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Abstract. Surface flow on rilled hillslopes tends to produce sediment yields that scale nonlinearly with total
hillslope length. The widespread observation lacks a single unifying theory for such a nonlinear relationship. We
explore the contribution of rill network geometry to the observed yield–length scaling relationship. Relying on
an idealized network geometry, we formally develop probability functions for geometric variables of contribut-
ing area and rill length. In doing so, we contribute towards a complete probabilistic foundation for the Hack
distribution. Using deterministic and empirical functions, we then extend the probability theory to the hydraulic
variables that are related to sediment detachment and transport. A Monte Carlo simulation samples hydraulic
variables from hillslopes of different lengths to provide estimates of sediment yield. The results of this analysis
demonstrate a nonlinear yield–length relationship as a result of the rill network geometry. Theory is supported
by numerical modeling, wherein surface flow is routed over an idealized numerical surface and a natural surface
from northern Arizona. Numerical flow routing demonstrates probability functions that resemble the theoretical
ones. This work provides a unique application of the Scheidegger network to hillslope settings which, because
of their finite lengths, result in unique probability functions. We have addressed sediment yields on rilled slopes
and have contributed towards understanding Hack’s law from a probabilistic reasoning.

1 Introduction

Rilled hillslopes are common in semiarid, agricultural, and
recently disturbed landscapes (Fig. 1). In these settings, rills
concentrate surface flow and serve as pathways for sedi-
ment transport and erosion. There is a long legacy of work
that explores the mechanics and consequences of rill pro-
cesses through field observation, experimentation (Govers,
1992; Liu et al., 2000), and numerical simulation (Hairsine
and Rose, 1992; McGuire et al., 2013). This body of work
highlights a number of key observations and relationships.
Among these is the observation that sediment yield at the
base of a hillslope tends to vary nonlinearly with the to-
tal length of the hillslope, Lh (L), so that Qs ∝ L

β

h , where
Qs (L3 T−1) is the volumetric sediment yield and 1.4≤ β ≤

2.0 (McCool et al., 1993; Govers et al., 2007; Renard, 1997).
Here, we consider the role of the rill network geometry in
contributing to this nonlinear relationship.

Nonlinear scaling relationships between sediment yield
and slope length have been observed on all slopes for which
surface flow is a dominant sediment transport mechanism.
Moore and Burch (1986) consider surface flow over smooth
hillslopes. By rearranging Manning’s equation and solving
for unit stream power, those authors demonstrate that a pla-
nar hillslope will generate a nonlinear relationship between
sediment yield and slope length that is Qs ∝ L

1.4
h . Note that

this nonlinear relationship is the lower end of those identi-
fied for rilled hillslopes. Nonlinear relationships with an ex-
ponent greater than 1.4 require that flow concentrates as it
moves downslope (Moore and Burch, 1986). Rill networks
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Figure 1. A rilled hillslope near Benson, AZ. Prominent sub-horizontal lines are the stratigraphy of the lake sediments of the region.

may form a range of geometries from nearly parallel paths
that rarely converge to dendritic networks. These different
rill network geometries may contribute towards a range of
nonlinear yield–slope length relationships.

The causes of linear and dendritic networks is extensively
explored by McGuire et al. (2013). In a numerical explo-
ration, those authors demonstrate that the geometry of rill
networks reflects the relative magnitudes of transport due to
surface flow and rain splash. In this framework, surface flow
tends to create straighter rills that converge less frequently. In
contrast, transport due to rain splash is diffusive and tends to
disrupt the linear channels, which leads to increasingly den-
dritic networks. In this paper, we consider the contributions
from the geometry of dendritic networks which concentrate
flow.

We develop a probability theory for the geometric vari-
ables of watershed length, l (L), and contributing area,
A (L2), for an idealized rill network. From this theoretical
starting point, we then extend the analysis to hydraulic vari-
ables that are related to sediment detachment and transport.
This work is related to a suite of previous studies that in-
corporate probabilistic approaches to rill transport and dy-
namics. Most notably, our approach is similar to two previ-
ous studies. First, Lewis et al. (1994a, b) develop a stochastic
model (PRORIL) for rill development and sediment transport
that includes variable drainage density and flow rate. In this
work, the authors present the model as a tool to explore the
development of rill networks. Second, Damron and Winter
(2008) employ a dynamic but idealized rill network wherein
links between nodes can change based on a node’s history.
They use this model to demonstrate the temporal characteris-
tics of sediment passing by a node as a result of the dynamics
that occur in upslope links. These contributions effectively
demonstrate the details and dynamics of rilled settings, but
a description of the underlying probability functions of the
networks and how they relate to slope length–sediment yield
relationships remains outstanding.

Other probabilistic approaches have been applied to rill
settings. Nearing (1991) considered the probability of parti-
cle entrainment as a result of the overlapping distributions of
instantaneous shear stress and soil resistance. They demon-
strate that this leads to the ability for flows to entrain sed-
iment from soils that are relatively strong. Similarly, Mei

et al. (2008) consider the rill width as a random variable,
which influences flow depth and shear stress. Using a lin-
earized perturbation method, they demonstrate the impact on
statistical moments of hydraulic variables of flow velocity
and depth. Our work considers the probability involved with
the macroscale patterns of rill networks and, in principle,
could be combined with these efforts that describe dynam-
ics within rills.

We have two goals. First is to provide a rigorous proba-
bilistic description of the rill network. In particular, we wish
to formally develop the conditional distribution, fA(A|l),
which is read as the probability distribution of contributing
area, A, given that a watershed has a length l, which is also
a random variable with distribution fl(l). These two distribu-
tions combine to create the joint distribution fA,l(A,l). This
is the Hack distribution, which has been extensively stud-
ied and used to identify patterns in landscapes, but to date a
complete derivation of the distributions remains to be done
(Hack, 1957; Gupta et al., 1996; Dodds and Rothman, 2000).
Second, we ask if a well-defined network of rills focuses flow
such that it leads to a nonlinear sediment yield relationship
with hillslope length, Qs ∝ L

β

h . Addressing these goals in-
volves two approaches. First we extend the probability theory
for topographic variables to hydraulic and sediment transport
variables of unit stream power, shear stress, and sediment
concentration. Second, we numerically route flow down the
idealized and natural rill networks to evaluate and inform the
theory.

