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Abstract. Theoretical and experimental work (Furbish et al., 2021a, b, c) indicates that the travel distances of
rarefied particle motions on rough hillslope surfaces are described by a generalized Pareto distribution. The form
of this distribution varies with the balance between gravitational heating due to conversion of potential to kinetic
energy and frictional cooling by particle–surface collisions. The generalized Pareto distribution in this problem is
a maximum entropy distribution constrained by a fixed energetic “cost” – the total cumulative energy extracted
by collisional friction per unit kinetic energy available during particle motions. The analyses leading to these
results provide an ideal case study for highlighting three key elements of a statistical mechanics framework for
describing sediment particle motions and transport: the merits of probabilistic versus deterministic descriptions
of sediment motions, the implications of rarefied versus continuum transport conditions, and the consequences
of increasing uncertainty in descriptions of sediment motions and transport that accompany increasing length
scales and timescales. We use the analyses of particle energy extraction, the spatial evolution of particle energy
states, and the maximum entropy method applied to the generalized Pareto distribution as examples to illustrate
the mechanistic yet probabilistic nature of the approach. These examples highlight the idea that the endeavor is
not simply about adopting theory or methods of statistical mechanics “off the shelf” but rather involves appealing
to the style of thinking of statistical mechanics while tailoring the analysis to the process and scale of interest.
Under rarefied conditions, descriptions of the particle flux and its divergence pertain to ensemble conditions
involving a distribution of possible outcomes, each realization being compatible with the controlling factors.
When these factors change over time, individual outcomes reflect a legacy of earlier conditions that depends on
the rate of change in the controlling factors relative to the intermittency of particle motions. The implication is
that landform configurations and associated particle fluxes reflect an inherent variability (“weather”) that is just
as important as the expected (“climate”) conditions in characterizing system behavior.

1 Introduction

In three companion papers (Furbish et al., 2021a, b, c) we
examine a theoretical formulation of the probabilistic physics
of rarefied particle motions and deposition on rough hillslope
surfaces. As noted by Furbish et al. (2021a), such motions in-
clude the ravel of particles following disturbances (Roering
and Gerber, 2005; Doane, 2018; Doane et al., 2019; Roth et
al., 2020) or release from obstacles (e.g., vegetation) follow-

ing failure of the obstacles (Lamb et al., 2011, 2013; DiBiase
and Lamb, 2013; DiBiase et al., 2017; Doane et al., 2018,
2019), and the motions of rockfall material over the surfaces
of talus and scree slopes (Gerber and Scheidegger, 1974;
Kirkby and Statham, 1975; Statham, 1976). By “rarefied mo-
tions” we are referring to the situation in which moving parti-
cles may frequently interact with the surface, but rarely inter-
act with each other, such that the effects of particle–surface
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interactions dominate over effects of particle–particle inter-
actions in determining the behavior of the particles – akin
to granular shear flows at high Knudsen number (Risso and
Cordero, 2002; Kumaran, 2005, 2006).

The formulation (Furbish et al., 2021a) is based on a de-
scription of the kinetic energy balance of a cohort of particles
treated as a rarefied granular gas and a description of parti-
cle deposition that depends on the energy state of the parti-
cles. The formulation predicts a generalized Pareto distribu-
tion of particle travel distances whose form varies with the
balance between gravitational heating due to conversion of
potential to kinetic energy and frictional cooling by particle–
surface collisions. Specifically, the generalized Pareto distri-
bution varies from a bounded form associated with thermal
collapse and rapid deposition to an exponential form repre-
senting isothermal conditions to a heavy-tailed form associ-
ated with net heating of particles and decreased deposition.
As described in Furbish et al. (2021b), these varying forms of
the generalized Pareto distribution are consistent with labo-
ratory measurements of particle travel distances reported by
Gabet and Mendoza (2012) and Furbish et al. (2021b), as
well as with field-based measurements of travel distances re-
ported by DiBiase et al. (2017) and Roth et al. (2020). More-
over, as described in Furbish et al. (2021c), the generalized
Pareto distribution in this problem is a maximum entropy dis-
tribution (Jaynes, 1957a, b) constrained by a fixed energetic
“cost” – the total cumulative energy extracted by collisional
friction per unit kinetic energy available during particle mo-
tions. That is, among all possible accessible microstates –
the many different ways to arrange a great number of par-
ticles into distance states where each arrangement satisfies
the same fixed total energetic cost – the generalized Pareto
distribution represents the most probable arrangement.

The analyses of rarefied particle motions in these compan-
ion papers collectively provide an ideal case study for high-
lighting key elements of a statistical mechanics framework
for describing sediment particle motions and transport. In-
deed, as noted in the second companion paper (Furbish et al.,
2021b):

We enjoy eating our favorite tortilla chips, and
mostly we enjoy them with a well-prepared dip,
for example, spicy guacamole. But . . . [t]he ex-
perience then is no longer about the chips – it’s
about the dip. The chips are just the guacamole de-
livery system . . . Similarly, these companion pa-
pers nominally concern particle motions on in-
clined rough surfaces. But these particles are just
the delivery system. The dip consists of the coher-
ent statistical mechanics framework for describ-
ing the particle motions, and a demonstration that
such a framework . . . is possible. This represents
a solid basis for . . . fresh ideas concerning particle
motions more generally.

To wit, the purpose of this fourth companion paper is to
elaborate the italicized (added) part of the paragraph above.
Specifically, we consider three framework elements: (1) the
purpose and merits of probabilistic versus deterministic de-
scriptions of particle motions, (2) the implications of rarefied
versus continuum transport conditions in defining the particle
flux and its divergence, and (3) the consequences of increas-
ing uncertainty in descriptions of sediment transport that ac-
company increasing length scales and timescales.

We suggest that the timing is ideal for offering perspec-
tive on these elements of a statistical mechanics framework.
Amidst echoes from the pioneering work of Einstein (1937)
on bed load particle motions and that of Culling (1963) on
hillslope soil creep, there is a reemerging interest in proba-
bilistic descriptions of sediment motions and transport. For
example, recent efforts involve descriptions of (1) bed load
particle motions and transport; (2) bed load tracer parti-
cle motions, including effects of particle–bed exchanges;
(3) nonlocal sediment transport on hillslopes; (4) particle mo-
tions in soils, including tracer particles; and (5) rain splash
transport (Appendix A). (We also note that there is a paral-
lel interest in describing the statistical physics of relatively
dense granular materials, e.g., Bi et al., 2015.) However, this
effort is a patchwork of approaches and methods, and to date
it mostly has involved kinematic descriptions of sediment
motions and transport with limited elucidation of the associ-
ated mechanics. We believe that it is important for the philo-
sophical underpinning of this growing effort to be part of the
conversation, adding to recent perspectives on bed load trans-
port offered by Ancey (2020a, b). This includes attention to
commonalities in the formalism used to describe transport in
different settings, for example, in relation to transport on hill-
slopes and within rivers. The conversation also must include
an honest assessment of the expectations and limitations of
probabilistic descriptions of transport.

