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Abstract. Abrasion of sedimentary particles in fluvial and eolian environments is widely associated with colli-
sions encountered by the particle. Although the physics of abrasion is complex, purely geometric models recover
the course of mass and shape evolution of individual particles in low- and middle-energy environments (in the
absence of fragmentation) remarkably well. In this paper, we introduce the first model for the collision-driven
collective mass evolution of sedimentary particles. The model utilizes results of the individual, geometric abra-
sion theory as a collision kernel; following techniques adopted in the statistical theory of coagulation and frag-
mentation, the corresponding Fokker–Planck equation is derived. Our model uncovers a startling fundamental
feature of collective particle size dynamics: collisional abrasion may, depending on the energy level, either focus
size distributions, thus enhancing the effects of size-selective transport, or it may act in the opposite direction by
dispersing the distribution.

1 Introduction

1.1 Geological observations

Probably the most fundamental observation on pebbles is that
they appear to be segregated both by size and shape, and it is
broadly accepted that the dynamics are driven by two phys-
ical processes: transport and abrasion. Which of these pro-
cesses dominates may depend on the geological location and
also on timescales; however, geologists appear to agree that,
in general, neither process should be ignored.

In coastal environments, one of the most remarkable ac-
counts of pebble size and shape distribution is provided by
Carr (1969) based on the measurement of approximately
100 000 pebbles on Chesil Beach, Dorset, England. In sum-
marizing his results, Carr provides mean values and sam-
ple variations for maximal pebble size and pebble axis ra-
tios along lines orthogonal to the beach. These plots reveal
pronounced segregation by maximal size and shape; i.e., on
shingle beaches pebbles of roughly similar maximal sizes

and with roughly similar axis ratios appear to be spatially
close to each other. Size and shape segregation has been
broadly observed in various settings (Bird, 1996; Gleason
et al., 1975; Hansom and Moore, 1981; Kuenen and Miglior-
ini, 1950; Neate, 1967), and it was mostly attributed to the
global transport of pebbles by waves (Lewis, 1931; Carr,
1969) but, in some settings, may also be related to abrasion.
Indeed, a detailed account of the interaction of abrasion and
transport is given by Landon (1930), who investigated the
beaches on the west shore of Lake Michigan. He attributes
size and shape variation to a mixture of abrasion and trans-
port. Kuenen (1964) discusses Landon’s observations but dis-
agrees with the conclusions and attributes size and shape
variation primarily to transport. Carr (1969) observes dom-
inant sizes and shape ratios emerging as a result of abra-
sion and size grading, while Bluck (1967) describes beaches
in South Wales where equilibrium distributions of size and
shape are reached primarily by transport and abrasion plays
a minor role. Which of the two processes (transport or abra-
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sion) dominate may well depend on the timescales they oper-
ate on. While abrasion appears in some scenarios to act much
more slowly than transport, a recent study (Bertoni et al.,
2016) verified mass losses on the order of 50 % on a pebble
beach over a 13-month period, indicating that in some set-
tings the two processes may indeed compete in determining
size and shape distributions.

In fluvial environments, while downstream fining of sedi-
ment has been often attributed to transport (Paola et al., 1992;
Ferguson et al., 1996; Fedele and Paola, 2007; Whittaker
et al., 2011), other authors have pointed to the significance
of attrition (Brewer and Lewin, 1993; Attal and Lavé, 2006;
Dingle et al., 2017). In Miller et al. (2014) the authors, using
field data, provide quantitative assessment of the significance
of selective transport with respect to attrition in downstream
fining. Beyond the evolution of smooth size and shape distri-
butions, there is yet another common phenomenon in fluvial
geomorphology where the interaction of transport and attri-
tion could be far from trivial. The often observed presence
of isolated large boulders in rivers (Huber et al., 2020) may
be explained solely by transport, as these large pieces are of-
ten not carried by the river; rather, they move by a different
process (e.g., landslide or debris flow). On the other hand,
these large rocks could also be interpreted as outliers emerg-
ing spontaneously in a pebble size distribution on which col-
lisional abrasion certainly has strong impact in upper reaches
of rivers.

As we can see, both in coastal and fluvial environments it
is a generally accepted fact that the two processes (transport
and attrition) appear to compete in shaping the evolution of
pebble shape and pebble mass distributions. How exactly this
competition may play out and in what manner attrition may
contribute to this process is the subject of our paper.

We also remark that while all available observations in-
dicate that attrition could be a relevant factor in the evolu-
tion of shape and mass distributions, so far, in the absence of
any predictive theory, no datasets have been collected which
would allow verifying any theoretical predictions. We will
point out potential strategies for verification in Sect. 4.

1.2 Existing theory

1.2.1 Individual abrasion

Individual abrasion is a theory describing the mass and shape
evolution of one individual particle (abraded particle) un-
der the impacts of many incoming particles (abraders) (see
Fig. 1a). In the mean field theory for the geometry of indi-
vidual abrasion only the mass and shape of the abraded par-
ticle is recorded; the effect of impacts is averaged and the
evolution is determined by the size of the abraded particle
compared to the average size of the abrading particles.

Since the seminal papers by Firey (1974) and Bloore
(1977), the mean field geometric theory of individual abra-
sion (i.e., shape evolution) for sedimentary particles under

Figure 1. Schemes for (a) individual abrasion (Firey, 1974; Bloore,
1977), (b) binary abrasion (Domokos and Gibbons, 2018), and
(c) collective abrasion. Volume loss only tracked for shaded parti-
cles. Arrows represent (non-simultaneous) collision events between
particles.

collisions has been well understood and validated (Szabó
et al., 2013, 2015; Novák-Szabó et al., 2018). Still, despite
the success of the Firey–Bloore geometric theory of shape
evolution, it is clear (Domokos and Gibbons, 2018) that it is
not suited to predict the evolution of size: in stark contrast
with geological observations summarized in Sternberg’s law
(Sternberg, 1875), predicting exponential decay of particle
mass and an infinite lifetime for all particles, geometric abra-
sion theory predicted a finite lifetime for all particles. On the
other hand, Sternberg’s broadly accepted theory of mass evo-
lution (Sternberg, 1875) had nothing to offer regarding the
evolution of shape. Recognizing this challenge, in Domokos
and Gibbons (2018) a unified theory, called volume-weighted
shape evolution, has been proposed which, on one hand, re-
produces all the geometric features of the Firey–Bloore geo-
metric theory and, on the other hand, also predicts mass evo-
lution in accordance with Sternberg’s law.

1.2.2 Binary abrasion

The first stepping stone between the theory of individual
abrasion and collective abrasion is the model for mutual,
binary abrasion, where two particles mutually abrade each
other, and we track both evolutions (see Fig. 1b). In this case
one can still write mean field equations by averaging over
many collisions, and the mass and shape evolution of both
particles are recorded. For any binary abrasion model of size
evolution, we postulate the following requirements:

– size evolution should follow Sternberg’s law,

– mass loss in a collision should be a monotonically in-
creasing function of collision energy, and

– the model should be fully compatible with the geometric
evolution model.