The work presented in this paper builds largely on the re-
sults presented by Dodds and Rothman (2000). Those au-
thors use the Scheidegger model, Hack’s law, and some rea-
sonable assumptions to inform a development of the form of
probability functions for geometric variables. Starting with
Hack’s law, which relates the expected length of a watershed
to its area, the authors assume that the conditional distribu-
tion, fl(l|A), is Gaussian in form. From this assumption and
known properties of random walks, they are able to develop
functional forms for all distributions related to the joint dis-
tribution fA,l(A,l) (i.e., they develop the joint distribution,
both forms of conditional distributions, and the marginal
distributions). However, because their work involved an as-
sumption of the form, the parameters of the distribution lack
a formal development. In this paper, we lean heavily on this
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Figure 2. (a) Paths of one realization of a Scheidegger network with
open (dark gray) and closed (light gray) watersheds highlighted. (b)
Illustration of the grid and possible paths of links. Nodes are offset
at downslope levels. A square grid is shown here, but there is no
requirement that it be square.

work but contribute towards a more formal understanding of
the parameters of the distributions.

Before moving on, here is a note about notation. We use
fx(x;y) to denote a probability density or probability mass
function for the random variable x with parameter y. The
subscript indicates the random variable for the probability
function. This becomes useful later.

2 Theory

2.1 Network geometry

We develop a theory for rill network geometry that is based
on the Scheidegger model (Scheidegger, 1967). These net-
works have two characteristics. First, for every unit distance
downslope, a rill has equal probability of moving half a unit
left or right. Second, uniform drainage density is maintained,
such that where two rills converge, which leaves one downs-
lope node empty, a new rill is generated at the empty node
(Fig. 2a). These two rules sufficiently describe the network
and allow for us to develop theoretical distributions concern-
ing the rill lengths, contributing areas, and flow variables for
simple conditions. Other network classes exist including op-
timal channel networks (OCNs) and Peano basins (Maritan
et al., 2002; Yi et al., 2018). Optimal channel networks are
constructed by iterative numerical procedures that minimize
the energy expenditure within the network (Rinaldo et al.,
1993). As such, there are a great number of network con-
figurations that satisfy the constraint, and there are not clear
rules for the construction of links and rill paths. Peano net-
works are a class of self-similar trees wherein perpendicular
tributaries are recursively added to the network at finer scales
(Gupta et al., 1996). On hillslopes flow is in one dominant di-
rection, and thus this model is unrealistic.

2.2 Hack’s law

Central to this work is Hack’s Law, which is a nearly uni-
versal empirical scaling observation where the length of the

main channel is related to the contributing area by an expo-
nent,

l = θAm , (1)

where l is the length of the main channel, A is the contribut-
ing area, and θ is a dimensional coefficient. The exponent m
is the subject of work that explores the fractal characteristics
of networks (Hack, 1957; Dodds and Rothman, 2000; Mari-
tan et al., 2002; Bennett and Liu, 2016). We choose to rewrite
Hack’s law with l as the independent variable,

A= φl1/m , (2)

where φ is a dimensional coefficient for which φ 6= θ1/m

(Dodds and Rothman, 2000). We find this form more suit-
able for the theory developed below. Implied in Hack’s law
is that it represents the expected value ofA given a watershed
of length l. In reality, both A and l are random variables, and
we replace A with 〈A〉 to denote the mean of an ensemble of
watersheds of length l. Written this way, Eq. (2) is an expres-
sion of the mean of the conditional distribution fA(A|l), the
derivation of which is one of our goals.

2.3 Contributing area

We begin with an observation of the random walks of wa-
tershed divides. Insofar as rills take simple random walks
and uniform drainage density is maintained, then watershed
divides are also random walks that follow the same rules
(Dodds and Rothman, 2000; Damron and Winter, 2008). The
width, w(s) (L), at any particular location, s (L), is the dif-
ference between two random walks. Characterizing divides
in this way allows for the following definitions:

w(s)= b1(s)− b2(s) , (3)

A(l)=

l∫
0

w(s) ds , (4)

where bn(s) (L) denotes the positions of the two watershed
divides and w(s) is the width function (Fig. 3) (Rigon and
Ijjasz-Vasquez, 1993; Veneziano et al., 2000; Lashermes and
Foufoula-Georgiou, 2007; Ranjbar et al., 2018). The width
function for a watershed of length l must always be positive
until w(l)= 0, indicating that the watershed is closed. Equa-
tions (3) and (4) demonstrate that A and w depend on the
distribution and properties of bn(s).

The Scheidegger model serves as an example to determine
the properties of bn, w(s), and A(l). Because it is discrete, it
only serves as a useful and simplified guide for the proper-
ties of networks. We use the construction of a watershed in
the Scheidegger model to inform the spatial evolution of the
probability distribution for watershed width, fw(w,s). The
development of such an expression requires definitions of ini-
tial conditions, boundary conditions, and transition probabil-
ities. This is the primary utility for the Scheidegger network
in our case.
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Figure 3. Diagrams showing (a) the positions of two random walks
that define the boundary of a watershed, (b) the random walk of
w(s), and (c) its integral A(l).

In the Scheidegger model, a new watershed is initiated at
s = 0 where w = 0 by definition. The rill that occupies the
watershed begins at s = 1. By necessity w(s = 1)> 0 and
because the Scheidegger model is a simplified and discrete
model, the width can only be a predefined value, r (L), which
is the rill spacing. An initial probability mass function in-
formed by the Scheidegger network is

fw(r,s = 1)= 1 . (5)

Moving down along s, properties of the random walks of bn
completely determine fw(w;s) and therefore fA(A|l).