In Sect. 2 we summarize key material from the three com-
panion papers for reference in later sections. In Sect. 3 we
step back and consider in general terms the philosophical ba-
sis of a statistical mechanics framework for describing sedi-
ment motions and transport. In Sect. 4 we return specifically
to the problem of rarefied particle motions on hillslopes and
use the analysis to illustrate elements of the framework. In
Sect. 5 we consider implications of the statistical mechanics
description of rarefied particle motions on hillslopes. In sev-
eral sections we provide historical background on the techni-
cal material covered.

2 Background

With reference to material in Furbish et al. (2021a, b, c), the
problem of describing rarefied particle motions on hillslopes
is motivated by the entrainment forms of the flux and the
Exner equation. Namely, let fr (r;x, t) denote the probability
density function of the travel distances r of particles whose
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motions start at x, and let Rr (r;x, t) denote the associated
exceedance probability function. Assuming motions are only
in the positive x direction and noting that x′ = x−r , the par-
ticle volumetric flux q(x, t) may be written as (Furbish and
Roering, 2013; Furbish et al., 2017)

q(x, t)=

x∫
−∞

Es(x′, t)Rr (x− x′;x′, t) dx′ , (1)

where Es(x, t) denotes the particle volumetric entrainment
rate at position x and time t . In turn, letting ζ (x, t) denote
the local land-surface elevation, the entrainment form of the
Exner equation is (Tsujimoto, 1978; Nakagawa and Tsuji-
moto, 1980)

csζ̇ (x, t)= cs
∂ζ (x, t)
∂t

=

−Es(x, t)+

x∫
−∞

Es(x′, t)fr (x− x′;x′, t) dx′ , (2)

where cs = 1−φs is the particle volumetric concentration of
the surface with porosity φs. The central elements of Eqs. (1)
and (2) are the probability density function fr (r;x, t) and the
associated exceedance probability functionRr (r;x, t). These
are related to the disentrainment rate function defined by

Pr (r;x, t)=
fr (r;x, t)
Rr (r;x, t)

, (3)

which, when multiplied by dr , is interpreted as the prob-
ability that a particle will become disentrained within the
small interval r to r + dr , given that it “survived” travel to
the distance r . The disentrainment rate, Eq. (3), connects the
descriptions of the flux and the rate of change in the land-
surface elevation, Eqs. (1) and (2), to the physics of particle
motions and disentrainment. We also note that Eqs. (1) and
(2) are nonlocal in form and scale independent.

The appearance of time t in Eqs. (1) and (2) is examined
further below. Suffice it to say here that this is in reference
to time variations associated with ensemble expected values
of the flux q(x, t) and the rate ζ̇ (x, t) or to variations in ap-
propriately defined time averages of these quantities (Fur-
bish and Haff, 2010). In addition we are neglecting particle
travel times throughout. For reference below the left side of
Eq. (2) also may be written in terms of the divergence form
of the Exner equation, namely, csζ̇ (x, t)= cs∂ζ (x, t)/∂t =
−∂q(x, t)/∂x when the flux q(x, t) is specified by Eq. (1)
(Appendix B).

The analysis presented in Furbish et al. (2021a) describes
the mechanical basis of the disentrainment rate Pr (r;x, t)
and the associated probability distribution fr (r;x, t). This
involves a consideration of the kinetic energy balance of rar-
efied particle motions and how this balance determines the
deposition of particles in relation to their energy state. In par-
ticular the analysis leads to the result that for a given particle

size and shape the disentrainment rate on an inclined surface
with uniform slope and roughness is

Pr (r;x, t)=
1

Ar +B
, (4)

which in turn leads to the generalized Pareto distribution,

fr (r;x, t)=
B1/A

(Ar +B)1+1/A , (5)

where A ∈ R is a shape parameter and B > 0 is a scale pa-
rameter (Pickands, 1975; Hosking and Wallis, 1987) (Fig. 1).
The cumulative distribution is

Fr (r;x, t)=

{
1− B1/A

(Ar+B)1/A A 6= 0
1− e−r/B A= 0 ,

(6)

and the exceedance probability is

Rr (r;x, t)=

{
B1/A

(Ar+B)1/A A 6= 0
e−r/B A= 0 .

(7)

For A< 1 the mean is

µr =
B

1−A
, (8)

and for A< 1/2 the variance is

σ 2
r =

B2

(1−A)2(1− 2A)
. (9)

The mean is undefined for A≥ 1 and the variance is unde-
fined for A≥ 1/2. Note that because the density fr (r;x, t)
may vary (slowly) with time t , the parameters A and B also
may vary with time.

In mechanical terms the shape and scale parameters A and
B are

A=
α

γ

[
S

µ
− 1+

1
α

(γ − 1)
]

and (10)

B =
α

γ

Ea0

mgµcosθ
. (11)

Here, S is the magnitude of the slope inclined at an an-
gle θ , m is particle mass, g is acceleration due to gravity,
µ is a friction factor due to extraction of particle kinetic
energy Ep = (m/2)u2 where u is the surface-parallel par-
ticle velocity, Ea = 〈Ep〉 is the arithmetic average particle
energy so that Ea0 is the initial average energy at r = 0,
γ = Ea/Eh where Eh is the harmonic average particle en-
ergy, and α = α0/(1−µ1Ki) where α0 and µ1 are factors of
order unity and Ki is the Kirkby number defined by

Ki=
S

µ
, (12)

which represents the ratio of gravitational heating to fric-
tional cooling. Here we emphasize that mg cosθ in Eq. (11)
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Figure 1. Plot of probability density fr (r;x) versus travel distance r for scale parameter B = 1 and different values of the shape parameter
A for (a) A< 0 and (b) A≥ 0 with associated exceedance probability plots (insets). Figure reproduced from companion paper (Furbish et
al., 2021a). Compare with Fig. 1 in Hosking and Wallis (1987).

is not to be interpreted as the static normal weight of the par-
ticle, and µ is not interpreted as a Coulomb-like friction co-
efficient. Rather, µ∼ 〈βx〉, where 〈βx〉 denotes the expected
proportion of particle kinetic energy extracted per particle–
surface collision during downslope motion. Details are pro-
vided in Furbish et al. (2021a, b).

Following Furbish et al. (2021b) we calculate the quanti-
ties

R∗ = R
A
r and r∗ =

A

B
r + 1 . (13)

Based on Eq. (7), values of the modified exceedance prob-
ability R∗ and the dimensionless travel distance r∗ should
collapse to a straight line in a log–log plot with slope of −1
(Fig. 2). The data in this figure, spanning more than 3 or-
ders of magnitude of the dimensionless travel distance r∗,
are compiled from Furbish et al. (2021b; Fig. 16 therein).
Values of A and B are estimated from laboratory measure-
ments of particle travel distances reported by Gabet and
Mendoza (2012) and Furbish et al. (2021b) and from field-
based measurements of travel distances reported by DiBiase
et al. (2017) and Roth et al. (2020). This plot does not prove,
but nonetheless supports, the idea that the generalized Pareto
distribution correctly describes the energetics of the behav-
ior of rarefied particle motions for a variety of slope and sur-
face roughness conditions. The data fits for individual exper-
iments with detailed explanation are presented in Furbish et
al. (2021b).

