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Abstract. Wood is an essential component of rivers and plays a significant role in ecology and morphology.
It can be also considered a risk factor in rivers due to its influence on erosion and flooding. Quantifying and
characterizing wood fluxes in rivers during floods would improve our understanding of the key processes but are
hindered by technical challenges. Among various techniques for monitoring wood in rivers, streamside videogra-
phy is a powerful approach to quantify different characteristics of wood in rivers, but past research has employed
a manual approach that has many limitations. In this work, we introduce new software for the automatic detec-
tion of wood pieces in rivers. We apply different image analysis techniques such as static and dynamic masks,
object tracking, and object characterization to minimize false positive and missed detections. To assess the soft-
ware performance, results are compared with manual detections of wood from the same videos, which was a
time-consuming process. Key parameters that affect detection are assessed, including surface reflections, light-
ing conditions, flow discharge, wood position relative to the camera, and the length of wood pieces. Preliminary
results had a 36 % rate of false positive detection, primarily due to light reflection and water waves, but post-
processing reduced this rate to 15 %. The missed detection rate was 71 % of piece numbers in the preliminary
result, but post-processing reduced this error to only 6.5 % of piece numbers and 13.5 % of volume. The high
precision of the software shows that it can be used to massively increase the quantity of wood flux data in rivers
around the world, potentially in real time. The significant impact of post-processing indicates that it is necessary
to train the software in various situations (location, time span, weather conditions) to ensure reliable results.
Manual wood detections and annotations for this work took over 150 labor hours. In comparison, the presented
software coupled with an appropriate post-processing step performed the same task in real time (55 h) on a
standard desktop computer.
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1 Introduction

Floating wood has a significant impact on river morphology
(Gurnell et al., 2002; Gregory et al., 2003; Wohl, 2013; Wohl
and Scott, 2017). It is both a component of stream ecosys-
tems and a source of risk for human activities (Comiti et al.,
2006; Badoux et al., 2014; Lucía et al., 2015). The depo-
sition of wood at given locations can cause a reduction of
the cross-sectional area, which can both increase upstream
water levels (and the risk for neighboring communities) and
laterally concentrate the flow downstream, which can lead
to damaged infrastructure (Lyn et al., 2003; Zevenbergen et
al., 2006; Mao and Comiti, 2010; Badoux et al., 2014; Ruiz-
Villanueva et al., 2014; De Cicco et al., 2018; Mazzorana et
al., 2018). Therefore, understanding and monitoring the dy-
namics of wood within a river are fundamental to assess and
mitigate risk. An important body of work on this topic has
grown over the last 2 decades, which has led to the devel-
opment of many monitoring techniques (Marcus et al., 2002;
MacVicar et al., 2009a; MacVicar and Piégay, 2012; Benac-
chio et al., 2015; Ravazzolo et al., 2015; Ruiz-Villanueva et
al., 2019; Ghaffarian et al., 2020; Zhang et al., 2021) and con-
ceptual and quantitative models (Braudrick and Grant, 2000;
Martin and Benda, 2001; Abbe and Montgomery, 2003; Gre-
gory et al., 2003; Seo and Nakamura, 2009; Seo et al., 2010).
A recent review by Ruiz-Villanueva et al. (2016), however,
argues that the area remains in relative infancy compared to
other river processes such as the characterization of channel
hydraulics and sediment transport. Many questions remain
open areas of inquiry including wood hydraulics, which is
needed to understand wood recruitment, movement and trap-
ping, and wood budgeting; better parametrization is needed
to understand and model the transfer of wood in watersheds
at different scales.

In this domain, the quantification of wood mobility and
wood fluxes in real rivers is a fundamental limitation
that constrains model development. Most early works were
based on repeated field surveys (Keller and Swanson, 1979;
Lienkaemper and Swanson, 1987), with more recent efforts
taking advantage of aerial photos or satellite images (Marcus
et al., 2003; Lejot et al., 2007; Lassettre et al., 2008; Senter
and Pasternack, 2011; Boivin et al., 2017) to estimate wood
delivery at larger timescales of 1 year up to several decades.
Others have monitored wood mobility once introduced by
tracking wood movement in floods (Jacobson et al., 1999;
Haga et al., 2002; Warren and Kraft, 2008). Tracking tech-
nologies such as active and passive radio frequency identi-
fication transponders (MacVicar et al., 2009a; Schenk et al.,
2014) or GPS emitters and receivers (Ravazzolo et al., 2015)
can improve the precision of this strategy. To better under-
stand wood flux, specific trapping structures such as reser-
voirs or hydropower dams can be used to sample the flux
over time interval windows (Moulin and Piégay, 2004; Seo
et al., 2008; Turowski et al., 2013). Accumulations upstream
of a retention structure can also be monitored where they

trap most or all of the transported wood, as was observed by
Boivin et al. (2015), to quantify wood flux at the flood event
or annual scale. All these approaches allow the assessment
of the wood budget and in-channel wood exchange between
geographical compartments within a given river reach and
over a given period (Schenk et al., 2014; Boivin et al., 2015,
2017).

For finer-scale information on the transport of wood dur-
ing flood events, video recording of the water surface is suit-
able for estimating instantaneous fluxes and size distribu-
tions of floating wood in transport (Ghaffarian et al., 2020).
Classic monitoring cameras installed on the riverbank are
cheap and relatively easy to acquire, set up, and maintain.
As is seen in Table 1, a wide range of sampling rates and
spatial–temporal scales have been used to assess wood bud-
gets in rivers. MacVicar and Piégay (2012) and Zhang et
al. (2021) (in review), for instance, monitored wood fluxes
at 5 frames per second (fps) and a resolution of 640× 480
up to 800× 600 pixels. Boivin et al. (2017) used a simi-
lar camera and frame rate as MacVicar and Piégay (2012)
to compare periods of wood transport with and without the
presence of ice. Senter et al. (2017) analyzed the complete
daytime record of 39 d of videos recorded at 4 fps and a res-
olution of 2048× 1536 pixels. Conceptually similar to the
video technique, time-lapse imagery can be substituted for
large rivers where surface velocities are low enough and the
field of view is large. Kramer and Wohl (2014) and Kramer et
al. (2017) applied this technique in the Slave River (Canada)
and recorded one image every 1 and 10 min. Where pos-
sible, wood pieces within the field of view are then visu-
ally detected and measured using simple software to mea-
sure the length and diameter of the wood to estimate wood
flux (pieces per second) or wood volume (m3 s−1) (MacVicar
and Piégay, 2012; Senter et al., 2017). Critically for this ap-
proach, the time it takes for the researchers to extract in-
formation about wood fluxes has limited the fraction of the
time that can be reasonably analyzed. Given the outdoor lo-
cation for the camera, the image properties depend heavily on
lighting conditions (e.g., surface light reflections, low light,
ice, poor resolution, or surface waves), which may also limit
the accuracy of frequency and size information (Muste et
al., 2008; MacVicar et al., 2009a). In such situations, sim-
pler metrics such as a count of wood pieces, a classification
of wood transport intensity, or even just a binary presence–
absence may be used to characterize the wood flux (Boivin
et al., 2017; Kramer et al., 2017).

