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Abstract. We examine a theoretical formulation of the probabilistic physics of rarefied particle motions and
deposition on rough hillslope surfaces using measurements of particle travel distances obtained from labora-
tory and field-based experiments, supplemented with high-speed imaging and audio recordings that highlight
effects of particle–surface collisions. The formulation, presented in a companion paper (Furbish et al., 2021a),
is based on a description of the kinetic energy balance of a cohort of particles treated as a rarefied granular gas,
as well as a description of particle deposition that depends on the energy state of the particles. Both labora-
tory and field-based measurements are consistent with a generalized Pareto distribution of travel distances and
predicted variations in behavior associated with the balance between gravitational heating due to conversion of
potential to kinetic energy and frictional cooling due to particle–surface collisions. For a given particle size and
shape these behaviors vary from a bounded distribution representing rapid thermal collapse with small slopes
or large surface roughness, to an exponential distribution representing approximately isothermal conditions, to a
heavy-tailed distribution representing net heating of particles with large slopes. The transition to a heavy-tailed
distribution likely involves an increasing conversion of translational to rotational kinetic energy leading to larger
travel distances with decreasing effectiveness of collisional friction. This energy conversion is strongly influ-
enced by particle shape, although the analysis points to the need for further clarity concerning how particle size
and shape in concert with surface roughness influence the extraction of particle energy and the likelihood of
deposition.

1 Introduction

As described in our first companion paper (Furbish et al.,
2021a), we are focused on rarefied motions of particles
which, once entrained, travel downslope over the land sur-
face. This notably includes the dry ravel of particles down
rough hillslopes following disturbances (Roering and Gerber,
2005; Doane, 2018; Doane et al., 2019; Roth et al., 2020) or
upon their release from obstacles (e.g., vegetation) follow-
ing failure of the obstacles (Lamb et al., 2011, 2013; DiBiase
and Lamb, 2013; DiBiase et al., 2017; Doane et al., 2018,

2019), and the motions of rockfall material over the rough
surfaces of talus and scree slopes (Gerber and Scheidegger,
1974; Kirkby and Statham, 1975; Statham, 1976; Tesson et
al., 2020). By “rarefied motions” we are referring to the situ-
ation in which moving particles may frequently interact with
the surface but rarely interact with each other. Thus, rarefied
particle motions are distinct from granular flows. Although
this idea is most applicable to processes such as rockfall and
the subsequent motions of the rock material over talus or
scree slopes, our description of the motions of individual par-
ticles nonetheless may be entirely relevant to conditions that
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are not strictly rarefied (e.g., ravel involving many particles)
but where during the collective motions of many particles
the effects of particle–surface interactions dominate over ef-
fects of particle–particle interactions in determining the be-
havior of the particles – akin to granular shear flows at high
Knudsen number (Kumaran, 2005, 2006). We note that lab-
oratory experiments (Kirkby and Statham, 1975; Gabet and
Mendoza, 2012) and field-based experiments (DiBiase et al.,
2017; Roth et al., 2020) designed to mimic particle motions
and travel distances on hillslopes effectively focus on rarefied
conditions.

The formulation of rarefied particle motions presented in
the first companion paper (Furbish et al., 2021a) is based
on a description of the kinetic energy balance of a cohort
of particles treated as a rarefied granular gas and a descrip-
tion of particle deposition that depends on the energy state
of the particles. The particle energy balance involves gravita-
tional heating with conversion of potential to kinetic energy,
frictional cooling associated with particle–surface collisions,
and an apparent heating associated with preferential deposi-
tion of low-energy particles. Deposition probabilistically oc-
curs with frictional cooling in relation to the distribution of
particle energy states as this distribution varies downslope.
The Kirkby number Ki – the ratio of gravitational heating
to frictional cooling – sets the basic deposition behavior and
the form of the probability distribution fr (r) of particle travel
distances r . For isothermal conditions where frictional cool-
ing matches gravitational heating plus the apparent heating
due to deposition, the distribution fr (r) is exponential. With
non-isothermal conditions and small Ki this distribution is
bounded and represents rapid thermal collapse. With increas-
ing Ki the distribution fr (r) takes the form of a heavy-tailed
Pareto distribution. It may possess a finite mean and finite
variance with moderate Ki, or the mean and variance may be
undefined with large Ki.

The purpose of this second companion paper is to present
an analysis of several data sets concerning particle motions
on rough surfaces, as viewed through the lens of the the-
ory presented in the first companion paper (Furbish et al.,
2021a). In Sect. 2 we summarize the context for our work
provided by recent probabilistic descriptions of the flux and
the Exner equation (Furbish and Haff, 2010; Furbish and
Roering, 2013), and then step through essential elements of
the mechanical basis of the theory leading to the generalized
Pareto distribution of particle travel distances. In Sect. 3 we
compare the formulation with the laboratory measurements
of particle travel distances on rough surfaces reported by Ga-
bet and Mendoza (2012) and Kirkby and Statham (1975). We
also report new laboratory experiments designed to clarify
how the size and shape of particles influence their motions
and disentrainment based on high-speed imaging. In Sect. 4
we compare the formulation with the field-based measure-
ments of travel distances reported by DiBiase et al. (2017)
and Roth et al. (2020).

Particle travel distances from both the laboratory and field-
based experiments are consistent with the generalized Pareto
distribution and provide compelling evidence for the full
range of predicted behaviors, from rapid thermal collapse to
approximately isothermal conditions to net heating of par-
ticles. Nonetheless, the analysis points to the need for fur-
ther clarity concerning how particle size and shape in concert
with surface roughness influence the extraction of particle
energy and the likelihood of deposition. In the third compan-
ion paper (Furbish et al., 2021b) we show that the generalized
Pareto distribution in this problem is a maximum entropy dis-
tribution (Jaynes, 1957a, b) constrained by a fixed energetic
“cost” – the total cumulative energy extracted by collisional
friction per unit kinetic energy available during particle mo-
tions. That is, among all possible accessible microstates –
the many different ways to arrange a great number of par-
ticles into distance states where each arrangement satisfies
the same fixed total energetic cost – the generalized Pareto
distribution represents the most probable arrangement. In the
fourth companion paper (Furbish and Doane, 2021) we step
back and examine the philosophical underpinning of the sta-
tistical mechanics framework for describing sediment parti-
cle motions and transport.

2 Key elements of theoretical formulation

2.1 Probabilistic description of disentrainment

The problem of describing rarefied particle motions on hill-
slopes is motivated by the entrainment forms of the flux and
the Exner equation. Namely, let fr (r;x) denote the proba-
bility density function of the travel distances r of particles
whose motions start at x, and let Rr (r;x) denote the associ-
ated exceedance probability function. Assuming motions are
only in the positive x direction and noting that x′ = x−r , the
flux q(x) may be written as

q(x)=

x∫
−∞

Es(x′)Rr (x− x′;x′) dx′ , (1)

where Es(x) denotes the volumetric entrainment rate at po-
sition x. In turn, letting ζ (x, t) denote the local land-surface
elevation, the entrainment form of the Exner equation is

cs
∂ζ (x, t)
∂t

=−Es(x)+

x∫
−∞

Es(x′)fr (x− x′;x′) dx′ , (2)

where cs = 1−φs is the volumetric concentration of the sur-
face with porosity φs. The central elements of Eq. (1) and
Eq. (2) are the probability density function fr (r;x) and the
associated exceedance probability function Rr (r;x). These
are related to the disentrainment rate function defined as

Pr (r;x)=
fr (r;x)
Rr (r;x)

, (3)
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Figure 1. Definition diagram of surface inclined at angle θ and con-
trol volume with edge length dx through which particles move. Fig-
ure reproduced from companion paper (Furbish et al., 2021a).

which, when multiplied by dr , is interpreted as the probabil-
ity that a particle will become disentrained within the small
interval r to r + dr , given that it “survived” travel to the dis-
tance r . The disentrainment rate, Eq. (3), connects the de-
scriptions of the flux and its divergence, Eqs. (1) and (2), to
the physics of particle motions and disentrainment.

For completeness we note that the formulation above in-
volving continuous functions can be recast into a discrete
form that is useful for considering situations in which con-
ditions influencing particle motions, for example the surface
slope and roughness texture, change in the downslope direc-
tion. Let k = 1,2,3, . . . denote a set of discrete intervals of
length dr . Let pk denote the probability that a particle, having
not been disentrained before the kth interval, then becomes
disentrained within this interval. The probability mass func-
tion of particle positions is then

fk(k)= pk
k−1∏
i=1

(1−pi) . (4)

The probability pk , like its continuous counterpart Pr (r;x),
connects the descriptions of the flux and its divergence to the
physics of particle motions and disentrainment. This discrete
formulation opens the possibility of describing effects of
varying disentrainment rates in response to changing downs-
lope conditions in a manner intrinsic to particle-based treat-
ments of transport (Tucker and Bradley, 2010) but not readily
incorporated in probabilistic descriptions. That is, if surface
conditions change in the downslope direction, for example,
giving net cooling followed by heating or vice versa, then
particles whose travel distances are large enough “see” this
change and their behavior concomitantly changes.

As summarized next, the analysis presented in Furbish et
al. (2021a) describes the mechanical basis for the disentrain-
ment rates Pr (r;x) and pk and the associated probability dis-
tributions fr (r;x) and fk(k). This involves a consideration
of the kinetic energy balance of rarefied particle motions and
how this balance determines the deposition of particles in re-
lation to their energy state.

2.2 Energy and mass balances

Consider a rough, inclined surface with uniform slope angle
θ (Fig. 1). At this juncture we simplify the notation and con-
sider the motions of particles entrained at a single position
x = 0. Now the particle travel distance r→ x and the prob-
ability density function fr (r;x)→ fx(x). Consider a control
volume with edge length dx parallel to the mean particle mo-
tion. Over a period of time a great number of particles enters
the left face of the control volume. Some of these particles
move entirely through the volume, exiting its right face, and
some come to rest within the control volume. Many, but not
necessarily all, of the particles interact with the surface one
or more times in moving through the volume or in being de-
posited within it. We now imagine collecting this great num-
ber of particles and treat them as a cohort, independent of
time (Furbish et al., 2021a, Appendix B). That is, let N (x)
denote the number of particles that enter the control volume,
and let N (x+dx) denote the number that leaves the volume.
The number of particles deposited within the control volume
is dN =N (x+dx)−N (x). The objective is then to determine
the rate of particle deposition, dN/dx, based on the energy
state of the cohort of particles.

In particular, let Ep = (m/2)u2 denote the translational ki-
netic energy of a particle with mass m and downslope veloc-
ity u. Letting angle brackets denote an ensemble average of
a great number N of particles, then we denote the arithmetic
average energy as Ea = 〈Ep〉 and the harmonic average en-
ergy as Eh = 1/〈1/Ep〉. The total energy E =NEa. The for-
mulation presented in the first companion paper (Furbish et
al., 2021a) then leads to four equations with four unknowns
involving energy and mass.

Namely, conservation of the total energy of the particle
cohort is given by

dE(x)
dx
=Nmg sinθ −Nmgµcosθ −

1
α
N mgµcosθ . (5)

The first term on the right side of Eq. (5) represents gravi-
tational heating with the uniform conversion of potential to
kinetic energy, the second term on the right side represents
frictional cooling due to particle–surface collisions, and the
last term on the right side represents a loss of energy associ-
ated with particle deposition. The friction factor µ is

µ=
〈βx〉

4tanφ
, (6)

where 〈βx〉 is the expected proportion of translational energy
extracted during a particle–surface collision, and φ is the ex-
pected reflection angle of particles following collision. The
factor α modulates the particle deposition length scale Lc,
which represents an e-folding distance over which deposi-
tion occurs. This length scale is given by

Lc =
αEh

mgµcosθ
, (7)
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and it is a function α = f (Ki) of the dimensionless Kirkby
number Ki defined by

Ki=
mg sinθ
mgµcosθ

=
S

µ
, (8)

which represents the ratio of gravitational heating to fric-
tional cooling.

Conservation of particle mass is given by

dN (x)
dx
=−

1
αEh

Nmgµcosθ =−
N

Lc
, (9)

which illustrates that deposition is proportional to frictional
cooling depending on the particle energy stateEh, modulated
by the factor α.

The ensemble-averaged energy satisfies the expression

dEa(x)
dx

= mg sinθ − mgµcosθ

+
1
α
mgµcosθ

(
Ea

Eh
− 1

)
, (10)

where the arithmetic and harmonic averages are related as

Ea

Eh
= γ ≥ 1 . (11)

As with the total energy described by Eq. (5), the first term
on the right side of Eq. (10) represents gravitational heating
and the second term on the right side represents frictional
cooling. Because the inequality in Eq. (11) must be satisfied,
the last term in Eq. (10) represents an apparent heating due to
particle deposition whose effect is to cull lower-energy parti-
cles, thereby selecting higher-energy particles for continued
downslope motion. Brilliantov et al. (2018) describe an anal-
ogous behavior of granular gases due to particle aggregation.

2.3 Generalized Pareto distribution of particle travel
distances

Simultaneous solution of Eqs. (5), (9) and (10) using Eq. (11)
leads to the disentrainment rate function

Px(x)=
1

Ax+B
. (12)

In turn the probability density function fx(x) of travel dis-
tances x for particles starting at x = 0 is

fx(x)=
B1/A

(Ax+B)1+1/A , (13)

and the exceedance probability function is

Rx(x)=

{
B1/A

(Ax+B)1/A A 6= 0
e−x/B A= 0 .

(14)

The shape and scale parameters A and B are

A=
α

γ

[
S

µ
− 1+

1
α

(γ − 1)
]

and (15)

B =
α

γ

Ea0

mgµcosθ
. (16)

The mean of the distribution is

µx =
B

1−A
A< 1 . (17)

With reference to the presentation in the first companion
paper (Furbish et al., 2021a) and for the purpose of present-
ing results below, let Ea0 denote the initial average parti-
cle energy at x = 0 and let N0 denote the initial number of
particles at x = 0. In turn we define a characteristic cooling
distance X = Ea0/mgµcosθ . For plotting purposes, and to
highlight the role of the Kirkby number, we now define the
following dimensionless quantities denoted by circumflexes:

x =Xx̂ , N =N0N̂ , E =N0Ea0Ê ,

Ea = Ea0Êa and Eh = Ea0Êh . (18)

With these definitions in place, Eqs. (5), (9), (10) and (11)
are rewritten as

dÊ(x̂)
dx̂
=

[
Ki−

(
1+

1
α

)]
N̂ , (19)

dN̂ (x̂)
dx̂
=−

N̂

αÊh
, (20)

dÊa(x̂)
dx̂

= Ki− 1+
1
α

(
Êa

Êh
− 1

)
and (21)

Êa

Êh
= γ ≥ 1 . (22)

The expressions involving energy, Eqs. (19) and (21), reveal
that the Kirkby number Ki has a key role in the energy bal-
ance and therefore particle deposition. In addition we can de-
fine a transitional Kirkby number,

Ki∗ = 1−
1
α

(γ − 1) . (23)

If Ki< Ki∗ then net cooling occurs, and if Ki> Ki∗ then net
heating occurs. The condition Ki= Ki∗ implies isothermal
conditions such that dÊa/dx̂ = 0.