The unified theory in Domokos and Gibbons (2018) of-
fers a model satisfying all three requirements: by extending
the Firey–Bloore equations and Sternberg’s theory and us-
ing the kinetic energy of collision, models for binary shape
evolution and for binary mass evolution of two mutually
abrading particles were put forward. These two models have
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been merged in Domokos and Gibbons (2018) into a uni-
fied volume-weighted theory of binary abrasion, compatible
both with the Firey–Bloore and with the Sternberg theory.
The volume-weighted model for binary mass evolution, de-
scribing the time evolutions for the masses X(t), Y (t) of two
particles with respective material properties m1, m2 can be
written as

Xt =−c12
XY

X+Y
, (1)

Yt =−c21
YX

X+Y
, (2)

where the subscript t refers to differentiation with respect
to time and the constant prefactors c12 and c21, which we
call the binary abrasion parameters, depend simultaneously
on the materials m1 and m2 of the X and Y particles, respec-
tively.

We also note that in the case of two identical particles
(e.g., two particles with identical masses X = Y and identi-
cal material properties cXY = cYX) the system (Eqs. 1 and 2)
predicts mass evolution according to Sternberg’s law. In the
case of different masses or properties we still have an infi-
nite lifetime, with one of the particles approaching zero mass
asymptotically as time goes to infinity and the other particle
approaching a finite mass.

1.2.3 Collective size dynamics

Independently of individual (and binary) abrasion theory
there exists broad interest in collective shape and size evo-
lution models tracking mutually colliding populations of N
particles (see Fig. 1c). Similar problems arise in particular
in the context of coagulation (da Costa, 2015) and dynamic
fragmentation processes (Cheng and Redner, 1988). In such
collective evolution models the main question is how the size
distribution of particles, starting from an initial distribution,
evolves in time due to the mutual collisions. These models
use a standard framework relying on a so-called collision ker-
nel. In a more general setting, the collision kernel is referred
to as the interaction kernel. Our choice of terminology is mo-
tivated by the fact that in our case the only interactions are
collisions.

The collision kernel can be derived from the binary equa-
tions (the physical model of theN = 2 case) by incorporating
statistical effects, i.e., that collision probability may depend
on particle speed or mass. In Domokos and Gibbons (2018)
the binary model (Eqs. 1 and 2) was extended to a kernel
by introducing an additional scalar parameter r (to which we
will also refer as the environmental parameter of the evolu-
tion), representing the assumption that on average, only the
collision probability depends on particle size and the colli-
sion speed is independent of mass:

Xt =−c12
X1+rY 1−r

X+Y
, (3)

Yt =−c21
Y 1+rX1−r

X+Y
. (4)

Note that these equations are identical to the formulas (118)
and (119) in Domokos and Gibbons (2018) with α = 0 in
their notation and taking r = ν, X = VX, Y = VY , c12 =

c21 = c. Alternative interpretations of r are also possible; we
will discuss the role of the environmental parameter r in de-
tail in Sect. 2.4. Henceforth, in the main body of this paper
(apart from Appendix A) we assume that the pebble popu-
lation is homogeneous, i.e., that the material for all pebbles
is identical so we have c = c12 = c21 and the sole role of the
constant c is to set the timescales. We will incorporate this
into the time variable t , and, henceforth, for homogeneous
pebble populations, we set c ≡ 1. We will discuss the role and
identification of material constants in heterogeneous pebble
populations in Appendix A.

Once the kernel has been established, we make the as-
sumption that for large N the collective size evolution is
a stochastic process driven by many binary events among
the particles, implying that the core of the collective pro-
cess is still the abovementioned collision kernel. This allows
for the construction of the master equation, also known as
the Fokker–Planck equation, which describes the time evo-
lution of the particle size distribution. Although the collec-
tive abrasion is a stochastic process, in the N→∞ limit the
collision kernel will uniquely determine the global evolution
of the continuous size distribution. The master equation (or
Fokker–Planck equation) expresses this evolution. Determin-
ing the master equation based on the collision kernel is the
second step in the statistical model.

1.3 Our model

1.3.1 Relationship to earlier models

The above-outlined structure is characteristic of coagula-
tion fragmentation models (da Costa, 2015), in particular for
non-linear fragmentation, which describe fragmentation pro-
cesses triggered by binary collisions of particles. Our model
may be regarded as a special case of the non-linear fragmen-
tation models (Cheng and Redner, 1988) since, in addition
to the standard framework adopted in these models, we also
make two simplifying assumptions:

1. we only consider collisions where the relative mass loss
is small (i.e., the particles lose only fragments with
small relative mass), and

2. the small fragments generated in the collisions are not
considered further in the evolution.

By implementing these two assumptions into the statisti-
cal model based on the collision kernel (Eqs. 3 and 4), we

https://doi.org/10.5194/esurf-9-235-2021 Earth Surf. Dynam., 9, 235–251, 2021



238 A. A. Sipos et al.: Particle size dynamics in abrading pebble populations

take the first step towards establishing the statistical theory
of collective size and shape evolution of sedimentary parti-
cles. This approach offers multiple methodological advan-
tages. On one hand, by using Eq. (4) as the collision kernel,
our statistical model will be compatible with Sternberg’s law,
so we can expect the collective evolution also to observe this
theory, albeit in a statistical sense. On the other hand, we can
also expect all our results to be compatible with an extended
(future) theory which also describes collective shape evolu-
tion based on the unified, volume-weighted geometric theory
in Domokos and Gibbons (2018).

1.3.2 Basic notations

To describe our construction we will need to address both the
size evolution of individual particles (under the collision ker-
nel) as well as the evolution of size distributions. While parti-
cle size appears in both settings, we need to distinguish care-
fully: in individual and binary models particle size evolves in
time; in collective models size distribution evolves in time.
As a consequence, in the individual setting the variable de-
noting size may be differentiated with respect to time; in the
collective setting this is not the case. We will use X, Y to de-
note individual particle sizes (either volume or mass) and we
will use x, y to denote the independent variables of size dis-
tributions. The time evolution of individual particle size will
be denoted by X(t), Y (t) with time derivatives Xt (t), Yt (t)
(arguments of a function written in subscript will refer to dif-
ferentiation throughout the paper). The time evolution of size
densities will be denoted by f (x, t), f (y, t) with time deriva-
tives ft (x, t), ft (y, t) and size derivatives fx(x, t), fy(y, t).
We denote the expected value and variance of these size dis-
tributions, respectively, by E(t) and W (t) and we will pri-
marily use the relative variance R(t)=W (t)/E(t)2 to char-
acterize the evolution of the distributions.

