. (d) An increase in the diffusion coefficient
D rotates the inclined segment line clockwise around the horizontal-axis intercept. This moves the horizontal segment and the vertical-axis
intercept closer to zero and changes the ratio of the two intercepts, showing that ridges become less convex and that the landscape becomes
less dissected.

characterizes the location of points within drainage basins, to
the celerity c, which characterizes the strength of advection:

tI = l/c =
l

K
√
A
. (14)

Note that small values of tI and tD correspond to strong ad-
vection and diffusion, respectively.

We can quantify the relative strengths of advection and dif-
fusion using the ratio of the respective timescales, which de-
fines the Péclet number (Theodoratos et al., 2018):

Pe= tD/tI =

√
Al

l2c
=

√
A
√
Ac

l

lc
. (15)
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Diffusive propagation is stronger at points with a Péclet num-
ber smaller than 1, and advective propagation is stronger
where the Péclet number is larger than 1. Where the Péclet
number is roughly equal to 1, diffusion and advection will be
roughly equal (when measured by tD and tI). Equation (15)
shows that if a point’s flow path length l is roughly equal to
the characteristic length lc and its drainage area A is roughly
equal to the characteristic area Ac, then its Péclet number
will be roughly equal to 1, i.e.,

l ≈ lc, A≈ Ac ≈ l
2
c H⇒ Pe≈ 1 . (16)

Note that if the incision term has a slope exponent n 6= 1,
then the condition |∇z| ≈Gc must be included along with
l ≈ lc and A≈ l2c for the Péclet number to be Pe≈ 1.

The conditions A≈ l2c and l ≈ lc (Eq. 16) are not the only
combination of A and l that give Pe≈ 1, but they are signifi-
cant because they lead to an interpretation of lc. Specifically,
these conditions show that advective propagation, which pro-
motes valley dissection, is dominant at points farther than
lc from the ridge and with a drainage area greater than l2c .
Therefore, in Theodoratos et al. (2018) we interpreted the
characteristic length lc as giving a measure of the smallest
scales of dissection. This interpretation does not imply that
valley heads are exactly 1 lc away from ridges or that they
have drainage areas exactly equal to 1 l2c . Rather, it implies
that flow path lengths and drainage areas of valley heads are
of a similar order of magnitude as lc and l2c , respectively. Fur-
thermore, it implies that valley heads in different landscapes
have l and A that scale with lc and l2c , respectively.

Adding the threshold θ to the incision term of the LEM
changes the kinematic wave celerity c and thus the inci-
sion timescale tI and the Péclet number (Pe). Specifically,
the celerity becomes

c =

{
0,

√
A|∇z| ≤ θ

K
√
A−Kθ/|∇z|,

√
A|∇z|> θ

, (17)

and thus the incision timescale tI becomes

tI = l/c =

{
+∞,

√
A|∇z| ≤ θ

l

K
√
A−Kθ/|∇z|

,
√
A|∇z|> θ

. (18)

Note that the diffusion timescale tD is not affected by the
incision threshold. Thus, we can use Eqs. (13) and (18) to
define a Péclet number (Pe) for the LEM with an incision
threshold θ (Eq. 2), specifically

Pe= tD/tI =

0,
√
A|∇z| ≤ θ

√
Al−(θl/|∇z|)

l2c
,
√
A|∇z|> θ

. (19)

It can be shown that Eq. (19) can be rewritten as

Pe= tD/tI =

{
0,

√
A|∇z| ≤ θ

√
A
√
Ac

l
lc
−Nθ

l
lc

Gc
|∇z|

,
√
A|∇z|> θ

, (20)

where Nθ is the incision-threshold number (Eq. 9). Equa-
tion (20) shows that adding an incision threshold θ to the
LEM reduces the Péclet number relative to the Péclet num-
ber for the LEM without a threshold (Eq. 15). This agrees
with the fact that the threshold weakens the incision term.
More specifically, the Péclet number for the LEM with θ is
reduced by the quantity Nθ (l/lc)(Gc/|∇z|).

Note that the Péclet number definition by Perron
et al. (2008) also includes a reduction that depends on Nθ
(denoted as θ ′ in Perron et al., 2008). The two definitions
differ in that ours includes the product

√
Al (where A is the

drainage area and l is the flow path length), whereas the Per-
ron et al. definition includes only a length scale (squared).
By including

√
Al, our definition can account for the scaling

ofA with l, which depends on the convergence or divergence
of topography. The implications of this property of our Pé-
clet number are discussed in Sect. 4.2.3 of Theodoratos et al.
(2018).