The simple random walks of watershed divides move a
distance of 1/2r left or right with equal probability. The
width function over a unit distance can change by [−r,0, r],
which occurs with probabilities of p = [1/4,1/2,1/4] and
are the transition probabilities between any two steps. We
recognize p as the components of a stencil for an implicit
scheme for a central difference solution to linear diffusion
(Hornberger and Wiberg, 2004). Recasting this as a diffu-
sion problem requires that we consider a continuous rather
than discrete form of fw(w,s). We restate the initial condi-
tion now as a probability density function:

fw(w,s = 1)= δ(w− r) , (6)

where δ is the dirac function. The boundary conditions
reflect the necessity that w(s)> 0 for a watershed with
length l, where l > s. This forms a fixed boundary condition
of fw(0, s < l)= 0. The analytical solution for a diffusion
equation with the specified initial and boundary conditions
(Carslaw and Jaeger, 1959) is

fw(w,s)=
2w
rs
e−

w2
rs for s ≤ l/2 , (7)

which is a Rayleigh distribution. The Rayleigh distribution
arises for the problem of the magnitude of the sum of two
normally distributed variables (Siddiqui, 1962). Our prob-
lem involves the difference between two symmetrically dis-

Figure 4. Conceptual diagram showing all possible paths of the
width function for a watershed of length, l. The red line is one re-
alization. The ensemble of paths is symmetrical about l/2, and the
boundary condition is illustrated by no paths reaching w = 0 before
l.

tributed variables, bn, and thus this result is consistent with
previous work.

The boundary condition merits further discussion. We
have stated that when w = 0, a watershed is closed, which
would imply that there is a finite probability of that outcome
at all positions. However, the boundary condition that we use
prevents watersheds from closing before s = l. We recognize
that fw(w,s) is symmetric about l/2, which allows for us
to use our boundary condition for one half of the watershed
length (Fig. 4) and reflect this form over the remaining half.

The moments of a random walk are key to understanding
the distribution of its integral, A(l)=

∫ l
0w(s) ds. The mean

and variance of width from Eq. (7) are

µw(s)=
√
πrs

2
, (8)

σ 2
w(s)=

(4−π )r
4

s . (9)

For an unrestricted Brownian random walk (i.e an infinite
domain), Eqs. (8) and (9) contain all of the information re-
quired for the distribution of A(l). In that case fA(A; l)=
N (0,σ 2 l3

3 ) (Parzen, 1962), where σ 2 is the coefficient in
Eq. (9). Here, however, the requirement that w(s)> 0 im-
parts finite values for the drift, µA(l), changes the scaling
between the variance of the random walk and its integral and
introduces finite skewness to the distribution. Because the re-
sult has finite skewness, more information would be required
to determine the form of the distribution. Nonetheless, the
first two moments are informative. The mean area involves
the integral of µw:
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µA(l)= 2

l/2∫
0

√
πrs

2
ds =

√
πr

3
√

2
l3/2 , (10)

which is a formal expression of Hack’s law with A as the
dependent variable. Note that the limit of integration and
multiplication by 2 reflect the mirrored nature of fw(w,s)
about l/2. We emphasize that Eq. (10) is a complete deriva-
tion of Hack’s law. Previous work has numerically or empir-
ically demonstrated values of φ and m (Hack, 1957; Dodds
and Rothman, 2000), where m can range from one-half, for
self similar networks, to two-thirds for Scheidegger networks
(Maritan et al., 2002; Yi et al., 2018). There is little discus-
sion about the value of φ, but it is often determined by fitting
distributions or by log–log regression between l andA. Equa-
tion (10) represents a formal reasoning for both the values of
φ and m. Our result is specific for Scheidegger networks;
however, a result like Eq. (10) may be obtained if one knows
µw(s) and the characteristics of w(s).

We now turn to the variance. From Eq. (9) we may ob-
tain σ 2

A(l). Once again, if Z(t) is the integral of an un-
restricted stochastic process, then σ 2

Z(t)= σ 2t3/3 (Parzen,
1962). Here, however, the requirement that w(s)> 0 results
in a different relationship. We find instead that

σ 2
A(l)≈

σ 2
w

6
(l− 2)3

3
, (11)

where the term l− 2 satisfies a requirement that a watershed
of length 2 has zero variance for the contributing area. The
presence of 6 in the denominator lacks a rigorous explana-
tion; however, we expected that σ 2

A increases at a rate slower
than what is typical for unrestricted random walks. We em-
phasize that this is a semi-empirical result that warrants a
stronger theoretical solution. Placing Eq. (9) into Eq. (11),
we obtain

σ 2
A =

(4−π )r
72

(ln− 2)3 . (12)

There is good agreement between moments from numerical
simulations of random walks and theory (Fig. 5), and these
moments become parameters of the distribution fA(A|l).

Dodds and Rothman (2000) demonstrate that A(l), given
a large l, is distributed as an inverse Gaussian random vari-
able. Inverse Gaussian distributions have a foundation in ran-
dom walk theory where they describe first-passage processes.
However, Dodds and Rothman (2000) state that they identi-
fied the inverse Gaussian as the form by postulating it and fit-
ting parameters. Here, we rely on their insight but have devel-
oped a basis for the moments and therefore have expressions
for the parameters based on the properties of the random
walk of w(s). Setting α =

√
πr/3
√

2 and λ= (4−π )r/72
and relaxing the condition that σ 2

A(l = 2)= 0, the inverse
Gaussian distribution is

fA(A|l)=

√
α3

2πλ
l3/4

A3/2 e
−
α(A−αl3/2)2

2λl3/2A . (13)

Figure 5. Plots of theoretical versus numerical values for µA(l) (a)
and σ 2

A
(l) (b). The 1 : 1 line is shown in black.