1.3.3 Main results

The collision kernel (Eqs. 3 and 4) for mass evolution in
Domokos and Gibbons (2018) has one single environmental
parameter r , which is inherited by the corresponding Fokker–
Planck equation (shown in Sect. 2.2). As we will describe
in Sect. 2, the environmental parameter r may, depending
on interpretation, represent either the size dependence of the
number of collisions or, alternatively, the size dependence of
collision energy. Regardless of the interpretation, in Sect. 2.3
we find that the value r = 0.5 is critical as it separates two
regimes of collective abrasion with a qualitatively different
evolution R(t) of the relative variance:

– For r > 0.5 we find focusing processes with decreas-
ing R(t), approaching R(t)= 0 in the limit as time ap-
proaches infinity. Here the size distribution converges
to a Dirac-delta function. This parameter range corre-
sponds to lower energy levels. Natural abrasion pro-

Figure 2. Schematic description of the evolution of mass distri-
bution of a pebble population: in a dispersing process the relative
size variation R(t) of the mass distribution, either represented by an
empirical histogram (Carr, 1969) or a continuous function (f0(x))
at t = 0, increases. In the continuum model of a focusing process
R(t) decreases as time evolves; however, in a discrete model with a
finite number of particles some outliers appear (indicated by dashed
ellipse) with mass substantially above the average. The reduced dis-
tribution (without the outliers) produces a decreasing relative vari-
ance, analogous to the continuous model.

cesses belonging to this regime will thus amplify the
segregating effects of size-selective transport.

– For r < 0.5 we find dispersing processes with increas-
ing R(t), thus counteracting size-selective transport
processes. This corresponds to collisional abrasion at
higher energy levels.

As collisional abrasion may occur within a broad range
of energies, these two basic scenarios of the model (illus-
trated in Fig. 2) offer an explanation for the broad range of
geological observations (Bluck, 1967; Landon, 1930; Carr,
1969; Kuenen, 1964) in relating the relative significance of
transport and abrasion in various scenarios. Our model also
reflects the universality of Sternberg’s law by predicting, re-
gardless of the environmental parameter r , exponential decay
as the universal evolution E(t) of the expected value.

In general, the evolution equations generated by Eqs. (3)
and (4) for the mean E(t) and the variance W (t) are integro-
differential equations which are hard to solve analytically.
To support our claims, we will use three types of approxima-
tions:

a. We approximate the kernel (Eqs. 3–4) by its truncated
Taylor series expansion and investigate the evolution of
general initial density functions. This is found in Ap-
pendix C1.

b. We regard the full kernel; however, we only investigate
density functions obtained as a small perturbation of the
Dirac delta (i.e., populations of almost identical parti-
cles). This is done in Appendices C2 and C3.
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c. We numerically compute both the discrete and the con-
tinuum models. For details see Sect. 3.

We will briefly refer to the first two approximations as the
continuum model. In the case of the third approximation we
do direct, discrete simulations of finite particle populations;
we use the full kernel and we call this the discrete model.
One startling feature of the latter (as compared with the for-
mer) is the appearance of outliers, i.e., particles substantially
larger than the vast majority (illustrated in Fig. 2). As we can
observe, the bulk of the density function closely mimics the
evolution in the continuum model. The quantitative analogy
in the evolution of the relative variation R can also be re-
covered if we consider a reduced density function f ∗(t1,x)
by omitting the outliers, i.e., by applying an upper cutoff in
size, omitting bins containing only one particle. The reduced
density function f ∗(t1,x) is characterized by the reduced rel-
ative variation R∗, which will decrease in a focusing process;
however, in contrast to the continuum model, it will not ap-
proach zero but a positive constant.

1.4 Testing of the model for homogeneous pebble
populations

As outlined above, our model is defined on two levels: the
collision kernel (Eqs. 3–4) we will briefly refer to as the in-
put level as it defines the basic physics of the underlying col-
lisions. The Fokker–Planck equation we will briefly refer to
as the output level as it defines the evolution of the mass den-
sity function based on the collision kernel. One may test the
model at both levels. Below we discuss the case of homo-
geneous pebble populations where the evolution of the mass
distribution is controlled by the single material parameter c
and the single environmental parameter r:

a. One may test the model at the input level, by fitting the
kernel (Eqs. 3–4) to laboratory tests where the abrasion
rate is plotted as a function of particle size. Such an ex-
periment could be used to determine the material pa-
rameter c for a given homogeneous population. Also, if
the laboratory test imitates the environment of the natu-
ral process, the environmental parameter r may also be
obtained in this manner. We also note that the functional
relationship between particle size and abrasion rate will
not only depend on the parameters but also on particle
size. For details, see Appendix A.

b. One may test the model at the output level by measuring
the time evolution of full mass distributions and fitting
the respective material and environmental parameters c
and r to this dataset. While we are not aware of any such
public dataset, this could be performed in a laboratory
either in a flume or in a drum experiment. In the field
the optimal solution appear to be radio-tagged pebbles
(Bertoni et al., 2016).

The above simple procedures apply only for homogeneous
populations. We lay out the procedures for the testing of the
model for heterogeneous populations in Appendix A, where
we also perform partial testing for the laboratory data ob-
tained by Attal and Lavé (2009).

2 Modeling collective size dynamics

2.1 General form of the collision kernel

The first simplification described in Sect. 1.3.1 implies that
the limit where relative fragment mass approaches zero of-
fers a good approximation; thus it permits a collision kernel
of the type used in Ernst and Pagonabarraga (2007), describ-
ing continuous mass evolution via coupled ordinary differen-
tial equations for the evolution of particles with masses X(t)
and Y (t):

−Xt = ψ
1(X,Y ), (5)

−Yt = ψ
2(X,Y ), (6)

where ψ1(X,Y ) and ψ2(X,Y ) are differentiable (C1) func-
tions, with positive values (i.e., R+×R+→ R+). Symmetry
of the binary process implies ψ1(X,Y )= ψ2(Y,X), so often
superscripts are suppressed and the kernel is simply referred
to as ψ(., .). Selection of the kernel encapsulates not only the
physics of binary collisions, it also may include the mass-
dependent probability of collision between two particles. We
will discuss the identification of physically sound kernels in
Sect. 2.3.

2.2 General form of the master equation

The second simplification in Sect. 1.3.1 permits the construc-
tion of the master equation solely based on the collision ker-
nel (by omitting additional terms for the remainder of the
fragmented material). These simplifying assumptions also
set our model apart from general fragmentation models in
another respect: in the latter, constant mass is prescribed as a
global time invariant while the (integer) number of particles
changes, whereas in our model total mass decreases while the
number of particles remains constant and serves as a global
invariant.

Using these considerations, for our problem the master
equation is found to be

ft (t,x)=
∂

∂x

f (t,x)

∞∫
0

f (t,y)ψ(x,y)dy


= fx(t,x)

∞∫
0

f (t,y)ψ(x,y)dy

+ f (t,x)

∞∫
0

f (t,y)ψx(x,y)dy, (7)

https://doi.org/10.5194/esurf-9-235-2021 Earth Surf. Dynam., 9, 235–251, 2021



240 A. A. Sipos et al.: Particle size dynamics in abrading pebble populations

where subscripts stand for partial derivatives. Without loss
of generality, the evolution starts at t = 0 and we consider
the initial distribution of the volume f (0,x)≡ f0(x) to be
known a priori. Note that contrary to the majority of Fokker–
Planck models, our model contains solely the advection term,
which readily follows from the deterministic nature of the
kernel. Here we aim to determine the collective behavior im-
plied by Eq. (7). Nonetheless, a stochastic kernel would pro-
duce diffusion in the master equation. Such a generalization
would inevitably reduce the analytic transparency and thus
the qualitative predictive capability of the model. Whether or
not it is justified from the quantitative point of view can be
decided based on extensive testing campaigns.