Using Eq. (20) we see that the conditions l ≈ lc, A≈ l2c ,
and |∇z| ≈Gc, which lead to a Péclet number roughly equal
to 1 for the case without an incision threshold (Eq. 16), will
lead to Pe≈ 1−Nθ < 1 when θ is included. The fact that the
difference between Pe and 1 is equal to Nθ suggests that we
could obtain the value Pe≈ 1 by adjusting the values of l, A,
and |∇z| such that they depend on Nθ . Indeed, we observe
that

l ≈
√

1+Nθ lc, A≈ (1+Nθ )l2c ,

|∇z| ≈
√

1+NθGc H⇒ Pe≈ 1. (21)

Note that
√

1+Nθ lc is larger than lc, which agrees with ob-
servations that incision thresholds reduce landscape dissec-
tion (e.g., Montgomery and Dietrich, 1992; Howard, 1994;
Perron et al., 2008).

Equation (21) shows that, in the case of a landscape that
includes an incision threshold θ , the smallest scales of dissec-
tion are not characterized by the characteristic length lc on its
own, but rather jointly by lc and the incision-threshold num-
ber Nθ through the quantity

√
1+Nθ lc. Consequently, the

presence of θ changes the dependence of the scales of dis-
section on the LEM parameters. Without an incision thresh-
old, the scales of landscape dissection depend on lc, which
depends on the incision and diffusion coefficients K and D
(Eq. 3). On the other hand, when θ is included in the LEM,
the scales of dissection depend on

√
1+Nθ lc, which depends

on K and D, but also on the uplift rate U and the incision
threshold θ . We illustrate an example of the dependence onU
in Fig. 4b.

The length scales lc and
√

1+Nθ lc can be expressed
graphically by the horizontal- and vertical-axis intercepts
of curvature–steepness index lines, specifically by the ra-
tio of these intercepts (or, more precisely, by the ratio of
their absolute values). This ratio is equal to hc/κc = l

2
c in the

case without an incision threshold (see Fig. 1) and equal to
(hc+ θ )/κc = (1+Nθ )l2c in the case that includes the inci-

https://doi.org/10.5194/esurf-9-1545-2021 Earth Surf. Dynam., 9, 1545–1561, 2021



1554 N. Theodoratos and J. W. Kirchner: Graphically interpreting landscape properties

sion threshold θ (see Fig. 2). Note that the first ratio is equal
to the inverse of the slope of the curvature–steepness index
line, which is 1/l2c . On the other hand, the second ratio is
not the inverse of this slope, which remains 1/l2c when the
threshold θ is included. Instead, it is the inverse of the slope
of an auxiliary line connecting the two intercepts. In Fig. 2,
we show this auxiliary line as a black dashed line. The effect
of the incision threshold on valley dissection can be visual-
ized graphically by comparing the slope of the curvature–
steepness index line against the slope of the black dashed
auxiliary line. We show this comparison as a thick white ar-
row.

It should be noted that the characteristic length lc depends
only onK andD when the slope exponent is n= 1. However,
for other values of n, lc will also depend on the uplift rate U ;
in this more general case, lc = (K−1DnU1−n)1/(n+2m) (see
Appendix A in Theodoratos et al., 2018). Therefore, the de-
gree of landscape dissection in general is not independent
of U . Specifically, an increase in U leads to a decrease in
landscape dissection for n > 1 and to an increase in land-
scape dissection for n < 1, which agrees with previous ob-
servations of the dependence of drainage density on the up-
lift rate (e.g., Clubb et al., 2016). Interestingly, as revealed
by the current study, if an incision threshold is included, the
degree of landscape dissection depends on U even for n= 1.

3.4 How the curvature–steepness index line responds
to parameter value changes

As we show in Figs. 3 and 4, differences in the properties of
landscapes with different parameters K , D, U , and θ can be
graphically summarized by curvature–steepness index lines
because the slopes and intercepts of these lines depend on the
characteristic scales lc, hc, and κc, as well as on the incision-
threshold number Nθ , which in turn depend on the parame-
ters.