As written, Eq. (13) differs from the result obtained by Dodds
and Rothman (2000) for two reasons. First, we use a form of
Hack’s law with area as the dependent variable as opposed to
length. Second, they have formed a new variable z= lA−2/3,
where we have simply kept the distribution as a function of
A.

We numerically simulate the area enclosed by two random
walks 100 000 times for watersheds of length 20 and show
that the form developed here fits numerical distributions bet-
ter than the form in Dodds and Rothman (2000) (Fig. 6).
Those authors limit their analysis to watersheds that involve
more than 500 downslope nodes. It is unclear if there should
be a significant difference between large and small water-
sheds in a Scheidegger model, though we offer it as a pos-
sible explanation for the discrepancy between our study and
theirs. Now that we have developed fA(A|l), we move on
to the marginal distribution fA(A;L), where L is a distance
from the ridge. We rely on the following relation:

fA(A;L)=

L∫
1

fl(l)fA(A|l) dl . (14)

We now turn to fl(l).

2.4 Watershed length

Watershed lengths are distributed as a power law (Dodds and
Rothman, 2000). We write

fl(l)=
l−3/2

2
, (15)

which is a Pareto distribution with scale parameter 1 and
shape parameter 1/2. Lengths of watersheds on hillslopes
are necessarily truncated by the hillslope length, LH. We first
consider the distribution of watershed lengths truncated at
length L < LH, which is some downslope position. Though
watersheds longer than L are censored, the distribution is
not simply truncated, but composed of two populations. The
first population contains watersheds that have closed within
a length L. The other population contains the watersheds that
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Figure 6. (a) fA(A|l) according to Dodds and Rothman (2000), this study, and 100 000 numerical simulations of w(s) for watersheds of
length 20. (b) Q–Q plot of theory and numerical distributions.

are open at L and would be longer if L were larger. Propor-
tions of closed and open watersheds respectively are

P (l ≤ L)= F (l ≤ L)= 1−L−1/2, (16)

P (l > L)= 1−F (l ≤ L)= L−1/2, (17)

where F (l) is the cumulative probability function. As L in-
creases, the proportion of open watersheds decays. The com-
plete Hack distribution with a maximum length L is a mix-
ture of the two populations and is given by

f (A,l;L)= P (l ≤ L)f (l)f (A|l ≤ L)+ (18)
P (l > L)f (A|l > L) .

Closed watersheds are addressed with the first term on the
right-hand side, which combines Eqs. (13), (15), and Fl(l ≤
L). Open watersheds are addressed with the second term, for
which we suggest fA(A|l > L) is based on the inverse Gaus-
sian, but the variance and mean differs. For this distribution,
we suggest αo =

√
πr/3 and λo = (4−π )r/12 because for

open watersheds the mirrored character of fw(w,s) about l/2
does not apply. A functional form for the complete Hack dis-
tribution is

fA,l(A,l;L)=
(1−L−1/2)

2
l−3/2

√
α3

2πλ
l3/4

A3/2 e
−
α(A−αl3/2)2

2λl3/2A

+L−1/2

√
α3

o
2πλo

L3/4

A3/2 e
−
αo(A−αoL3/2)2

2λoL3/2A . (19)

The square root of L grows sufficiently slowly such that the
second term is significant on most hillslopes. Our target is
the integral of Eq. (19) with respect to l, for which no ana-
lytical solution exists, and thus it must be computed numer-
ically. Numerical integration of Eq. (19) reveals an approx-
imate power law distribution, with a notable peak towards
the tail which is a result of the second term in Eq. (19). A
numerical experiment consisting of 100 000 simulations of
w(s) for L= 100 reveals a similar shape to the distribution
(Fig. 7a). On longer hillslopes probability is shifted towards
the tail (Fig. 7b).

The form of fA(A;L) merits comment. Much of the dis-
tribution is characterized by a power law distribution that
decays as A−4/3, which is a result previously highlighted

for large Scheidegger networks (Dodds and Rothman, 2000).
This power law relationship results from the first term of
Eq. (19). However, it is worth noting that even for very long
domains, fA(A;L) will never be entirely monotonic. There
will always be some finite probability of a watershed remain-
ing open within that domain. Indeed it is a requirement that at
least one watershed be open for a finite rectangular domain
of any size. When L is very large, this population may de-
fensibly be neglected and fA(A)≈ A−4/3 is appropriate. On
hillslopes, this population is expected to have a significant
impact.

We emphasize that fA(A;L) is the distribution of water-
shed areas at a position that is a distance L from the hilltop
(Fig. 2). Sediment detachment, however, occurs throughout
the hillslope according to the magnitude of hydraulic vari-
ables. The distribution that informs total hillslope detach-
ment is the complete distribution of contributing area at all
points, not just at the terminus of a watershed. To obtain this
distribution we sum over all L up to Lh. The distribution is

fA(A;Lh)=
1
Lh

Lh∑
L=1

fA(A;L) . (20)

Numerical computation of Eq. (20) produces a mono-
tonically decaying but truncated distribution of the form
fA(A;Lh)∝ A−4/3 (Fig. 8). As Lh→∞, the truncation dis-
appears. Having demonstrated the form of the distribution of
A, we now turn to hydraulic variables.

3 Flow properties

We rely on a set of deterministic relationships to extend the
theory for area and rill length to hydraulic variables. For a
deterministic exponential relationship between two variables
x and y

x = ξyn, (21)

and y has a known distribution fy(y), the distribution of x is

fx(x)=
1
nξ

(
x

ξ

)1/n−1

fy

[(
x

ξ

)1/n
]
, (22)

and we remind the reader that the subscript refers to the func-
tional form of the distribution for y, but the random vari-
able has changed to (x/ξ )1/n. Using this relationship, we
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Figure 7. (a) Probability distribution of contributing area on a hillslope according to theory and a numerical exercise of 100 000 simulations
of w(s) on a hillslope with 100 levels. (b) Probability distribution of contributing area for hillslopes of increasing length.