A fully automatic wood detection and characterization al-
gorithm can greatly improve our ability to exploit the vast
amounts of data on wood transport that can be collected from
streamside video cameras. From a computer science perspec-
tive, however, automatic detection and characterization re-
main challenging issues. In computer vision, detecting ob-
jects within videos typically consists of separating the fore-
ground (the object of interest) from the background (Rous-
sillon et al., 2009; Cerutti et al., 2011, 2013). The basic hy-
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Table 1. Characteristics of streamside video monitoring techniques in different studies.

Article Sampling Temporal scales Camera resolution Study site

MacVicar and Piégay (2012) 15 min segments Three floods, 18 h, 5 fps 640× 480 Ain, France

Kramer and Wohl (2014) Total duration 32 d, 12 761 frames, 0.017 fps n/a Slave, Canada

Boivin et al. (2017) Total duration Three floods, 150 h, 25 fps 640× 480 St. Jean, Canada

Kramer et al. (2017) Total duration 11 months, 0.0017 fps 1268× 760 Slave, Canada

Senter et al. (2017) 15 min segments 39 d, 180 h, 4 fps 2048× 1536 North Yuba, USA

Ghaffarian et al. (2020) Total duration Two floods, 80 h, 1 fps 600× 800 Isère, France

Zhang et al. (2021) Total duration Seven floods and one windy period, from 640× 480 up to Ain, France
183 h, 5 fps 800× 600

pothesis is that the background is relatively static and covers
a large part of the image, allowing it to be matched between
successive images. In riverine environments, however, such
an assumption is unrealistic because the background shows
a flowing river, which can have rapidly fluctuating properties
(Ali and Tougne, 2009). Floating objects are also partially
submerged in water that has high suspended material con-
centrations during floods, making them only partially visible
(e.g., a single piece of wood may be perceived as multiple
objects) (MacVicar et al., 2009b). Detecting such an object
in motion within a dynamic background is an area of active
research (Ali et al., 2012, 2014; Lemaire et al., 2014; Piégay
et al., 2014; Benacchio et al., 2017). Accurate object detec-
tion typically relies on the assumption that objects of a single
class (e.g., faces, bicycles, animals) have a distinctive aspect
or set of features that can be used to distinguish between
types of objects. With the help of a representative dataset,
machine-learning algorithms aim to define the most salient
visual characteristics of the class of interest (Lemaire et al.,
2014; Viola and Jones, 2006). When the objects have a wide
intra-class aspect range, a large amount of data can compen-
sate by allowing the application of deep learning algorithms
(Gordo et al., 2016; Liu et al., 2020). To our knowledge, such
a database is not available in the case of floating wood.

The camera installed on the Ain River in France has been
operating more or less continuously for over 10 years, and
vast improvements in data storage mean that these data can
be saved indefinitely (Zhang et al., 2021). The ability to pro-
cess this image database to extract the wood fluxes allows us
to integrate this information over floods, seasons, and years,
which would allow us to significantly advance our under-
standing of the variability within and between floods over a
long time period. An unsupervised method to identify float-
ing wood in these videos by applying intensity, gradient, and
temporal masks was developed by Ali and Tougne (2009)
and Ali et al. (2011). In this model, the objects were tracked
through the frame to ensure that they followed the direction
of flow. An analysis of about 35 min of the video showed that

approximately 90 % of the wood pieces was detected (i.e.,
about 10 % of detections were missed), which confirmed the
potential utility of this approach. An additional set of false
detections related to surface wave conditions amounted to
approximately 15 % of the total detection. However, the de-
veloped algorithm was not always stable and was found to
perform poorly when applied to a larger dataset (i.e., video
segments more than 1 h).

The objectives of the presented work are to describe and
validate a new algorithm and computer interface for quantify-
ing floating wood pieces in rivers. First, the algorithm proce-
dure is introduced to show how wood pieces are detected and
characterized. Second, the computer interface is presented
to show how manual annotation is integrated with the algo-
rithm to train the detection procedure. Third, the procedure
is validated using data from the Ain River. The validation pe-
riod occurred over 6 d in January and December 2012 when
flow conditions ranged from ∼ 400 m3 s−1, which is below
bankfull discharge but above the wood transport threshold,
to more than 800 m3 s−1.

2 Monitoring site and camera settings

The Ain River is a piedmont river with a drainage area of
3630 km2 at the gauging station of Chazey-sur-Ain, with a
mean flow width of 65 m, a mean slope of 0.15 %, and a
mean annual discharge of 120 m3 s−1. The lower Ain River is
characterized by an active channel shifting within a forested
floodplain (Lassettre et al., 2008). An AXIS221 Day/Night™
camera with a resolution of 768× 576 pixels was installed
at this station to continuously record the water surface of
the river at a maximum frequency of 5 fps (Fig. 1). This
camera replaced a lower-resolution camera at the same lo-
cation used by MacVicar and Piégay (2012). The specific lo-
cation of the camera is on the outer bank of a meander, on
the side closest to the thalweg, at a height of 9.8 m above
the base flow elevation. The meander and a bridge pier up-
stream help to steer most of the floating wood so that it
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passes relatively close to the camera where it can be read-
ily detected with a manual procedure (MacVicar and Pié-
gay, 2012). The flow discharge is available from the website
(http://www.hydro.eaufrance.fr/, last access: 1 June 2020).

The survey period examined on this river was during 2012,
from which two flood events (1–7 January and 15 December)
were selected for annotation. A range of discharges from 400
to 800 m3 s−1 occurred during these periods (Fig. 1e), which
is above a previously observed wood transport threshold of
∼ 300 m3 s−1 (MacVicar and Piégay, 2012). A summary of
automated and manual detections for the 6 d is shown in Ta-
ble 3.