Figure 3 shows curvature–steepness index lines without
incision thresholds. It consists of three panels, each show-
ing how the lines respond to an increase in one of the three
parameters U , K , and D. In Fig. 3a, an increase in the up-
lift rate U shifts the curvature–steepness index line down-
ward and to the right without changing its slope. This illus-
trates that the characteristic height and curvature (hc and κc),
which control the intercepts of the line, are proportional to U
(Eqs. 4 and 8), while the characteristic length lc, which con-
trols the line’s slope, is independent ofU (Eq. 3). The parallel
shift of the line corresponds to more convex ridges (so that
diffusion can keep up with uplift), steeper gradients (so that
incision can keep up with uplift), and unchanged landscape
dissection. Analogously, Fig. 3b shows that an increase in
the incision coefficient K leads to a counterclockwise rota-
tion of the line around the vertical-axis intercept, which cor-
responds to a more dissected landscape (smaller lc), milder
gradients (smaller hc), and unchanged ridge convexity (un-
changed κc). Finally, in Fig. 3c, an increase in the diffu-

sion coefficient D results in a clockwise rotation of the line
around the horizontal-axis intercept. This corresponds to a
smoother landscape with less dissection (larger lc), less con-
vex ridges (smaller κc), and an unchanged steepness index at
hillslope–valley transitions (unchanged hc).

Figure 4 illustrates in four panels how curvature–steepness
index lines respond to increases in the value of either the in-
cision threshold θ or one of the parameters U , K , and D. As
a reminder, a curvature–steepness index line with an incision
threshold consists of two segments, a horizontal and an in-
clined. Note that, as we explain in the previous subsection
(Sect. 3.3), a curvature–steepness index line that includes
an incision threshold does not express landscape dissection
through the slope of its inclined segment, which depends
only on the characteristic length lc, but rather through the
ratio of the horizontal- and vertical-axis intercepts, which is
equal to

√
1+Nθ lc. This ratio can be graphically illustrated

by the slope of an auxiliary line that connects the two inter-
cepts, such as the dashed black line in Fig. 2. In each panel
of Fig. 4, we show two dashed black auxiliary lines to illus-
trate how the ratio of intercepts responds to the parameter
changes.

In Fig. 4a we illustrate an increase in θ . The steepness
index

√
A|∇z| must reach a greater value before exceed-

ing the increased θ , and thus the horizontal segment of the
curvature–steepness index line becomes longer. The vertical
position of this segment (along with the vertical-axis inter-
cept) does not change because the characteristic curvature κc
does not depend on θ . The slope of the curvature–steepness
index line also does not change because lc does not depend
on θ . Thus, the increase in θ parallel-shifts the inclined seg-
ment of the line to the right. Consequently, the horizontal-
axis intercept increases, which expresses the steepening of
gradients and the decrease in landscape dissection. The de-
crease in dissection is also expressed by the fact that the ratio
of the horizontal- to the vertical-axis intercept increases, as
shown by the clockwise rotation of the dashed auxiliary line.

In Fig. 4b we show that an increase in the uplift rate U
parallel-shifts the curvature–steepness index line downward
and to the right. Furthermore, the horizontal- and vertical-
axis intercepts move to the right and downward, respectively
(κc and hc are proportional to U ), and the slope of the in-
clined segment remains unchanged (lc does not depend on
U ). As we explain in Sect. 3.3, the value of U affects the
value of

√
1+Nθ lc, which expresses the scales of landscape

dissection. Specifically, the increase in U leads to a decrease
in Nθ . This reflects the fact that θ becomes less important
relative to the increased U . Thus, the decrease in dissection
due to the threshold is somewhat moderated by the increase
in U . This moderation is graphically illustrated by the slopes
of auxiliary lines connecting the intercepts of the curvature–
steepness index lines. These auxiliary lines do not intersect,
and thus their slopes cannot be readily compared visually.
Therefore, we plot them again in an inset such that they start
from the same point. In this way, we can see that the increase
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in U leads to a counterclockwise rotation of the auxiliary
lines, which expresses the increase in dissection.

In Fig. 4c we illustrate the response of the curvature–
steepness index line to an increase in the incision coeffi-
cient K . The horizontal segment of the line remains un-
changed and the inclined segment is rotated counterclock-
wise around the point of transition between the two seg-
ments. Likewise, the dashed auxiliary line connecting the
horizontal- and vertical-axis intercepts is rotated counter-
clockwise. These responses express the fact that dissection
is decreased and that gradients become milder when K is in-
creased. Finally, in panel (d), we show that increasing the
diffusion coefficient D leads to a clockwise rotation of the
inclined segment of the line around its horizontal-axis inter-
cept, which remains unchanged. The rotation results in mov-
ing the horizontal segment up and in rotating the dashed aux-
iliary line clockwise. These changes express the reduction in
landscape dissection and the reduction in the convexity of
ridges and hillslopes.