Figure 8. Probability density function of total contributing area on
a hillslope with length Lh = 100. The dashed line is A−4/3.

can write probability functions of discharge, rill width, unit
stream power, and shear stress. The task at hand is to gen-
erate distributions of these hydraulic variables and perform
a Monte Carlo simulation for sediment detachment on hill-
slopes of different lengths. First, we must generate the dis-
tributions from which we will sample. We begin by relating
area to water discharge, Q (L3 T−1).

3.1 Hydraulic distributions

At steady-state flow conditions and for uniform runoff, Q=
AR, where R (LT−1) is a runoff rate. Because the relation-
ship between A and Q is linear, fQ(Q;Lh) is the same form
of fA(A;Lh). The distribution of discharge is

fQ(Q;Lh)=
1
R
fA

(
Q

R
;Lh

)
. (23)

Obtaining the distribution of discharge is key for hydraulic
variables that drive sediment detachment.

Previous work addresses sediment detachment in rilled
settings (Hairsine and Rose, 1992; Nearing et al., 1991;
1999; Giminez et al., 2002) which highlights a number of
functional forms that relate the volume or mass of detached
sediment from the bed to hydraulic variables. Typically re-
searchers suggest that detachment, Ds (L3 T−1), scales as a

function of either unit stream power or shear stress. We first
consider stream power.

Unit stream power is a measure of the energy expendi-
ture of surface flow on the stream bed and is written as
ω = ρgShv, where ρ (ML−3) is fluid density, g (LT−2) is
acceleration due to gravity, S is fluid surface slope, h (L)
is flow depth and v is flow velocity (LT−1). Typical mod-
els suggest that sediment detaches as a linear function of ω
(Govers et al., 2007), though there is evidence that nonlinear
relationships exist as well (Nearing et al., 1999). Channel-
averaged unit stream power is simple for rectangular or ap-
proximately rectangular channel geometries, in which case
ω = ρgSQ/rw, where rw (L) is the rill width. Therefore, we
first must determine rw(A) in order to obtain ω(A).

Previous work demonstrates a relationship between rill
width and discharge. Particular values differ between stud-
ies, but in general a relationship 〈rw〉 = kQγ holds where γ
is a dimensionless exponent that typically ranges from 0.3
to 0.5 and k [L−2−γ Tγ ] is a dimensional coefficient. Gilley
et al. (1990) report that k varies over an order of magnitude
between 0.2 and 5 depending on the soil type. For simplicity,
we set k = 1. Torri et al. (2006) present data on rill widths
from three different settings and suggest that the value of γ
varies from 0.3 to 0.5 for small rills to large gullies. Using
this relationship, the unit stream power is

ω =
ρgShv

wr
=
ρgSQ1−γ

k
. (24)

Rearranging Eq. (24) to solve for Q and setting C =

k1/(1−γ )(ρgS)1/(γ−1)/R, we can write the distribution of unit
stream power as follows:

fω(ω;Lh)=
C

(1− γ )
ω

γ
1−γ fA

(
Cω

1
1−γ ;Lh

)
, (25)

where again fA(x;Lh) refers to fA(A;Lh) where the random
variable A has been replaced with x. The general form of
the distribution is similar to fA(A;Lh), though it decays at a
different rate that depends on the value of γ (Fig. 9a). The
power law portion of the distribution decays as ∼ ω−3/2 for
γ = 1/3.
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Figure 9. Probability density functions for (a) ω and (b) h for hillslopes with Lh from 10 to 200 by increments of 10. Longer hillslopes are
lighter colors. The distribution is not smooth for small values of h because of the discrete calculation.

Shear stress is another hydraulic variable that is often re-
lated to sediment detachment rates (Nearing et al., 1999;
Govers et al., 2007). Shear stress is written as τ = ρgSh=
ω/v. Both h and v are unknown but are related by Manning’s
equation,

v =
r

2/3
h S1/2

n
, (26)

where n is Manning’s roughness coefficient and rh =

wrh/(2h+wr) is the hydraulic radius of the rill. For our pla-
nar hillslope, S is uniform so that we only need to solve for
h. Setting v =Q/wrh we can solve for h,

h=

(
4
5

)2/3
n

S1/2
(AR)1−5/3m

k5/3 . (27)

Following similar steps for fω(ω; l), we are able to write
out fh(h, l), which must be numerically integrated to ob-
tain fh(h;Lh) (Fig. 9b). Again, the distribution is a truncated
power law that decays as h−7/4 when γ = 1/3.

A third detachment model involves the concept of trans-
port capacity, wherein the flow accumulates sediment at rates
that are inversely proportional to the sediment concentration
(Lewis et al., 1994a; Polyakov and Nearing, 2003). As a flow
increasingly entrains more sediment downslope, the sedi-
ment concentration in the flow asymptotically approaches a
maximum value. As typically written, transport capacity is a
geometric variable and not a hydraulic one. A common con-
ceptualization is (Polyakov and Nearing, 2003)

dc
ds
= κ (1− c/Tc) , (28)

where Tc is a maximum concentration that a flow can sustain,
κ [L−1] is an empirical coefficient, c is concentration, and s
is a position. Here, we use a volumetric form of concentration
so that c is dimensionless. We replace s with A and solve for
c as follows:

c(A)= Tc

(
1− e−

κ
Tc A
)
, (29)

which may be rearranged to make A(c) such that we may
obtain fA(c;Lh) as we have done for h and ω.

3.2 Sampling hydraulic distributions

We numerically generate samples of ω, τ , and c by inverse
transform sampling from fA(A;Lh) and applying the deter-
ministic relationships laid out above. Inverse transform sam-
pling is a method that may be employed to randomly sample
from any probability distribution. The method first generates
a random sample of values from a uniform distribution be-
tween zero and one. The random sample is then translated
to values of the random variables (in this case A) by map-
ping the values of the random sample to those of the cumula-
tive distribution function which also ranges from zero to one.
This is equivalent to sampling from fA(A;L) but allows for
us to do so for any distribution – even those that do not have
an analytical expression as is the case here.