The dimensionless disentrainment rate is

Px̂(x̂)=
1

ax̂+ b
. (24)

The dimensionless probability density function of travel dis-
tances is

fx̂(x̂)=
b1/a

(ax̂+ b)1+1/a , (25)
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Table 1. Behavior of the generalized Pareto distribution associated with the shape parameter a and Kirkby number Ki as illustrated in Fig. 2.

Behavior Range of a Range of Ki Mean µx̂ Variance σ 2
x̂

Bounded1, increasing with x̂ a <−1 Ki< 1− (2γ − 1)/α b/(1− a) b2/(1− a)2(1− 2a)
Uniform a =−1 Ki= 1− (2γ − 1)/α b/2 b2/12
Bounded1,2, decreasing with x̂ −1< a < 0 Ki< Ki∗ = 1− (γ − 1)/α b/(1− a) b2/(1− a)2(1− 2a)
Exponential a = 0 Ki= Ki∗ = 1− (γ − 1)/α b b2

Finite mean and variance 0< a < 1/2 Ki∗ < Ki< Ki∗+ γ /2α b/(1− a) b2/(1− a)2(1− 2a)
Finite mean, undefined variance 1/2≤ a < 1 Ki∗+ γ /2α ≤ Ki< 1+ 1/α b/(1− a) –
Undefined mean and variance a ≥ 1 Ki≥ 1+ 1/α – –

1 Truncation occurs at dimensionless distance x̂ = b/|a|. 2 Triangular with a =−1/2.

Figure 2. Plot of dimensionless probability density fx̂ (x̂) versus
dimensionless travel distance x̂ for scale parameter b = 1 and dif-
ferent values of the shape parameter a for (a) a < 0 and (b) a ≥ 0
with associated exceedance probability plots (insets). Figure repro-
duced from companion paper (Furbish et al., 2021a). Compare with
Fig. 1 in Hosking and Wallis (1987).

and the exceedance probability function is

Rx̂(x̂)=

{
b1/a

(ax̂+b)1/a a 6= 0

e−x̂/b a = 0 .
(26)

The shape and scale parameters a and b are

a = A and b =
α

γ
Êa0 . (27)

The distribution fx̂(x̂) defined by Eq. (25) is a general-
ized Pareto distribution with position parameter equal to zero
(Pickands, 1975; Hosking and Wallis, 1987). To summarize
with reference to Fig. 2, for a < 0 this distribution decays
more rapidly than an exponential distribution and is bounded
at the position x̂ = b/|a|. For a = 0 it becomes an exponen-
tial distribution. For 0< a < 1/2 the distribution fx̂(x̂) de-
cays more slowly than an exponential distribution, but it pos-
sesses a finite mean and a finite variance. For 1/2≤ a < 1
the distribution possesses a finite mean but its variance is un-
defined. For a ≥ 1 the mean and variance of fx̂(x̂) are both
undefined, even though this distribution properly integrates
to unity. For a > 0 the tail of fx̂(x̂) decays as a power func-
tion, namely, fx̂(x̂)∼ x̂−(1+1/a). The exceedance probability
decays as Rx̂(x̂)∼ x̂−1/a . These results are summarized in
Table 1. If the shape and scale parameters a and b are re-
defined as aL = 1/a and bL = b/a = baL, then Eq. (25) be-
comes

fx̂(x̂)=
aLb

aL
L

(x̂+ bL)1+aL
aL,bL > 0 , (28)

which is a Lomax distribution with mean

µx̂ =
bL

aL− 1
aL > 1 . (29)

With a < 0 the bounded form of fx̂(x̂) (Fig. 2) represents
rapid thermal collapse with net frictional cooling. For a = 0
the exponential form of this distribution represents isother-
mal conditions where frictional cooling is matched by grav-
itational heating and the apparent heating due to deposition.
For a > 0 the heavy-tailed form of fx̂(x̂) represents net grav-
itational heating.
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For reference to data fitting presented below, a binomial
expansion of Eq. (13) gives

fx(x)=
1
B

[
1−

A

B

(
1+

1
A

)
x− . . .

]
. (30)

The expansion of an exponential distribution with mean µx
is

fx(x)=
1
µx

(
1−

x

µx
+ . . .

)
. (31)

These two expansions indicate that unless the travel distance
data span a significant proportion of the x domain, then at
lowest order the fit of the generalized Pareto distribution
looks like an exponential distribution with mean B. This
result also is obtained from the disentrainment rate func-
tion, Eq. (12), in which for small x this function becomes
Px ≈ 1/B ≈ 1/µx . Moreover, if the travel distance data sam-
ple over a majority of the probability contained in the distri-
bution, and if the tail of the distribution is not “too” heavy,
then B is an approximation of the mean (where A< 1 such
that the mean exists).

Also note that in fitting the data to the generalized Pareto
distribution, Eq. (13), we use the dimensional form of the ex-
ceedance probability, Eq. (14). Specifically, we estimate val-
ues of the exceedance probability as Rx(x)= 1−rx/(N+1),
where rx is the ascending rank of each datum. We then visu-
ally fit Eq. (14) to these estimated values to obtain values of
the parameters A and B. This involves iteratively examining
the data and theoretical lines in arithmetic, semi-log and log–
log plots, noting that semi-log plots generally highlight devi-
ations in the tails, whereas log–log plots highlight deviations
near the origin. We mostly pay attention to the main body of
data in the semi-log plots, avoiding over-fitting of the outer
part of the tails given the inherent variability of estimates of
the exceedance probability associated with the tails, notably
with small sample sizes (Appendix A). We also examine the
data using quantile–quantile (Q–Q) plots to ensure that these
are consistent with the generalized Pareto distribution. Here
we note that our objective is to demonstrate that the data are
consistent with the several forms of the generalized Pareto
distribution, where in semi-log space the exceedance plots
either (1) have negative concavity (representing rapid ther-
mal collapse); (2) are approximately straight (representing
isothermal conditions); or (3) have positive concavity (rep-
resenting net heating). We are aimed at reasonable estimates
of the shape and scale parameters in order to achieve this ob-
jective, but we do not need refined estimates of these quan-
tities. For reasons that are fully explained in Appendix A,
we therefore use estimates of A and B obtained from visual
fitting, avoiding known limitations of quantitative estimates
(e.g., maximum likelihood estimates) associated with small
sample sizes, particularly in the presence of censorship. As-
suming a value of γ (see description below), we then have
two equations, Eqs. (15) and (16), with two unknowns, µ and

α. Thus, the fitting of A and B provides estimates of µ and α
for subsequent consideration. In particular, we first estimate
µ as

µ= S−
Ea0(A− 1+ 1/γ )

Bmg cosθ
, (32)

and then we obtain α as

α =
Bγ mgµcosθ

Ea0
. (33)

In turn the Kirkby number Ki is calculated from Eq. (8).

2.4 Elements of collisional friction

The quantities µ and α defined in relation to Eqs. (6) and
(7) merit further description. We start by noting that the for-
mulation summarized in the preceding section is based on the
assumption that a change in translational kinetic energy1Ep
associated with a particle–surface collision can be expressed
as 1Ep =−βxEp so that βx =−1Ep/Ep is the proportion
of the energy extracted during the collision. Both 1Ep and
βx are random variables. As described in Appendix E of the
first companion paper (Furbish et al., 2021a), in general we
may write the energy balance of a particle as

1Ep =−1Er− fc− fy . (34)

Here, a positive change in rotational energy1Er is seen as an
extraction of translational energy. This loss of translational
energy with the onset of rotation may be relatively large if
a collision involves stick following initial sliding due to a
large normal impulse, and such a loss also may occur due
to the imposed torque of friction during a collision that does
not necessarily involve stick. The term fc in Eq. (34) repre-
sents losses associated with particle and surface deformation
as well as work performed against friction during collision
impulses (thence converted to heat and sound). But this term
also includes losses associated with deformation of the sur-
face at a scale larger than that of an idealized particle–surface
impulse contact, namely, due to momentum exchanges asso-
ciated with the sputtering of loose surface particles during
collision. (The videos published as Supplement to DiBiase et
al., 2017, nicely illustrate this sputtering as well as the onset
of rotational motion.) The term fy in Eq. (34) represents the
energy loss associated with glancing collisions that produce
transverse translational motions and rotation oriented differ-
ently than any incident rotation. In some cases the change
in energy 1Ep can be expressed directly in terms of the en-
ergy stateEp (Appendix E in Furbish et al., 2021a). However,
the complexity of particle–surface collisions on natural hill-
slopes precludes explicitly demonstrating such a relation for
all possible scenarios. Nonetheless, it is entirely defensible to
assume that energy losses can be related to the energy state
Ep if the elements involved are formally viewed as random
variables. Then, the simple relation 1Ep =−βxEp is to be
viewed as a hypothesis to be tested against data.

Earth Surf. Dynam., 9, 577–613, 2021 https://doi.org/10.5194/esurf-9-577-2021
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This hypothesis formally enters the formulation via
Eq. (6). Namely, from this relation we may write µ∼ 〈βx〉,
highlighting that µ is associated with the cooling rate. In
turn, particle collision mechanics (Appendix E in Furbish
et al., 2021a) suggest, for example, that µ∼ 〈βx〉 ∼M(θ ),
whereM(θ ) involves the coefficients associated with tangen-
tial and normal impulses contributing to energy losses during
collisions and depends on the slope angle θ in that the ex-
pected surface normal impact velocity varies with this angle.
(In an idealized particle–surface collision these coefficients
include the normal coefficient of restitution and a coefficient
describing the ratio of tangential to normal impulses dur-
ing the collision, e.g., Brach, 1991; Brach and Dunn, 1992,
1995). Moreover,M(θ ) is independent of particle size. These
points are examined below in relation to experimental data.

In turn, Furbish et al. (2021a) suggest that the quantity α
is related to the Kirkby number Ki as

α =
α0

1−µ1Ki
, (35)

where α0 denotes the value of α associated with a flat surface
(Ki= 0) and µ1 is a factor of order unity. Substitution into
Eq. (7) gives

Lc =
α0Ea

mgµcosθ − mgµ1 sinθ
. (36)

Viewed in this manner, α represents a direct effect of heating
described by mgµ1 sinθ , namely, to decrease the likelihood
of deposition by decreasing the proportion of particles that
cool to sufficiently low energies for deposition to occur –
which translates to suppressing the disentrainment rate and
increasing the length scale of deposition Lc relative to the
cooling length scale lc = Eh/mgµcosθ . In this view, µ goes
with the cooling rate (not the deposition rate). But we also
may write Eq. (36) as

Lc =
α0Eh

mg cosθµ(1−µ1Ki)
. (37)

Viewed in this manner, we may define an apparent friction
factor as µ0 = µ(1−µ1Ki) associated with deposition. Here
again, µ is associated with the cooling rate but is then mod-
ulated by heating. We suggest below that for the same parti-
cle size, α increases with increasing Ki, very likely due to a
combination of increased heating and increased partitioning
of translational energy to rotational motion – both decreas-
ing the likelihood of stopping and not represented in just the
factor µ. We also suggest that for the same slope and surface
roughness, α increases with increasing particle size, decreas-
ing the likelihood of frictional loss with increasing rotational
energy.

3 Laboratory measurements

3.1 Gabet and Mendoza (2012)

3.1.1 Experiments

The experiments reported by Gabet and Mendoza (2012) in-
volved launching spherical, sub-angular 1 cm particles with
initial velocity u0 = 0.7 m s−1 onto an inclined surface with
fixed roughness elements embedded within concrete (see
Fig. 2 therein). The experiments stepped through slope an-
gles of θ = 0 to θ = 30◦ in increments of 3◦. The travel dis-
tances of 100 particles were measured for each slope angle.
All 100 particles stopped within the 3 m flume for angles 0 to
15◦. For angles 18, 21, 24 and 27◦, 92, 58, 26 and 4 particles
stopped, respectively. No particles stopped on the 30◦ slope.

Because the same particle is launched each time with
the same initial velocity u0, the initial arithmetic and har-
monic averages of the particle energy are the same, that is,
Ea0/Eh0 = γ0 ≈ 1. Over some unknown distance the par-
ticle motions experience randomization via collisions such
that Ea/Eh = γ > 1. With reference to Eq. (9) where Eh =

Ea/γ , this means that because γ is initially one and then in-
creases, the expected disentrainment rate likely increases ini-
tially over a short distance. Indeed, in preliminary plots (not
shown) of the exceedance probability Rx(x) versus x, an in-
flection occurs in some of the data close to x = 0, which we
suspect represents a delay in the onset of deposition of the
lowest energy particles. In fitting the data to the exceedance
probabilityRx(x) we assume thatEa/Eh = γ > 1 (and fixed)
over the entirety of the travel distances. For this reason we
truncate distances shorter than the inflection position and
then recalculate the travel distances and the exceedance prob-
abilities while avoiding large truncation given the limited
data size. We cannot know for certain the appropriate trun-
cation position, so this point should be kept in mind. Note,
however, that the formulation does not care where motions
start, so this truncation is just a resetting of the staring posi-
tion (x = 0) with fewer data, assuming γ remains approx-
imately fixed beyond the adjusted starting position. These
points are examined further in Appendix B with reference
to experiments described in Sect. 3.3.

We choose γ = 1.5 in this and subsequent analyses of
travel distance data. Note first that this choice has no influ-
ence on the estimates of the parameters A and B. However, it
does influence the estimated values of µ and α via Eqs. (32)
and (33). The assumption that γ is fixed may be incorrect.
However, rigorously constraining γ would require solving
the Fokker–Planck equation describing the evolving number
density nEp (Ep,x) of particle energy states Ep as described
in Sect. 3.3.2 of the first companion paper (Furbish et al.,
2021a); this is beyond the scope of our objective of demon-
strating the basic behavior of the particle energy balance. The
effect of fixed γ = 1.5 on estimates of µ and α is systematic
throughout the analyses, but whether this choice is correct
remains an open question.
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Figure 3. Plot of exceedance probability Rx (x) versus travel distance x for experiments described by Gabet and Mendoza (2012) where
(a) A< 0 and (b) A≥ 1. In (a), slope angles are 0◦ (top open), 3◦ (light gray), 6◦ (bottom open) and 9◦ (black); in (b), slope angles are 12◦

(bottom black), 15◦ (bottom light gray), 18◦ (open), 21◦ (top black) and 24◦ (top light gray).

Figure 4. Plot of logarithm of exceedance probabilityRx (x) versus travel distance x for experiments described by Gabet and Mendoza (2012)
where (a) A< 0 and (b) A≥ 0, together with fitted distributions (lines). In (a), slope angles are 0◦ (top open), 3◦ (light gray), 6◦ (bottom
open) and 9◦ (black); in (b), slope angles are 12◦ (bottom black), 15◦ (bottom light gray), 18◦ (open), 21◦ (top black) and 24◦ (top light
gray).