3 Methodological procedure for automatic detection
of wood

The algorithm for wood detection comprises a number of
steps that seek to locate objects moving through the field of
view in a series of images and then identify the objects most
likely to be wood. The algorithm used in this work modifies
the approach described by Ali et al. (2011). The steps work
from a pixel to image to video scale, with the context from
the larger scale helping to assess whether the information at
the smaller scale indicates the presence of floating wood or
not. In a still image, a single pixel is characterized by its loca-
tion within the image, its color, and its intensity. Looking at
its surrounding pixels on an image scale allows information
to be spatially contextualized. Meanwhile, the video data add
temporal context so that previous and future states of a given
pixel can be used to assess its likeliness of representing float-
ing wood. On a video scale, the method can embed expecta-
tions about how wood pieces should move through frames,
how big they should be, and how lighting and weather condi-
tions can evolve to change the expectations of wood appear-
ance, location, and movement. The specific steps followed by
the algorithm are shown in a simple flowchart (Fig. 2a). An
example image with a wood piece in the middle of the frame
is also shown for reference (Fig. 2b).

3.1 Wood probability masks

In the first step, each pixel was analyzed individually and in-
dependently. The static probability mask answers the follow-
ing question: is one pixel likely to belong to a wood block
given its color and intensity? The algorithm assumes that the
wood pixels can be identified by pixel light intensity (i) fol-
lowing a Gaussian distribution (Fig. 3a). To set the algorithm
parameters, pixel-wise annotations of wood under all the ob-
served lighting conditions were used to determine the mean
(µ) and standard deviation (σ ) of wood piece pixel intensity.
Applying this algorithm produces a static probability mask
(Fig. 3b). From this figure, it is possible to identify the sec-
tors where wood presence is likely, which includes the float-
ing wood piece seen in Fig. 2b, but also includes standing
vegetation in the lower part of the image and a shadowed

area in the upper left. The advantage of this approach is that
it is computationally very fast. However, misclassification is
possible, particularly when light conditions change.

The second mask, called the dynamic probability mask,
outlines each pixel’s recent history. The corresponding ques-
tion is the following: is this pixel likely to represent wood
now given its past and present characteristics? Again, this
step is based on what is most common in our database: it
is assumed that a wood pixel is darker than a water pixel.
Depending on lighting conditions like shadows cast on wa-
ter or waves, this is not always true; i.e., water pixels can
be as dark as wood pixels. However, pixels displaying suc-
cessively water then wood tend to become immediately and
significantly darker, while pixels displaying wood then water
tend to become significantly lighter. Meanwhile, the intensity
of pixels that keep on displaying wood tends to be rather sta-
ble. Thus, we assign wood pixel probability according to an
updated version of the function proposed by Ali et al. (2011)
(Fig. 4a) that takes four parameters. This functionH is an up-
dating function, which produces a temporal probability mask
from the inter-frame pixel value. On a probability map, a
pixel value ranges from −1 (likely not wood) to 1 (likely
wood). The temporal mask value for a pixel at location (xy)
and at time t is PT (x,y, t)= H (1t ,I )+PT (x,y, t − 1). We
apply a threshold to the output of PT (x,y, t) so that it always
stays within the interval [0,1]. The idea is that a pixel that be-
comes suddenly and significantly darker is assumed to likely
be wood. H (1t ,I ) is such that under those conditions, it in-
creases the pixel probability map value (parameters τ and β).
A pixel that becomes lighter over time is unlikely to corre-
spond to wood (parameter α). A pixel for which the intensity
is stable and that was previously assumed to be wood shall
still correspond to wood, while a pixel for which the intensity
is stable and for which the probability to be wood was low
is unlikely to represent wood now. A small decay factor (δ)
was introduced in order to prevent divergence (in particular,
it prevents noisy areas from being activated too frequently).

The final wood probability mask is created using a com-
bination of both the static and dynamic probability masks.
Wood objects thus had to have a combination of the cor-
rect pixel color and the expected temporal behavior of water–
wood–water color. The masks were combined assuming that
both probabilities are independent, which allowed us to use
the Bayesian probability rule in which the probability masks
are simply multiplied, pixel by pixel, to obtain the final prob-
ability value for each pixel of every frame.

3.2 Wood object identification and characterization

From the probability mask it is necessary to group pixels
with high wood probabilities into objects and then to sepa-
rate these objects from the background to track them through
the image frame. For this purpose, pixels were classified as
high or low probability based on a threshold applied to the
combined probability mask. Then, the high-probability pix-
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Figure 1. Study site at Pont de Chazey: (a) location of the Ain River catchment in France and location of the gauging station, (b) camera
position and its view angle in yellow, (c) overview of the gauging station with the camera installation point, and (d) view of the river channel
from the camera. (e) Daily mean discharge series for the monitoring period from 1 to 7 January and on 15 December.

Figure 2. (a) Flowchart of the detection software and (b) an example of the frame on which these different flowchart steps are applied.
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Figure 3. Static probability mask, (a) Gaussian distribution of light intensity range for a piece of wood, and (b) employment of a probability
mask on the sample frame.

Figure 4. Dynamic probability mask, (a) updating function H (1t ,I ) adapted from Ali et al. (2011), and (b) employment of a probability
mask on the sample frame.

els were grouped into connected components (that is, small,
contiguous regions on the image) to define the objects. At
this stage, a pixel size threshold was applied to the detected
objects so that only the bigger objects were considered to
represent woody objects on the water surface (Fig. 5a the big
white region in the middle). A number of smaller compo-
nents were often related to non-wood objects, for example
waves, reflections, or noise from the camera sensor or data
compression.

After the size thresholding step, movement direction and
velocity were used as filters to distinguish real objects from
false detections. The question here is the following: is this
object moving through the image frame the way we would
expect floating wood to move? To do this, the spatial and
temporal behavior of components was analyzed. First, to deal
with partly immersed objects, we agglomerated multiple ob-
jects within frames as components of a single object if the
distance separating them was less than a set threshold. Sec-
ond, we associated wood objects in successive frames to-
gether to determine if the motion of a given object was com-
patible with what is expected from driftwood. This can be
achieved according to the dimensionless parameter PT/1T ,
which provides a general guideline for the distance an ob-

ject passes between two consecutive frames (Zhang et al.,
2021). Here PT (passing time) is the time that one piece of
wood passes through the camera field of view, and1T is the
time between two consecutive frames; practically, it is rec-
ommended to use videos with PT/1T > 5 in this software.
In our case, tracking wood is rather difficult for classical ob-
ject tracking approaches in computer vision: the background
is very noisy, the acquisition frequency is low, and the ob-
ject’s appearance can be highly variable due to temporarily
submerged parts and highly variable 3D structures. Given
these considerations it was necessary to use very basic rules
for this step. The rules are therefore based on loose expecta-
tions, in terms of pixel intervals, regarding the motions of the
objects depending on the camera location and the river prop-
erties. How many pixels is the object likely to move between
image frames from left to right? How many pixels from top
to bottom? How many appearances are required? How many
frames can we miss because of temporary immersions? Us-
ing these rules, computational costs remained low and the
analysis could be run in real time while also providing good
performance.