Inverse transform sampling provides samples of A, and
Eqs. (25), (27), and (29) translate it to a sample of hydraulic
variables. We consider hillslopes of lengths Lh and with N
rills at the first level (L= 0). To generate samples for an en-
tire hillslope requires N Lh samples from fA(A;Lh), which
corresponds to N Lh nodes. For each node, we obtain a sam-
ple of unit shear stress and stream power. Between nodes,
rills accumulate flow in a linear fashion, and we use the av-
erage values of τ and ω within a single link. The volume
of detached sediment, Ds [L3 T−1] within a link is the area
of the channel bed in the link multiplied by the detachment
relation:

Ds ∝ y
ηwr1l , (30)

where y is a placeholder variable for τ and ω and η is an
exponent. We then take the sum of all detached sediment over
the entire hillslope. Assuming a detachment-limited system
and no deposition, the cumulative detachment represents the
cumulative volumetric sediment yield, Qs(Lh).

Sampling for sediment concentration requires a slightly
different procedure. Sediment concentration at any given
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Figure 10. (a) Cumulative volume of detached sediment on hillslopes of length Lh calculated by unit stream power, shear stress, and
sediment concentration when wr = kQ

1/3. (b) Best fit power law relationships for different sediment detachment rules (top axis) and rate
constants, κ/Tc, for sediment concentration. The range of observed nonlinear relationships is highlighted in gray.

point is the cumulative result of all upslope detachment.
Therefore, we only need to know c at the base of the hills-
lope, and we sample from fA(A;Lh) N times to obtain sam-
ples of Qs(Lh).

Results from the Monte Carlo simulation demonstrate
nonlinear relationships between hillslope length and cumu-
lative sediment yield (Fig. 10a). As the power relationship
between detachment and hydraulic variables increases, so too
does the exponent that relates hillslope length to cumulative
sediment flux (Fig. 10b). The observed range of the power
law relationship places 1.4≤ β ≤ 1.9 and many of our simu-
lations fall within that range. Nearly all simulations that use
c with different rate constants fall within the observed range.
Detachment models involving τ and ω tend to result in yield–
length relationships that are too strongly nonlinear. Our as-
sumption, however, that all detached sediment exits the sys-
tem is likely a simplification. If deposition were included in
this model, it would reduce the nonlinear relationships pos-
sibly to near or within the observed range.

The sampling method highlights an interesting sidebar.
The theory developed above is for highly idealized networks.
There are strict requirements for drainage density, flow direc-
tion, rill width, and hillslope shape (rectangular). Under strict
conditions, the sum of contributing area at the base of a hills-
lope must equal the total area of the hillslope. For a hillslope
with total width Nr, N samples from fA(A;Lh) should sum
to LhNr. Such a result only occurs with very small probabil-
ity and more often the sample hillslope area is only approx-
imately LhNr. This implies that one or some of our strict
requirements have been relaxed. Thus, our samples might
represent a hillslope that is not entirely rectangular or where
drainage density is not exactly maintained. Such an outcome
is a direct result of Monte Carlo simulations and is not novel,
but this system highlights the fact that a sampling from an
idealized distribution yields a sampled system that is not ide-
alized.

4 Numerical modeling

We demonstrate these distributions with a simplified numer-
ical model that (1) generates topography with a Scheidegger
network of rills and (2) simulates steady-state overland flow
using Manning’s equation and a numerical flow-routing pro-
cedure (Pelletier et al., 2005). We simulate steady-state over-
land flow for a couple of reasons. First, our goal is to demon-
strate how the variance of hydraulic variables increases with
hillslope length. Steady-state flow conditions accomplish this
task. Second, numerical simulations show that, depending
on the slope, runoff variables rapidly approach steady-state
values within the first 20 min of heavy rainfall and change
slowly afterwards (Liu and Singh, 2004). Finally, part of our
goal is to illustrate a first-order behavior, and the details of
the hydrograph are not considered here.

To generate topography, the numerical model develops a
mask of cells that identify the location of rills that satisfy the
two rules of Scheidegger networks. Topography is then gen-
erated by imposing a uniform lowering rate within the rills
and performing linear diffusion on the interrill areas. This
leads to approximately parabolic topography in interrill ar-
eas. For the theory developed above, we assume rectangu-
lar channels so that flow depth is distributed evenly across
the channel. In order to best match theory to the condition
for numerical modeling, we enforce a rectangular channel of
uniform width. Under this condition, the distribution of dis-
charge will remain the same as theory, but hydraulic variables
will differ because they depend on channel width. However,
wr is a function of Q and so the numerics can be mapped to
theory.

The natural hillslope is from a steep slope in northern Ari-
zona, in the badlands topography of the Painted Desert. The
hillslope was scanned using a high-resolution terrestrial lidar
scanner, which provides topographic data with 2 cm spatial
resolution. The average slope is 1.3 and rill spacing is rel-
atively uniform at about 15 cm (Fig. 11). The slope is suf-
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Figure 11. Profile of a section of the natural hillslope highlighting
relatively uniform rill spacing.

ficiently steep that we anticipate this particular hillslope is
detachment limited.

The numerical modeling routine routes flow using a D-
infinity scheme combined with Manning’s equation to simu-
late steady-state conditions. The model iteratively applies a
uniform rate of runoff to the surface that is routed downs-
lope according to D-Infinity. For each iteration, Manning’s
equation solves for depth assuming that it approximates the
hydraulic radius (Pelletier, 2008). After each iteration, the
depth is updated accordingly and the routine repeats until it
approaches a solution to a steady-state configuration of flow
depth. This workflow continues until either a threshold of
change in depth is reached or a set number of iterations oc-
cur. For this work, the threshold for change in average depth
between any two iterations is 1 % or about 50 iterations for
these hillslopes.