3.1.2 Results

The data are reasonably well fit by the theoretical curves,
where we plot the data twice (Figs. 3 and 4) in order to
highlight several points. Estimated parametric values are pro-
vided in Table 2, where estimates of the variability in µ, α,
Ki and Ki∗ are based on a Monte Carlo analysis as described
in Appendix C.

For data involving an estimated shape parameter A< 0
(Figs. 3a, 4a), the relatively rapid decrease in the exceedance
probability Rx(x) with little indication of an asymptotic ap-
proach to Rx(x)= 0 strongly suggests that the data represent

bounded forms of the distribution fx(x) (Fig. 3a). Nonethe-
less, one might on empirical grounds reasonably fit the
data to, say, an exponential distribution (although quartile–
quartile plots, not shown, would advise against this). How-
ever, the negative concavity of the fits is unambiguous in
Fig. 4a, strongly reinforcing the point that the data represent
bounded forms of the distribution. This result is consistent
with the idea of rapid thermal collapse for data involving
θ ≤ 9◦ and Ki≤ 0.73. Note that Ki< Ki∗ in all cases. For
unknown reasons (and not attributable to truncation) the av-
erage particle motion on the flat surface is larger than the
next three slope angles (3, 6 and 9◦). This may simply reflect
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Table 2. Fitted and estimated values of the parameters for the data shown in Figs. 3 and 4 with coefficients of variation in parentheses.

Slope
(◦) A B (m) Ki Ki∗ µ α µa

x (m) µb
x (m)

0 −0.48 0.42 0.00 (–)c 0.59 (0.042) 0.05 (0.12) 1.22 (0.061) 0.28 0.29
3 −0.55 0.32 0.43 (0.070) 0.78 (0.017) 0.12 (0.073) 2.33 (0.056) 0.21 0.21
6 −0.36 0.30 0.64 (0.044) 0.83 (0.016) 0.16 (0.046) 2.89 (0.073) 0.22 0.22
9 −0.65 0.43 0.73 (0.036) 0.91 (0.0082) 0.22 (0.035) 5.53 (0.080) 0.26 0.27
12 0.03 0.31 0.89 (0.012) 0.88 (0.014) 0.23 (0.013) 4.26 (0.10) 0.31 0.29
15 0.02 0.39 0.93 (0.0078) 0.92 (0.0084) 0.29 (0.0079) 6.53 (0.098) 0.40 0.40
18 0.09 0.99 0.98 (–) 0.97 (–) 0.33 (–) 18.7 (0.10) 1.09 0.85
21 0.70 2.6 1.01 (–) 0.99 (–) 0.38 (–) 56.1 (0.10) 8.77 1.06
24 3.6 4.7 1.04 (0.0069) 1.00 (–) 0.43 (0.0067) 110 (0.11) – 0.98

a Estimated from parameters A and B. b Estimated from data, recognizing that these do not incorporate distances of particles that moved beyond
measurement distance of 3 m. c Notation (–) means undefined or coefficient of variation is less than 0.01.

the stochasticity of the disentrainment process at these small
angles. Also note that several data sets share “kinks” in their
estimated exceedance probabilities at similar distances, for
example, around 0.8 and 1.3 m. This could be due to chance,
or it may reflect a persistent effect of the structure of the sur-
face roughness, specifically the occurrence of relatively large
roughness elements. Roth et al. (2020) note this behavior in
their field-based measurements of particle travel distances
on vegetated hillslopes (Sect. 4.2), where vegetation acts as
roughness elements.

For data involving an estimated shape factor A≥ 0
(Figs. 3b, 4b), the first two sets (12 and 15◦) are approx-
imately exponential with Ki≈ Ki∗. This is reflected in the
close correspondence between the values of the scale pa-
rameter B and the estimated average travel distances µx
(Table 2). The data show a clear asymptotic appearance of
the exceedance probability Rx(x) (Fig. 3b) with essentially
straight line fits in Fig. 4b. This result is consistent with
the idea that these two experiments involved approximately
isothermal conditions. For larger shape factor A, the fitted
lines decrease in an exponential-like manner in Fig. 3b and
they appear as essentially straight lines over the domain of
measured travel distances in Fig. 4b. The fits therefore can-
not be used to distinguish between an exponential distribu-
tion and a generalized Pareto distribution. Note, however,
that regardless of the distribution, whereas the data for 18◦

span about 90 % of the probability of the distribution, the
data for 21◦ sample only about 50 % of the probability con-
tained in the distribution, and the data for 24◦ sample only
about 15 % of the probability. This directly points to the dif-
ficulty of working with tail-censored data, especially if the
underlying distribution is heavy-tailed (Appendix A). That
is, at large Ki the experimental flume is sampling only a frac-
tion of the distribution, representing just the shortest travel
distances associated with the specific surface-roughness con-
ditions. Nonetheless, the mechanical basis of the distribution
combined with its consistency with data for A< 0 reinforces

Figure 5. Plot of reciprocal of average travel distance 1/µx ver-
sus slope angle θ calculated from Eq. (17) using estimated values
of A and B (open circles) and calculated directly from data (black
circles).

the merit of the hypothesis of a heavy-tailed behavior for
A> 0.

Further note that for all cases less than 24◦ the estimated
values of A and B suggest that the distributions have finite
moments. These moments are undefined (A> 1) for the case
of 24◦. Also recall that only four particles stopped on the
flume at a slope angle of 27◦, and no particles stopped at
an angle of 30◦. These points are consistent with the idea
that gravitational heating is systematically increasing relative
to frictional cooling with increasing Kirkby number. Using
the largest estimated value of µ (Table 2), the values of the
Kirkby number would be Ki= 1.2 and Ki= 1.3 for the slope
angles of 27 and 30◦, respectively.

Here is an interesting sidebar. Following Samson et
al. (1999) we plot the reciprocal, 1/µx , of the average travel
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distance µx versus slope angle θ (Fig. 5). For spheres rolling
bumpety-bump down an inclined surface roughened with
a quasi-random monolayer of small particles, Samson et
al. (1999) show a linear decline in 1/µx with increasing slope
angle (see their Fig. 3) associated with trapping (deposition)
related to collisional friction. This reciprocal then smoothly
transitions to values close to zero with further increase in
slope angle representing continuing motions without signifi-
cant trapping. The plot in Fig. 5 also reinforces the idea that
if one assumes an exponential distribution to calculate aver-
age travel distances, the values will be similar to those as-
sociated with the generalized Pareto distribution for small to
moderate Kirkby numbers but then deviate significantly with
increasing heaviness of the distribution tail.

3.2 Kirkby and Statham (1975)

3.2.1 Experiments

The experiments reported by Kirkby and Statham (1975) in-
volved dropping particles onto an inclined surface with fixed
roughness composed of particles of different sizes, thus giv-
ing different ratios of particle to roughness size. For differ-
ent slopes, the particles were dropped from different initial
heights h at the crest of the surface, and travel distances
were measured. Here we focus on average travel distances
reported in their Fig. 1 involving a slope angle of 35◦ and
three dropped particle sizes with minor-to-intermediate axis
ratios of 0.40, 0.53 and 0.77. Kirkby and Statham (1975) re-
port that the distributions of travel distances are exponential
but do not present the travel distance data. Here we briefly
examine the effect of the initial energy state determined by
the drop height h.

For A and B defined by Eqs. (15) and (16) we may write
the average travel distance as

µx =
B∗

1−A
ε2h, (38)

where B∗ = (α/γ )sin2θ/µcosθ or B = B∗ε2h. The form of
Eq. (38) requires a straight line fit between the average dis-
tance µx and the drop height h, but it does not provide a
unique fit. We must ensure that the estimated shape parame-
ter A< 1 yields a finite average; otherwise the comparison is
not meaningful. Based on the results described in the previ-
ous section we assume that the Kirkby number is close to
unity, and for the given slope angle we choose a friction
factor of µ= 0.7. Whereas the coefficient of restitution ε
may be relatively large for natural rock material, this coef-
ficient typically decreases significantly on average for irreg-
ular particles due to the high probability that collisions are
not collinear with particle centers of mass (see next section).
For illustration we choose ε = 0.5. As before we fix γ and
then vary α to estimate A and B∗.

Figure 6. Plot of average travel distance µx versus drop height h
based on data in Fig. 1 of Kirkby and Statham (1975) for three dif-
ferent particle sizes. Note that we are assuming the largest size is
21.5 mm rather than the reported value of 0.215 mm.

Table 3. Fitted values of the parameters for the data shown in Fig. 6.

Particle
size (cm) A B∗ Ki µ α

1.26 0.33 1.3 1.0 0.7 3.5
1.34 0.33 2.1 1.0 0.7 5.5
2.15 0.31 7.2 1.0 0.7 19

3.2.2 Results

The data are well fit by Eq. (38) (Fig. 6). Estimated paramet-
ric values are provided in Table 3.

We emphasize that other choices of the quantities ε, µ
and α would provide equally good fits, given that Eq. (38)
does not provide a unique solution for A and B∗. With this
in mind, the estimated values of A suggest that the data are
consistent with a heavy-tailed form of the generalized Pareto
distribution with finite mean and finite variance. The dropped
particles experience different rates of frictional cooling, man-
ifest in the increasing value of α with increasing particle size
(Table 3); the data are consistent with the idea that the aver-
age travel distance is directly proportional to the initial en-
ergy state determined by the drop height h.

3.3 Vanderbilt data

3.3.1 Experiments

We conducted two sets of experiments. The first set was
aimed at demonstrating the basis for treating the proportion
of energy extraction, βx , as a random variable. To do this we
focused on the analogous quantity βz, which is the propor-
tion of energy extraction associated with particle collision
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Figure 7. Image of rounded (left), small (center) and angular (right)
test particles on the concrete surface with granular roughness tex-
ture.

on a horizontal surface following vertical free fall. This al-
lowed us to show, and calculate, the partitioning of transla-
tional energy into deformational friction and rotational en-
ergy during collisions. We used particles of varying size and
angularity. The experiments involved dropping the particles
onto a smooth rigid surface of slate, and onto a rough sur-
face. The rough surface, made of concrete, had a granular
roughness smaller than the particles (Fig. 7). We recorded
particle motions using a Lightning RDT monochrome cam-
era (DRS Technologies) operating at 800 frames per second.
The camera was mounted on a tripod and oriented parallel to
the horizontal surface. The image resolution was 1280× 640
pixels.

In the second set of experiments we launched particles
of varying size and angularity onto the rough surface, then
measured their travel distances for several slope angles. The
slopes were S = 0, 0.09, 0.15, 0.18, 0.25 and 0.28. The
launching device consisted of a pendulum catapult (Fig. 8)
configured so that particles were delivered to the rough sur-
face with negligible rotational motion and with a prescribed
surface-parallel velocity. We used two sizes (D ≈ 1 cm and
D ≈ 0.5 cm) of irregular, rounded particles and one size
(D ≈ 1 cm) of angular particles. We recorded motions of par-
ticles launched from the catapult onto the rough surface with
high-speed imaging at a resolution of 640× 640 pixels. In
addition we made audio recordings of particle–surface in-
teractions during their downslope motions. Audio recordings
were made and processed using the GarageBand application
on a sixth-generation Apple iPad.

3.3.2 Results

As a point of reference, the vertical rebounds of ordinary
spherical glass marbles following their impacts on the hard

Figure 8. Image of pendulum catapult. A particle is placed on the
low-friction (glossy cardboard) cradle at the base of the pendulum
arms (∼ 20 cm); using a wand the arms and particle are pushed back
to a preset position as one would a toddler on a playground swing
(albeit not with a wand), then released; the arms are arrested by the
front bar, whence the momentum of the particle launches it onto the
surface. The cradle is about 2 mm above the rough surface. A stone
is placed in the base of the catapult for stability.

slate reveal no surprises. These collinear collisions give a
normal coefficient of restitution of ε = 0.81± 0.017 yield-
ing βz = (1−ε2)= 0.34±0.028 (m= 0.014 kg,N = 5), and
ε = 0.81±0.018 yielding βz = 0.35±0.030 (m= 0.0033 kg,
N = 5). The variation in ε is likely attributable to small dif-
ferences in the marble-surface deformation mechanics during
collision. Rebounds from the rigid granular surface give ε =
0.26± 0.59 yielding βz = 0.93± 0.031 (m= 0.014 kg, N =
10), and ε = 0.41± 0.038 yielding βz = 0.83± 0.032 (m=
0.030 kg, N = 10). Although the collisions are collinear, the
granular texture of the surface leads to some variation in the
reflection angles. The smaller values of ε relative to the slate
surface indicate that, although the concrete surface is rigid,
its granular texture gives more dissipative collisions, likely
involving deformation of micro-asperities. This effect evi-
dently is more pronounced with the larger marbles.

In contrast, the rebounds of natural particles from the
hard slate reveal how noncollinear collisions strongly influ-
ence the rebound angle and normal rebound height. If εz
denotes the effective normal coefficient of restitution, then
βz = 1− ε2

z is the proportion of the normal (vertical) com-
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ponent of kinetic energy extracted, analogous to βx . That is,
βz =−1Ep/Ep. This proportion involves a mechanical loss
due to particle and surface deformation during the collision,
with conversion of energy to heat and sound. But a signifi-
cant part can go into transverse components of translational
energy and rotational energy. Thus, this is a simple demon-
stration of the idea that βz (and βx) must be treated as a ran-
dom variable rather than a fixed quantity as in the case of
the normal coefficient of restitution ε associated with spher-
ical particles in a granular gas, although recent efforts have
treated this quantity as a random variable (Gunkelmann et
al., 2014; Serero et al., 2015).

To illustrate this we write a normalized form of βz as
β∗z = (βz−βmin

z )/(1−βmin
z ), where βmin

z = 1−ε2 is the min-
imum value associated with a collinear collision. Although
we cannot offer a theoretical basis for the distribution of β∗z ,
we nonetheless on empirical grounds fit β∗z to the beta distri-
bution because of its versatile bounded form over [0,1], then
transform the fitted distribution back to the original values
of βz. For comparison we fit a Gaussian distribution to the
values βz measured for the spheres.

For the hard slate surface, spheres show a small variance
about the mean value. Probability is then redistributed toward
βz = 1 with increasing particle angularity (Fig. 9). For the
rough surface, spheres show a larger variance, and there is a
stronger redistribution of probability toward βz = 1 with in-
creasing angularity (Fig. 10). We cannot directly map this
result to an interpretation of βx because of differences in
the geometrical conditions of collisions. Nonetheless, as de-
scribed below, the effect of angularity appears in measure-
ments of travel distances as an increasing likelihood of dis-
entrainment with increasing angularity.