We refer to elements of the analysis summarized here in
several sections below. Meanwhile we turn to the philosophy
of the statistical mechanics framework.

Figure 2. Plot of modified exceedance probability R∗ versus di-
mensionless travel distance r∗ and line with log–log slope of −1
for laboratory experiments described by Gabet and Mendoza (2012)
(green) and Furbish et al. (2021b) (red) and field-based experiments
described by DiBiase et al. (2017) (blue) and Roth et al. (2020)
(black). Data for A< 0 fall to the left of r∗ = 100

= 1 with values
in the tails represented by smaller values of r∗. Data for A> 0 fall
to the right of r∗ = 100

= 1 with values in the tails represented by
larger values of r∗. Total data number is N = 5671. Figure repro-
duced from Furbish et al. (2021c).

3 Philosophy of the statistical mechanics framework

Although our companion papers are focused on rarefied par-
ticle motions on hillslopes, here we purposefully step back
and initially consider the broader topic of probabilistic de-
scriptions of sediment motions and transport. Borrowing
ideas and wording from a book in preparation, we briefly
consider elements of three foundational concepts in the natu-
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ral sciences that repeatedly appear in the study of complex
systems, focusing here on sediment systems: (1) the rela-
tion between mechanistic descriptions of sediment behav-
ior and probabilistic versus deterministic formulations of this
behavior, (2) differences in rarefied versus continuum condi-
tions;, and (3) the treatment of uncertainties in descriptions
of system behavior that grow with increasing length scales
and timescales considered. The point of this brief overview
is to ask ourselves, at least momentarily, to step out of our
comfort zones as informed and conditioned by our different
backgrounds in, say, particle mechanics, continuum mechan-
ics, probability and statistics, and, by the length scales and
timescales with which we are most familiar. Following this
overview, we return to the problem of rarefied particle mo-
tions and use it to illustrate the philosophical points involved.

3.1 Probabilistic versus deterministic descriptions

In learning how to describe the behavior of mechanical sys-
tems, mostly we are initially exposed to deterministic ex-
amples. We study Newton’s laws as these pertain to sim-
ple particle systems and then move on to the behavior of
solids and fluids treated as continuous materials, wrapping
our heads around Lagrangian versus Eulerian perspectives.
The formalism is unambiguous, and describing the behavior
of a well-constrained system is in principle straightforward.
Indeed, much of the legacy of geophysics resides in the de-
terminism of continuum mechanics. Perhaps it is therefore
natural that we might envision that a mechanistic descrip-
tion of the behavior of a system implies that such a descrip-
tion ought to be, or perhaps only can be, a deterministic one.
Such a perception represents a lost opportunity. The most el-
egant counterpoint example is the field of classical statisti-
cal mechanics – devoted specifically to the probabilistic (i.e.,
non-deterministic) treatment of the behavior of gas particle
systems in order to justify the principles of thermodynamics
– yet which is no less mechanical in its conceptualization of
this behavior than, say, the application of Newton’s laws to
the behavior of a deterministic system consisting of the in-
teractions of a few billiard balls or involving the motion of a
Newtonian fluid subject to specific initial and boundary con-
ditions.

Once steeped in the language of mechanics, we under-
standably take comfort in mechanistic descriptions of sys-
tem behavior. Specifically, we invest trust in the underlying
foundation, and implied rigor, provided by classical mechan-
ics. This is a good thing. But given the complexity and the
uncertainty in describing the behavior of sediment systems,
here it is essential to consider the idea that the concepts and
language of probability are well suited to the problem of de-
scribing this behavior – precisely because of the complex-
ity and uncertainty involved. This involves relaxing our ex-
pectations, for example, that a deterministic-like relationship
exists between the flux of bed load sediment and the fluid
stress imposed on the streambed or between the flux of sed-

iment on a hillslope and the local land-surface slope – par-
ticularly when these involve noise-driven processes, as de-
scribed below. This idea of leaning on probability to describe
the behavior of sediment systems is not as straightforward
as describing the behavior of idealized gas particle systems.
Nonetheless, the objective is the same: to be mechanistic, yet
probabilistic. These worldviews are entirely compatible.

To be sure, the extent to which the tools of probability can
be fruitfully brought to bear to characterize particle motions
and transport varies with the specific process considered and
the information we have available to constrain any particular
probabilistic description of motions. For example, we know
far more about the probabilistic qualities of bed load sed-
iment transport in shear flows based on flume experiments
than, say, soil particle transport and mixing associated with
bioturbation and granular creep (Appendix A). The objective
therefore is to aim at probabilistic descriptions of sediment
particle motions and transport that lean on the style of think-
ing of statistical mechanics, recognizing that this endeavor is
not simply about adopting established theory or methods “off
the shelf”. Rather, such efforts involve tailoring descriptions
of transport to the process, the scales of interest, and the tech-
niques of observation and measurement used. The examples
covered below illustrate these points.

3.2 Rarefied versus continuum conditions

The continuum hypothesis – the essential basis of continuum
mechanics – stands as a triumph of the physical sciences.
(Let us be clear that we are referring to the version of this
hypothesis as applied to descriptions of real material sys-
tems rather than to the related mathematical idea posed by
Georg Cantor, that there is no set of numbers whose size
falls between the two infinities associated with the natural
numbers and the real numbers.) This hypothesis allows us
to envision many solid and fluid materials at our ordinary
macroscopic scale of observation as being continuous things
whose properties and behavior can be described using that
part of the calculus given to continuously differentiable func-
tions – even though when we focus our attention on the scale
of the elements of a “continuous” material, that is, at the par-
ticle scale, we discover that it is decidedly discontinuous.
Indeed, many of the definitions of basic, familiar quantities
describing the properties, rheology and motion of real mate-
rials – their intensive properties, thermodynamic state vari-
ables, rheological coefficients, discharges and fluxes, the di-
vergence of these fluxes, etc. – at the outset assume continu-
ous substances and continuum behavior that involve smooth
changes with respect to space and time. That said, this lovely
continuum siren is to be avoided as a de facto starting point in
descriptions of sediment motions and transport. Many sedi-
ment particle motions on Earth’s surface are patchy, intermit-
tent and demonstrably rarefied (Furbish et al., 2016b, 2018c;
Ancey, 2020a, b) – conditions that are at odds with contin-
uum formulations of these motions.
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For these reasons an appropriate strategy involves con-
structing descriptions of the collective behavior of sediment
particles without assuming a continuum behavior at the out-
set. Indeed, precise definitions of the sediment particle flux
and its divergence do not assume continuum conditions (An-
cey, 2010; Furbish et al., 2012a, 2016b, 2017; Ancey and
Pascal, 2020). Instead, the idea is to develop more general
(probabilistic) formulations of this behavior and then ask the
following question: under what conditions does a continuum
formulation of behavior make sense? As a point of refer-
ence, when continuum behavior is assumed at the outset,
the Navier–Stokes momentum equation is derived from the
Cauchy momentum equation. But when viewed with respect
to particle (molecular) behavior, the Navier–Stokes equation
is derived from the Boltzmann equation – which is decidedly
probabilistic and entirely agnostic to continuum versus rar-
efied conditions. That is, the Boltzmann equation is equally
applicable to both conditions. If the continuum hypothesis is
satisfied, then it is natural to adopt the Navier–Stokes formal-
ism. On the other hand, rarefied conditions must be treated
probabilistically using methods of statistical mechanics. As
described below with respect to sediment particles, this can
include the use of continuum-like equations – noting that
“continuum-like” means continuously differentiable, not that
the particles behave as a continuum, and also noting that such
equations apply to ensemble expected conditions, not to in-
dividual realizations. This means that we must be careful in
interpreting the use of continuous probability distributions
and related functions to describe attributes of particle mo-
tions (e.g., entrainment rates, travel distances) as in Eqs. (1)
and (2).