4 Quantifying how the influence of the incision
threshold varies within a landscape

Thus far, we have examined how the influence of the in-
cision threshold θ varies between different landscapes with
different parameters using the incision-threshold number Nθ
(Eq. 9). This number is constant for any given landscape if
the parameters of the landscape are constant. Now, we turn
our attention to how the influence of the incision threshold θ
varies within a given landscape.

We can quantify the relative influence of the threshold θ
on the rate of incision using the fraction θ/(

√
A|∇z|). This

fraction is equal to Kθ , which is the reduction in the inci-
sion rate due to the threshold, divided by K

√
A|∇z|, which

is the incision rate if there were no threshold. Therefore,
θ/(
√
A|∇z|) shows by what fraction the incision rate is re-

duced due to the threshold. Where
√
A|∇z| = θ , the fraction

θ/(
√
A|∇z|) is equal to 1, which agrees with the incision

rate being reduced by 100 % (i.e., being reduced to zero). At
points with

√
A|∇z| smaller than θ , calculating the fraction

θ/(
√
A|∇z|) would not be meaningful; instead, because the

threshold completely suppresses incision under these condi-
tions, we assign a value of 1 to the fractional reduction in
incision rate.

We can associate the fractional reduction in incision rate
with the Tucker (2004) threshold factor8. Tucker (2004) de-
fined 8 to quantify the fraction of precipitation events lead-
ing to shear stress above a threshold value, i.e., the fraction
of events that lead to erosion. Tucker (2004) used 8 to ex-
press the incision term of his LEM as KAmbSnb8. In the
case of the LEM examined here (Eq. 2), following Tucker’s
notation, we can express the incision term as K

√
A|∇z|8,

where the threshold factor 8 is equal to 1− θ/(
√
A|∇z|) for√

A|∇z|> θ and to 0 for
√
A|∇z| ≤ θ . Thus, the quantity

Figure 5. How the relative influence of the incision threshold
changes across a landscape. We plot the quantity 1−8 vs. the steep-
ness index

√
A|∇z|, where8 is a threshold factor that can subsume

the incision threshold θ (definitions in Eq. 22 and Sect. 4). The
quantity 1−8 is dimensionless and expresses the fractional reduc-
tion in incision rate due to the incision threshold θ . The 1−8 curve
presented here shows how this fraction varies across the landscape.
The value 1−8= 1 corresponds to points where incision is fully
suppressed by the threshold, i.e., where the incision rate is reduced
by 100 %. Thus, the horizontal segment of the 1−8 curve corre-
sponds to the horizontal segment of the curvature–steepness index
line in Fig. 2. At points with

√
A|∇z| much larger than θ (the far

right of the plot), the incision rate is reduced by a very small frac-
tion, and the 1−8 curve asymptotically approaches 0. The black
dot on the 1−8 curve corresponds to the steepness index value
hc+ θ , which corresponds to hillslope–valley transitions, as shown
in Fig. 2. The position of the black dot on the curve helps us visual-
ize how large the incision rate reduction fraction is across different
regimes of a landscape. This position depends on the characteristic
height hc, θ , and the dimensionless ratio θ/hc. We define this ratio
as the incision-threshold number Nθ (Eq. 9).

1−8 is equal to the fractional reduction in incision rate, i.e.,

1−8=

{
1,

√
A|∇z| ≤ θ

θ
√
A|∇z|

,
√
A|∇z|> θ

. (22)

Consequently, in what follows we denote the fractional re-
duction in incision rate as 1−8. We illustrate the properties
of the quantity 1−8 with plots and maps in Figs. 5–7.

In Fig. 5 we plot 1−8 vs. the steepness index
√
A|∇z| ac-

cording to Eq. (22). The curve consists of two parts. The first
is a horizontal segment that describes the value 1−8= 1
and corresponds to points with

√
A|∇z| ≤ θ , where incision

is fully suppressed by the threshold. The second part cor-
responds to points with

√
A|∇z|> θ , forming part of a hy-

perbola that asymptotically approaches 0. This asymptotic
approach expresses the fact that, at points with a steepness
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Figure 6. Comparison of the relative influence of incision thresh-
olds with different magnitudes. We present curves of the quantity
1−8 vs. the steepness index