For the rough experimental surface, βz is on average larger
than for the hard slate surface. The particle–surface impact is
unlike that of an idealized rigid surface and more like that
of a quasi-rigid (deformable) granular material. Nonethe-
less, despite the small effective coefficient of restitution, non-
collinear collisions yield significant conversion of energy to
transverse motions and rotation. The particles do not simply
“die” on impact.

For each particle–surface combination, the largest rebound
heights provide an estimate of the (ordinary) normal coeffi-
cient of restitution ε. These heights are associated with ap-
proximately collinear collisions as confirmed by the high-
speed imaging. We can therefore estimate the partitioning
of energy between the frictional loss fc (deformation, heat
and sound) and reflectional transverse motion and rotation
Ec (Appendix D). Results indicate that on average less than
half of the initial energy is dissipated by friction on the hard
surface, and slightly less goes to transverse motion and ro-
tation (Table 4). About 20 %–30 % of the initial energy is
recovered in vertical motion. In contrast, on average much of
the initial energy is dissipated by friction on the rough sur-
face, and only about 10 % or so goes to transverse motion and
rotation. About 5 % of the initial energy is recovered in ver-

Figure 9. Plot of (a) cumulative distributions of energy extrac-
tion quantity βz for glass spheres fit to a Gaussian distribution and
rounded and angular particles fit to a beta distribution, and (b) as-
sociated probability density functions of fitted distributions. Colli-
sions are on hard slate.

tical motion. These results are consistent with those reported
by Williams and Furbish (2021) involving a larger data set.

High-speed imaging of particle motions launched by the
catapult onto the rough surface provides estimates of initial
surface-parallel particle velocities u0 (Table 5). The imag-
ing reveals that the free-flight distances before first collisions
increase with increasing surface slope. The particles then ex-
perience complex collisions with the surface that randomize
their motions, including the onset of rotation.

For all surface slopes, the large rounded particles system-
atically travel farther than the large angular particles, and the
small particles typically travel distances similar to those of
the large angular particles (Fig. 11). The data are reasonably
fit by the theoretical curves, notably at small and large Ki. At
intermediate Ki, several cases involve a systematic deviation
from the curves. Estimated parametric values are provided in
Table 6, where estimates of the variability in µ, α, Ki and
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Table 4. Average energy partitioning as a proportion of initial energy Ep0 = mgh for estimated coefficient of restitution ε.

Surface Particle shape ε fc Ec Recovered

hard slate rounded 0.80 0.36 0.34 0.30
angular 0.75 0.44 0.35 0.21

rough concrete rounded 0.42 0.82 0.13 0.05
angular 0.37 0.86 0.10 0.04

Figure 10. Plot of (a) cumulative distributions of the energy extrac-
tion quantity βz for glass spheres fit to a Gaussian distribution and
rounded and angular particles fit to a beta distribution, and (b) as-
sociated probability density functions of fitted distributions. Colli-
sions are on rough surface.

Ki∗ are based on a Monte Carlo analysis as described in Ap-
pendix C. As with the data of Gabet and Mendoza (2012), we
displace the starting position (x = 0) to the first inflections
in the raw exceedance probability plots and then recalculate
distances and exceedance probabilities. A specific example
is provided in Appendix B.

Table 5. Slope-parallel launch velocities u0 measured from high-
speed imaging.

Particles Slope u0 (m s−1) N

Angular 0.00 0.58 ± 0.036 10
0.09 0.79 ± 0.053 5
0.15 0.86 ± 0.041 5
0.18 0.84 ± 0.084 4
0.25 1.00 ± 0.028 4
0.28 0.98 ± 0.036 5

Rounded 0.00 0.60 ± 0.060 10
0.09 0.80 ± 0.021 5
0.15 0.86 ± 0.050 5
0.18 0.88 ± 0.027 5

Small 0.00 0.55 ± 0.15 10
0.09 0.77 ± 0.038 5
0.15 0.89 ± 0.038 5
0.18 0.91 ± 0.011 5
0.25 0.97 ± 0.013 5

Note that, for reference below, two values of µ, α, Ki and
Ki∗ are provided. The first value is based on the measured
launch velocity u0 (Table 5). The second value is based on
a reduced velocity. Namely, we do not know the average en-
ergy state of the particles at the truncation position used in the
fitting of A and B, although it most likely is smaller than that
associated with the launch velocity. To provide a sense of the
uncertainty in the calculated values we thus assume that the
particle energy is reduced by half of its initial launch energy,
although this is less likely with increasing surface slope and
gravitational heating. At small slopes S this adjustment has a
larger effect on µ than on α. At large slopes this adjustment
has a larger effect on α.

For the lower slopes (S = 0 to S = 0.15), all particles ex-
perience rapid thermal collapse (A< 0). However, between
S = 0.15 and S = 0.18, the rounded particles appear to tran-
sition to a heavy-tailed behavior. By S = 0.25, no rounded
particles stop on the surface; gravitational heating far ex-
ceeds frictional cooling. At this slope the angular and small
particles exhibit heavy-tailed behavior with net heating. At
S = 0.28, only angular particles stopped on the surface with
net heating, and these are strongly censored (126 of 210 par-
ticles stopped).
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Figure 11. Plots of exceedance probability versus travel distance for the Vanderbilt experiments over six values of slope S showing angular
(open circles), rounded (black circles) and small (gray circles) particles together with fitted distributions (lines).
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Table 6. Fitted and estimated values of the parameters for the data shown in Fig. 11 with coefficients of variation in parentheses.

Particles Slope S A B (m) Ki Ki∗ µ α µa
x (m) µb

x (m)

Angular 0 −0.54 0.033 0.00 (–)c 0.62 (0.026) 0.46 (0.15) 1.31 (0.043) 0.021 0.022
0.00 (–) 0.62 (0.026) 0.23 (0.19) 1.31 (0.043)

0.09 −0.39 0.075 0.23 (0.15) 0.64 (0.028) 0.40 (0.12) 1.40 (0.069) 0.054 0.063
0.37 (0.14) 0.71 (0.034) 0.24 (0.14) 1.72 (0.15)

0.15 −0.36 0.12 0.40 (0.075) 0.71 (0.021) 0.37 (0.076) 1.73 (0.054) 0.088 0.093
0.58 (0.067) 0.79 (0.024) 0.26 (0.069) 2.44 (0.094)

0.18 −0.56 0.22 0.55 (0.098) 0.83 (0.024) 0.33 (0.10) 2.96 (0.13) 0.14 0.15
0.71 (0.085) 0.89 (0.025) 0.25 (0.088) 4.59 (0.26)

0.25 0.30 0.35 0.98 (0.012) 0.80 (0.021) 0.26 (0.012) 2.55 (0.086) 0.50 0.40
0.99 (0.0062) 0.90 (0.011) 0.25 (0.0060) 5.04 (0.11)

0.28 0.77 1.18 1.07 (0.012) 0.95 (0.0064) 0.26 (0.012) 9.29 (0.11) 5.13 0.58
1.03 (0.0062) 0.97 (–) 0.27 (0.0063) 19.2 (0.13)

Rounded 0 −0.51 0.049 0.00 (–) 0.60 (0.028) 0.32 (0.22) 1.27 (0.042) 0.033 0.034
0.00 (–) 0.60 (0.028) 0.16 (0.30) 1.27 (0.042)

0.09 −0.24 0.119 0.36 (0.058) 0.63 (0.021) 0.25 (0.059) 1.35 (0.036) 0.096 0.101
0.53 (0.049) 0.73 (0.021) 0.12 (0.049) 1.84 (0.056)

0.15 0.10 0.19 0.76 (0.033) 0.66 (0.053) 0.20 (0.033) 1.47 (0.11) 0.21 0.21
0.86 (0.024) 0.81 (0.037) 0.17 (0.025) 2.59 (0.16)

0.18 0.020 0.28 0.80 (0.018) 0.79 (0.020) 0.22 (0.019) 2.35 (0.073) 0.29 0.30
0.89 (0.012) 0.88 (0.013) 0.20 (0.013) 4.24 (0.10)

Small 0 −0.49 0.035 0.00 (–) 0.60 (0.030) 0.36 (0.57) 1.24 (0.044) 0.24 0.27
0.00 (–) 0.60 (0.030) 0.18 (0.82) 1.24 (0.043)

0.09 −0.51 0.098 0.26 (0.095) 0.71 (0.018) 0.35 (0.096) 1.70 (0.044) 0.065 0.072
0.41 (0.095) 0.77 (0.021) 0.22 (0.096) 2.14 (0.071)

0.15 −0.35 0.12 0.39 (0.071) 0.70 (0.021) 0.38 (0.072) 1.69 (0.049) 0.089 0.097
0.56 (0.064) 0.79 (0.022) 0.27 (0.065) 2.35 (0.083)

0.18 −0.51 0.24 0.54 (0.039) 0.82 (0.0098) 0.33 (0.039) 2.77 (0.044) 0.16 0.17
0.70 (0.026) 0.88 (0.0075) 0.26 (0.027) 4.28 (0.056)

0.25 0.30 0.41 0.98 (0.010) 0.84 (0.014) 0.25 (0.010) 3.16 (0.075) 0.59 0.43
0.99 (0.0051) 0.92 (0.0069) 0.25 (0.0051) 6.26 (0.078)

a Estimated from parameters A and B. b Estimated from data, recognizing that these do not incorporate distances of particles that moved beyond measurement distance
of 1.9 m. c Notation (–) means undefined or coefficient of variation is less than 0.01.

For a given slope, values of the friction factor µ for the
angular and small particles are systematically larger than val-
ues for the rounded particles. This result is consistent with
the expectation that angular particles on average experience
a greater energy loss during collisions than rounded particles
and that larger rounded particles are less likely than are small
particles (both rounded and angular) to be influenced by the
surface roughness texture during collisions. Whereas values
of the factor α generally increase with slope S (and Kirkby
number Ki), no pronounced differences between particle size
or shape appear.

Video and audio recordings (Supplement, Vanderbilt
University Institutional Repository, https://ir.vanderbilt.edu/
handle/1803/9742, last access: 9 June 2021) provide clear ev-
idence in support of the results above. In particular the files
“Rounded_colinear.avi” and “Angular_colinear.avi” show
examples of collinear collisions on the hard slate, with neg-
ligible rotation following collision and maximum vertical re-

bound. These examples are used in estimating the coefficient
of restitution ε for the particle–slate collisions. The angu-
lar particle collision is a low-probability event (dubbed the
“pogo stick” by Mark Schmeeckle) in that the point of im-
pact involves a particle corner that becomes aligned directly
beneath the center of mass at the instant of impact.

One of the more compelling results appearing in several of
the videos is when the translational kinetic energy of a parti-
cle at first impact is converted to translational kinetic energy
involving transverse motion and rotational kinetic energy.
Then during a second or third collision, rotational energy
is converted back to vertical motion, thence to gravitational
potential energy. The likelihood of this occurring increases
with particle angularity, where noncollinear collisions are
the rule rather than exception, and pointy particle corners
lead to unusual collision configurations. The file “Angu-
lar_all_rotational.avi” shows a particularly strong conversion
of translational to rotational motion with the initial collision
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on hard slate. The file “Angular_rotational_to_vertical.avi”
shows conversion of rotational to vertical motion with the
second collision. The file “Semiangular_rotational_die.avi”
shows rapid cessation of motion following conversion of ro-
tational to vertical motion.

The geometry of a noncollinear collision following the
vertical drop of an angular particle is different from that of a
particle at relatively small incident angle. Nonetheless, the
strong conversion of translational to rotational motion as-
sociated with the former is analogous to the behavior of a
particle that experiences stick during a small incident angle
collision with conversion of translational to rotational energy
(Appendix E in Furbish et al., 2021a).

The files “Angular_18%slope.avi” and “Angu-
lar_28%slope.avi” show examples of angular particles
launched from the catapult onto the rough surface. Although
the surfaces in these videos appear flat because of camera
alignment, the slopes are S = 0.18 (10.2◦) and S = 0.28
(15.6◦), so gravitational heating starts immediately. The
particles are launched with negligible initial rotation and the
motions start to become randomized, including the onset of
rotation, following free flight and initial surface collisions.
Rather than decelerating, gravitational heating maintains
velocities similar to the launch velocities. Indeed, the particle
on S = 0.18 seems likely to stop, but then it continues with
heating. For contrast the file “Rounded_0slope.avi” shows
an example of a rounded particle that rapidly decelerates
and then “dies” when launched onto the flat rough surface
(S = 0). The increase in free-flight distances (before initial
collisions) with increasing slope is apparent in the three
videos.

Audio recordings of particle–surface interactions during
their downslope motions reveal the distinctive clickety-click
sounds of collisions (“Bouncing.m4a”), which are markedly
different from the sounds emitted by particles that are either
gently or forcefully made to slide on the rough surface (“Slid-
ing.m4a”). These clickety-click sounds occur with high fre-
quency, particularly when particles are in a tumbling (nom-
inally “rolling”) mode, giving way to decreasing frequency
when particles undergo runaway bouncing motions. In con-
trast, sliding motions emit continuous scraping sounds. The
key result of these recordings is to audibly reinforce the idea
that motions involve collisional friction rather than a sliding
Coulomb-like behavior, except in association with the brief
collision impulses as described in collision mechanics theory
(Brach, 1991; Stronge, 2000).

Further analyses of these detailed particle motions in rela-
tion to downslope and cross-slope motions are to be reported
elsewhere.

Figure 12. Plot of exceedance probability versus travel distance
for experiments described by DiBiase et al. (2017) showing small
(black circles), medium (gray circles) and large (open circles) par-
ticles together with fitted distributions (lines).

4 Field measurements

4.1 DiBiase et al. (2017)

4.1.1 Experiments

The field-based experiments reported by DiBiase et
al. (2017) involved launching three different sizes of parti-
cles down a natural hillslope surface. The particle size classes
included diametersD = 2–3,D = 4–6 andD = 9–12 cm, in-
volving 58, 93 and 43 particles, respectively. Of these, 53,
61 and 14 particles stopped within a 14 m measurement dis-
tance with approximately uniform steepness of 38◦. The dis-
tributions of travel distance systematically varied with the
different particle sizes. Further details of the experiments, in-
cluding measurements of surface roughness, are provided by
DiBiase et al. (2017).

As with the data of Gabet and Mendoza (2012), we again
fit the parameters A and B and then calculate values of µ
and α assuming a value of γ . We also displace the starting
position (x = 0) to the first inflections in the raw exceedance
probability plots for the smaller two particle sizes, and then
we recalculate distances and exceedance probabilities.

4.1.2 Results

The data are reasonably well fit by the theoretical curves
(Fig. 12). Estimated parametric values are provided in Ta-
ble 7, where estimates of the variability in µ, α, Ki and Ki∗
are based on a Monte Carlo analysis as described in Ap-
pendix C.

For all particle diameters, the Kirkby number Ki≈ 1 and
the fits are insensitive to the value of γ . Moreover, estimated
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Table 7. Fitted and estimated values of the parameters for the data shown in Fig. 12 with coefficients of variation in parentheses.