The final step was to characterize each object which at this
point in the process are considered wood objects. Each ap-
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Figure 5. (a) Object extraction by (i) combining static and dynamic masks and (ii) applying a threshold to retain only high-probability pixels.
(b) Object tracking as a filter to deal with partly immersed objects and to distinguish moving objects from static waves.

pears several times in different frames, and a procedure is
needed to either pick a single representative occurrence or
use a statistical tool to analyze multiple occurrences to esti-
mate characterization data. In this step, all images contain-
ing the object are transformed from pixel to Cartesian co-
ordinates (as will be described in the next section), and the
median length is calculated and used as the most representa-
tive state. This approach also matched the manual annotation
procedure whereby we tended to pick the view of the object
that covers the largest area to make measurements. For the
current paper, every object is characterized from the raw im-
age based on its size and its location. It is worth saying that
detection was only possible during the daylight.

3.3 Image rectification

Warping images according to a perspective transform results
in an important loss of quality. On warped images, areas of
the image farther from the camera provide little detail and
are overall very blurry and non-informative. Therefore, im-
age rectification was necessary to calculate wood length, ve-
locity, and volume from the saved pixel-based characteriza-
tion of each object. To do so, the fish-eye lens distortion was
first corrected. A fish-eye lens distortion is a characteristic
of the lens that produces visual distortion intended to create
a wide panoramic or hemispherical image. This effect was
corrected by a standard MATLAB process using the Com-
puterVisionToolbox™ (Release 2017b).

Ground-based cameras also have an oblique angle of view,
which means that pixel-to-meter correspondence is variable
and images need to be orthorectified to obtain estimates of
object size and velocity in real terms (Muste et al., 2008). Or-
thorectification refers to the process by which image distor-
tion is removed and the image scale is adjusted to match the
actual scale of the water surface. Translating from pixels to
Cartesian coordinates required us to assume that our camera
follows the pinhole camera model and that the river can be
assimilated to a plane of constant altitude. Under such con-
ditions, it is possible to translate from pixel coordinates to a

metric 2D space thanks to a perspective transform assuming a
virtual pinhole camera on the image and estimating the posi-
tion of the camera and its principal point (center of the view).
An example of orthorectification on a detected wood piece in
a set of continuous frames and pixel coordinates (Fig. 6a)
is presented in Fig. 6b in metric coordinates. The transform
matrix is obtained with the help of at least four non-colinear
points (Fig. 6c, blue GCPs – ground control points – acquired
with DGPS) from which we know both the relative 2D metric
coordinates for a given water level (Fig. 6b, blue points) and
their corresponding localization within the image (Fig. 6a,
blue points). To achieve better accuracy, it is advised to ac-
quire additional points and to solve the subsequent overde-
termined system with the help of a least square regression
(LSR). Robust estimators such as RANSAC (Forsyth and
Ponce, 2012) can be useful tools to prevent acquisition noise.
After identifying the virtual camera position, the perspective
transform matrix then becomes parameterized with the water
level. Handling the variable water level was performed for
each piece of wood by measuring the relative height between
the camera and the water level at the time of detection based
on information recorded at the gauging station to which the
camera was attached. The transformation matrix on the Ain
River at the base flow elevation with the camera as the ori-
gin is shown in Fig. 6d. Straight lines near the edges of the
image appear curved because the fish-eye distortion has been
corrected on this image; conversely, a straight line, in reality,
is presented without any curvature in the image.

4 User interface

The software was developed to provide a single environment
for the analysis of wood pieces on the surface of the water
from streamside videos. It consists of four distinct modules:
detection, annotation, training, and performance. The home
screen allows the operator to select any of these modules.
From within a module, a menu bar on the left side of the
interface allows operators to switch from one module to an-
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Figure 6. Image rectification process. The non-colinear GCPs localization within the image (a) and the relative 2D metric coordinates for a
given water level (b). The different solid lines represent the successive detection in a set of consecutive frames. (c) 3D view of non-colinear
GCPs in metric coordinates. (d) Rectifying transformation matrix on the Ain River at a low flow level with the camera at (0,0,0).

other. In the following sections, the operation of each of these
modules is described.

4.1 Detection module

The detection module is the heart of the software. This mod-
ule allows, from learned or manually specified parameters,
the detecting of floating objects without human intervention
(see Fig. 7). This module contains two main parts: (i) the de-
tection tab, which allows the operator to open, analyze and
export the results from one video or a set of videos; and (ii)
the configuration tab, which allows the operator to load and
save the software configuration by defining the parameters of
wood detection (as described in Sect. 3), saving and extract-
ing the results, and displaying the interface.

The detection process works as a video file player. The
video file (or a stream URL) is loaded to let the software read
the video until the end. When required, the reader generates
a visual output, showing how the masks behave by adding
color and information to the video content (see Fig. 7a). A
small textual display area shows the frequency of past de-
tections. Meanwhile, the software generates a series of files
summarizing the positive outputs of the detection. They con-
sist of YAML and CSV files, as well as image files to show

the output of different masks and the original frames. A con-
figuration tab is available and provides many parameters or-
ganized by various categories. The main configuration tab is
divided into seven parts. The first part is dedicated to general
configurations such as frames skipped between each compu-
tation and defining the areas within the frame where wood
is not expected (e.g., bridge pier or riverbank). In the second
and third parts, the parameters of the intensity and tempo-
ral masks are listed (see Sect. 3.1). The default values are
µ= 0.2 and σ = 0.08 for the intensity mask and τ = 0.25
and β = 0.45 for the temporal mask. In the fourth and fifth
parts, object tracking and characterization parameters are re-
spectively defined as described in Sect. 3.2. Detection time
is defined in the sixth part using an optical character recogni-
tion technique. Finally, the parameters of the orthorectifica-
tion (see Sect. 3.3) are defined in the seventh part. The detec-
tion software can be used to process videos in batch (“script”
tab), without generating a visual output, to save computing
resources.

4.2 Annotation module

As mentioned in Sect. 2, the detection procedure requires the
classification of pixels and objects into wood and non-wood
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Figure 7. User interface of (a) the detection module and (b) the annotation module of the automatic detection software.

categories. To train and validate the automatic detection pro-
cess, a ground truth or set of videos with manual annotations
is required. Such annotations can be performed using differ-
ent techniques. For example, objects can be identified with
the help of a bounding box or selection of end points, as in
MacVicar and Piégay (2012), Ghaffarian et al. (2020), and
Zhang et al. (2021). It is also possible to sample wood pixels
without specifying instances or objects and to sample pixels
within annotated objects. Finally, objects and/or pixels can
be annotated multiple times in a video sequence to increase
the amount and detail of information in such an annotation
database. This annotation process is time-consuming, so a
trade-off must be made regarding the purpose of the anno-
tated database and its required accuracy. Manual annotations
are especially important when they are intended to be used
within a training procedure, for which different lighting con-
ditions, camera parameters, wood properties, and river hy-
draulics must be balanced. The rationale for manual annota-
tions in the current study is presented in Sect. 5.1.