Routing flow down the idealized and natural surfaces re-
veals steady-state patterns of hydraulic variables (Figs. 12
and 13). Probability distributions from the simulated surface
support the theory developed above. The distributions of con-
tributing area and discharge reflect the form of Eqs. (20)
and (23) (Fig. 14). The distribution of ω is a deterministic
function of Q, and thus the distribution is not shown. Fur-
thermore, because we have specified that our idealized hills-
lope has a uniform slope, h is the only variable in τ that can
change, and thus we plot the distribution of h.

Plots of exceedance probabilities for A,Q, and h (Fig. 14)
from the idealized surface reveal similar patterns to theoret-
ical distributions (Fig. 9). As hillslopes lengthen or we sam-
ple to progressively lower parts of the hillslope, probability is
added to the tail of all empirical distributions. There is good
agreement between distributions of geometric variables (A
and Q) of the idealized case and the natural one (Fig. 14a
and b), which suggests that our theory accurately describes
the arrangement of rills. This lends confidence to our Monte
Carlo simulation and the implications for the scaling between
hillslope length and sediment yield.

Though geometric variables of A and Q match well, there
is a notable difference between natural and idealized distribu-
tions of h. The forms are again similar; however, the location
of truncation for the idealized case is about half an order of
magnitude shallower than that for the natural hillslope. There
are two reasons for this discrepancy. First, for the idealized
case, rill widths are uniform. Second, the natural hillslope is

rough and the bed slope contains some noise. Therefore, re-
ductions in slope or the quasi-random narrowing and widen-
ing of channels drives an increase in flow depth (Mei et al.,
2008). Uncertainty in the spatial patterns of channel width
have a significant impact on the distributions. Coupling the
work here with a more detailed treatment of wr may yield
interesting results.

5 Discussion

We have contributed to a formal development of the proba-
bility functions for topographic variables of A and l for the
Scheidegger model. The mathematical steps involve (1) rec-
ognizing the width function as a Brownian random walk,
(2) developing the description for fw(w,s), and (3) calcu-
lating statistical moments for A based on the moments of w.
These steps should be appropriate for many networks; how-
ever, they are most applicable to Scheidegger-like networks.
By this, we mean networks for which there is a single ob-
vious downslope direction and the surface is roughly planar
such that channels do indeed take random walks. This is the
case for rilled hillslopes, channels on alluvial fans (McGuire
and Pelletier, 2016), and perhaps some large-scale river net-
works. It is clear that if one can characterize the paths of
divide lines as some one-dimensional random walk, then the
contributing area becomes the integrated random walk and
the steps above hold. Scheidegger networks are simply a spe-
cial case where the divide lines and the channels share prob-
abilistic properties. This may not be true for other networks.

Though we have developed the moments of the distribu-
tion of A, some items remain outstanding. First, in Eq. (11)
we have noted that the variance increases at a rate 6 times
slower than that of an unrestricted integrated random walk.
We suggest this arises from the requirement that the random
walk always be positive. However, we currently lack a the-
oretical explanation for the value of six in the denominator.
Further, we have relied on the work of Dodds and Rothman
(2000) for the form of the distribution. Although the inverse
Gaussian distribution has its foundation in random walk the-
ory, the formal development of the distribution from consid-
ering the properties of the random walks remains to be done.
We anticipate that the demonstration of fw(w;s) can con-
tribute towards this because the distribution of a random walk
is related to the distribution of its integral.

The theory that we have developed is intended to capture
the essence of runoff-driven entrainment. However, it does
not consider all processes of entrainment, namely the role
of rainfall detachment (Hairsine and Rose, 1992; McGuire
et al., 2013). We have not included a theoretical treatment
of this process, though it may serve to reduce the nonlinear
sediment yield–length relationship. The role of raindrop im-
pacts is greatest on bare surfaces and declines as flow depth
increases. In our rilled settings, rain drop detachment will
therefore be greatest at the top of the hill and will decline
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Figure 12. (a) Map of contributing area of half of an idealized hillslope. Color scale is in log scale to make small rills visible and highlight
the entire network. (b) Map of steady-state flow depths according to our numerical model for runoff values of 5 cmh−1. This illustrates the
results of numerical flow routing. From this result, we calculate exceedance probabilities that compare to theoretical distributions. Color
scale is in log scale.

Figure 13. (a) Map of contributing area on half of the hillslope. Color scale is in log scale to make small rills visible and highlight the entire
network. (b) Map of steady-state flow depths according to our numerical model. Color scale is in log scale.

Figure 14. Exceedance probability plots for (a) contributing area, (b) discharge, and (c) flow depth from the hillslope in northern Arizona
and an idealized slope. Log–log slopes from theory are plotted on top of the data. The log–log slope in (c) is for p = 1/3 in rw = kQp .

downslope. This is the opposite trend that we see for flow-
driven detachment, which only increases downslope. If one
were to incorporate raindrop detachment into the theory de-
veloped above, it would tend to reduce the nonlinear relation-
ship between sediment yield and hillslope length. We note
that Fig. 10 shows nonlinear relationships that are stronger

than we typically observe. Therefore, including raindrop im-
pact may contribute to more reasonable scaling relationships.
To be clear, this only impacts sediment yield calculated from
ω or τ and not concentration, which implicitly incorporates
all detachment processes and deposition.
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Numerical flow routing highlights the success and chal-
lenges of applying the theory developed above. To the first
order, the arrangement of rills in a Scheidegger network de-
scribes the flow routing on natural hillslopes. This is evident
from the distributions of contributing area and discharge. Re-
sults shown in Fig. 14a and b highlight that, for both cases,
these distributions decay as power laws with exponents close
to the theoretical −4/3. There are, however, distinct differ-
ences between them. First, we note that in the natural case,
exceedance probabilities RA(A;Lh) and RQ(Q;Lh) appear
to decay faster than the A−1/3 that is predicted from theory.
This may indicate that the idealized Scheidegger model may
not be a perfect description for this network. As mentioned
above, other network classes exist, such as OCNs, which may
more accurately describe natural networks. However, those
networks are not amenable to the type of theory developed
above because they lack the clarity in rules for links and
nodes of the network. The Scheidegger model serves as a
guide to inform probability distributions and provide a ba-
sic reasoning for nonlinear relationships. We emphasize that
despite the slight difference in power law relationships, the
distributions are truncated at remarkably similar locations,
which leads to similar scaling relationships.