Particle
size (m) A B (m) Ki Ki∗ µ α µa

x (m) µb
x (m)

0.025 0.81 2.4 1.04 (0.013) 0.97 (–)c 0.76 (0.012) 16.4 (0.14) 12.6 3.32
0.05 1.7 5.1 1.01 (0.015) 1.00 (–) 0.78 (0.013) 227 (0.013) – 4.04
0.10 5.0 8.8 1.00 (0.049) 1.00 (–) 0.79 (0.034) 3160 (–) – 3.74

a Estimated from parameters A and B. b Estimated from data, recognizing that these do not incorporate distances of particles that moved
beyond measurement distance of 14 m. c Notation (–) means coefficient of variation is less than 0.01.

values of the friction factor µ are similar; these do not show a
systematic change with particle size. The estimated values of
A suggest that the smallest particles represent a distribution
with finite mean but undefined variance (1/2≤ A< 1). The
larger two particle sizes represent conditions with an unde-
fined mean and undefined variance (A≥ 1).

In contrast to the ambiguity of an exponential versus a
Pareto fit to the data of Gabet and Mendoza (2012) for A≥ 0
(Fig. 4b), the concavity in the semi-log exceedance probabil-
ity plot (Fig. 12) for the smaller two particle sizes is read-
ily apparent and consistent with a Pareto distribution. Cer-
tainly one could fit a straight line to these data, but the fit
would degrade (as revealed, although not shown, by quartile–
quartile plots). Nonetheless, we must be cautious. Inasmuch
as the theoretical distribution is the correct choice, then the
data represent only a fraction of the total probability. For the
smallest particles about 15 % of the tail is not sampled. For
the intermediate particles about 35 % is not sampled, and for
the largest particles about 70 % of the tail is not sampled.
This reinforces the difficulty of working with tail-censored
data with relatively small sample sizes. Note also that for the
smallest particle size the average travel distance µx calcu-
lated from the data is similar to the estimated parameter B
but is significantly smaller than the average estimated from
the values ofA and B (Table 7). This occurs because the data
“see” probability distributed in a manner that is not dissimilar
from that expected for an exponential distribution, whereas
the values of A and B incorporate information contained in
the tail of the Pareto distribution.

Based on reported particle velocities, values of the initial
average kinetic energies Ea0 of the three particle sizes are
1.0×10−5, 1.1×10−4 and 8.5×10−4 J. Estimated values of
the average kinetic energiesEa measured over the total travel
distances are 8.0× 10−6, 1.1× 10−4 and 2.2× 10−3 J. The
changes in average energies1Ea are−2.5×10−6, 0.0×100

and 1.4× 10−3 J. These changes are qualitatively consistent
with net cooling, isothermal conditions and net heating, al-
though in all three cases the estimated parametric values sug-
gest net heating (Ki≥ Ki∗). Using the largest value of the
friction factor µ (Table 7), the Kirkby number of the 40◦

surface immediately downslope from the measurement site
is Ki≈ 1.1. The transition Kirkby number Ki∗ = 1. If par-
ticles on average experienced net heating on the upper 38◦

surface, then this result is consistent with the reported obser-
vation that particles reaching the steeper slope continued to
the base of the hillslope without stopping.

4.2 Roth et al. (2020)

4.2.1 Experiments

The field-based experiments reported by Roth et al. (2020)
involved dropping three different sizes of particles on eight
natural hillslope surfaces in the Oregon Coast Range. Five
of the hillslopes were covered with natural vegetation (des-
ignated by V) and included slope angles of 0, 14, 20, 24 and
39◦. Three of the hillslopes had recently been burned (des-
ignated by B) and included slope angles of 17, 20 and 28◦.
Particle size classes involved average diameters of 1.7, 4.5
and 7.3 cm. These were dropped from a height of h≈ 0.2 m
onto each hillslope surface. The distributions of travel dis-
tances systematically varied with slope angle, particle size
and surface roughness conditions.

The surfaces of the vegetated hillslopes had a layer of
duff, woody debris and banana slugs beneath small plants
(e.g., ferns) and trees. The surfaces of the burned hillslopes
had little vegetal cover and were markedly smoother than the
vegetated sites. Further details of the experiments, including
measurements of surface roughness, are provided by Roth et
al. (2020). Banana slugs, whose locomotive energetic costs
are constrained by the shear-thinning rheology of their mucus
(Lauga and Hosoi, 2006), appear as slow-moving Dirac func-
tions in the power spectra of surface elevation. None were
injured during the experiments.

As above, we fit the parameters A and B and then cal-
culate values of µ and α assuming a value of γ . We also
displace the starting position (x = 0) to the first inflection in
the raw exceedance probability plots, and then we recalculate
distances and exceedance probabilities. This displacement is
applied only for cases involving relatively small travel dis-
tances (typically the smallest particles) and is only about one
or two particle diameters. For travel distances involving tens
of meters we focus the fitting on the central part of the data,
deemphasizing the fit for small values and for the extreme
tails. In addition, changes in surface slope occur on all sites,
and we restrict the data fitting to positions upslope of these
changes. These changes occur at 2.7 m (V14), 3.5 m (V20),

https://doi.org/10.5194/esurf-9-577-2021 Earth Surf. Dynam., 9, 577–613, 2021



594 D. J. Furbish et al.: Rarefied particle motions – Part 2: Analysis

11 m (V24), 16.6 m (V39), 34 m (B17), 31 m (B20) and 33 m
(B28). For site V0, 20 travel distances were measured for
each particle size class. Initial examination indicated that the
distributions of travel distances were similar, so we pooled
these data. By dropping (rather than launching) the particles,
initial energies are less certain than those in the experiments
reported above. We calculate the impact velocities, assume
a coefficient of restitution, and then use the average downs-
lope reflection velocities. We note that uncertainty in the ini-
tial energies affects the estimates of the quantities µ and α
but does not influence the values of the parameters A and B
obtained from the data fitting.

4.2.2 Results

The data for the V sites are reasonably well fit by the theo-
retical curves (Fig. 13). In these two examples as well as in
cases not plotted, the estimated parameter A systematically
increases with particle size (Table 8) and reflects a transi-
tion from rapid thermal collapse (A< 0) to approximately
isothermal conditions (A≈ 0) or net heating (A> 0). Inter-
estingly, travel distances on the steep V24 slope are system-
atically larger than on V14. Yet evidently the surface rough-
ness on V24 leads to approximately isothermal conditions for
the larger particles, whereas the roughness on V14 leads to
net particle heating. The data for the B sites (Fig. 14) simi-
larly show that the estimated parameter A systematically in-
creases with particle size (Table 8), transitioning from rapid
thermal collapse to net heating. Note that the fitted shape and
scale parametric, A and B (Table 8), are consistent in sign
and approximate magnitude with those presented by Roth et
al. (2020) for the same data set. This paper also presents ex-
ceedance probability plots for all 21 experiments (excluding
the zero slope case). Also note that estimates of the variabil-
ity in µ, α, Ki and Ki∗ are based on a Monte Carlo analysis
as described in Appendix C.

The steepest burned site, B28, offers a further interesting
perspective on particle motions. On this steep and relatively
smooth hillslope, exceedance probabilities associated with
all three particle sizes cannot be fit with reasonable fidelity
by individual curves. Rather, the data suggest a mingling of
two particle behaviors – rapid cooling for many particles and
runaway heating for a second group leading to a pronounced
heavy tail (Fig. 15) – in effect giving a mixed distribution.
Namely, let x1 and x2 denote the travel distances of the two
groups, and let p1 denote the proportion represented by first
group such that p2 = 1−p1 is the proportion of the second
group. The simplest form of a mixed distribution is

fx(x)= p1fx1 (x1)+ (1−p1)fx2 (x2), (39)

and the cumulative distribution is

Fx(x)= p1

x∫
0

fx1 (x′1) dx′1+ (1−p1)

x∫
0

fx2 (x′2) dx′2, (40)

where primes denote variables of integration. As above, the
exceedance probability is Rx(x)= 1−Fx(x).

For the three particle sizes, exceedance probabilities are
well matched by the weighted sum of a nearly exponential
distribution (A1 ≈ 0) reflecting isothermal conditions and a
heavy-tailed distribution (A2 > 0) reflecting net heating (Ta-
ble 9). Note, however, that the parametric values A1, B1,
A2 and B2 cannot be combined to estimate associated fac-
tors such as µ and α. Although in these three experiments
(B28) the particles in each size group are nominally simi-
lar, we nonetheless suspect that the steep slope and relatively
smooth surface give conditions that “filter” the particles into
two subsets. One subset consists of particles whose motions
are strongly randomized and become disentrained over short
distances. The other subset consists of particles whose mo-
tions by chance quickly transition to rotation and travel much
longer distances over the smooth surface. This filtering likely
includes effects of the dropping of non-spherical particles.
Namely, particles that are by chance initially dropped onto
their relatively flat faces are less likely to transition to rota-
tion and thus are more likely to travel short distances. We
also suspect the existence of a similarly nonuniform behav-
ior in the Vanderbilt data, manifest as systematic variations
in several of the exceedance probability plots (Fig. 11).

Using the same data set, Roth et al. (2020) directly cal-
culate the disentrainment rate function Px(x) using finite-
differencing of the empirical cumulative distribution and
exceedance probability functions. Although noisy, the data
clearly illustrate the forms of Px(x) representing rapid ther-
mal collapse (A< 0), approximately isothermal conditions
(A≈ 0) and net heating (A> 0). Of particular note is the re-
sult that the roughness of natural vegetation exerts a strong
cooling effect and that the spatial structure of roughness ele-
ments together with local changes in surface slope can con-
tribute to noticeable variations in travel distances about those
expected for nominally uniform conditions.

5 Analysis

We emphasize at the outset a key point in comparing travel
distances measured in experiments (laboratory or field) with
theoretical distributions. By definition a sample of measured
values drawn from a distribution possesses a finite sample
mean and variance, regardless of the form of the underlying
distribution. If the underlying distribution possesses a finite
mean and variance (e.g., an exponential distribution), then
the calculated sample average and variance are unbiased es-
timates of the underlying parametric values. If the mean or
variance of the underlying distribution is undefined (e.g., the
generalized Pareto distribution for A≥ 1/2), then the calcu-
lated sample average and variance have no meaningful rela-
tion to the underlying (undefined) moments. We can never
know this, although it might be suggested, for example, by
the absence of convergence of estimated moments with in-
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Figure 13. Plot of logarithm of exceedance probability Rx (x) versus travel distance x for experiments described by Roth et al. (2020). These
examples are for sites V14 (a) and V24 (b) showing data for small (black circles), medium (gray circles) and large (open circles) particle
sizes, together with fitted distributions (lines).

Table 8. Fitted and estimated values of the parameters for the data reported by Roth et al. (2020) as shown in Figs. 13 and 14 with coefficients
of variation in parentheses.

Slope Particle
Site (◦) size (m) A B (m) Ki Ki∗ µ α µa

x (m) µb
x (m)

V 0 all −0.41 0.087 0.00 (–)c – – – 0.06 0.06
14 0.017 -0.41 0.165 0.95 (0.0061) 0.98 (–) 0.26 (0.0062) 21.6 (0.095) 0.12 0.13
14 0.045 0.45 0.23 1.01 (–) 0.98 (–) 0.25 (–) 28.3 (0.10) 0.42 0.33
14 0.073 1.1 0.13 1.08 (0.014) 0.97 (–) 0.23 (0.014) 15.0 (0.11) – 0.34
20 0.017 −0.23 0.72 0.99 (–) 0.99 (–) 0.37 (–) 64.0 (0.097) 0.59 0.61
20 0.045 −0.30 1.8 1.00 (–) 1.00 (–) 0.37 (–) 159 (0.086) 1.38 1.34
20 0.073 0.20 1.0 0.99 (–) 0.99 (–) 0.36 (–) 87.9 (0.10) 1.25 1.25
24 0.017 −0.06 0.60 1.00 (–) 1.00 (–) 0.45 (–) 44.8 (0.097) 0.57 0.58
24 0.045 −0.01 2.3 1.00 (–) 1.00 (–) 0.45 (–) 170 (0.099) 2.28 2.38
24 0.073 0.01 3.4 1.00 (–) 1.00 (–) 0.45 (–) 251 (0.10) 3.43 3.35
39 0.045 −0.12 0.30 0.95 (–) 0.97 (–) 0.85 (–) 15.0 (0.093) 0.27 0.30
39 0.017 −0.38 3.7 0.99 (–) 1.00 (–) 0.81 (–) 177 (0.098) 2.68 2.68
39 0.073 0.70 4.8 1.00 (–) 1.00 (–) 0.81 (–) 228 (0.10) 16.0 5.25

B 17 0.017 −0.39 0.27 0.96 (–) 0.98 (–) 0.32 (–) 28.8 (0.095) 0.19 0.20
17 0.045 −0.03 0.49 0.99 (–) 0.99 (–) 0.31 (–) 50.8 (0.10) 0.48 0.83
17 0.073 0.67 0.39 1.01 (–) 0.99 (–) 0.30 (–) 39.5 (0.10) 1.18 1.41
20 0.017 0.10 0.18 0.98 (–) 0.97 (–) 0.37 (–) 16.1 (0.099) 0.20 0.22
20 0.045 1.30 0.90 1.02 (–) 0.99 (–) 0.36 (–) 77.5 (0.099) – 4.01
20 0.073 1.68 0.64 1.04 (0.0060) 0.99 (–) 0.35 (0.0060) 54.1 (0.10) – 2.97

a Estimated from parameters A and B. b Estimated from data, recognizing that these do not incorporate distances of particles that moved beyond positions of noted
slope changes. c Notation (–) means undefined or coefficient of variation is less than 0.01.

creasing sample size or from multiple samples. The best we
can do is to infer the veracity of the form of the distribution
from descriptive statistics (e.g., exceedance probability plots,
quantile–quantile plots), but this generally requires large data
sets to support the tails of heavy-tailed distributions. In some
of the comparisons above, there is the real possibility that

calculated averages are just numbers associated with a dis-
tribution whose mean is undefined, such that the calculated
values do not meaningfully characterize a property (e.g., ab-
sence of central tendencies) of the underlying distribution.

In contrast, estimates of the parameters A and B are less
sensitive to this uncertainty when these values are used to
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Figure 14. Plot of logarithm of exceedance probability Rx (x) versus travel distance x for experiments described by Roth et al. (2020). These
examples are for sites B17 (a) and B20 (b) showing data for small (black circles), medium (gray circles) and large (open circles) particle
sizes, together with fitted distributions (lines).

Table 9. Fitted and estimated values of the parameters for the data shown in Fig. 15.