One of the most important consequences of rarefied trans-
port conditions is this: one cannot expect to predict a well-
defined single value of the particle flux from specified, fixed
controlling factors. Even under the ideal circumstances of a
“perfect” model of the particle flux, such a prediction must be
probabilistic. That is, a given set of controlling factors yields
a probability distribution of fluxes rather than a single value.
Any individual realization therefore can involve a value that
may or may not coincide with a statistically expected value,
whether this expected value is an empirical outcome or is
predicted by a mechanical argument.

3.3 Uncertainty with growing scales

Our interest in sediment particle systems spans timescales
of less than milliseconds to hundreds of thousands of years.
The shortest timescales are represented by, say, observations
of the details of particle motions in controlled experiments
measured by high-speed imaging. Intermediate timescales
are represented by, say, measurements of transport on hill-
slopes and in rivers on human timescales pertaining to the
erosion and deposition of sediment in relation to land-use and
river management. Long timescales are represented by our
interest in understanding the evolution of hillslope and river

systems at geomorphic timescales. Similarly, our interest in
sediment systems spans length scales of less than a millime-
ter to at least tens or hundreds of kilometers. The smallest
length scales are represented by differential particle motions
during granular creep that are a fraction of a particle diameter
or in relation to the initial jiggling of bed load particles prior
to entrainment from their microtopographic “pockets”. In-
termediate length scales are represented by particle motions
involved in the dynamics of river and eolian bedforms – rip-
ples to dunes to megadunes – thence to scales involving, say,
intermittent sediment motions from the crest of a hillslope
to its base or within the extent of one or two river bends.
The largest length scales are represented by the erosion and
deposition of sediment over the scale of a hillslope–channel
network or a depositional basin.

With increasing scale (length and time) goes increasing
uncertainty in our descriptions of sediment motions and the
behavior of sediment systems. The essential reasons for this
increasing uncertainty reside in the increasing complexity,
including heterogeneity, of sediment systems as their size
increases, and in the increasing stochasticity, including the
patchiness and intermittency, of factors that influence sedi-
ment motions and transport as both the system size and the
timescale of interest increase. Equally important, with in-
creasing scale our uncertainty grows in relation to the in-
creasing difficulty, and the loss of resolution, associated with
observing and measuring quantities that enter into our de-
scriptions of sediment motions and transport – whether these
quantities involve features of the sediment itself (e.g., parti-
cle sizes and arrangements, details of particle motions), or
attributes of the factors influencing sediment transport (e.g.,
changing fluid motions, surface roughness). Moreover, in ap-
proaching climate-change timescales and longer, we can only
imagine in probabilistic terms how many of the ingredients
of sediment transport might vary (Benda and Dunne, 1997).

In relation to the uncertainty that grows with scale, we also
must consider the consequences of differences in our ability
to observe and measure quantities representing the dynamics
of “fast” versus “slow” systems as viewed relative to the hu-
man experience. Focusing specifically on the configuration
of a sediment system – a bedform, a river reach, a soil man-
tled hillslope – a fast system is one for which we can observe
and measure attributes of the particle fluxes and associated
changes in the system configuration over human timescales.
A slow system is one for which the fluxes and changes in con-
figuration are largely imperceptible over these timescales. In
simple terms, for a system consisting of N particles whose
configuration changes due to a characteristic particle flux q
[T−1], the ratio Tr ∼N/q is akin to a particle residence time.
In turn, let Te denote a characteristic observation time – an
experimental run time, the duration of a research project, the
time record of satellite images, a researcher’s career. Then
the ratio Te/Tr is a rough measure of our capacity to observe,
although not necessarily measure, the “completeness” of the
dynamics of the system, that is, its full dynamical behavior.
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Note that individual particle motions might be fast, but their
contribution to changes in system configuration may be slow,
as in the case of rarefied particle transport on hillslopes. From
this perspective the stark contrasts between the capabilities
and strategies of studies of transport in hillslope and river
systems and their evolution become clear. For example, the
ability to create a small version of a river reach in a labo-
ratory and then measure long time series of bed load flux
in order to fully characterize the fluctuations and ensemble-
averaged behavior of such series in relation to bedform dy-
namics (Dhont and Ancey, 2018; Ancey and Pascal, 2020) is
simply not a possibility in studies of natural soil creep and
its long-term consequences. Indeed, we have only recently
achieved the ability to measure small particle motions in-
volved in soil creep (Deshpande et al., 2021), yet the parti-
cle residence times of soil mantled hillslopes may be 10 000
years or more, thus requiring indirect measures of particle be-
havior such as tracer particle mixing (Furbish et al., 2018c;
Gray et al., 2020).

These ideas support a strong case for incorporating con-
cepts and methods of probability – the natural language of
uncertainty – into our descriptions of sediment particle mo-
tions and transport, tuning the specifics to the demands of
different scales. This is as much a philosophical choice as a
technical one; it is a choice to make the treatment of uncer-
tainty a key part of the problem at the outset (Ancey and Pas-
cal, 2020; Korup, 2020). Of course the strategies and meth-
ods vary with scale, as do the sources of uncertainty, in rela-
tion to the transport processes involved and the techniques of
observation and measurement used. The purpose of explic-
itly incorporating probabilistic concepts in describing trans-
port is to use this as a framework to explore, for example,
the consequences of patchiness and intermittency of sedi-
ment motions in formulations of transport rates or how a pre-
dicted transport rate at a specified position and time within
a real system actually represents a statistically expected be-
havior associated with a distribution of possible transport
rates. The objective is to illustrate that this approach to un-
certainty, combined with aiming at mechanistic, albeit proba-
bilistic, descriptions of sediment particle behavior – avoiding
a continuum description at the outset – will move us toward a
deeper understanding of sediment particle motions and trans-
port in both experimental and natural systems. We now step
through the elements of the probabilistic framework outlined
in the preceding sections with specific reference to the prob-
lem of rarefied particle motions on hillslopes.