√
A|∇z| for four different values of

Nθ . The black dots show the values of
√
A|∇z| and 1−8 that corre-

spond to hillslope–valley transitions. The curve with Nθ = 0.2, the
smallest of the four values of Nθ , starts with a short horizontal seg-
ment and then descends steeply and approaches 0 rapidly. Further-
more, its black dot corresponds to the value 1−8= 0.2/1.2= 1/6.
By contrast, the curve with the largest value, Nθ = 2, starts with a
long horizontal segment, descends gradually, approaches 0 slowly,
and has a black dot with 1−8= 1/3= 0.333. These differences
show that as Nθ increases, (a) incision is fully suppressed by the
threshold in bigger portions of hillslopes, (b) the steepness index
must reach greater values for the influence of the threshold to start
becoming negligible, and (c) the hillslope–valley transition occurs
at larger values of 1−8; i.e., the threshold has a strong influence
not only on hillslopes, but also on the valley network.

index
√
A|∇z| much larger than θ , the incision threshold has

a very small relative influence on the incision rate.
To indicate how different parts of the 1−8 curve in

Fig. 5 correspond to different regimes of a landscape, we
identify the point that corresponds to hillslope–valley tran-
sitions. As explained in Sect. 3.2, hillslope–valley transi-
tions can be defined as points with zero curvature and there-
fore with a steady-state steepness index of

√
A|∇z| = hc+

θ . Consequently, the fractional reduction in incision rates
θ/(
√
A|∇z|) at these points is θ/(hc+ θ ). We can rewrite

this value in terms of the incision-threshold number Nθ as
Nθ/(1+Nθ ). Thus, in Fig. 5, hillslope–valley transitions cor-
respond to the point with coordinates (

√
A|∇z|,1−8)=

(hc+θ, Nθ/(1+Nθ )), which we mark with a black dot. The
part of the curve above and to the left of this dot corresponds
to hillslopes, and the part below and to the right corresponds
to the valley network.

With Fig. 6, we examine how the value of the incision-
threshold number Nθ of a landscape controls the relation-

ship between the quantity 1−8 and the steepness index√
A|∇z|. Specifically, in Fig. 6 we show curves of 1−8 vs.√
A|∇z| for four landscapes with incision-threshold numbers

Nθ equal to 0.2, 0.4, 1, and 2. The landscapes are assumed to
have equal parameters K , D, and U and therefore to have
equal characteristic scales. The curves with greater values
of Nθ also have greater incision thresholds θ , and thus they
have longer horizontal segments. Furthermore, the curves
with greater values of Nθ go towards zero more slowly. On
each curve, we show the hillslope–valley transition using a
black dot. The value of the quantity 1−8 corresponding to
each dot becomes larger asNθ increases. Thus, in landscapes
with smaller Nθ , the incision rate is reduced by large frac-
tions only on the hillslopes, and in valleys it is reduced by
small fractions. By contrast, in landscapes with greater Nθ ,
incision can be reduced by large fractions both on hillslopes
and in valleys.

Figure 7 shows maps of the quantity 1−8 across four
steady-state landscapes. We simulated these landscapes with
the CHILD (Channel–Hillslope Integrated Landscape De-
velopment) numerical model (Tucker et al., 2001). Details
about these simulations and additional results are presented
in Theodoratos and Kirchner (2020). Here, we provide brief
information about the parameters and setup of these simula-
tions in Appendix B. To illustrate how the spatial distribution
of 1−8 depends on the incision-threshold number Nθ , we
ran four simulations with Nθ values of 0.2, 0.4, 1, and 2,
i.e., the same Nθ values as in Fig. 6. The pixels of the four
maps are colored according to their values of 1−8 using a
grayscale that ranges from white to black. Lighter colors cor-
respond to larger values of 1−8, i.e., to a stronger influence
of the incision threshold. As expected, lighter colors appear
near ridges and on hillslopes where the incision threshold has
a stronger influence.

The patterns in Fig. 7 reflect the spatial distribution of
drainage area and slope because the incision threshold in
Eq. (2) is defined as a topographic threshold. However, maps
of the quantity 1−8 would be useful for other formula-
tions of the incision threshold as well. For example, the
Tucker (2004) formulation of the incision threshold assumed
stochastic precipitation. Tucker quantified the influence of
this incision threshold using the threshold factor 8, which
ranges between 0 and 1 (and on which our quantity 1−8
is based, as mentioned above). Therefore, the quantity 1−8
could be calculated for the case of the Tucker (2004) LEM,
and maps of this quantity would visualize how the influence
of the incision threshold is spatially distributed across land-
scapes.