Site Slope (◦) Particle size (m) A1 B1 (m) A2 B2 (m) p1

Burned 28 0.017 0.001 0.50 0.70 2.0 0.85
28 0.045 0.30 0.90 8.2 8.0 0.38
28 0.017 0.01 0.50 2.9 110 0.34

Figure 15. Plot of exceedance probability versus travel distance
for experiment B28M described by Roth et al. (2020) showing data
(circles) fit to mixed distribution (black line) composed of sum
of two distributions (gray lines) weighted by proportions p1 and
p2 = 1−p1. Note the effect of increased frictional cooling after
slope inflection at ∼ 33 m; data at x = 50 m are censored but in-
cluded for reference. Plots for B28S and B28L (Table 9) are similar
in appearance.

calculate moments (if they exist) – but only if the selected
form of the distribution is the correct choice. The mechan-
ical basis of the generalized Pareto distribution lends confi-
dence, but does not guarantee, that it is the correct choice.
Moreover, uncertainty in the estimated values of A and B
increases when a decreasing proportion of the tail of the dis-
tribution is sampled. Indeed, one can never know the form of
the censored tail (Ballio et al., 2019).

With these points in mind, we suggest that the fits pre-
sented above are consistent with the idea that each of the
data sets represents a specific case of the generalized Pareto
distribution. To further illustrate this idea we calculate the
following quantities:

R∗ = R
A
x and x∗ =

A

B
x+ 1 . (41)

Based on Eq. (14), values of the modified exceedance prob-
ability R∗ and the dimensionless travel distance x∗ should
collapse to a single straight line in a log–log plot with slope
of −1 (Fig. 16). Note that these plots magnify the deviations
in the tails of the distribution. Also note that these fits suggest
that all data, if plotted together, would collapse to the same
line spanning more than 3 orders of magnitude of the dimen-
sionless travel distance x∗. This does not prove, but nonethe-
less supports, the idea that the generalized Pareto distribution
correctly describes the energetics of the behavior of rarefied
particle motions for a variety of slope and surface roughness
conditions.
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Figure 16. Plot of modified exceedance probability R∗ versus dimensionless travel distance x∗ and line with log–log slope of −1 for
(a) experiments described by Gabet and Mendoza (2012) (gray circles) and experiments described by DiBiase et al. (2017) (open circles),
(b) Vanderbilt experiments, and (c) experiments described by Roth et al. (2020) for V sites (gray circles) and B sites (open circles). Data for
A< 0 fall to the left of x∗ = 1 with values in the tails represented by smaller values of x∗. Data for A> 0 fall to the right of x∗ = 1 with
values in the tails represented by larger values of x∗. Total data numbers are (a) N = 813, (b) N = 2980 and (c) N = 1878.

The bounded form of the generalized Pareto distribution
(A< 0) must not be viewed as involving a “hard” bound-
ary. Because of the stochasticity of motions associated with
varying sizes and shapes, some particles by chance “leak”
beyond the position x = B/|A|. This aspect of the formula-
tion is necessarily simplified. What is clear, nonetheless, is
the rapid thermal collapse reflected by the (approximately)
bounded form of the distribution in the laboratory measure-
ments of Gabet and Mendoza (2012) (Figs. 3, 4) and the mea-
surements at Vanderbilt (Fig. 11), as well as the field-based
measurements of Roth et al. (2020) (Figs. 13, 14).

From an empirical point of view the data are consistent
with the generalized Pareto distribution and reflect the pre-
dicted variation in behavior from rapid thermal collapse to
approximately isothermal conditions to net heating of par-

ticles. Nonetheless we proceed by asking whether the esti-
mated values of the quantities µ and α make physical sense,
while recognizing that these quantities do not readily map
to established formulations of friction, and represent a com-
plexity that cannot be encapsulated in idealized collision me-
chanics (Appendix E in Furbish et al., 2021a).

The laboratory measurements with zero slope merit par-
ticular attention. The Kirkby number Ki is known and zero.
The effect of heating, and thus the influence of heating on
α, is removed. Focusing on the length scale Lc given by
Eq. (37), motions are mass independent and the initial ve-
locity is approximately fixed. Assuming fixed γ and compar-
ing the angular and rounded particles in the Vanderbilt data
(Table 6), the effect of particle angularity evidently appears
as a difference in µ, consistent with µ∼ 〈βx〉 and the mea-
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Figure 17. Plot of friction factorµ versus slope S for laboratory ex-
periments described by Gabet and Mendoza (2012) (black circles)
and Vanderbilt data (open squares), and field-based experiments of
DiBiase et al. (2017) (gray circles) and Roth et al. (2020) for V sites
(open circles) and B sites (open triangles) together with 1 : 1 line.

surements indicating that angular particles on average extract
more translational energy during collisions than rounded par-
ticles (Figs. 9, 10). This also is consistent with the measure-
ments of Gabet and Mendoza (2012) for a flat surface in that
all values of µ in the Vanderbilt data are larger than the value
of µ for a spherical particle in the Gabet and Mendoza data.
We suspect that the small particles “feel” the roughness tex-
ture more than the larger rounded and angular particles; be-
cause the small particles are a mixture of rounded and an-
gular shapes, the value of µ is similar to the angular parti-
cles. These differences in the values of µ persist with larger
slopes, where the values of µ for rounded particles remain
less than the other values (although we must be cautious to
not overinterpret these differences given the uncertainty of
the calculations). At zero slope the values of α are similar
across particle shape and size. No similar systematic varia-
tion in α with particle size and shape is apparent, although
rounded particles appear to be more readily heated with in-
creasing slope.

The field-based measurements of DiBiase et al. (2017, Ta-
ble 7) and Roth et al. (2020, Table 8) suggest that the friction
factor µ is insensitive to particle size for the same slope and
roughness conditions, and these data together with the labo-
ratory measurements of Gabet and Mendoza (2012, Table 8)
and the Vanderbilt data suggest that µ systematically varies
with surface slope S (Fig. 17). Note that the Vanderbilt data
in this figure are based on the reduced velocity calculations
(Table 6). For completeness this figure is reproduced in Ap-
pendix E using the initial launch velocities u0 (Table 5).

Values of µ for Ki< 1 systematically fall above the 1 : 1
line (Fig. 17) and then converge to this line as Ki→ 1. Us-

ing Eq. (32) to estimate µ, evidently near S = 0 the second
term on the right side of this equation dominates and gives
positive µ with negative A for the smallest four slope angles
in the data of Gabet and Mendoza (2012, Table 2) and the
Vanderbilt data (Table 6). The magnitude of this term then
decreases (for A> 0) with increasing S such that µ∼ S as
Ki→ 1 according to Eq. (8). Note that Eq. (32) does not pro-
vide a physical explanation of the factor µ; it is just an esti-
mate of µ based on the parameters A and B.

As summarized in Sect. 2.4, scaling suggests that the fac-
tor µ∼M(θ ) is independent of particle size (Furbish et al.,
2021a). This consistency with the experimental data rein-
forces the idea that the elements of µ∼M(θ ), despite the
complexity of the collisions involved, are akin to results from
idealized collision mechanics, namely, that these elements
are determined by the coefficients associated with tangential
and normal impulses, where particle size is not involved for
a given slope and surface roughness. Recall that the expected
dependency µ∼M(θ ) on the slope angle θ arises because
the expected surface normal impact velocity varies with this
angle (Appendix E in Furbish et al., 2021a). However, this
probably is insufficient to explain the relation in Fig. 17. Un-
fortunately, we cannot further unfold the physical basis of
µ in relation to particle–surface interactions beyond observ-
ing that the values of A and B return estimates of µ that are
consistent with the expectation of its slope dependency, inde-
pendent of particle size. On empirical grounds, as Ki→ 1 the
factor µ→ S reflects an approximate balance between heat-
ing and cooling with respect to translational energy. That is,
the rate of extraction of translational energy (partitioned to
all other forms) increases to match the rate of heating. Pre-
sumably this balance is exceeded (Ki� 1) with slopes that
are so steep that cooling is insufficient for deposition to oc-
cur – as in several of the experiments described above.

Turning to the quantity α, we plot the estimated values of
this factor based on Eq. (33) versus the Kirkby number Ki
(Fig. 18) together with the function in Eq. (35). Note that the
Vanderbilt data in this figure are based on the reduced ve-
locity calculations (Table 6). For completeness this figure is
reproduced in Appendix E using the initial launch velocities
u0 (Table 5).

The data from Gabet and Mendoza (2012) support the
idea that α systematically increases with Ki and becomes
unbounded near Ki∼ 1. The Vanderbilt data similarly sup-
port this idea. The data for all three particle sizes from DiB-
iase et al. (2017) involve Ki≈ 1 and thus only reinforce the
unbounded behavior of α. Similarly, the data from Roth et
al. (2020) support this behavior. Note that values with large
Ki and A≥ 1 are not meaningful, as the underlying depo-
sition length scales Lc are undefined. Also note that because
the Kirkby number Ki and the factorµ are specified in the fits
of the data from Kirkby and Statham (1975, Fig. 6) rather
than being estimated from A and B∗, we do not plot these
values in Fig. 18.
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Figure 18. Plot of factor α versus Kirkby number Ki for experi-
ments described by Gabet and Mendoza (2012) (black circles), Van-
derbilt data (open squares), DiBiase et al. (2017) (gray circles) and
Roth et al. (2020) for V sites (open circles) and B sites (open tri-
angles) together with function α = α0/(1−µ1Ki) with α0 = 1 and
µ1 = 0.98 (line). Only data for A< 1 are included.

Recall that α reflects a direct effect of heating, namely, to
decrease the likelihood of deposition by decreasing the pro-
portion of particles that cool to sufficiently low energies for
deposition to occur. This translates to suppressing the disen-
trainment rate and increasing the deposition length scale Lc,
rewritten here as

Lc =
αEa

γ mgµcosθ
=

α0Ea

γ mgµcosθ (1−µ1Ki)
. (42)

With Ea = (m/2)〈u2
〉, the effect of particle mass m does not

explicitly appear. This means that any effect of particle size
must appear in α or µ, or both. Similarly, any effect of parti-
cle angularity must appear in one or both of these quantities.
The results above, with particular reference to the flat rough
surface in the Vanderbilt experiments, suggest that effects of
angularity appear inµ, whereas the data sets together suggest
that effects of particle size primarily appear in α. We empha-
size that the functional relation of α to Ki given by Eq. (35) is
not definitive. Other functional forms are possible, although
the basic form of Eq. (35) seems to be reasonably consistent
with the data (Fig. 18). Although not explicit in the formu-
lation, we suspect that the effect of heating includes an in-
creasing partitioning of energy into rotational motion that is
amplified for larger particles for a given slope and roughness,
giving a decreasing likelihood of stopping as reflected in in-
creasing α. Further disentangling the effects of α and µmust
await clearer mechanical basis for these quantities.

To reinforce the idea of a mixed distribution, consider the
example of angular and rounded particles from the Vander-
bilt experiments for S = 0 (Fig. 11a). When pooled these
data can be approximately fitted (not shown) to a general-

Figure 19. Plot of exceedance probability versus travel distance for
Vanderbilt University experiment with S = 0 showing data (circles)
fit to mixed distribution (M) composed of sum of distributions of
angular particles (A) and rounded particles (R) depicted in Fig. 11.

ized Pareto distribution. However, the data are well fit using
the mixed distribution defined by Eq. (39) (Fig. 19). Note
that this mixture of generalized Pareto distributions is not
a generalized Pareto distribution. The distribution of travel
distances of a mixture of particle sizes and shapes therefore
must be described empirically or formed as a weighted mix-
ture of distributions characterizing the behavior of the indi-
vidual particle size and shape groups involved.

6 Discussion and conclusions

The laboratory and field-based measurements of particle
travel distances presented above provide clear evidence
that these distances are well described by a generalized
Pareto distribution, where the form of the distribution re-
flects variations in particle behavior associated with the bal-
ance between gravitational heating and frictional cooling
by particle–surface collisions. These behaviors vary from a
bounded distribution associated with rapid thermal collapse
to an exponential distribution representing approximately
isothermal conditions to a heavy-tailed distribution associ-
ated with net heating of particles. Here we reiterate a point
made in the first companion paper (Furbish et al., 2021a).
Namely, we do not choose the generalized Pareto distribution
in the empirical manner of selecting a distribution based on
goodness-of-fit criteria applied to data sets. Rather, this dis-
tribution is dictated by the probabilistic physics of the prob-
lem; it is based on a description of the kinetic energy balance
of a cohort of particles treated as a rarefied granular gas and a
description of particle deposition that depends on the energy
state of the particles.

The experiments involving high-speed imaging of parti-
cle motions reinforce what we intuitively already understand.
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Relative to a spherical particle, a rounded non-spherical par-
ticle is more likely to experience a noncollinear collision
that converts the translational energy of free fall into trans-
verse motion and rotational energy; an angular particle is
more likely than is a rounded particle to experience such
conversions. The effect of this behavior is a systematic in-
crease in the proportion βz with increasing angularity. More-
over, following the first free-fall collision, an angular parti-
cle is more likely than is a rounded particle to experience a
noncollinear collision that extracts either rotational or trans-
lational energy, or both. Translating this to surface-parallel
motions, a tumbling angular particle is more likely than is a
rounded tumbling particle to experience a noncollinear colli-
sion that extracts either translational energy or rotational en-
ergy, or both. Although we did not directly measure changes
in surface-parallel energy associated with collisions, we can
infer that the proportion βx likely systematically increases
with increasing particle angularity as reflected in systemati-
cally shorter travel distances of angular particles relative to
those of rounded particles (Fig. 11) on a surface with only
a granular roughness texture. These experiments also illus-
trate the value of treating βx as a random variable. Although
this quantity is related to the normal coefficient of restitu-
tion ε as used in granular gas theory, the complexity and
richness of collisions and associated conversions of energy
among modes necessitates a probabilistic description in this
problem.

The essence of rapid thermal collapse (A< 0) involves the
situation in which gravitational heating is absent or is insuf-
ficient to replace frictional cooling, particularly with angular
particles and small particles. That is, a small tumbling par-
ticle is more likely than is a large tumbling particle to “see”
the bumps and divots of the roughness texture at its scale and
to experience collisions that arrest its motion. Indeed, this
is the basic lesson of experiments involving spheres rolling
bumpety-bump over monolayer roughness elements (Dippel
et al., 1997; Samson et al., 1998, 1999), the experiments of
Kirkby and Statham (1975) involving particles moving down
surfaces with different granular roughness, and the experi-
ments of Roth et al. (2020) involving the different rough-
nesses of vegetated and burned hillslopes. With increasing
gravitational heating the transition to a heavy-tailed distribu-
tion of travel distances likely involves an increasing conver-
sion of translational to rotational kinetic energy leading to
larger travel distances with decreasing effectiveness of colli-
sional friction. In this regard the analysis points to the need
for further clarity concerning how particle size and shape in
concert with surface roughness influence the extraction of
particle energy and the likelihood of deposition.