Another difference is apparent in the distinction between
interrill and rill contributions to the distributions. For the ide-
alized case, the distinction between rills and interrills is clear
where the interrill portion of the distribution is distinctly not
a power law. The same distinction is not clear in the natural
slope. We hypothesize that interrill and rill portions do not
separate clearly because of the rough topography in the nat-
ural hillslope which, even in the interrill areas, tends to focus
flow to some degree. The idealized hillslope lacks all rough-
ness, and thus there is no variance in flow for the interrill
areas.

We have specified that the mean channel width increases
nonlinearly as 〈rw〉 = kQγ . For the case where γ = 1/3, we
expect Rh(h;Lh) to be a truncated power law that decays as
−3/4 for our idealized case. Indeed, this is the slope of ex-
ceedance probability for the natural slope shown in Fig. 14c
despite slight differences in network geometry. The shape of
Rh(h;Lh) depends on γ and the shape ofRA(A;Lh). Assum-
ing that the deterministic relationships hold, we can solve for
γ given the slopes of the power law portions of RA(A;Lh)
and Rh(h;Lh). Doing so, we find 1/5< γ < 3/10 for the
natural case, which represents the lower range of values from
Torri et al. (2006).

There is a legacy of work that describes the behavior of a
cohort of particles (Martin et al., 2012; Fathel et al., 2016;
Wu et al., 2019; Pierce and Hassan, 2020) that begin their
motions at a common location and time. Also referred to as
tracer problems, research in this area often targets how that
cohort of particles disperses through time. The majority of
this work is with regard to transport in fluvial systems where
particles take a great number of hops and intervening rest
times over timescales that are appropriate for human observa-

tion. On hillslopes, particle motion is infrequent and observa-
tion of a great number of individual motions involving a co-
hort of particles is not practical for most settings. Rilled hill-
slopes, however, offer a unique setting where particles may
move frequently. Though an empirical or experimental com-
ponent of this work remains to be done, Lisle et al. (1998)
present probability theory that informs particle dispersion for
a rilled setting. However, they consider a single rill that may
or may not nonlinearly accumulate flow in the downslope di-
rection. We have demonstrated a probabilistic framework for
the rate of flow accumulation downslope, and, in principle,
could be used as a basis for further work exploring particle
dispersion or residence times on rilled slopes.

6 Conclusions

We have demonstrated probability functions of geometric
and hydraulic variables for rilled hillslopes. The theory rep-
resents an application of Hack’s Law and Hack statistics
to hillslopes. The limited space of hillslopes introduces a
fundamental difference from the typical application of net-
work scaling arguments (Dodds and Rothman, 2000). We
show that the arrangement of rills can lead to nonlinear
relationships with sediment detachment that are similar to
Qs ∝ L

β

h that is typically observed in nature (Moore and
Burch, 1986; Liu et al., 2000; Govers et al., 2007). Flow-
routing numerical simulations on idealized and natural hill-
slopes demonstrate agreement between geometric probabil-
ity distributions, which lends merit to the theory.

In pursuing a theoretical form for the distribution of hy-
draulic variables on hillslopes, we have developed formal
expressions for the probability functions of geometric vari-
ables. From considering the properties of random walks that
define drainage areas, we have developed the joint, condi-
tional, and marginal distributions of watershed length and
area. Building on the work in Dodds and Rothman (2000),
we have provided a probabilistic basis for the moments of
the conditional distribution, fA(A|l). The first moment of this
distribution is the well-known Hack’s Law. This result is spe-
cific to Scheidegger networks, but the mathematical steps ex-
tend to others.

The work presented above is a combination of probability
and determinism. We have relied on simple but demonstra-
ble deterministic relationships to extend our understanding
of network geometry to hydraulic variables. This represents
an attempt to explain the first-order behavior. The theory pro-
vides a foundation to consider more detailed and stochas-
tic elements of rill networks such as channel geometry and
width variations, variable slope, and the consequences of
storm-driven hydrographs.

Earth Surf. Dynam., 9, 317–331, 2021 https://doi.org/10.5194/esurf-9-317-2021



T. H. Doane et al.: Idealized Rill Networks 329

Appendix A

Symbol Variable Units

α Constant L1/2

A Contributing area L2

b Lateral position of divide line L
β Sediment yield–length exponent –
c Sediment concentration –
Ds Sediment detachment L3 T−1

fx(x) Probability density function for variable x units of x−1

g Acceleration due to gravity LT−2

h Flow depth L
k Discharge–rill width coefficient L−γ−2 T−γ

κ Sediment concentration coefficient L−2

l Channel length of closed watershed L
L Downslope distance from ridge L
Lh Total hillslope length L
λ Constant L
m Hack exponent –
µx Mean of variable x units of x
n Manning’s coefficient L1/3 T
η Placeholder exponent for detachment models units vary
φ Hack Coefficient L2−1/m

ρ Fluid density ML−3

γ Discharge–rill width exponent –
Qs Volumetric sediment yield L3 T−1

Q Water discharge L3 T−1

R Runoff LT−1

Rx Exceedance probability for random variable x –
rh Hydraulic radius L
r Interrill spacing L
rw Rill width L
s Downslope distance L
S Fluid surface slope –
σ 2
x Variance of variable x units of x2

θ Hack coefficient L−m+1

τ Shear stress ML−1 T−3

Tc Maximum sediment concentration –
v Depth-averaged flow velocity LT−1

ω Stream power ML−3

w Watershed width L
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