The fractional reduction in incision rate 1−8 and the
threshold factor 8 can be used to simplify the definition of
the Péclet number (Pe). Specifically, we can rearrange the
definition of Pe (Eq. 19) such that it includes the fraction
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Figure 7. Control of the incision-threshold number Nθ on the spatial distribution of the fractional reduction in incision rate. We map the
quantity 1−8 across four steady-state simulated landscapes with different values of Nθ . We use the same values of Nθ as in Fig. 6. Details
about the setup and parameters of these simulations are presented in Appendix B. Lighter colors correspond to larger values of 1−8, i.e.,
to stronger influence of the incision threshold. The spatial distribution of 1−8 follows the dendritic pattern of the valley network. As Nθ
increases, the maps become lighter; i.e., areas with a strong influence of the incision threshold become more widespread both on hillslopes
and in valleys.

θ/(
√
A|∇z|):

Pe=

0,
√
A|∇z| ≤ θ(

1− θ
√
A|∇z|

) √
A
√
Ac

l
lc
,
√
A|∇z|> θ

. (23)

If this equation is combined with the definition of 1−8
(Eq. 22), then we can rewrite the definition of Pe in compact
form as

Pe=8 ·Peθ=0, (24)

where Peθ=0 is the Péclet number for the LEM without an
incision threshold (see Eq. 15). Equations (23) and (24) re-
veal that the influence of the incision threshold on the Péclet
number varies across the landscape. Specifically, larger val-
ues of Pe, which correspond to larger values of the steepness
index

√
A|∇z|, are less sensitive to the incision threshold.

5 Summary and conclusions

We present graphical methods that summarize topographic
and scaling properties of landscapes following a simple
stream-power incision and linear diffusion LEM (Eq. 1) and
that illustrate the effects of adding an incision threshold θ

(Eq. 2). Our results referring to the LEM without an inci-
sion threshold (Eq. 1) have been presented before (Theodor-
atos et al., 2018), but we show them here again to contrast
them against those referring to the LEM with the threshold θ
(Eq. 2). The two LEMs (Eqs. 1 and 2) assume that the in-
cision term has drainage area and slope exponents m= 0.5
and n= 1 because this combination significantly simplifies
the mathematical derivations. However, as we show in Ap-
pendix A, our results are also valid for generic exponents m
and n.

For the first graphical method, we plot steady-state re-
lationships between curvature ∇2z and the steepness index√
A|∇z| (Eqs. 10, 11, and 12), which we obtain from the

governing equations (Eqs. 1 and 2). These relationships can
be viewed as counterparts of the relationship between topo-
graphic slope and drainage area, which is typically assumed
to follow a power law in detachment-limited landscapes but
not in landscapes that are also influenced by hillslope diffu-
sion. These relationships plot as straight lines (Figs. 1 and 2),
whose properties (slope and intercepts) depend on the inci-
sion threshold θ and on the characteristic scales of the land-
scape, which in turn depend on the parameters of the LEM,
i.e., on the incision coefficient K , the diffusion coefficient
D, and the uplift rate U . (Eqs. 3, 4, and 8). A reasonable
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follow-up study would be to validate these results against
real-world landscapes and specifically explore whether cur-
vature and steepness index data from real landscapes would
plot against each other as straight lines.

With Fig. 2, we show that curvature–steepness index lines
can graphically illustrate the effects of incision thresholds
on landscapes. Specifically, the ways in which curvature–
steepness index lines with and without a threshold differ from
each other illustrate that thresholds make hillslopes more
convex, make gradients steeper, and reduce the drainage
density. These effects have been presented elsewhere (e.g.,
Montgomery and Dietrich, 1992; Howard, 1994; Perron
et al., 2008), but the curvature–steepness index lines offer
new ways to visualize them graphically. In Figs. 3 and 4, we
illustrate the dependence of these properties on the param-
eters K , D, U , and θ by showing how curvature–steepness
index lines respond to increases in these parameters, one at a
time. These figures demonstrate an advantage of curvature–
steepness index lines: the topographic effects of model pa-
rameter changes are expressed as simple shifts and rotations
of these lines.