We aim to understand some scenarios characteristic of
pebble populations by investigating the Cauchy-type initial
value problem associated with Eq. (7), starting at the dis-
tribution f0 with mean value E0, variance W0, and relative
variance R0 :=W0/E

2
0 .

2.3 Collision kernels

Detailed physical modeling of the collisional event can make
the interaction kernel highly complex; for a recent review
on kernels see Meyer and Deglon (2011). On the other
hand, mathematical studies tend to prefer simple expressions
forψ(X,Y ), permitting rigorous, analytical conclusions. Our
goal is to find a kernel which has a strong physical basis yet
permits an analytical approach; thus it offers a trade-off be-
tween physical and mathematical preferences.

We first consider two simple kernels which satisfy the
mathematical requirement of leading to analytically soluble
Fokker–Planck equations. However, as we will show, these
very analytical results highlight that these kernels are phys-
ically not admissible. Next, we investigate the parameter-
dependent compound kernel suggested in Domokos and Gib-
bons (2018), which grabs the essential physics of the investi-
gated process, yet the corresponding Fokker–Planck equation
still permits analytical conclusions.

First, we consider the summation kernel (denoted by {.}+),
where the mass loss rate is proportional to the sum of the
masses of the colliding particles:

ψ+(X,Y ) :=X+Y, (8)

stating that the rate of mass loss in binary collisions is pro-
portional to the total mass of the two colliding particles. Ap-
pendix B1 demonstrates that the relative variance of the mass
in the case of the summation kernel follows R+(t)= R0e

2t ;
hence it is a dispersive process regardless of the initial distri-
bution f0.

In the very same manner let us investigate the product ker-
nel distinguished by the sign {.}∗. The product kernel is de-
fined via

ψ∗(X,Y ) :=XY. (9)

According to Appendix B2, the relative variance in this
case is constant as R∗(t)= R0 for all t ≥ 0, which means
that the model is neither focusing nor dispersing. Note that
the time invariance of R∗(t) under the product kernel does
not imply the invariance of the probability density function
(PDF) f (t,x) per se. In addition, we see a polynomial de-
cay in the mass as E∗(t)= (t +E−1

0 )−1, which contradicts
Sternberg’s law (Sternberg, 1875), which postulates an ex-
ponential decay.

In order to be in accordance with Sternberg’s law and to
have a control on the evolution of the relative variance, fol-
lowing the lead of Domokos and Gibbons (2018) we investi-
gate the interaction law (Eqs. 3 and 4), which we call a com-
pound kernel, and using the introduced general notation for
kernels, we distinguish it with the {.}c sign:

ψc(X,Y ) :=
X1+rY 1−r

X+Y
, (10)

where 0≤ r ≤ 1 is a fixed parameter. Henceforth we in-
vestigate the evolution of mass density functions under
the Fokker–Planck equation derived from Eq. (10). In Ap-
pendix C1 we show analytical results for the evolution if the
kernel (Eq. 10) is replaced by its truncated Taylor expansion.
In Appendices C2 and C3 we show analytical results for the
evolution under Eq. (10) using a Dirac delta as initial dis-
tribution. The evolution under Eq. (10) with no restrictions
for the initial condition is studied numerically. The essential
properties of the three investigated kernels are summarized
in Fig. 3.

2.4 Interpretation of the parameter r

In natural events, both velocity and collision probability
(cross section) may depend on particle size: in laminar flows
relative velocity and collision probability is proportional to
linear size, while in a turbulent flows velocity could be in-
versely proportional to linear size and collision probability
could be proportional to projected area. In the collision ker-
nel (Eq. 10) both effects (dependence of velocity and depen-
dence of collision probability on speed) are represented by
the single scalar parameter r , so one may freely assign var-
ious interpretations to this parameter. In Domokos and Gib-
bons (2018) one particular interpretation was used: the com-
pound kernel was derived using the assumption that particle
velocity is independent of the size (e.g., instead determined
by the surrounding fluid), but the collision probability works
as a power law with particle size, i.e., Xr . The effective mass
combined with the collision probability gives the kernel in
Eq. (10). However, alternative interpretations are possible;
the only essential underlying assumption is that we regard a
one-parameter family of scenarios. In this family, if velocity
is proportional toXa and collision probability is proportional
to Xb, then we have r ' a+ b.

To have a global view, it may be of interest to estimate
the parameter r in two extreme (limiting) scenarios. Lami-
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Figure 3. Evolution of an initial (t = 0) lognormal probability density function under the Fokker–Planck equation generated by various ker-
nels. Summation kernel: (a1)–(c1). Product kernel: (a2)–(c2). Compound kernel: (a3)–(c3). First row (a1–a3): mean E(t). Second row (b1–
b3): relative variance R(t). Third row (c1–c3): initial (t = 0) and final densities f (x, t).

nar flows are characterized by a linear velocity profile. The
particles hit each other if their trajectories intersect. The inte-
gration of the linear velocity profile combined with a spher-
ical particle shape yields a collision probability proportional
to ∼X2/3 or, alternatively, r ' 2/3. The other extreme case
corresponds to turbulent flows, where we have equipartition;
i.e., the kinetic energy of the particles is independent of their
size (see, e.g., Uberoi, 1957), implying that particle veloc-
ity is proportional to X−1/2. Since the area of the cross sec-
tion is proportional to X2/3 we arrive at a collision proba-
bility X1/6 or, alternatively, r ' 1/6. As we can see, both
extreme scenarios yield r values far away to either side of
the critical value rcrit = 1/2, so these estimates suggest that
smooth steady conditions should result in a focusing and tur-
bulent gas-like behavior in a dispersing process. For a de-
tailed derivation see Appendix D.

In order to examine the validity of these assumptions we
made discrete element simulations using the event-driven
method (Lubachevsky, 1991). In event-driven dynamics, col-
lisions are considered instantaneous and resolved accord-
ingly, which is best suited to obtaining proper collision statis-
tics. We emulated the abovementioned processes by choos-

ing an artificial mass for the particles and simulating a
chaotic system. The artificial mass was used to obtain dif-
ferent volume-velocity relations in different scenarios. We
found that in chaotic or turbulent systems relative veloci-
ties were proportional to v ∼X−1/2

−X−1/3 and the sys-
tem behaved as the continuum model with r ∼ 1/6− 1/3.
On the other hand, if velocities were proportional to v ∼
X−1/6

−X0, then the system was similar to a continuum
model with r = 1/2− 2/3. Thus the discrete element sim-
ulations fully support the results of the compound kernel.

2.5 Fluvial abrasion

Here we interpret the intuitive picture of fluvial abrasion in
the context of our statistical model. In our model a fluvial en-
vironment may be represented by a fluvial population, con-
sisting of N + 1 particles: a very large number (N ) of small
particles Xi (i = 1, 2, . . . N ) representing the pebbles carried
by the river and one very large particle Y representing the
riverbed. Such a scenario cannot be explored directly in the
context of our continuum model; however, as we will dis-
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cuss in detail in Sect. 3.3, the discrete model can capture this
situation even in the limit of N→∞.