4 Elements of the framework

4.1 Probabilistic versus deterministic descriptions

Here we consider three elements of the formulation presented
in Furbish et al. (2021a, b, c) to highlight the purpose and
merits of a probabilistic description of particle motions and
disentrainment. The first concerns our treatment of the ex-

traction of kinetic energy of a particle during particle–surface
collisions as a random variable versus appealing to the de-
terministic idea of fixed coefficients of restitution. The sec-
ond concerns our use of the Fokker–Planck equation to de-
scribe the changing energy states of the particles during their
downslope motions, leading to deposition, versus consider-
ing only average particle energy conditions. The third con-
cerns our efforts to demonstrate that the generalized Pareto
distribution in this problem is a maximum entropy distribu-
tion. The objective is to highlight the mechanistic yet proba-
bilistic nature of the analyses.

4.1.1 Particle energy extraction

We start with some background. In classical statistical me-
chanics the starting point for describing the motions and col-
lective behavior of particles undergoing conservative colli-
sions is the Boltzmann equation. This equation describes the
evolution of the joint probability density function of parti-
cle positions and velocities in relation to the forces acting on
the particles. Depending on the formulation of particle colli-
sions (e.g., Chapman–Enskog theory), the Boltzmann equa-
tion leads to the Navier–Stokes equation in the continuum
limit of vanishing Knudsen number. For dissipative colli-
sions in granular materials, however, one must incorporate
effects of energy losses during particle collisions. In pioneer-
ing work, Haff (1983) formulated the hydrodynamic ana-
logue of the Navier–Stokes equations for granular flows. In
this formulation he envisioned simple inelastic collisions and
appealed to the normal coefficient of restitution to charac-
terize energy losses during collisions, neglecting the details
of particle collisions in the scalar treatment. The thermody-
namic temperature is replaced with the granular temperature,
and the hydrodynamic equations are supplemented with the
mechanical energy equation in order to characterize granu-
lar flow behavior. One of the key outcomes of this work is
Haff’s cooling law (Brito and Ernst, 1998; Nie et al., 2002;
Brilliantov and Pöschel, 2004; Dominguez and Zenit, 2007;
Brilliantov et al., 2018; Yu et al., 2020), which predicts that
when the external source of energy is removed the granular
temperature decays with time as ∼ t−2 in the homogeneous
cooling state for a velocity-independent coefficient of resti-
tution (Brilliantov and Pöschel, 2005; Yu et al., 2020).

Now consider particle–surface collisions in the rarefied
particle motion problem. Of interest are downslope motions
and travel distances. The energy balance described in Furbish
et al. (2021a) thus focuses on the particle kinetic energy state
Ep = (m/2)u2 involving the surface-parallel velocity u. En-
ergy is extracted during particle–surface collisions, and anal-
ogous to collisions in the granular gas problem we define the
proportion of energy extracted during a collision as

βx =−
1Ep

Ep
. (14)

The following was noted by Williams and Furbish (2021):
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The quantity βx is nominally related to a coef-
ficient of restitution εx as βx = 1− ε2

x . However,
the change in translational energy 1Ep is parti-
tioned between deformational friction, rotational
energy and transverse motion, so the coefficient εx
(and therefore the factor βx) cannot simply repre-
sent a coefficient of restitution – although particle
collision theory suggests that this coefficient in-
cludes effects of normal and tangential coefficients
of restitution as normally defined (Brach, 1991;
Stronge, 2000). This means that βx must be treated
formally as a random variable rather than a fixed
deterministic quantity as in granular gas theory.

Indeed, unlike idealized conditions often envisioned in
collision theory, moving particles “see” a rough irregular sur-
face rather than a smooth planar surface such that, for any in-
cident trajectory angle measured relative to the x axis, the
actual incident collision angle may vary significantly; this
includes angular incidence measured in the transverse di-
rection depending on the local configuration of the surface.
The geometrical irregularity of natural particles further in-
creases the geometrical complexity of possible collisions,
and collision histories during downslope motion are unique
and highly variable. Rather than attempting to consider the
mechanical details of these motions and collisions in a de-
terministic manner (see Appendix E in Furbish et al. 2021a),
it instead becomes defensible to more simply pool the par-
titioning of energy into different forms and treat this energy
extraction as a random variable, as in Eq. (14). In effect we
are asking ourselves to blur our eyes to the myriad details
of surface roughness texture, particle shape, particle trajecto-
ries and collision mechanics and instead aim at a granularity
suited to the task. This is not dissimilar to granular gas theory
in which details of collisions are neglected, and energy dissi-
pation is assumed to be adequately characterized by a single
coefficient of restitution, either fixed or velocity dependent,
although recent efforts have treated this quantity as a random
variable (Gunkelmann et al., 2014; Serero et al., 2015).

With this description of particle energy extraction in place,
it then becomes straightforward to characterize the number
of particle–surface collisions per unit distance and in turn
the collisional energy loss per unit distance in relation to the
surface-parallel velocity u (Furbish et al., 2021a). These de-
scriptions are entirely analogous to the particle collision fre-
quency and the rate of energy loss due to collisions in granu-
lar flows, as described by Haff (1983). This provides the basis
for defining the characteristic deposition length as described
in the next section.

What might an alternative approach look like? One pos-
sibility involves using discrete element methods (DEMs) to
directly mimic particle motions on rough surfaces, extracting
information from the simulations to characterize particle–
surface collisions and energy extraction. Such simulations
essentially represent numerical analogues of physical experi-

ments. An obvious advantage is speed in examining different
conditions, for example, surface slopes, roughness configu-
rations and particle sizes, using the motions of a great num-
ber of particles versus the relatively small numbers of parti-
cles used in experiments. Add to this the capability to readily
extract information on details of motions and collisions that
are not accessible in physical experiments, except possibly
via high-speed imaging. Disadvantages include the difficulty
of mimicking irregular particle shapes and creating realistic
surface-roughness textures. (And let us note that informed
use of DEMs, for example LAMMPS and LIGGGHTS, is
not a plug-and-play endeavor.) Nonetheless, one could po-
tentially learn much in a generic sense about particle–surface
interactions from DEMs, particularly if conducted in con-
cert with carefully designed physical experiments. This in-
cludes assessing how sensitive macroscopic measures of par-
ticle motions (e.g., travel distances) are to variations in con-
trolling factors – for example, particle shape and roughness
texture – as these factors are varied. But rather than imagin-
ing the need to mimic all details of realistic conditions associ-
ated with a hillslope surface prototype, simulations should be
designed to examine particle–surface interactions in a man-
ner that allows for generalization of elements of collisional
friction.