In Sect. 3.3, we examine in more detail the effects of
the incision threshold θ on drainage density and the scales
of landscape dissection, as well as how these effects can
be visualized with curvature–steepness index lines. We as-
sume that dissection is controlled by the competition between
the advection and diffusion of perturbations (e.g., Smith and
Bretherton, 1972; Howard, 1994; Perron et al., 2008), and
thus we examine the effects of θ using a Péclet number (Pe)
(Eqs. 15 and 19; see also Perron et al., 2008, 2012; Theodor-
atos et al., 2018). For the LEM that does not include an in-
cision threshold, we found in Theodoratos et al. (2018) that
the characteristic length lc characterizes the smallest scales of
dissection. Note that the slope of curvature–steepness index
lines is 1/l2c ; therefore, this slope graphically expresses the
scales of the dissection of landscapes without incision thresh-
olds. Adding the incision threshold θ , we find that the small-
est scales of dissection are characterized by the length scale
√

1+Nθ lc, where Nθ is a dimensionless incision-threshold
number defined as Nθ =Kθ/U (Eq. 9). This length scale
is longer than lc, which expresses the fact that incision
thresholds reduce the drainage density. The square of this
length scale is (1+Nθ )l2c and is equal to the ratio between
the horizontal- and vertical-axis intercepts of the curvature–
steepness index line. As we show in Fig. 2, an auxiliary
line connecting these two intercepts would have a slope of
1/((1+Nθ )l2c ). Thus, we can graphically visualize the effect
of the incision threshold on landscape dissection by com-
paring the slope of this auxiliary line with the slope of the
curvature–steepness index line.

The second graphical method consists of plots of the di-
mensionless fraction θ/

√
A|∇z|, which gives the fraction by

which the incision rate is reduced due to the threshold (see
the governing equation, Eq. 2). We found that this fraction is
equal to 1−8 (Eq. 22), where 8 is a threshold factor (see
Tucker, 2004) that subsumes the effect of the incision thresh-
old θ on the incision term of the LEM (see Eqs. 2 and 22).
Thus, we denote the fractional reduction in the incision rate
as 1−8. In Figs. 5–7, we present plots and maps of 1−8
that illustrate how the relative influence of incision thresh-
olds will vary across a given landscape and how the variation
of this relative influence depends on the landscape’s incision-
threshold number Nθ .

The two dimensionless numbers examined here, Nθ and
1−8, quantify the relative influence of the incision thresh-
old θ : the first with respect to the parametersK andU and the
second with respect to the steepness index. Thus, Nθ quan-
tifies how θ affects different landscapes with different pa-
rameters, and 1−8 quantifies how the influence of θ varies
across different points of a given landscape. We find that the
definition of the Péclet number (Pe) can be rewritten in two
equivalent forms (Eqs. 20 and 24), which reveal how Pe de-
pends on Nθ and on 8, respectively.

The three dimensionless numbers, Pe, Nθ , and 8, along
with the characteristic scales lc, hc, and tc, provide a thor-
ough characterization of landscapes that follow the govern-
ing equation (Eq. 2). Furthermore, plots of the curvature–
steepness index relationship offer a straightforward way to
graphically express the geomorphologic meaning of these di-
mensionless numbers and characteristic scales. Even though
the specific definitions of these quantities refer only to the
LEMs examined here (Eqs. 1 and 2), the approach that under-
pins our graphical methods is more generally applicable. For
example, an LEM with an incision threshold and stochastic
precipitation would have a different governing equation than
Eq. (2) and thus a different curvature–steepness index rela-
tionship than Eq. (12) and Fig. 2. However, curvature and the
steepness index would still be reasonable axes for plotting
data from such an LEM if it included diffusion. Likewise, the
quantity 1−8would follow a different formula than Eq. (22),
but maps of this quantity would be useful in visualizing spa-
tial patterns of the influence of the incision threshold across
a landscape. Consequently, our graphical methods could po-
tentially be helpful for the analysis of a broader range of
models than those examined here.
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Appendix A: Curvature–steepness index lines for
generic drainage area and slope exponents m and n

In this Appendix, we demonstrate that our graphical method
remains valid for the case of LEMs with incision terms that
have generic drainage area and slope exponents m and n, re-
spectively.

For generic exponents m and n, the governing equations
Eqs. (1) and (2) respectively become

∂z

∂t
= −KAm(|∇z|)n+D∇2z+U (A1)

and

∂z

∂t
=

{
D∇2z+U, Am(|∇z|)n ≤ θ
−K(Am(|∇z|)n− θ )+D∇2z+U, Am(|∇z|)n > θ

. (A2)

Given that the steepness index is defined as ks = Am/n|∇z|
(e.g., Whipple, 2001), the quantity Am(|∇z|)n in the above
equations is equal to the steepness index raised to the power
n, i.e., Am(|∇z|)n = kns , and the incision threshold θ is a
threshold of the quantity kns .

Setting ∂z/∂t = 0 in Eqs. (A1) and (A2), we can derive the
corresponding steady-state relationships between curvature
and the steepness index:

∇
2z= (K/D)kns − (U/D) (A3)

and{
∇

2z= −(U/D), kns ≤ θ

∇
2z= (K/D)kns − (1+Nθ )(U/D), kns > θ

, (A4)

where Nθ is the incision-threshold number, still defined as
Nθ =Kθ/U .