To make a meaningful characterization of geologically rel-
evant scenarios, we will regard two extreme cases which
represent brackets on geological processes. In both cases
we assume that the mass evolution is driven by binary col-
lisions and we regard the limit as N , Y →∞ (while the
masses Xi of the small particles remain finite). Since we are
interested in the mass evolution of pebbles (and in the cur-
rent paper we are not interested in the mass evolution of the
riverbed), we will denote the relative variance of the pebble
population (i.e., all Xi particles, the riverbed Y not included)
by R(t). Our aim is to establish the sign of Rt (t) as the main
qualitative feature of collective dynamics, as Rt (t)< 0 and
Rt (t)> 0 imply focusing and dispersing processes, respec-
tively.

In the first extreme scenario we assume that particles are
chosen uniformly from the full fluvial population: i.e., the
riverbed has no special role. In this case almost all colli-
sions will happen among a pair of small particles (Xi , Xj );
thus the presence of the riverbed has no impact on the evo-
lution of R(t). For this extreme case all predictions of our
continuum model remain valid: r = 0.5 will be a critical pa-
rameter value above which we see focusing (Rt < 0) and be-
low which we see dispersing (Rt > 0) behavior. At the crit-
ical value r = 0.5 our model predicts neutral behavior with
Rt = 0.

In the second extreme scenario we assume that the small
particles exclusively collide with the riverbed (large parti-
cle); i.e., we only have (Xi , Y )-type collisions. This means
that the evolution for each of the small particles is an identi-
cal, independent two-particle process governed by the model
(Eqs. 1–2) for binary collisional mass evolution. In this pro-
cess, in the Y →∞ limit each individual small particle Xi

will thus evolve as

Xi(t)=Xi(0)e−t (11)

and thus follow Sternberg’s law. It is easy to show that for any
initial distribution for the masses Xi(0), in this process we
have Rt = 0. The large Y particle (riverbed) will lose some
mass as well, but in this publication we are not interested in
that part of the process.

Intuitively it is clear that any geologically relevant process
is in between the above two extreme cases, and, although we
do not deliver a rigorous proof, it appears plausible that in a
geologically relevant setting Rt will also be bounded by the
two evolutions predicted for the two extreme scenarios. As
for the second extreme scenario we have Rt = 0; we expect
that for any intermediate scenario the sign of Rt will agree
with the sign of Rt based on the first extreme scenario. Our
results show that the focusing behavior of the particle size
distribution, or lack thereof, depends on interparticle interac-
tions and not on the collisions between the particles and the
riverbed. This would imply that all our qualitative predictions
remain valid in fluvial environments.

3 Numerical results

Here we perform computations to illustrate the main results
presented in Sect. 1.3.3 by discretizing time with a fixed time
step1t . The discrete model has been simulated with custom-
made codes in Matlab and Python performingM∗[N/2] col-
lisions between pairs during one time step 1t , where M is
fixed model parameter and N is the size of the popula-
tion. The simulation starts with the creation of N particles
whose volumes are randomly sampled from the initial dis-
tribution f0. Binary collisions are performed on uniformly
selected pairs; i.e., all particles have an equal chance of be-
ing selected irrespective of their volume. Once a pair is se-
lected, the collision kernel ψc is applied and the volume
decrement is computed with time step 1t/M . After the bi-
nary collision event both particles with a reduced volume are
replaced into the sample. In the presented simulations we set
the population size to be N = 5000, the time step1t = 0.01,
and M = 10. In the continuum setting f (t,x) evolves under
Eq. (7) with some initial value f0(x). This code uses the op-
erator exponential syntax of a the Chebfun toolbox (Driscoll
et al., 2014) in Matlab.

3.1 Focusing and dispersing regimes

The evolution of a pebble population under the compound
kernel was simulated both in the frame of discrete and
the continuum model, i.e., by direct event-based simula-
tion and by discretizing the partial differential equation. (see
Sect. 1.3.3). The results show excellent agreement with our
analytical predictions: r = 1/2 does indeed appear to be a
critical parameter in the model. This is illustrated in Fig. 4,
where a lognormal distribution is used as an initial value for
the evolution.

3.2 Fitted lognormal distribution

Although the lognormal distribution is certainly not invariant
under the compound kernel (i.e., an initially lognormal den-
sity function does not remain lognormal in the evolution),
mass distributions in later time steps highly resemble log-
normal distributions. To test this visual observation we fitted
lognormal distributions to the computed mass distributions
in the discrete simulations. The evolution of the two param-
eters (respectively, denoted µ and σ ) of the lognormal dis-
tribution is given in Fig. 5 at values of the parameter r . The
criticality of r = 0.5 is obvious in this setting, too: while the
initially lognormal distribution is almost invariant under the
evolution at r = 1/2, the evolution of the parameters µ and σ
takes an opposite direction in the parameter space for r = 0.0
and r = 1.0, respectively. The 95 % confidence levels of the
fit confirm the visual intuition: the evolved distributions are
close to lognormal: in practical applications an approxima-
tion with a lognormal distribution produces an acceptable er-
ror.
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Figure 4. Evolution of a lognormal PDF in the compound kernel under the continuous (c) and discrete (d) models at the parameter values
r = 0.0 (a), r = 0.5 (b), and r = 1.0 (c) from t = 0 until t = 5.0. The results of the discrete simulations are given by the histograms; the output
of the continuous model is given by dashed (initial distribution) and solid lines (final distribution). Observe the fair agreement between the
discrete and the continuous models.

Figure 5. Parameters µ and σ of a lognormal distributions fitted to the computed mass distribution in the compound model at the parameter
values r = 0.0 (a), r = 0.5 (b), and r = 1.0 (c) from t = 0 until t = 5.0. Thick solid lines correspond to the best fit; thin lines indicate the
95 % confidence level of the fit. Observe the narrow zone spanned by the confidence intervals.

3.3 Outliers: anomalies in smaller samples

The continuum model describes theN→∞ limit of the sys-
tem. In the computations shown in Sect. 3.1 and 3.2 we ei-
ther showed results based on the continuum model or in the
direct, discrete simulations we treated large (N = 5000) pop-
ulations. However, if we look at the discrete simulations on
smaller samples we may observe unexpected phenomena not
recorded in the previous computations. In Fig. 6 we show the
mass distribution of a system at r = 0.6 with N = 2000 par-
ticles. The bulk of the histograms can be approximated well
with a lognormal distribution. However, there are 12 particles
with somewhat larger volume than predicted by the lognor-
mal distribution and one approximately 150 times the me-
dian volume (5.3 times the radius). Thus inside the focusing
regime we may observe a situation where we have a well-
defined narrow distribution which describes the bulk of the
particles, but a few might escape from this process and may
be left behind, at larger mass. This effect is persistent and it
was observed also for the parameter value of r ' 0.7.