Given that the tool is meant to be as flexible as possible,
the annotation module was developed to allow the operator to
perform annotation in different ways depending on the pur-
pose of the study. As shown in Fig. 7.b, this module con-
tains three main parts: (i) the column on the far left allows
the operator to switch to another module (detection, learn-
ing, or performance), (ii) the central part consists of a video
player with a configuration tab for extracting the data, and
(iii) the right part contains the tools to generate, create, vi-
sualize, and save annotations. The tools allow rather quick
coarse annotation, similar to what was done by MacVicar and
Piégay (2012) and Boivin et al. (2015), while still allowing
the possibility of finer pixel-scale annotation. The principle
of this module is to associate annotations with the frames of
a given video. Annotating a piece of wood is like drawing
its shape directly on a frame of the video using the drawing
tools provided by the module. It is possible to add a text de-

scription to each annotation. Each annotation is linked to a
single frame of the video; however, a frame can contain sev-
eral annotations. An annotated video therefore consists of a
video file and a collection of drawings, possibly with textual
descriptions, associated with frames. It is possible to link an-
notations from one frame to another to signify that they be-
long to the same piece of wood. These data can be used to
learn the movement of pieces of wood in the frame.

4.3 Performance module

The performance module allows the operator to set rules to
compare automatic and manual wood detection results. This
section also allows the operator to use a bare, pixel-based
annotation or specify an orthorectification matrix to extract
wood size metrics directly from the output of an automatic
detection.

For this module an automatic detection file is first loaded,
and then the result of this detection is compared with a man-
ual annotation for that video if the latter is available. Com-
parison results are then saved in the form of a summary file
(*.csv format), allowing the operator to perform statistical
analysis of the results or the detection algorithm. A manual
annotation file can only be loaded if it is associated with an
automatic detection result.

The performance of the detected algorithm can be realized
on several levels.

– Object. The idea is to annotate one (or more) occur-
rence of a single object and to operate the comparison at
bounding box scale. A detected object may comprehend
a whole sequence of occurrences on several frames. It is
validated when only a single occurrence happens to be
related to an annotation. This is the minimum possible
effort required to have an extensive overview of the ob-
ject frequency on such an annotation database. This ap-
proach can, however, lead us to misjudge wrongly de-
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tected sequences as true positives (see below) or vice
versa.

– Occurrence. The idea is to annotate, even roughly, every
occurrence of every woody object so that the compari-
son can happen between bounding boxes rather than at
pixel level. Every occurrence of any detected object can
be validated individually. This option requires substan-
tially more annotation work than the object annotation.

– Pixel. This case implies that every pixel of every oc-
currence of every object is annotated as wood. It is
very powerful in evaluating algorithm performances and
eventually refining its parameters with the help of some
machine-learning technique. However, it requires exten-
sive annotation work.

5 Performance assessment

5.1 Assessment procedure

To assess the performance of the automatic detection algo-
rithm, we used videos from the Ain River in France that were
both comprehensively manually annotated and automatically
analyzed. According to the data annotated by the observer,
the performance of the software can be affected by different
conditions: (i) wood piece length, (ii) distance from the cam-
era, (iii, iv) wood x and y position, (v) flow discharge, (vi)
daylight, and (vii, viii) light and darkness of the frame (see
Table 2). If, for example, software detects a 1 cm piece at a
distance of 100 m from the camera, there is a high probabil-
ity that this is a false positive detection. Therefore, knowing
the performance of the software in different conditions, it is
possible to develop some rules to enhance the quality of data.
The advantage of this approach is that all eight parameters in-
troduced here are easily accessible in the detection process.
In this section the monitoring details and annotation meth-
ods are introduced before the performance of the software
is evaluated by comparing the manual annotations with the
automatic detections.

Ghaffarian et al. (2020) and Zhang et al. (2021) show that
the wood discharge (m3 per time interval) can be measured
from the flux or frequency of wood objects (piece number per
time interval). An object-level detection was thus sufficient
for the larger goals of this research at the Ain River, which is
to get a complete budget of transported wood volume.

A comparison of annotated with automatic object detec-
tions gives rise to three options.

– True positive (TP). An object is correctly detected and is
recorded in both the automatic and annotated database.

– False positive (FP). An object is incorrectly detected
and is recorded only in the automatic database.

– False negative (FN). An object is not detected automat-
ically and is only recorded in the annotated database.

Despite overlapping occurrences of wood objects in the two
databases, the objects could vary in position and size between
them. For the current study we set the TP threshold as the
case in which either at least 50 % of the automatic and an-
notated bounding box areas were common or at least 90 %
of an automatic bounding box area was part of its annotated
counterpart.

In addition to the raw counts of TPs, FPs, and FNs, we
defined two measures of the performances of the application,
where

– recall rate (RR) is the fraction of wood objects automat-
ically detected (TP / (TP+FN)), and

– precision rate (PR) is the fraction of detected objects
that are wood (TP / (TP+FP)).

The higher the PR and the RR are, the more accurate our ap-
plication is. However, both rates tend to interact. For exam-
ple, it is possible to design an application that displays a very
high RR (which means that it does not miss many objects)
but suffers from a very low PR (it outputs a high amount of
inaccurate data) and vice versa. Thus, we have to find a bal-
ance that is appropriate for each application.

It was well known from previous manual efforts to char-
acterize wood pieces and develop automated detection tools
that it is easier to detect certain wood objects than others.
In general, the ability to detect wood objects in the dynamic
background of a river in flood was found to vary with the
size of the wood object, its position in the image frame, the
flow discharge, the amount and variability of the light, inter-
ference from other moving objects such as spiders, and other
weather conditions such as wind and rain. In this section, we
describe and define the metrics that were used to understand
the variability of the detection algorithm performance.

In general, more light results in better detection. The light
condition can be changed by varying a set of factors such
as weather conditions or the amount of sediment carried by
the river. In any case, the daylight is a factor that can change
the light condition systematically, i.e., low light early in the
morning (Fig. 8a), bright light at midday with the potential
for direct light and shadows (Fig. 8b), and low light again in
the evening, though it is different from the morning because
the hue is more bluish (Fig. 8c). This effect of the time of day
was quantified simply by noting the time of the image, which
was marked on the top of each frame of the recorded videos.