Although not essential to the fitting of particle travel dis-
tances to the generalized Pareto distribution, it nonetheless is
desirable to have a clearer mechanical interpretation of the
quantities µ and α and their relation to the Kirkby number
Ki in terms of particle properties and surface-roughness con-
ditions, as well as the modes of particle motions. Here we

note that the Pareto distribution with positive shape param-
eter A can be obtained as a mixture of exponential distri-
butions whose rate parameters are distributed as a gamma
distribution (Appendix F). This result suggests an interesting
physical interpretation of the Pareto distribution of particle
travel distances, and it also may indicate a strategy for clar-
ifying how particle size and shape in concert with surface
roughness influence the extraction of particle energy and the
likelihood of deposition, inasmuch as the scale parameter B
is equivalent to the reciprocal of the expected disentrainment
rate, E(Px). For example, Roth et al. (2020) show that B sys-
tematically varies with particle size and surface slope based
on the data described in Sect. 4.2.

We suggest that, in designing and conducting particle
launching experiments, we have a propensity to select pretty
particles, and rounded (if not spherical) particles are pretty.
This is not a bad thing. But it skews our view of particle mo-
tions toward the behavior of rounded particles. The exper-
iments clearly demonstrate that particle angularity matters
in the disentrainment process, specifically the likelihood of
converting translational to rotational energy and the decreas-
ing extraction of energy by collisional friction (Williams and
Furbish, 2021).

Here in essence are the shortcomings of the formulation
and its application to the experimental data sets of particle
travel distances. We do not understand the transient (proba-
bilistic) physics soon after launch from the catapult as parti-
cle motions become randomized with the onset of particle–
surface collisions, so there is uncertainty in choosing the
truncation distance and the associated particle energy state.
Similarly, little is known about the distribution fEp (Ep) of
particle energy statesEp and how this distribution might vary
in the downslope direction. Thus, the assumption that the ra-
tio γ of the arithmetic and harmonic means of the particle en-
ergies remains fixed may be incorrect. This is a parsimonious
choice to close the formulation analytically. The friction fac-
tor µ is tentative. Namely, its essential element, the expected
proportion of energy extraction 〈βx〉, is consistent with the
experimental results as reflected in the behavior of rounded
versus angular particles, but the mechanical reasons for its
asymptotic behavior, µ→ S as Ki→ 1 (Fig. 17), remain un-
clear. Similarly the factor α is tentative. We need a clearer
understanding of the elements that lead to increasing α and
the associated lengthening of the deposition length scale Lc,
notably in relation to particle size. Many of the individual
fits between the data and the generalized Pareto distribution
in the exceedance probability plots are reasonably close, but
some exhibit systematic deviations about the fitted distribu-
tion. As is usual in this situation, it is difficult to fully assess
whether such misfits are related to stochasticity associated
with small sample sizes (Appendix A) or to inadequacy of
the experimental design or to underlying flaws in the formu-
lation leading to the generalized Pareto distribution. Likely
all of these are involved. Despite the conceptual simplicity
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of particles moving bumpety-bump down a rough inclined
surface, this is a hard problem.

We reemphasize that the work reported here is aimed at a
probabilistic description of expected particle travel distances.
This is a part of a larger effort to understand and inform the
essence of the ingredients of nonlocal formulations of trans-
port. We are not suggesting that the results presented here
can be immediately cast as a nonlocal formulation of trans-
port. But in order to progress beyond current formulations,
the probabilistic physics of particle motions merits closer ex-
amination. For example, this level of understanding provides
the basis for justifying a Taylor expansion of the convolution
(Furbish and Haff, 2010) to form a local Fokker–Planck-like
description of transport assuming an exponential-like distri-
bution of travel distances – with clarity regarding the limi-
tations of this description. Furthermore, we have focused on
the energetics of particles in motion. But this is one of two
ingredients of nonlocal formulations. The other involves the
probabilistic physics and energetics of particle entrainment –
a particularly difficult ingredient to constrain because of the
difficulty of observing the entrainment process and because
we do not yet know how to properly simulate this process.
For this we must rely on theory and measurements of tracer
particles in ways that have yet to be designed.

We end with a philosophical point. We enjoy eating our
favorite tortilla chips, and mostly we enjoy them with a well-
prepared dip, for example, spicy guacamole. But let us be
honest. The experience then is no longer about the chips –
it’s about the dip. The chips are just the guacamole delivery
system. (Yumm.) Similarly, these companion papers nomi-
nally concern particle motions on inclined rough surfaces.
But these particles are just the delivery system. The dip con-
sists of the coherent statistical mechanics framework for de-
scribing the particle motions and a demonstration that such a
framework, albeit with rough edges, is possible. This repre-
sents a solid basis for subsequent efforts aimed at replication,
falsification and refinement or replacement and possibly for
fresh ideas concerning particle motions more generally.

https://doi.org/10.5194/esurf-9-577-2021 Earth Surf. Dynam., 9, 577–613, 2021



602 D. J. Furbish et al.: Rarefied particle motions – Part 2: Analysis

Appendix A: Parameter estimation

Here we demonstrate the basis for using visual fits of the
exceedance probability plots to illustrate the behavior of the
generalized Pareto distribution, and we provide context for
interpreting these fits. We work with the dimensionless form
of the distribution for comparison with Fig. 2 and pursue a
straightforward Monte Carlo analysis.

First, let x̂u denote a random number drawn from a uni-
form distribution with support [0,1] and cumulative distribu-
tion function Fx̂u (x̂u)= x̂u. In turn, the cumulative distribu-
tion function of the generalized Pareto distribution is

Fx̂(x̂)= 1−
b1/a

(ax̂+ b)1/a . (A1)

Equating Fx̂u (x̂u) and Eq. (A1) leads to

x̂ =
b

a

[
1

(1− x̂u)a
− 1

]
, (A2)

which provides an algorithm for generating values of x̂
drawn from the generalized Pareto distribution with shape
and scale parameters a and b, starting with values of x̂u se-
lected by a uniform random-number generator.

Second, among the methods for estimating the values of a
and b are the method of moments and the maximum likeli-
hood estimation (MLE) method. Both are unsuitable for cen-
sored data, and the method of moments is unsuitable when ei-
ther the first or second moment is undefined. Nonetheless, for
the purpose of this appendix we focus on the MLE method,
noting that an MLE is the same as a Bayesian estimate as-
suming a uniform (maximum entropy) prior distribution of
the parametric values. The MLE method is a popular, stan-
dard choice for estimating parametric values of distributions,
notably heavy-tailed distributions, because of its asymptotic
properties of consistency and efficiency. (However, see the
delightful review by Cam (1990) regarding maximum likeli-
hood estimates, in particular his nine principles on p. 165.)
The shape and scale parameters a and b are not orthogonal.
The MLE of a is ã = 1/ãL where

ãL =
N∑N

i=1 ln(1+ x̂i/b̃L)
, (A3)

and the MLE estimate of b is b̃ = b̃L/ãL where b̃L is obtained
from an iterative solution of

N

b̃L
∑N
i=1x̂i/(b̃

2
L+ b̃Lx̂i)

−
N∑N

i=1 ln(1+ x̂i/b̃L)
− 1= 0 . (A4)

These are biased estimates (Giles et al., 2013a), but they
nonetheless provide useful information concerning param-
eter estimation. This bias increases with decreasing sample

size and with increasing censorship of the distribution tail.
Moreover, the MLE may not converge near a = 0 nor if the
sample has a coefficient of variation less than one. For ref-
erence below, whereas the Lomax distribution requires that
aL > 0, the MLE given by Eq. (A3) may be negative and
therefore provides an estimate of a < 0 for the generalized
Pareto distribution if b is known. Note also that in the limit of
a→ 0 the Pareto distribution is replaced with the exponen-
tial distribution with mean µx̂ = b. The MLE of the mean µx̂
of an exponential distribution is just the sample average,

b̃ =
1
N

N∑
i=1

x̂i , (A5)

which is an unbiased estimate.
Now consider a sample size of N = 100, consistent with

the data sets of Gabet and Mendoza (2012) and Roth et
al. (2020). We draw 10 000 samples and then calculate and
plot exceedance probabilities for varying values of the shape
parameter a, holding the scale parameter b fixed for con-
venience. We also calculate the MLE of a using Eq. (A3)
for each sample. The MATLAB/GNU Octave code for do-
ing this is available in the Supplement (Vanderbilt Univer-
sity Institutional Repository, https://ir.vanderbilt.edu/handle/
1803/9742, last access: 9 June 2021) and includes an anima-
tion of the results.

Plots of estimated exceedance probabilities Rx̂(x̂) for all
samples provide a visual sense of the variability in these
probabilities associated with the inherent randomness in
drawing samples of x̂ from the known distribution (Fig. A1).
The animation mentioned above shows the outcome of suc-
cessive draws and nicely illustrates that many draws, by
chance, bear little resemblance to the theoretically expected
exceedance probability function as well as, in particular, the
squirrelly behavior of values in the tails. (We hope that the
animation drives home the point to avoid over-fitting and
over-interpreting data in the tail of a heavy-tailed distribu-
tion with small sample size N .) Here are key items to con-
sider. First, the variability in calculated exceedance probabil-
ities increases with a, that is, with increasing heaviness of the
distribution tail. This is not surprising, as a finite sample size
represents a decreasing proportion of the total probability in
the distribution as a increases. Second, the variability in the
MLE of a increases with increasing a (Fig. A2), reflecting
the first point above. Aside from the bias of these estimates,
the difference between estimates of a and the true value can
be large, although proportional differences are similar across
values of a. For example, with a =−0.5, about 32 % of the
estimated values exceed a difference of ±10% from the true
value; with a = 0, about 32 % exceed a difference of ±10%
about the true value of b = 1; with a = 1, about 31 % of the
estimated values exceed a ±10 % difference. Third, the vari-
ability in the exceedance probability plots and the MLEs de-
creases – that is, these values converge to the true values –
only when N approaches 10 000 or more (Fig. A3). Fourth,
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with increasing censorship of the data, the MLEs based on
the uncensored values become strongly biased (Fig. A4).
Moreover, this simple demonstration of the inherent variabil-
ity in estimates of a does not involve the collinear effects and
added variability associated with simultaneously estimating
b. Fifth, despite the variability in the exceedance probability
plots, the sign of the concavity of the plots for large positive
or negative a is clear. However, near isothermal conditions
(a = 0), individual samples could appear to represent net par-
ticle heating when in actuality conditions of net cooling exist,
and vice versa. Note that in the example of a→ 0 (Figs. A1,
A2), we calculate sample exceedance probabilities and b̃ for
the exponential distribution. According to the central limit
theorem, values of b̃ are approximately normally distributed
with variance ∼ σ 2

x̂
/N .

Here is an important sidebar. In the presence of an exact
theory that predicts the values of a and b, one can appeal to,
for example, the central limit theorem or a Monte Carlo anal-
ysis (as above) or MLE methods or bootstrapping to assign
so-called confidence estimates associated with these known
values of a and b. These specifically give information regard-
ing the likelihood that a sample of size N will yield values
of a and b that differ from the true values. In contrast, in
the absence of an exact theory and a priori knowledge of the
true values of a and b, one can construct similar confidence
estimates based on values of a and b estimated from a sin-
gle sample. These specifically give information regarding the
likelihood that a second sample of sizeN will yield values of
a and b that differ from those estimated from the first sample.
But no method – besides makingN→∞ (Cam, 1990) – can
provide information regarding how close the first set of esti-
mated values (or the second set) is to the true unknown val-
ues. Alas, the literature is awash with confidence estimates,
based on a single sample, incorrectly interpreted as measures
of likelihood of containing the unknown values (Amrhein et
al., 2019).

We therefore reemphasize our objective. At this stage of
our work we are aimed at reasonable estimates of the shape
and scale parameters in order to demonstrate the existence
of the behaviors – rapid thermal collapse, isothermal condi-
tions, and net heating of particles – represented by the gen-
eralized Pareto distribution. Refined values of these parame-
ters are not needed until we possess a clearer understanding
of the mechanics of deposition. Semi-log plots highlight de-
viations in the tails and provide a clear sense of the concav-
ity that discriminates between cooling and heating. Log–log
plots highlight deviations near the origin and provide a sense
of the log-linear decay of the tails for heavy-tailed condi-
tions. The variability in the tails of the distribution as outlined
above emphasizes the importance of avoiding over-fitting of
the tails in visual fitting (or in any other method of fitting).

For comparison with our fits, we return to dimensional
quantities and compute the MLE values of A and B (Ta-
ble A1). The MLE is implemented in the “flomax” algo-
rithm in the Renewal Method for Extreme Values Extrap-

olation library of the R Project for Statistical Computing;
it is implemented in the “gpfit” algorithm of the MATLAB
programming language, or it can be coded directly from
Eqs. (A3) and (A4). With reference to Table A1, the MLE
algorithm converges in all cases using the MATLAB “gpfit”
algorithm (but not the R “flomax” algorithm). However, it re-
turns poor (sometimes nonsensical) estimates for A.− 1/2
or near A≈ 0. The MLE degrades with increasing A and in-
creasing censorship. Also note that the MLE estimates do
not necessarily improve the fits (Fig. A5), likely due to the
relatively small sample sizes and the likelihood that the data
represent samples that are strongly censored, that is, where a
significant proportion of the distribution is contained in that
part of the tail that is not sampled.

One alternatively can choose, say, a nonlinear least-
squares fitting algorithm that weights various parts of data
differently, emphasizing or deemphasizing values near the
origin or in the tails. We suggest, however, that this is just
a rule-based version of visual fitting. We also note that visual
fitting is not directly influenced by censorship, although the
form of the censored tail can never be known (Ballio et al.,
2019). Bringing more sophisticated techniques to bear (e.g.,
Hosking and Wallis, 1987; Castillo and Hadi, 1997; Cramer
and Schmiedt, 2011; Giles et al., 2013a, b; Pak and Mah-
moudi, 2018) to refine estimates of A and B is premature.
There is a need to collect larger data sets, avoiding censor-
ship if possible, and only then aim at refined estimates of
the parametric values as their theoretical basis is improved.
Moreover, any real data set is not immune from the possibil-
ity, by chance, of representing a misfit from the underlying
distribution and yielding parametric estimates that markedly
differ from this underlying distribution – just as with the nu-
merical examples above. But no formal quantitative analysis
can reveal or fix this misfit.

We end with a cautionary note: parametric values of a
heavy-tailed distribution estimated from a data set with N <

1000 (and possible with N < 10000), if presented as being
precise, merit a healthy skepticism, particularly if the tail of
the distribution is censored. Korup et al. (2012) address a
related point in demonstrating how the exponents in power
functions involved in scaling relations may be particularly
sensitive to the presence or absence of extreme values in the
data sets used to estimate the exponents. To quote the sixth
of nine delightful principles offered by Cam (1990), “Never
trust an estimate which is thrown out of whack if you sup-
press a single observation.” Stumpf and Porter (2012) sug-
gest that more generally statistically fitted power laws have
little more than anecdotal value in the absence of a theoreti-
cal basis.
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Figure A1. Plots of exceedance probability Rx̂ (x̂) versus dimensionless travel distance x̂ for different values of the shape parameter a
assuming scale parameter b = 1. Each plot shows 1000 samples, each of size n= 100, together with theoretical exceedance probability
function (line).
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Figure A2. Histograms of maximum likelihood estimates of shape parameter a assuming scale parameter b = 1, and maximum likelihood
estimate of scale parameter b for a = 0. Each histogram is based on 10 000 samples.
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Figure A3. Plots of exceedance probability Rx̂ (x̂) versus dimensionless travel distance x̂ for shape parameter a = 0.5 assuming scale
parameter b = 1, showing convergence to theoretical exceedance probability function (lines) with increasing sample size N . Examples
involve (a) 100 samples each of size N = 1000 and (b) 20 samples each of size N = 10000.