Herein arises a need for pause in using DEMs. Namely,
these methods can quickly generate enormous amounts of
numerical information on the details of particle motions and
collisions. At risk is using a big numerical hammer to pound
on the problem, mimicking particle motions without regard
to elucidating general underlying principles of particle be-
havior, defaulting to descriptions of outcomes without gain-
ing a deeper understanding of the systematics producing
them – for example, without learning the mechanical basis
of the deposition length scale that sets the pattern of deposi-
tion (Sect. 4.1.2) or without learning the form of the distribu-
tion of travel distances, the mechanical basis of its parametric
values, or its maximum entropy properties (Sect. 4.1.3). This
speaks to the relevance of the cliché that much of the power
of numerical simulations resides in their use in concert with
theory and experiments (Emanuel, 2020). Indeed, the success
of numerical simulations that have revolutionized the study
of granular gas dynamics grows directly from the ground-
ing of this topic in kinetic and statistical mechanics theory
(e.g., Brilliantov and Pöschel, 2004), which both motivates
and guides the design of numerical treatments of granular
gases. Similar remarks pertain to parallel efforts focused on
the behavior of relatively dense granular materials.

4.1.2 Energy states and the Fokker–Planck equation

Consider a second element of the formulation, which con-
cerns our use of the Fokker–Planck equation to describe the
changing energy states of the particles during their downs-
lope motions, leading to deposition, versus considering only
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average particle energy conditions. We start with some back-
ground.

The Fokker–Planck equation represents a triumph of clas-
sical statistical mechanics. Although originally developed
to describe the time evolution of the distribution of veloc-
ities of particles subjected to viscous forces and random
forces associated with collisions, the name of this equa-
tion now is more generally associated with other observ-
able quantities whose distributions evolve according to an
equation having the same form. For example, with refer-
ence to the distribution of particle positions rather than ve-
locities, the Fokker–Planck equation historically is referred
to as the Smoluchowski equation. It also is referred to as
the Kolmogorov forward equation in the context of Markov
processes. Although the Fokker–Planck equation can be de-
rived in several ways, perhaps the most general treatment
starts with a master equation, a general probabilistic expres-
sion of conservation of probability associated with observ-
able states. Like the Fokker–Planck equation, there are sev-
eral versions of the master equation, sometimes referred to as
the Chapman–Kolmogorov equation, depending on the field
and application. Here we focus on a continuous form of the
master equation as described by Chandrasekhar (1943) and
Risken (1984). We start with two familiar examples to de-
velop the essential concepts before turning to the unfamiliar
problem of rarefied particle motions addressed in Furbish et
al. (2021a). Our objective is to illustrate the statistical me-
chanics framework of the analysis.

Let fx(x, t) denote the probability density function of par-
ticle positions x at time t . In turn let r = x(t + dt)− x(t) de-
note a small particle displacement during the interval dt , and
let fr (r;x, t) denote the probability density function of dis-
placements r occurring during this interval. At time t+dt the
density of particle positions x is then given by

fx(x, t + dt)=

∞∫
−∞

fr (r;x− r, t)fx(x− r, t) dr . (15)

This is one form of the master equation. It says that the prob-
ability density of particles at position x at time t+dt involves
particle displacements r during dt to this position x from all
possible starting locations x−r as well as motions away from
x. This expression is nonlocal and scale independent. It is ex-
amined in more detail by Furbish et al. (2012a) with respect
to bed load particle motions.

Now, assuming the density fr (r;x, t) is peaked near r = 0
with finite first and second moments, we may expand the in-
tegrand in Eq. (15) as a Taylor series to second order (referred
to as a Kramers–Moyal expansion), subtract fx(x, t) from
both sides, then divide by dt and take the limit as dt→ 0
to obtain a Fokker–Planck equation (or the Smoluchowski
equation), namely,

∂fx(x, t)
∂t

=−
∂

∂x
[k1(x, t)fx(x, t)]

+
∂2

∂x2 [k2(x, t)fx(x, t)] . (16)

In the language of statistical mechanics, k1(x, t)=
limdt→0(1/dt)〈r〉 [L T−1] is a drift coefficient or drift speed,
and it is physically interpreted as the ensemble-averaged
particle velocity. The quantity k2(x, t)= limdt→0(1/2dt)〈r2

〉

[L2 T−1] is a diffusion coefficient equal to one-half the rate
of change in the variance of particle positions, namely, a
diffusivity. The diffusive term in Eq. (16) is a mathematically
local approximation of the nonlocal behavior embodied in
the integral form of the master equation, Eq. (15). Note that
the Fokker–Planck equation, Eq. (16), is like an ordinary
advection–diffusion equation, although it describes the time
evolution of the probability distribution fx(x, t) of particle
positions x. This form of the Fokker–Planck equation is
the basis of numerous descriptions of sediment particle
transport, including tracer particles, in rivers and soils and
by rain splash (see Appendix A).

As a point of reference, the Fokker–Planck equation also
can be obtained from the Langevin equation, a stochastic dif-
ferential equation originally used to describe the behavior
of Brownian particles. Moreover, in the specific context of
bed load sediment transport, Ancey and Heyman (2014) and
Heyman et al. (2014) show that for a birth–death Markov
process describing the number of active particles within a
streambed control volume, the evolution of the probability
distribution of this number can be described as a Fokker–
Planck equation obtained from the master equation repre-
senting transitions among number states. This makes use of
the idea (Gardiner, 1983) that the probability distribution of
number states can be represented as a mixture of Poisson
distributions with varying rates and represents an alternative
to the Kramers–Moyal expansion for conditions involving
small particle numbers with large relative fluctuations.

Here is a particularly important sidebar. As probabilis-
tic expressions the master equation and the Fokker–Planck
equation are entirely agnostic to continuum versus rarefied
conditions; they are equally applicable to both. If in an indi-
vidual system (realization) the continuum hypothesis is sat-
isfied – a condition that is independent of the probabilis-
tic basis of the master equation or the Fokker–Planck equa-
tion – then the probabilistic formulation based on ensemble-
expected conditions and its continuum counterpart are essen-
tially one and the same. If, however, the continuum hypothe-
sis is not satisfied, then one must appeal to a probabilistic for-
mulation of ensemble-expected conditions (in order to justify
the use of continuously differentiable equations), with the
proviso that any prediction of the behavior of an individual
(rarefied) system is probabilistic in nature. In other words,
using the Fokker–Planck equation, Eq. (16), to describe the
behavior of a system under rarefied conditions is in effect the
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same as using a continuum-like equation, where “continuum-
like” means continuously differentiable, not that the particles
behave as a continuum. Because of the significance of these
points, we have reproduced in Appendix C key material from
Appendix A presented in Furbish et al. (2018c). We return to
the idea of rarefied versus continuum conditions in Sect. 4.2.