Detection is also strongly affected by the frame “rough-
ness”, defined here as the variation in light over small dis-
tances in the frame. The change in light is important for the
recognition of wood objects, but light roughness can also oc-
cur when there is a region with relatively light pixels due to
something such as reflection of the surface of the water, and
dark roughness can occur when there is a region with rel-
atively dark pixels due to something such as shadows from
the surface water waves or surrounding vegetation. Detect-
ing wood is typically more difficult around light roughness,
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Table 2. Parameters used to assess the performance of the software.

Parameter Rationale Metric

Piece length Larger objects are easier to detect. Detecting an object in pixel coordinates.

Distance Objects closer to the camera are easier to detect. Transferring coordinates to metric.

x position Some particular areas of turbulent flow in the field of Calculating length, position, and distance.

y position view affect detection (e.g., presence of a bridge pier).

Discharge Flow discharge affects water color, turbulence, Recorded water elevation data and calibrated
and the amount of wood. rating curve at hydrologic station.

Time Luminosity of the frames varies with time of day. Time of day as indicated on top of each frame.

Dark roughness Small spots with sharp contrast (either lighter or darker) Percent of pixels below an intensity threshold.

Light roughness affect detection. Percent of pixels above an intensity threshold.

Figure 8. Different light conditions during (a) morning, (b) noon, and (c) late afternoon result in different frame roughnesses and different
detection performances. (c) Wood position can highly affect the quality of detection. Pieces that are passing in front of the camera are detected
much better than the pieces far from the camera.

which results in false negatives, while the color map of a
darker surface is often close to that of wood, which results
in false positives. Both of these conditions can be seen in
Fig. 8 (highlighted in Fig. 8a). In general, the frame rough-
ness increases on windy days or when there is an obstacle
in the flow, such as downstream of the bridge pier in the
current case. The light roughness was calculated for the cur-
rent study by defining a light intensity threshold and calculat-
ing the ratio of pixels of higher value among the frame. The
dark roughness is calculated in the same way, but in this case
the pixels less than the threshold were counted. In this work
thresholds equal to 0.9 and 0.4 were used for light and dark
roughness, respectively.

The oblique view of the camera means that the distance
of the wood piece from the camera is another important fac-
tor in detection (Fig. 8c). The effect of distance on detection
interacts with wood length; i.e., shorter pieces of wood that
are not detectable near the camera may not be detectable to-
ward the far bank due to the pixel size variation (Ghaffarian
et al., 2020). Moreover, if a piece of wood passes through a
region with high roughness (Fig. 8c) or amongst bushes or
trees (Fig. 8c, right-hand side) it is more likely that the soft-
ware is unable to detect it. In our case, 1 d of video record

could not be analyzed due to the presence of a spider that
moved around in front of the camera.

Flow discharge is another key variable in wood detection.
Increasing flow discharge generally means that water levels
are higher, which brings wood close to the near bank of the
river closer to the camera. This change can make small pieces
of wood more visible, but it also reduces the angle between
the camera position and pixels, which makes wood farther
from the camera harder to see. High flows also tend to in-
crease surface waves and velocity, which can increase the
roughness of the frame and lead to the wood being intermit-
tently submerged or obscured. More suspended sediment is
carried during high flows, which can change water surface
color and increase the opacity of the water.

5.2 Detection performance

Automatic detection software performance was evaluated
based on the event based TP, FP, and FN raw numbers as
well as the precision (PR) and recall rates (RR) using the
default parameters in the software. On average, manual an-
notation resulted in the detection of approximately twice as
many wood pieces as the detection software (Table 3). Mea-

https://doi.org/10.5194/esurf-9-519-2021 Earth Surf. Dynam., 9, 519–537, 2021



530 H. Ghaffarian et al.: Automated quantification of floating wood pieces in rivers from video monitoring

sured over all the events, RR= 29 %, which indicates that
many wood objects were not detected by the software, while
among detected objects about 36 % were false detections
(PR= 64 %).

To better understand model performance, we first tested
the correlation between the factors identified in the previ-
ous section by calculating each of the eight parameters for
all detections as one vector and then calculating the corre-
lation between each pair of parameters (Table 4). As shown
(the bold values), the pairs of dark–light roughness, length–
distance, and discharge–time were highly correlated (corre-
lations of 0.59, 0.46, and 0.37, respectively). For this reason,
they were considered together to evaluate the performance
of the algorithm within a given parameter space. The x/y
positions were also considered as a pair despite a relatively
low correlation (0.15) because they represent the position of
an object. As a note, the correlation between time and dark
roughness is higher than discharge and time, but we used the
discharge–time pair because discharge has a good correla-
tion only with time. As recommended by MacVicar and Pié-
gay (2012), wood lengths were determined on a log-base-2
transformation to better compare different classes of floating
wood, similar to what is done for sediment sizes.

The presentation of model performance by pairs of cor-
related parameters clarifies certain strengths and weaknesses
of the software (Fig. 9). As expected, the results in Fig. 9b
indicate that, first, the software is not so precise for small
pieces of wood (less than the order of 1 m); second, there is
an obvious link between wood length and the distance from
the camera so that by increasing the distance from the cam-
era, the software is precise only for larger pieces of wood.
Based on Fig. 9e, the software precision is usually better on
the right side of the frame than the left side. This spatial gra-
dient in precision is likely because the software requires an
object to be detected in at least 5 continuous frames for it to
be recognized as a piece of wood (see Sect. 3.2 and Fig. 5 for
more information), which means that most of the true posi-
tives are on the right side of the frame where five continuous
frames have already been established. Also, the presence of
the bridge pier (at X ∼=−30 to −40 m based on Fig. 9e) up-
stream produces lots of waves that decrease the precision of
the software. Figure 9h shows that the software is much more
precise during the morning when there is enough light rather
than evening when the sunshine decreases. However, at low
flow (Q< 550 m3 s−1) the software precision decreases sig-
nificantly. Finally, based on Fig. 9k, the software does not
work well in two roughness conditions: (i) in a dark smooth
flow (light roughness∼= 0) when there are some dark patches
(shadows) on the surface (dark roughness ∼= 0.3) and (ii)
when roughness increases and there is a lot of noise in a
frame (see Fig. 8).