Figure A4. Histograms of maximum likelihood estimates of shape
parameter a = 1 assuming scale parameter b = 1 with censorship at
x̂ = 50 based on 10 000 samples. The bias increases as the censor-
ship distance decreases. Compare with Fig. A2.

Figure A5. Example of fit (gray line) based on MLE values of A
and B versus visual fit (black line). This example coincides with the
smallest particle size reported by DiBiase et al. (2017) (Table 7).
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Table A1. Fitted and estimated values of the parameters for the data reported by Gabet and Mendoza (2012), the Vanderbilt experiments,
DiBiase et al. (2017), and Roth et al. (2020).

Slope Particle
Site (◦) size (m) A1 B1 (m) A2 B2 (m)

Gabet and Mendoza (2012) 0 0.01 −0.48 0.42 −0.24 0.35
3 0.01 −0.55 0.32 −0.54∗ 0.31∗

6 0.01 −0.36 0.30 −0.32 0.28
9 0.01 −0.65 0.43 −0.43 0.37

12 0.01 0.03 0.31 −0.26 0.35
15 0.01 0.02 0.39 −0.20 0.46
18 0.01 0.09 0.99 −0.48 1.27
21 0.01 0.70 2.6 −1.02∗ 2.36∗

24 0.01 3.6 4.7 −0.71∗ 1.76∗

Vanderbilt 0 A3 -0.54 0.033 −0.27∗ 0.027∗

0 R −0.51 0.049 −0.52∗ 0.051∗

0 S −0.49 0.035 −0.51∗ 0.039∗

5.1 A −0.39 0.075 −0.40 0.085
5.1 R −0.24 0.119 −0.32 0.13
5.1 S −0.51 0.098 −0.50 0.10
8.5 A −0.36 0.12 −0.35 0.12
8.5 R 0.10 0.19 −0.13 0.24
8.5 S −0.35 0.12 −0.38 0.13

10.2 A −0.56 0.22 −0.34 0.20
10.2 R 0.020 0.28 −0.10 0.33
10.2 S −0.51 0.24 −0.45∗ 0.23∗

14.0 A 0.30 0.35 −0.20 0.48
14.0 S 0.30 0.41 −0.20 0.51
15.6 A 0.77 1.18 −0.65∗ 0.99∗

DiBiase et al. (2017) 38 0.025 0.81 2.4 0.159 2.82
38 0.05 1.7 5.1 −0.41∗ 5.9∗

38 0.10 5.0 8.8 −1.19∗ 9.5∗

Roth et al. (2020) V 0 all −0.41 0.087 −0.64∗ 0.16∗

14 0.017 −0.41 0.165 −0.18 0.14
14 0.045 0.45 0.23 0.32 0.23
14 0.073 1.1 0.13 5.82 0.00017
20 0.017 −0.23 0.72 −0.20 0.73
20 0.045 −0.30 1.8 −0.93∗ 3.0∗

20 0.073 0.20 1.0 −1.11∗ 3.4∗

24 0.017 −0.06 0.60 −0.17 0.68
24 0.045 −0.01 2.3 −0.16 2.7
24 0.073 0.01 3.4 −0.22 4.1
39 0.045 −0.12 0.30 −0.056 0.32
39 0.017 −0.38 3.7 −0.17 3.2
39 0.073 0.70 4.8 −1.12∗ 18.7∗

Roth et al. (2020) B 17 0.017 −0.39 0.27 −0.39 0.27
17 0.045 −0.03 0.49 0.36 0.45
17 0.073 0.67 0.39 0.59 0.47
20 0.017 0.10 0.18 0.18 0.17
20 0.045 1.30 0.90 1.19 0.89
20 0.073 1.68 0.64 1.04 0.71

1 Estimated visually; values reproduced from Tables 2, 6, 7 and 8. 2 Estimated from MLE algorithm; asterisk denotes
problematic estimate due to A.− 0.5, A→ 0 or censored data. 3 A – large angular, R – large rounded, S – small; V –
vegetated, B – burned.
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Appendix B: Particle launching conditions

Consider as an example the initial exceedance probability
plot for the angular particles on a flat surface (Fig. B1a),
which shows a clear inflection at about 5 cm. In this example,
high-speed imaging of particles launched from the catapult
reveals that the particles consistently travel ∼ 2 cm horizon-
tally before their first collisions with the surface, as expected
from calculations using Newton’s second law for measured
initial velocities. (Free-flight distances increase with increas-
ing surface slope.) These initial flights involve negligible ro-
tational motion. The particles then experience widely vary-
ing changes in their motions over the next 2–3 cm following
the first collisions, often with the onset of rotational motion.
In the text we suggest that the inflection in the exceedance
probability plot reflects the uniformity of the launch veloci-
ties followed by a finite distance over which randomization
of the motions occurs. This is consistent with the idea that the
factor γ ∼ 1 before randomization occurs, giving an initial
disentrainment rate that is smaller than after randomization.
However, we note that the inflection also may involve other
effects.

Figure B1. Plot of exceedance probabilityRx (x) versus travel distance x for the example of angular particles on a flat surface showing (a) ini-
tial data set and (b) truncated data set with fitted distribution (line).

For these reasons we truncate the plots at the inflection po-
sition and then recalculate exceedance probabilities with re-
duced N (Fig. B1b). In this example the truncation distance
is a significant proportion of the total travel distances. How-
ever, this truncation distance is less important when effects of
initial (near-launch) conditions occur over a distance that is
small relative to total travel distances. Unfolding the details
of the physics of particle motions over short distances is for
a later time.
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Appendix C: Uncertainty in calculated quantities

Of interest is how uncertainty in the estimates of the shape
and scale parameters, A and B, propagates to uncertainty in
the calculated values of µ, α, Ki and Ki∗. Because A and
B are obtained by visual fitting, for illustration we conser-
vatively assume that the standard deviations of these values
associated with a great number of samples of similar size N
vary as A/

√
N and B/

√
N based on Monte Carlo simula-

tions as described in Appendix A. This effectively assumes
the coefficient of variation formed by the sampling standard
deviation is ∼ 1/

√
N . This provides the basis for gaining a

sense of the relative magnitude of the variability in the calcu-
lations of µ, α, Ki and Ki∗. For the Vanderbilt data (Sect. 3.3)
we also incorporate the uncertainty in the launch velocities
u0 provided in Table 5.

We perform a straightforward Mont Carlo analysis. As-
suming values of A, B and u0 are approximately Gaussian,
we successively solve Eqs. (32), (33), (8) and (23) 10 000
times and then calculate the associated coefficients of vari-
ation of µ, α, Ki and Ki∗. Because A and B are obtained
by visual fitting (as opposed to being based on MLE values)
where the number of censored data are included in calcula-
tions of exceedance probabilities, we include censored data
in setting N .

We emphasize that these calculations provide a sense of
the variability only associated with that of A and B as this
cascades through the successive calculations of µ, α, Ki and
Ki∗. For example, based on Eq. (32) the variability in µ re-
flects that in both A and B. Based on Eq. (33), the variability
in α reflects that in B and the variability in µ previously cal-
culated. Also note that, starting with Eq. (32), as the slope S
increases the relative contribution of this fixed term to calcu-
lated values of µ increases. These calculations do not repre-
sent the natural variability in µ, α, Ki and Ki∗ if these quan-
tities somehow could be measured directly, independently of
A and B.

In general, calculated coefficients of variation decrease
with increasing surface slope. Coefficients of variation are
on the order of 10 % or more for smaller slopes in the experi-
ments reported by Gabet and Mendoza (2012) and in the Van-
derbilt experiments. Coefficients of variation generally are on
the order of 1 % or smaller in the field-based experiments of
DeBiase et al. (2017) and Roth et al. (2020) involving steep
slopes.

Appendix D: Particle energy balance

Let Ep0 = mgh= (1/2)mw2
0 denote the initial impact en-

ergy of a particle with mass m falling from height h onto
a horizontal surface, where w0 is the vertical impact veloc-
ity. Then let w1 and u1 denote the vertical and horizontal re-
bound velocity components. Assuming negligible rotational
energy during the initial free fall, the energy balance may be

written as

Ep0 = fc+
1
2
mu2

1+
1
2
mw2

1 +
1
2
Iω2 , (D1)

where fc is the frictional loss due to particle–surface defor-
mation, I is the moment of inertia and ω is the angular ve-
locity. If we set the initial and final vertical positions of the
rebounding motion at z(0)= z(T )= 0, then from Newton’s
second law,

w1 =
g

2
T , (D2)

where T is the travel time to the second collision. We as-
sume as an approximation that fc = (1− ε2)Ep0, where ε is
the normal coefficient of restitution. This effectively assumes
that the energy loss due to particle–surface deformation is the
same as that of a collinear collision. Now Eq. (D1) becomes

ε2Ep0 =
1
8
mg2T 2

+
1
2
mu2

1+
1
2
Iω2 . (D3)

We can experimentally determine ε,Ep0 and T for individual
particles. However, we generally cannot determine u1 from
side imaging (except by chance with motion transverse to
the camera). We also cannot readily determine I for irregu-
lar particles, nor ω from side imaging. Solving Eq. (D3) for
the last two terms then represents the conversion Ec of trans-
lational kinetic energy just prior to impact into translational
energy associated with surface parallel motion and rotational
energy. That is,

Ec = ε
2Ep0−

1
8
mg2T 2 . (D4)

Appendix E: Effect of launch velocity

For completeness, here we show plots of the friction factor µ
versus the slope S and the factor α versus the Kirkby number
Ki using the initial launch velocity u0 rather than a reduced
velocity in the calculations as presented in Figs. 17 and 18.

Values of µ, notable at smaller slopes S (Fig. E1), are no-
ticeably larger than those calculated in Fig. 17. The values
appear to converge to the 1 : 1 line with increasing slope as
Ki→ 1, as in Fig 17.

Values of α and associated Kirkby numbers tend to be
smaller (Fig. E2) than those calculated in Fig. 18. However,
the overall variation between α and Ki is similar.

Appendix F: The Pareto distribution as a mixture of
exponential distributions

It is well known that a Pareto distribution with positive shape
parameter can be obtained as a mixture of exponential dis-
tributions whose rate parameters are distributed as a gamma
distribution. This result suggests an interesting physical in-
terpretation of the Pareto distribution of particle travel dis-
tances, and it also may indicate a strategy for clarifying how
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Figure E1. Plot of friction factor µ versus slope S for data shown
in Fig. 17 using the initial launch velocity u0 in the calculations.

Figure E2. Plot of factor α versus Kirkby number Ki for data shown
in Fig. 18 using the initial launch velocity u0 in the calculations.

particle size and shape in concert with surface roughness in-
fluence the extraction of particle energy and the likelihood of
deposition. For completeness we therefore offer the follow-
ing.

Recall that for an exponential distribution of travel dis-
tances x the fixed disentrainment rate is Px = 1/µx . We then
write the conditional distribution as

fx|Px (x|Px)= Pxe−Pxx . (F1)

We may now treat the rate Px as a random variable that is
distributed as a gamma distribution, namely,

fPx (Px;Ag,Bg)=
B
Ag
g

0(Ag)
P
Ag−1
x e−BgPx , (F2)

with shape parameterAg and scale parameter Bg. The uncon-
ditional distribution of travel distances x is then obtained as a
gamma weighting of the conditional exponential distribution,
namely,

fx(x)=

∞∫
0

fx|Px (x|Px)fPx (Px;Ag,Bg) dPx . (F3)

Substituting Eqs. (F1) and (F2) into Eq. (F3) and evaluating
the integral then leads to

fx(x)=
AgB

Ag
g

(x+Bg)1+Ag
. (F4)

This is a Lomax distribution (compare with Eq., 28)
with shape parameter Ag = 1/A and scale parameter Bg =

B/A= BAg.
The expected value µPx = Ag/Bg = 1/B and the variance

is σ 2
Px
= Ag/B

2
g = A/B

2. This immediately implies that an
experimental estimate of B provides an estimate of the ex-
pected disentrainment rate E(Px)= µPx , and an estimate of
A together with B provides an estimate of the variance of Px .

Because Px is a random variable, and because the expo-
nential distribution, Eq. (F1), implies isothermal conditions,
we now use Eq. (16) to write

Px =
γ mgµcosθ
αEa0

, (F5)

which is the reciprocal of the deposition length Lc with spec-
ified average energy Ea0. For a given particle mass m, slope
angle θ and energyEa0 , the quantities γ , µ and α are random
variables. That is, we may envision an ensemble of combi-
nations of these quantities, each of which yields isothermal
conditions. In turn, envision a great number (cohort) of par-
ticles. Then fPx (Px;α,β)dPx is the probability that particles
possess the value Px . These particles are deposited exponen-
tially with mean µx = 1/Px . When combined with all other
exponential distributions with varying means (i.e., different
combinations of γ , µ and α), the collective effect is a Pareto
distribution. Each subset of particles with rate Px behaves
isothermally, but collectively the downslope energy variation
of the entire cohort involves net heating.

As an example, for a value ofA= 0.01 representing nearly
isothermal conditions, the gamma distribution of Px is cen-
tered about the value of 1/B (Fig. E1a) and approaches a
Dirac function in the limit of A→ 0 as the variance σ 2

Px
=

A/B2
→ 0. This represents the exponential limit of a Pareto

(or Lomax) distribution. As A increases, the distribution of
the disentrainment rate Px becomes increasingly skewed to-
ward Px = 0, which collectively gives a heavy-tailed Pareto
distribution. In turn, the distribution of the reciprocal µx =
1/Px is given by the inverse gamma distribution (Fig. E1b).
Again, in the limit of A→ 0 the mean travel distances µx of
the mixture of exponential distributions converge to the mean
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Figure F1. Plot of (a) probability density fPx (Px;Ag,Bg) of dis-
entrainment rate Px and (b) probability density of mean travel dis-
tance µx = 1/Px for A= 0.01,0.5,0.95 (Ag = 100,2,1.05) with
B = 1.

value of the Pareto distribution, namely, B. With increasing
A the mixture of mean values is distributed about the mean,
notably incorporating increasingly larger values of µx .

Inasmuch as the quantities γ , µ and α can be related to
measurable quantities – for example, particle size, particle
shape and surface roughness – then Eq. (F5) suggests the
possibility of formulating a multiplicative relation between
these properties and the shape parameter B = 1/E(Px). An
initial effort to this effect is reported by Roth et al. (2020).
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