Now let fu(u, t) denote the probability density function
of particle velocities states u at time t . In turn let q = u(t +
dt)− u(t) denote a small change in the velocity state during
the interval dt , and let fq (q;u, t) denote the probability den-
sity function of the changes q occurring during this interval.
At time t + dt the density of particle velocity states u is then
given by a master equation having the same form as Eq. (15).
Again assuming the density fq (q;u, t) is peaked near q = 0
with finite first and second moments, we follow the develop-
ments above to obtain a Fokker–Planck equation describing
the time evolution of the density fu(u, t) over the velocity
domain, namely,

∂fu(u, t)
∂t

=−
∂

∂u
[k1(u, t)fu(u, t)]

+
∂2

∂u2 [k2(u, t)fu(u, t)] . (17)

Now the drift coefficient k1(u, t)= limdt→0(1/dt)〈q〉
[L T−2] is interpreted as an acceleration, or the
ensemble-averaged force per unit particle mass acting
on particles with velocity u. The diffusion coefficient
k2(x, t)= limdt→0(1/2dt)〈q2

〉 [L2 T−3] is the rate of change
in the variance of velocity fluctuations about u, akin to a
change in kinetic energy. Note that in going from a Fokker–
Planck equation involving particle positions, Eq. (16), to one
involving particle velocities, Eq. (17), the drift coefficient
k1 transitions from a velocity to an acceleration, and the
diffusion coefficient k2 transitions from a rate of change in
the variance of positions to a rate of change in the variance
of velocities.

As a point of reference, Furbish et al. (2012b) start with
the Fokker–Planck equation given by Eq. (17) to examine
the statistical equilibrium distribution of the streamwise ve-
locities of bed load particles. Wu et al. (2020) elaborate this
idea by demonstrating that a large proportion of long parti-
cle hops experiencing relatively large velocities “results in a
Gaussian-like velocity distribution, while a mixture of both
short and long hop distance particles leads to an exponential-
like velocity distribution.”

With these ideas in place, we now turn to the problem of
rarefied particle motions on rough hillslopes. Here is where
we highlight the idea that the endeavor is not simply about
adopting theory or methods “off the shelf” but rather involves
appealing to the style of thinking of statistical mechanics
while tailoring the description to the process.

Because particle motions in this problem are highly rar-
efied and intermittent, we appeal to the idea of a cohort of
particles – a Gibbs-like ensemble of systems, each contain-
ing one particle that is subjected to the same physics during

downslope motion (Appendix B in Furbish et al., 2021a).
Moreover, because the formulation is centered on particle
travel distances and therefore on deposition over space rather
than time, it aims at describing the evolution of the ensemble
distribution of particle energy states with respect to downs-
lope position x. Thus, let fEp (Ep,x) denote the probability
density function of particle energy states Ep at position x. In
turn let q = Ep(x+dx)−Ep(x) denote a small change in the
energy state over the interval dx, and let fq (q;Ep,x) denote
the probability density function of the changes q occurring
over this interval. At position x+ dx the density of particle
energy states Ep is then given by a master equation having
the same form as Eq. (15), where the particle position (state)
x is replaced with the energy state Ep and time t is replaced
with position x (Appendix C in Furbish et al., 2021a). Again
assuming the density fq (q;Ep,x) is peaked near q = 0 with
finite first and second moments, we follow the developments
above to obtain a Fokker–Planck equation describing the spa-
tial evolution of the density fEp (Ep,x) over the energy do-
main, namely,

∂fEp (Ep,x)

∂x
=−

∂

∂Ep
[k1(Ep,x)fEp (Ep,x)]

+
∂2

∂E2
p
[k2(Ep,x)fEp (Ep,x)] . (18)

In this problem, unlike the examples above, the drift co-
efficient k1(Ep,x) [M L T−2] has two parts: a fixed spatial
rate k1h =mg sinθ of gravitational heating due to conver-
sion of potential to kinetic energy and a spatial cooling rate
k1c(Ep,x)≈mgµcosθ due to collisional friction. These are
interpreted as average spatial rates of change in particle en-
ergy per unit distance; each is a force. That the drift coeffi-
cient involves two parts is similar to the description of parti-
cle motions in soils provided by Furbish et al. (2009b), where
gravitational settling motions are distinguished from scatter-
ing motions. The quantity k2(Ep,x) is a diffusion coefficient
equal to one-half the spatial rate of change in the variance
of particle energy states. Not shown in Eq. (18) is an energy
loss term due to deposition (Furbish et al., 2021a).

With this description of the spatial evolution of the density
fEp (Ep,x) in place, it then becomes straightforward to recast
Eq. (18) into dimensionless form in order to define a charac-
teristic cooling length XcA associated with collisional fric-
tion. (Note that the analysis does not actually involve solving
the Fokker–Planck equation, Eq. (18).) This quantity is en-
tirely analogous to the advective timescale associated with an
advection (or advection–diffusion) equation where, instead
of time, it refers to a distance. Namely, in the absence of
gravitational heating, XcA is a characteristic distance over
which thermal collapse by advective cooling occurs due to
collisional friction. This allows us to associate the spatial de-
position rate with the advective cooling rate. When the cool-
ing term is integrated over all particle energy states (see Fur-
bish et al., 2021a), the resulting characteristic length scale
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Lc then has the role of an e-folding length of deposition,
which connects the energy balance to the particle mass bal-
ance. Namely, for N (x) particles,

dN (x)
dx
=−

N (x)
Lc
=−

γmgµcosθ
αEa(x)

N (x) , (19)

with deposition length Lc = αEa(x)/γmgµcosθ . Moreover,
this formulation has an important probabilistic attribute.
From Furbish et al. (2021a),

Note that the formulation does not involve specify-
ing a threshold energy for deposition . . . Whereas
low-energy particles are on average more likely
to become disentrained than are high-energy parti-
cles, a set of particles with precisely the same low
energy will for probabilistic reasons not be disen-
trained simultaneously. Each particle experiences a
unique set of conditions that disentrain it, and be-
cause of this uniqueness of conditions a particle
with energy below an arbitrarily assigned thresh-
old can with finite probability be gravitationally re-
heated to a higher-energy state. For given particle
and surface roughness conditions, the formulation
treats this aspect of disentrainment as a probabilis-
tic process . . . [in relation] to the distribution of
particle energy states and the probabilistically ex-
pected extraction of energy during collisions.

What might an alternative formulation of deposition look
like? (Having approached the problem as above, we admit
that a description of this sort represents a straw person to
criticize. Nonetheless, we also can admit that our early ef-
forts involved thinking of alternatives, so this criticism is not
blind.) Suppose we start with the assumption that the de-
position rate is inversely proportional to the average parti-
cle kinetic energy Ea, namely, dN (x)/dx =−λN with rate
constant λ∼ 1/Ea [L−1]. This might be motivated heuristi-
cally by the idea that the likelihood of deposition decreases
with increasing particle energy as characterized by the aver-
age energy Ea(x) at position x. That is, for given slope and
roughness conditions, the motions of high-energy particles
are less likely to be arrested during collisions than are those
of low-energy particles, and the average energy Ea(x) is a
measure of the overall energetic state of the particles. Ac-
cording to Eq. (19), this assumption actually would provide a
very good start on the problem! (This assumes all elements of
λ= 1/Lc could be deduced.) However, this approach would
still require a separate formulation of how the energy Ea(x)
varies with position x. And it would risk missing a critical
step revealed in the full analysis, that a key average is the
harmonic average energyEh = Ea/γ , which determines how
deposition influences the energy balance. Moreover, the full
energy balance is needed to specify the disentrainment rate
as in Eq. (19), thence leading to the derivation of the gen-
eralized Pareto distribution of travel distances. We suggest

that this example, details of which are provided in Furbish
et al. (2021a), offers a clear view of the value of a statistical
mechanics approach involving the Fokker–Planck equation,
highlighting the mechanistic yet probabilistic nature of the
analysis.