In order to estimate the robustness of this scenario we use
a simple approximation by assuming that all but one particle
have volume X and one single, exceptional particle, called

the “outlier”, has a volume aX with a� 1. As is demon-
strated in Appendix E, the outlier can coexist with the popu-
lation of the small particles. In the N→∞ limit the condi-
tion of such a coexistence reads
2ar

1+ a
≤ 1. (12)

The numerical solution of Eq. (12) for equality yields the
critical curve acrit(r) on the [r , a] parameter plane, separat-
ing systems where outliers may coexist with the population
from systems where they may not. While we computed the
acrit(r) critical curve for the case of infinitely large popula-
tions (theN→∞ limit), we stress the fact that the illustrated
phenomenon is inherently discrete and does not arise in the
continuum model. We may explain this curious phenomenon
in the following manner. Assume that we start from a narrow
distribution. Then random fluctuations in the discrete system
may create particles with large relative mass (i.e., a large pa-
rameter value a). If these fluctuations are sufficiently large
to create particles above the critical curve acrit(r), then these
outliers will be sustained; otherwise their mass will again ap-
proach the average mass of the majority. The critical curve in
Fig. 7 shows that in the vicinity of the critical value r = 0.5
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Figure 6. Simulation of a finite sample with N = 2000 particles. Inset (a) shows the evolution of the mean volume normalized by the
maximal volume. Inset (b) depicts the evolution of the distribution; the corresponding points in (a) are denoted by the same color. The green
curve (t = 300) is the one shown in detail in panel (c); it depicts the particle volume histogram after 300 collisions per particle. The gray
boxes show the logarithmically binned histogram; the black line is a lognormal fit to the data. Observe the existence of outliers on the right.
Inset (d) is a visual illustration of the entire population: all particles are placed randomly into a 2D container. Smaller particles were placed
first and the white content (gray scale) is proportional to the linear size of the particle. One small particle close to the mean and one large
particle (outlier) are marked with red and their position is indicated in the distribution.

almost any such fluctuation will be sustained and outliers are
likely to survive. However, as the parameter r increases, it
becomes increasingly less likely to see sustained outliers.
Another observation is that as the likelihood for the exis-
tence of outliers decreases, their expected relative size in-
creases, which matches the common-sense observation that
the larger the outlier, the less frequently it may be observed.
We also note that the relationship between the collection of
small particles and the large particle is essentially asymmet-
rical. While the evolution of the latter is strongly influenced
by both the factor a and the control parameter r , the evolu-
tion of the density function for the small particles is solely
controlled by the latter. In other words, adding one (or a few)
very large particles to a collection of many small particles
will not alter the fate of the latter, as long as the collisions
between a pair of particles are based on a uniform choice.

4 Conclusions

In this paper we presented the first statistical model for the
collective mass evolution of pebble populations under colli-
sional abrasion. While our model is certainly not unique, it is
compatible with

a. existing geological observations,

b. existing geometrical theory of individual and binary
abrasion of pebbles,

c. existing theory for individual mass evolution of pebbles
(Sternberg’s law), and

d. exiting statistical theory of coagulation and fragmenta-
tion.
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Figure 7. Critical curve acrit(r) on the [r , a] parameter plane. Sys-
tems with parameters (r , a) associated with points above the curve
permit the coexistence of outliers, while the systems associated with
points below the critical curve do not permit the coexistence of out-
liers. The solid line belongs to the N→∞ limit, the dotted line
represents N = 20, and the dashed line N = 100 particles.

In the spirit of standard statistical theory for collective evo-
lution, our model is based on two components: (i) the bi-
nary collision kernel and, based on that, (ii) the governing
equation for the evolution of probability density functions
for mass distribution. Regarding (i) we used the model from
Domokos and Gibbons (2018), which incorporates the ex-
isting theory for individual and binary abrasion; regarding
(ii) we used the Fokker–Planck equation, which is broadly
used in the theory of coagulation in fragmentation.

Our collision kernel includes the single scalar parameter r
which can be associated with the energy level of the collec-
tive collisional evolution process. We found that r = 0.5 is
critical, separating two regimes with fundamentally differ-
ent behavior: for r > 0.5 (low-energy regime) we found fo-
cusing behavior with decreasing relative variance R(t), and
for r < 0.5 (high-energy regime) we found dispersing be-
havior with increasing relative variance R(t). In geological
terms, this result suggests that in low-energy environments
collisional abrasion acts on mass distributions in unison with
size-selective transport, while in high-energy environments
the opposite happens and the two processes counteract each
other. In accordance with prevailing geological observations
and Sternberg’s law, our models predicts exponential decay
of particle mass in both energy regimes.

We investigated our model on two levels: (i) as a contin-
uum model by regarding the evolution of the Fokker–Planck
equation and (ii) as a discrete model by running discrete
event-based simulations. In the case of the continuum model
we derived our results analytically and also from numerical
simulation of the Fokker–Planck equation, while in the dis-
crete model we relied on numerical computations. With re-
gard to the existence of the critical parameter r = 0.5 and
the existence of the focusing and dispersing regimes, the two
approaches yielded quantitatively matching results.

Among many small pebbles, large boulders are often vis-
ible in mountain ranges or rivers. While this phenomenon is
commonly attributed to transport, our model suggests that
under some conditions, here again transport and abrasion
may act in unison: we identified a curios phenomenon not
present in the continuum model but present in the discrete
model (even in the N→∞ limit). If the parameter r was in
the focusing r > 0.5 range but not very far from the critical
value r = 0.5, the bulk of the distribution narrowed (in ac-
cordance with our analytical predictions); however, we could
also observe a few particles with substantially larger mass
(outliers), escaping the bulk of the distribution. We char-
acterized the mass ratio of outliers versus the mean of the
bulk distribution by the parameter a, and we derived a crit-
ical curve acrit(r) separating systems where outliers may be
observed from those where this may not happen. Our result
predicts that larger outliers are less likely to be observable.

While our paper only dealt with size distributions, there
exist also related observations on shape: sharp peaks in
distributions of axis ratios (also referred to as equilibrium
shapes) are mentioned in Bluck (1967), Dobkins and Folk
(1970), Landon (1930), Orford (1975), Williams and Cald-
well (1988), Ashcroft (1990), Lorang and Komar (1990),
Yazawa (1990), and Wald (1990). In Domokos and Gibbons
(2012) a plausible argument was presented that equilibrium
shapes may emerge on shingle beaches as the result of the
interaction of abrasion and transport. We hope that the exten-
sion of the statistical theory presented in this paper may be
capable of verifying these observations.
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Appendix A: Testing the model for heterogeneous
pebble populations

In the context of the binary evolution model (Eqs. 1–2) we
introduced the binary abrasion parameters c12 and c21 and
for simplicity (since we only aimed to treat homogeneous
populations) we used the same notation in the collision ker-
nel (Eqs. 3–4). Here we refine this concept in the statistical
setting for heterogeneous populations where we regard the
collective evolution ofN particles withM ≤N different ma-
terials mi , (i = 1, 2, . . . M). (The binary case corresponds to
N = 2; if the two pebbles are made from different material,
then we have M = 2, and for pebbles with identical materi-
als we have M = 1. In the latter case in (Eqs. 1–2) we have
c12 = c21 = c.)