To estimate the fraction of wood pieces that the software
did not detect, the recall rate (RR) is calculated in different
conditions, and a linear interpolation was applied to RR as
presented in Fig. 9 (third column). According to Fig. 9c, RR

is fully dependent on piece length so that for lengths of the
order of 10 m (L=O(10)) RR is very good. By contrast,
when L=O(0.1∼ 1), the RR is too small. There is a tran-
sient region when L=O(1), which slightly depends on the
distance from the camera. One can say that the wood length
is the most crucial parameter that affects the recall rate inde-
pendent of the operator annotation. Based on Fig. 9f, the RR
is much better on the left side of the frame than on the right
side. It can be because the operator’s eye needs some time
to detect a piece of wood, so most of the annotations are on
the right side of the frame. Having a small number of detec-
tions on the left side of the frame results in the small value
of FN, which is followed by high values of RR in this region
(RR= TP/(TP+FN). Therefore, while the position of detec-
tion plays a significant role in the recall rate, it is completely
dependent on the operator bias. By contrast, frame rough-
ness, daytime, and flow discharge do not play a significant
role in the recall rate (Fig. 9i, l).

5.3 Post-processing

This section is separated into two main parts. First, we show
how to improve the precision of the software by a posteri-
ori distinction between TP and FP. After removing FPs from
the detected pieces, in the second part, we test a process to
predict the annotated data that the software missed, i.e., false
negatives.

5.3.1 Precision improvement

To improve the precision of the automatic wood detection
we first ran the software to detect pieces and extracted the
eight key parameters for each piece as described in Sect. 5.1.
Having the value of the eight key parameters (four pairs of
parameters in Fig. 9) for each piece of wood, we then es-
timated the total precision of each object, as the average of
four precisions from each panel in Fig. 9. In the current study
the detected piece was considered to be a true positive if the
total precision exceeded 50 %. To check the validity of this
process, we used cross-validation by leaving one day out,
calculating the precision matrices based on five other days,
and applying the calculated PR matrices on the day that was
left out. As is seen in Table 5, this post-processing step in-
creases the precision of the software to 85 %, which is an en-
hancement of 21%. The degree to which the precision is im-
proved is dependent on the day left out for cross-validation.
If, for example, the day left out had similar conditions as the
mean, the PR matrices were well trained and were able to
distinguish between TP and FP (e.g., 2 January with 42 %
enhancement). On the other hand, if we have an event with
new characteristics (e.g., very dark and cloudy weather or at
discharges different from what we have in our database), the
PR matrices were relatively blind and offered little improve-
ment (e.g., 15 December with 10 % enhancement).
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Table 3. Summary of automated and manual detections.

Date Discharge (m3 s−1) Water level (m) Detection Number Precision Recall

Qmax Qmin hmax hmin time (h) annot. det. rate % rate %

1 January 2012 718 633 −7.4 −7.8 7 to 17 2282 972 77 33
2 January 2012 772 674 −7.2 −7.6 7 to 17 802 380 52 24
4 January 2012 475 423 −8.4 −8.6 7 to 17 140 158 20 22
6 January 2012 786 763 −7.2 −7.2 7 to 17 712 384 54 29
7 January 2012 462 430 −8.5 −8.6 7 to 17 117 73 40 25
15 December 2012 707 533 −7.5 −8.2 9 to 14 1296 503 72 28
Total 786 423 −7.2 −8.6 55 h 5349 2470 64 29

Table 4. Correlation between parameters. Values in bold show significant correlation.

Dark Light Length Distance x position y position Discharge Time
roughness roughness

Dark roughness 0.59 −0.02 −0.04 0.04 0.1 0 0.57
Light roughness 0.59 −0.03 −0.03 0.03 0.09 −0.04 0.29
Length −0.02 −0.03 0.46 −0.45 −0.35 −0.02 −0.01
Distance −0.04 −0.03 0.46 −1 −0.16 0.14 −0.05
x position 0.04 0.03 −0.45 −1 0.15 −0.15 0.05
y position 0.1 0.09 −0.35 −0.16 0.15 0 0.07
Discharge 0 −0.04 −0.02 0.14 −0.15 0 0.37
Time 0.57 0.29 −0.01 −0.05 0.05 0.07 0.37

One difficulty with the post-processing reclassification of
wood pieces is that this new step can also introduce error
by classifying real objects as false positives (making them a
false negative) or vice versa. Using the training data, we were
able to quantify this error and categorize it as post-processed
false negatives (FNpp) with an associated recall rate (RRpp).
As shown in Table 5, the precision enhancement process lost
only around 14 % of TPs (RRpp = 86 %).

5.3.2 Estimating missed wood pieces based on the
recall rate

The automated software detected 29 % of the manually an-
notated wood pieces (Table 5). In the previous section, meth-
ods were described that enhance the precision of the software
by ensuring that these automatically detected pieces are TPs.
The larger question, however, is how to estimate the missing
pieces. Based on Fig. 9, both PR and RR are much higher
for very large objects in most areas of the image and in most
lighting conditions. However, the smaller pieces were found
to be harder to detect, making the wood length the most im-
portant factor governing the recall rate. Based on this idea,
the final step in post-processing is to estimate smaller wood
pieces that were not detected by the software using the length
distribution extracted by the annotations.

The estimation is based on the concept of a threshold
piece length. Above the threshold, wood pieces are likely
to be accurately counted using the automatic software. Be-

low the threshold, on the other hand, the automatic detec-
tion software is likely to deviate from the manual counts.
The length distribution obtained from the manual annotations
(TP+FN) (Fig. 10a) was assumed to be the most realistic
distribution that can be estimated from the video monitor-
ing technique, and it was therefore used as the benchmark.
Also shown are the raw results of the automatic detection
software (TP+FP) and the raw results with the false posi-
tives removed (TP). At this stage, the difference between the
TP and the TP+FN lines are the false negatives (FN) that
the software has missed. Comparison between the two lines
shows that they tend to deviate by 2–3 m. The correlation co-
efficient between the length distribution of TP as one vector
and TP+FN as the other vector was calculated for thresh-
olds varying from 1 cm to 15 m in length, and 2.5 m was de-
fined as the optimum threshold length for recall estimation
(Fig. 10b).

In the next step we wanted to estimate the pieces less than
2.5 m that the software missed. During the automatic detec-
tion process, when the software detects a piece of wood, ac-
cording to Fig. 9 (third column), the RR can be calculated
for this piece (same protocol as precision enhancement in
Sect. 5.3.1). Therefore, if, for example, the average recall rate
for a piece of wood is 50 %, there is likely to be another piece
in the same condition (defined by the eight different parame-
ters described in Table 2) that the software could not detect.
To correct for these missed pieces, additional pieces were
added to the database; note that these pieces were imaginary
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Figure 9. Correction matrices: (a, b, c) wood lengths as a function of the distance from the camera, (d, e, f) detection position, (g, h, i)
flow discharges during the daytime, and (j, k, l) light and dark roughnesses. The first column shows the number of all annotated pieces. The
second and third columns show the precision and recall rates of the software, respectively.

pieces inferred from the wood length distribution and were
not detected by the software. Figure 10a shows the length
distribution after adding these virtual pieces to the database
(blue line, total of 5841 pieces). The result shows good agree-
ment between this and the operator annotations (green line,
total of 6249 pieces), which results in a relative error of only
6.5 % in the total number of wood pieces.