When plotted in axes of ∇2z and kns , Eq. (A3) has the
same basic properties as Eq. (11), which is the curvature–
steepness index relationship with m= 0.5, n= 1, and θ = 0.
Specifically, Eq. (A3) plots as a straight line with a slope
equal to K/D, a vertical-axis intercept equal to −U/D, and
a horizontal-axis intercept equal to U/K . Consequently, for
generic exponents m and n, changes in the values of the pa-
rametersK ,D, andU are still expressed graphically as shifts
and rotations of the curvature–steepness index line, as seen
in Fig. 3 for the case of m= 0.5 and n= 1.

Note that the characteristic scales of length and height (lc
and hc) are not equal to

√
D/K and U/K for generic expo-

nents m and n. Rather, they are defined by the more compli-
cated formulas

lc = (K−1DnU1−n)1/(n+2m) (A5)

and

hc = (K−2Dn−2mU2−n+2m)1/(n+2m), (A6)

whose derivation can be seen in Appendix A of Theodoratos
et al. (2018). However, the parameter ratios K/D and U/K

still express the relative strengths of incision vs. diffusion and
incision vs. uplift. By contrast, note that the parameter ratio
U/D remains equal to the characteristic curvature κc, which
expresses the relative strength of diffusion vs. uplift. Conse-
quently, the shifts and rotations of the curvature–steepness
index line still express changes in scaling and topographic
properties of landscapes, such as changes in the curvature of
ridges, the degree of dissection, and gradients at hillslope–
valley transitions.

Likewise, when plotted in axes of ∇2z and kns , Eq. (A4)
has the same properties as Eq. (12): the curvature–steepness
index relationship with an incision threshold and with m=
0.5 and n= 1. Specifically, Eq. (A4) plots as a line with
two segments: a horizontal segment at ∇2z= −U/D for
kns ≤ θ and an inclined segment with slope equal to K/D
and horizontal-axis intercept equal to (U/K)+ θ for kns > θ .
This line, too, responds to changes in the parameters θ ,K ,D,
and U , with shifts and rotations equivalent to the shifts and
rotations shown in Fig. 4 for the case of m= 0.5 and n= 1.

Finally, for generic exponents m and n, the fractional re-
duction in incision rate 1−8 is defined as

1−8=

{
1, kns ≤ θ

θ/kns , kns > θ
, (A7)

which plots as shown in Figs. 5 and 6 but in axes of kns .

Appendix B: Setup of numerical simulations

We prepared the maps in Fig. 7 with results from numeri-
cal simulations that we performed using the CHILD model,
originally for the work discussed in Theodoratos and Kirch-
ner (2020). In that work, we present much more information
about these simulations and their results. Here, we briefly
summarize the model setup and parameterization.

All four landscapes in Fig. 7 have an inci-
sion coefficient K = 2× 10−6 a−1, diffusion co-
efficient D= 0.5× 10−2 m2 a−1, and uplift rate
U = 0.5× 10−4 ma−1. Each landscape’s incision threshold θ
depends on the value of its incision-threshold number Nθ
according to θ =Nθ ·(U/K) (see Eq. 9), where U/K = 25 m
for all landscapes. Therefore, the landscapes have the
incision thresholds seen in Table B1.

We simulated the four landscapes on triangular irregular
networks (TINs) with a total extent of 7.5 km× 11.25 km
and an average TIN edge length of 20 m, which resulted in
around 250 000 TIN points. Each map in Fig. 7 shows a part
of the TIN, specifically a rectangular region with a size of
5 km× 4 km centered around the largest drainage basin of
the corresponding landscape.

Details about the implementation of the governing equa-
tion (Eq. 2) in CHILD (Tucker et al., 2001) can be found in
Theodoratos et al. (2018) and in Theodoratos and Kirchner
(2020).
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Table B1. Incision-threshold numbers Nθ and corresponding incision thresholds θ of the four landscapes illustrated in Fig. 7. The parameter
ratio U/K is equal to 25 m for all landscapes.

Incision-threshold number: Nθ [–] 0.2 0.4 1 2

Incision threshold: θ =Nθ · (U/K) [m] 5 10 25 50

Data availability. The data presented here were synthesized using
the CHILD model (Tucker et al., 2001). The input files needed to
reproduce them are available from the corresponding author upon
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