In the statistical setting the binary abrasion parameters
can be organized into an M ×M matrix M with entries
cij , (i, j = 1, 2, . . . M). The binary parameter cij is defined
as the constant coefficient in the collision kernel (Eqs. 3–
4) associated with the abrasion rate of particles with mate-
rial mi , bombarded by particles with material mj . Needless
to say, the matrix M is not symmetrical; in general we have
cij 6= cji . In particular, if material mi is much harder than
material mj , then we expect cij � cji .

Based on the above considerations, the statistical model
is controlled by the M ×M =M2 binary abrasion parame-
ters and the single environmental parameter r . Testing this
model can be done along the strategies outlined in Sect. 1.4
for homogeneous populations; however, more detail has to
be observed.

a. One may test the model at the input level, by fitting the
kernel (Eqs. 3–4) to laboratory tests for pair-wise se-
lected materials mi , mj . In such a test the abrasion rate
of particles of material mi under abrasion from parti-
cles of material mj is plotted as a function of particle
size of the abraded particle (with materialmi). Such ex-
periments can be used to determine the binary abrasion
parameters cij for a given heterogeneous population. If
the laboratory test imitates the environment of the natu-
ral process, the environmental parameter r may also be
obtained in this manner. We will show such an example
below.

b. One may test the model at the output level by measuring
the time evolution of full mass distributions and fitting
the M2 material parameters cij and the environmental
parameter r to this dataset.

Next we show an example for testing the model at the in-
put level by using the data obtained in Attal and Lavé (2009).
Here the authors report on flume experiments where they
measured the abrasion rate Ed of individual limestone grav-
els with a diameter betweenD = 9 andD = 39 mm mixed in
approximately 400 g of 10–18 and 18–28 mm granitic gravel.
In our terminology, we have M = 2 (two materials) and we

will usem1 for the limestone andm2 for the granite. The joint
evolution of such a heterogeneous population is described by
M2
= 4 binary material constants: c11, c12, c21, and c22. At-

tal and Lavé (2009) were primarily interested in the abrasion
rates for limestone and they produced the Ed (D) plots for
these particles. In this experiment we may assume that the
abrasion of the limestone pebbles was exclusively due to col-
lisions with the granitic gravel (i.e., we disregard limestone–
limestone collisions). Thus the only relevant collisions are
between limestone and granite, and for the mass loss X(t)
of the limestone we will use Eq. (3) with X and Y denoting
the volumes of the colliding limestone and granitic particles,
respectively, and c12 denoting the binary abrasion parame-
ter associated with limestone being abraded by granite (not
reported, but we may assume c21� c12). If we replace the
volume of the granitic particles by their average, the abrasion
rate as function of its diameter can be calculated numerically.
Note that the abrasion rate Ed in our notation reads

Ed =−
Xt

X
. (A1)

We fitted Eq. (3) to the dataset provided in Attal and Lavé
(2009). We minimized the mean square error (with respect
to the results in Attal and Lavé, 2009) for the parameters r
and c12 and obtained r = 0.19 and c12 = 0.28. Our fitted
curves are illustrated in Fig. A1 showing fair agreement be-
tween the data and the fitted model. The value of the environ-
mental parameter is in the range where we expect dispers-
ing behavior, as we discussed in Appendix D, which is in
accordance with the target of the original experiment which
simulated abrasion in fluvial environments. We note that the
same parameter pair r = 0.19 and c12 = 0.28 is valid for both
limestone experiments (i.e., these parameters do not depend
on the size of the particle). Our fit appears to be consistent in
this respect.

Appendix B: Some properties of the kernels in
Sect. 2.3

B1 Summation kernel

Differential equations governing the time evolution of the
first and second moments can be readily obtained; hence the
mean E+(t) and variance W+(t) follow the following initial
value problems (IVPs):

E+t (t)=−2E+(t) with E+(0)= E0, (B1)
W+t (t)=−2W+(t) with W+(0)=W0. (B2)

It follows that both the expectation and the variance exhibit
exponential decay, namely E+(t)= E0e

−2t and W+(t)=
W0e

−2t . It is straightforward to show that the relative vari-
ance R+(t) increases exponentially:

R+(t) :=
W+(t)
E+(t)2 =

W0

E2
0
e2t
= R0e

2t . (B3)
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Figure A1. Abrasion rate Ed predicted by the compound kernel
(Eq. 3) fitted to experimental data in Attal and Lavé (2009). Fig-
ure 9a by Attal and Lavé (2009) superposed with our model fits F1
and F2. Mass estimated from diameter. Least squares optimization
yields r = 0.19 and c12 = 0.28.

B2 Product kernel

In the case of the product kernel the IVPs describing the evo-
lution of the mean E∗(t) and variance W ∗(t), respectively,
read

E∗t (t)=−
(
E∗(t)

)2 with E∗(0)= E0, (B4)
W ∗t (t)=−2W ∗(t)E∗(t) with W ∗(0)=W0. (B5)

Here the decay of the mean and the variance are polynomial
as we find

E∗(t)=
1

t + 1
E0

and

W ∗(t)=
W0

E0

2 1(
t + 1

E0

)2 , (B6)

which result in a steady relative variance R∗(t), determined
by the initial distribution f0. Specifically

R∗(t) :=
W ∗(t)
E∗(t)2 =

W0

E2
0
= R0. (B7)

Appendix C: Approximate investigation of the
compound kernel

C1 Truncated compound kernel

The truncated compound kernel is obtained from the com-
pound kernel as the truncated Taylor polynomial computed
at y = x with an (O(y− x)2:

ψc,T (x,y) :=
x

2
+

(
1
4
−
r

2

)
(y− x)+O

(
(y− x)2

)
. (C1)

Using the master equation, the following Cauchy problems
are found that define the evolution of the mean and the vari-
ance:

E
c,T
t (t)=−

1
2
Ec,T (t) with Ec,T (0)= E0, (C2)

W
c,T
t (t)=−

(
1
2
+ r

)
W c,T (t) with W c,T (0)=W0. (C3)

Solution of these ordinary differential equations (ODEs)
yields the evolution of the relative variance as

Rc,T (t) :=
W c,T (t)
Ec,T (t)2 =

W0

E2
0
e

(
1
2−r

)
t
. (C4)

C2 A population of identical particles preserved

Here we show that a population of identical particles, charac-
terized by a Dirac-delta function as input PDF is preserved in
the model with the compound kernel regardless of the value
of parameter r . Without loss of generality, we investigate the
evolution from the f0 = δ(1) initial condition, where δ(x) de-
notes the Dirac-delta function at x. Obviously, E0 = 1 and
W0 = 0. We show that now f (t,x)= δ(c(t)) holds for any
t > 0. Let us assume that at some t∗ ≥ 0, the distribution is
f (t∗∗)= 0. Observe that
∞∫

0

f
(
t∗,y

)
ψc(x,y)dy = ψc (x,c (t∗)) . (C5)