On the Ain River, by separating videos into 15 min seg-
ments, MacVicar and Piégay (2012) and Zhang et al. (2021)

proposed the following equation for calculating wood dis-
charge from the wood flux:

Qw = 0.0086F 1.24, (1)

where Qw is the wood discharge (m3 per 15 min) and F is
the wood flux (piece number per 15 min). Using this equa-
tion, the total volume of wood was calculated based on three
different conditions: (i) operator annotation (TP+FN), (ii)
raw data from the detection software (TP+FP), and (iii)
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Table 5. Precision rate (PR) before and after post-processing.

1 Jan 2 Jan 4 Jan 6 Jan 7 Jan 15 Dec Total

Raw TP 745 196 31 206 29 363 1570
data FP 227 184 127 178 44 140 900

FN 1537 606 109 506 88 933 3779
PR % 77 52 20 54 40 72 64
RR % 33 24 22 29 25 28 29

Post- TP 658 150 30 178 22 315 1353
proc. FP 64 10 60 39 11 68 252

FN1
pp 87 46 1 28 7 48 217

PR % 91 94 33 82 67 82 85
RR2

pp % 88 77 97 86 76 87 86

PR improvement % 14 42 13 28 27 10 21

1FNpp denotes the false estimations of the precision matrices, which results in missing some TP.
2RRpp denotes the recall rate of post-processing, which corresponds to FNpp.

Figure 10. (a) Steps to post-process software automatic detections: (i) raw detections (TP+FP, red line), (ii) only true positives using the
PR improvement process (TP, blue dashed line), and (iii) modeling false negatives (blue line). Operator annotation (the green dotted line is
used as a benchmark). (b) The correlation coefficient between operator annotation and modeled TP to find an optimum threshold length for
RR improvement.

post-processed data from the detection software (TPmodeled).
Figure 11 shows a comparison of the total volume of wood
from the manual annotations in comparison with the raw and
post-processed annotations from the detection software. As
shown, the raw detection results underestimate wood volume
by almost 1 order of magnitude. After processing, the results
show some scatter but are distributed around the 1 : 1 slope,
which indicates that they follow the manual annotation re-
sults. There is a slight difference for days with lower fluxes (4
and 7 January), for which the post-processing tends to over-
estimate wood volumes, but in terms of an overall wood bal-
ance the volume of wood on these days is negligible. In total,
125 m3 of wood was annotated by the operator and the soft-
ware automatically detected only 46 m3, some of which rep-
resent false positives. After post-processing, 142 m3 of wood
was estimated to have passed in the analyzed videos for a
total error of 13.5 %.

6 Conclusions

Here, we present new software for the automatic detection of
wood pieces on the river surface. After presenting the corre-
sponding algorithm and the user interface, an example of au-
tomatic detection was presented. We annotated 6 d of flood
events that were used to first check the performance of the
software and then develop post-processing steps to remove
possibly erroneous data and model data that were possibly
missed by the software. To evaluate the performance of the
software, we used precision and recall rates. The automatic
detection software detects around one-third of all annotated
wood pieces with a 64 % precision rate. Then, using the op-
erator annotations as the ultimate goal, the post-processing
part was applied to extrapolate data extracted from detection
results, aiming to come as close as possible to the annota-
tions. It is possible to detect false positives and increase the
software precision to 86 % using four pairs of key factors: (i)
light and dark roughness of the frame, (ii) daytime and flow
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Figure 11. Comparison of the total volume of wood between oper-
ator annotation as the benchmark and raw data (red circles) as well
as post-processed data (blue triangles); compared with a 1 : 1 line.

discharge, (iii) x and y coordinates of the detection position,
and (iv) distance of detection as a function of piece length.
Using the concept of a threshold piece length for detection, it
is then possible to model the missed wood pieces (false neg-
atives). In the presented results, the final recall rate results in
a relative error of only 6.5 % for piece number and 13.5 %
for wood volume. It should be noted that the software cannot
distinguish between a single piece of wood and pieces in a
cluster of wood in congested wood fluxes.

This work shows the feasibility of the detection software
to detect wood pieces automatically. Automation will sig-
nificantly reduce the time and expertise required for manual
annotation, making video monitoring a powerful tool for re-
searchers and river managers to quantify the amount of wood
in rivers. Therefore, the developed algorithm can be used to
characterize wood pieces for a large image database at the
study site. The results from the current study were all taken
from a single site for which a large database of manual an-
notations was available to develop the correction procedures.
In future applications it is unlikely that such a large database
would be available. In such cases it is recommended to first
ensure that the images collected are of high quality by fol-
lowing the recommendations in Ghaffarian et al. (2020) and
Zhang et al. (2021). As data are collected, the automatic algo-
rithm can be run to identify periods of high wood flux. Man-
ual review of other high-water periods is also recommended
to assess whether lighting conditions prevented the detection
of wood. When suitable flood periods with floating wood are
identified, manual annotations should be done to create the
correction matrices. Future applications of this approach at a
wide range of sites should lead to new insights on the vari-
ability of wood pieces at the reach and watershed scales in
world rivers.

Finally, we think of this work as a first step towards
more autonomous systems to detect and quantify wood in
rivers. Applying the post-process steps in real time is a real-
istic next step because after we extract the correction ma-
trices, which is a time-consuming process, the calculation
time for PR and RR enhancement is negligible (less than
0.001 s per piece). Moreover, over recent years, automatic vi-
sual recognition tasks have progressed very with advances in
machine-learning techniques, especially deep convolutional
neural networks (DCNNs), that are now able to answer com-
plex problems in real time. However, our context is very chal-
lenging for this class of solution since wood objects have a
highly variable shape, and they are features in very noisy en-
vironments with a high variety of lighting conditions. Most
training techniques are supervised, meaning that training an
effective DCNN to solve this problem would require an ex-
tensive annotated dataset. The work presented in this paper
can be used as a first step towards this solution. It can be used
to help human operators quickly build an annotated dataset
by correcting its output rather than annotating from scratch.

Data availability. The database used in this study was a small part
of a larger database that has been monitoring the Ain River since
2007. The entire database is undergoing editing and preparation and
will be published soon.
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