The time derivative of the mean can be computed via

Ec
t

(
t∗
)
=

∞∫
0

ft
(
t∗,x

)
xdx

=−

∞∫
0

f
(
t∗,x

)
ψc (x,c (t∗))dx =−

1
2
c
(
t∗
)
, (C6)

where we used Eq. (7), applied integration by parts, and em-
ployed Eq. (C5). Similarly, the evolution of the variance is
found to follow

W c
t

(
t∗
)
=

∞∫
0

ft
(
t∗,x

)
x2dx− 2Ec

t

(
t∗
)
Ec (t∗)

=−2

∞∫
0

f
(
t∗,x

)
ψc (x,c (t∗))xdx+ c

(
t∗
)2

=−c
(
t∗
)2
+ c

(
t∗
)2
= 0. (C7)

This shows that the variance of the distribution is constant,
and it started at W0 = 0; i.e., it vanishes entirely in its the
evolution. In other words, we have a Dirac-delta (degenerate)
distribution at any t ≥ 0. Employing Eq. (C6) we find that the
location c(t) follows the initial value problem ct (t)=− 1

2c(t)
with c(0)= 1; hence c(t)= exp(− t

2 ).
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C3 Dispersing and focusing behavior identified in the
population of almost identical particles

As the model lacks diffusion, the behavior of a degenerate
distribution with all the mass concentrated at a single value
is worth studying because long-term existence of a set con-
sisting of identical particles can take place in the model. In
Appendix C2 we show that a population of identical particles
remains identical in our model. In other words, the time in-
variance of the Dirac-delta distribution holds in our model,
regardless of the value of the parameter r . Nevertheless, the
value of r affects the stability of that Dirac delta: next we
show that the evolution for a population of almost identical
particles (i.e., a perturbed version of the Dirac-delta distribu-
tion) is either focusing or dispersing, depending on the value
of r . To see this, we define a perturbed distribution. Let ε > 0
be a fixed parameter and define

f̂0(x) :=
{

(1− ε)δ(1)+ 1
2 if 1− ε ≤ x ≤ 1+ ε

0 otherwise
. (C8)

It is straightforward to show that
∞∫
0
f̂0(y)ψc(x,y)dy =

ψc(x,1), Ec
0 = 1, andMc

2(t) :=
∞∫
0
f (t,x)x2dx withMc

2(0)=

1+ 1
3ε

3. We aim to investigate the sign of Rc
t at t = 0.

Since Rc(t)=Mc
2(t)Ec(t)−2

− 1, we need to study the sign
of Mc

2,t (0)Ec(0)− 2Ect (0)Mc
2(0). Integration by parts yields

Ec(0)Mc
2,t (0)−2Mc

2(0)Ec
t (0)=−2

∞∫
0

f̂0(x)ψc(x,1)xdx

+2
(

1+
1
3
ε3
) ∞∫

0

f̂0(x)ψc(x,1)dx

=
1
3
ε3
(

1
2
− r

)
+O

(
ε3
)
, (C9)

where algebraic manipulations leads the last equality. In ac-
cordance with the results on the truncated model, we found
that r = 1/2 is critical. At r < 1/2 the relative variance Rc

t

is positive, it increases for any ε > 0; i.e., the population
of identical particles is unstable and small perturbations dis-
perse the mass distribution. At r > 1/2 the relative variance
Rc
t < 0, which shows that the population of identical parti-

cles is stable; the model is focusing.

Appendix D: Estimating physically possible values
of r

In the paper we assumed that the particle collision probability
depends on the volume of the particles as

P (X)∝Xr . (D1)

Here we investigate two extreme scenarios, associated with
the collision probabilities Psmooth(X) and Pturbulent(X) where
we expect r to assume its extreme values.

The first is the smooth gradient flow. In such a case the
driving fluid has a strong, but on a particle size scale con-
stant, velocity gradient in one of the spatial directions. Such
situations may arise, e.g., in shallow water layers. Here the
relative velocity of the particles grows with the distance. If
we are at distance u from the center of the particle in the di-
rection of the flow velocity gradient, the collision probabil-
ity Psmooth(X) can be estimated by the product of the velocity
difference and the linear cross section of the particles (note
that R ≡X1/3 is the linear size of the particle):

Psmooth(X)∼
1
R

R∫
0

u
√
R2− u2du=

1
3
R2
=

1
3
X2/3. (D2)

Based on Eq. (D1), this gives us an estimate for high r = 2/3.
The other extreme case is a fully chaotic motion where

equipartition takes place (Uberoi, 1957). Thus the kinetic en-
ergy of the particles ( 1

2ρXv
2) is independent of their vol-

ume. Thus the speed of the particles must be proportional
to X−1/2. If we disregard correlations, the particles have a
cross section proportional to their projected area which is
proportional to X2/3. Combining the two gives us

Pturbulent(X)∼X−1/2X2/3
=X1/6, (D3)

and based on Eq. (D1) we obtain r = 1/6. Thus it is possible
to have physical scenarios apparent in nature where the value
of r falls to either side of the critical value of rc = 0.5 with a
large enough margin.

Appendix E: Investigation of outliers in finite
samples

Let us have a sample with N particles with (N − 1) hav-
ing the identical volume X. The last particle is an outlier
with volume aX, where a� 1. In a single binary collision,
a hit between particles with volume X is called an A-type
event, while a collision with the outlier being involved is a
B-type event. Based on discrete probabilistic considerations,
the probability of an A-type event equals (N − 2)/N and a
B-type event is 2/N . In the A-type event the average size X
of the particles with volume X after the collision that lasts
for 1t reads

X =
2(X−X/21t)+ (N − 3)X

N − 1
=X−

X

N − 1
1t. (E1)

Computing aX/X and truncating the Taylor series expansion
in 1t after linear terms around the value 1t = 0 yields the
time derivative of the parameter a associated with an A-type
event:

aA
t =

a

N − 1
. (E2)
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In the case of the B-type event both the outlier and one of the
small particles follow the compound kernel via

(aX)t =−
a1+rX

1+ a
, (E3)

Xt =−
a1−rX

1+ a
. (E4)

The second equation is employed to compute the aver-
age volume of the small particles (i.e., X associated with
this event). Now we need to truncate the Taylor series of
aX−(aX)t1t

X−X
at1t = 0. After algebraic manipulations we find

aB
t =−

a1+r

1+ a
+

a2−r

(1+ a)(N − 1)
. (E5)

Considering the probabilities of events A and B we arrive at

at = a
N − 2
N − 1

− 2
(
a1+r

1+ a
+

a2−r

(1+ a)(N − 1)

)
. (E6)

Note that an increase in the value of a, i.e., at > 0 implies
that the outlier is getting further from the population. In the
case of the N→∞ limit we find

at = a

(
1−

2ar

1+ a

)
. (E7)

Here the sign of the expression in the brackets determines the
sign of at , which coincides with Eq. (12) in the text. One can
also show that if there exist acrit > 1 such that at = 0 at acrit,
then at > 0 for any a > acrit. Hence, we need the acrit > 1
that makes the expression in brackets vanish. Existence of
such a critical value can be shown for the case with finitely
many particles, too. As we can see, sufficiently large outliers
may coexist with the population in the long run. The control
parameter r determines how large an outlier needs to be for
sustained coexistence.
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