4.1.3 The generalized Pareto distribution as a maximum
entropy distribution

Our third example highlighting the purpose and merits of a
probabilistic description of particle motions and transport is
centered on demonstrating that the generalized Pareto dis-
tribution is a maximum entropy distribution. We again start
with some background, briefly outlining the origin of the idea
of a maximum entropy distribution.

The canonical example of a maximum entropy distribu-
tion is the Boltzmann distribution of the energy states ε of
gas particles at thermal equilibrium. For a great number N
of gas particles with a fixed total energy E, the original
derivation of the Boltzmann distribution involves enumerat-
ing the total number of accessible microstates – the many dif-
ferent ways to arrange N particles into energy states where
each arrangement possesses the same fixed total energy E –
then determining the most probable arrangement. (This idea
is illustrated in Fig. 3 in Furbish and Schmeeckle, 2013.)
Schrödinger (1946, p. 6) succinctly describes the matter. Us-
ing his notation, consider the energy states ε1, ε2, ε3, . . ., εl ,
. . .. Then let a1, a2, a3, . . ., al , . . . denote the number of in-
dependent systems in each energy state. (Here it suffices to
imagine that a “system” consists of an individual particle.)
We then imagine a set of macrostates (“classes”) where each
macrostate involves a set of N systems arranged into energy
states. Namely,

all [micro]states of the assembly are embraced –
without overlapping – by the classes [macrostates]
described by all different admissible sets of num-
bers al . . . The number of single [micro]states, be-
longing to this class [macrostate], is obviously

P =
N !

a1!a2!a3!. . .al !. . .
. (20)

The set of numbers al must, of course, comply with
the conditions∑
l

al =N ,
∑
l

εlal = E . (21)

The present method [of the most probable distri-
bution] admits that, on account of the enormous
largeness of the numberN , the total number of dis-
tributions (i.e., the sum of all P ’s) is very nearly
exhausted by the sum of those P ’s whose num-
ber sets al do not deviate appreciably from the set
which gives P its maximum value (among those,
of course, which comply with [Eq. (21)]). In other
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words, if we regard this set of occupation numbers
as obtaining always, we disregard only a very small
fraction of all possible distributions – and this has
“a vanishing likelihood of ever being realized”.

The procedure thus amounts to choosing the macrostate
containing the greatest number of microstates, each consis-
tent with fixed N and E. This is achieved by applying Stir-
ling’s approximation to Eq. (20), taking the differential of
the resulting expression and of Eq. (21) with respect to al
and setting these to zero, then using Lagrange multipliers to
determine that

al =N
e−λεl∑
le
−λεl

. (22)

This is effectively the Boltzmann distribution. The Lagrange
multiplier λ= 1/kBT , where kB is the Boltzmann constant
and T is temperature, is determined independently. A key
point of the derivation is that Stirling’s approximation of
Eq. (20) yields a term representing the Gibbs entropy of the
system. So in choosing the macrostate containing the greatest
number of microstates, the procedure is equivalent to choos-
ing the distribution whose entropy is a maximum relative to
all other possible choices.

From Furbish et al. (2021c),

Jaynes (1957a, 1957b) elaborated the significance
of the fact that the Gibbs entropy in statistical me-
chanics and the Shannon entropy in information
theory are essentially one and the same, differing
only by a constant. This similarity inspired Jaynes
to champion the use of a maximum entropy cri-
terion in choosing a probability distribution, lead-
ing to what is now known as the maximum entropy
method . . . [W]hether viewed as a method of sta-
tistical mechanics or as one of inferential statis-
tics . . . it provides an unbiased choice of a distribu-
tion by honoring only what is known mechanically
about a system. That is, this unbiased choice is a
maximally noncommittal choice that is faithful to
what we do not know; it is therefore the most rea-
sonable choice in the absence of additional infor-
mation . . .

Within this context, there are three notable elements in our
effort (Furbish et al., 2021c) to demonstrate that the gener-
alized Pareto distribution as applied to the rarefied motion
problem is a maximum entropy distribution. First, in this
work we noted that “constraints imposed on the system nor-
mally translate to constraints imposed on the moments of the
distribution. . . . [in which] case the method leads to a dis-
tribution that is among the exponential family (e.g., expo-
nential, Gaussian). However, applications of the maximum
entropy method to non-exponential distributions, including
heavy-tailed distributions, are of particular interest in many
problems (Peterson et al., 2013).” Moreover, recall that the

generalized Pareto distribution has three forms: it is bounded
for shape parameter A< 0, heavy-tailed for A> 0 and ex-
ponential for A= 0 (Fig. 1). If we are to suggest that the
generalized Pareto distribution is for mechanical reasons a
maximum entropy distribution, then it becomes essential to
show that all three of its forms are constrained in the same
manner – as opposed to appealing to separate constraints
for each of the three forms. Indeed, the energetic basis of
the disentrainment rate, Eq. (4), provides this common con-
straint. It allows us to calculate an energetic “cost” – the total
cumulative energy extracted by collisional friction per unit
kinetic energy available during particle motions. This ener-
getic cost is entirely analogous to that associated with the
economics of scale (Peterson et al., 2013), where net heating
contributes to an energetic “discount” that allows particles
to achieve larger distance states x, and net cooling imposes
a “penalty” that suppresses long-distance motions. In effect
“the analysis represents a novel generalization of an energy-
based constraint in using the maximum entropy method to
infer non-exponential distributions – to include the versatile
properties (forms) of the generalized Pareto distribution as
applied to the rarefied particle motion problem.” Stepping
back, we suggest that similar considerations of particle en-
ergetics may be useful for clarifying the behavior of particles
in other systems.

Second, the versatile form of the generalized Pareto distri-
bution is rather unusual. Numerous well-known distributions
of course take the form of a related distribution for certain
parametric values. Nonetheless, the generalized Pareto dis-
tribution is distinctive in that it has a bounded form (A< 0)
that decays faster than an exponential distribution with the
triangular and uniform distributions as special cases, a heavy-
tailed form (A> 0) with undefined mean or variance for suf-
ficiently large values of the shape parameter A, and an expo-
nential form (A= 0) separating its bounded and heavy-tailed
forms. Moreover, that this distribution seems to correctly de-
scribe the energetics of rarefied particle motions for varying
slope and surface roughness conditions representing all three
forms (Fig. 2) is at first glance astonishing – notably includ-
ing the abrupt mathematical transition between bounded and
heavy-tailed forms. That the constraint provided by a fixed
energetic cost relative to the available kinetic energy pro-
vides a unifying explanation of the three behaviors lends con-
fidence that each of the three forms of the distribution repre-
sents the most probable arrangement of distance states – just
as the Boltzmann distribution represents the most probable
arrangement of energy states of gas particles at thermal equi-
librium. Nothing special or unusual changes in the physics
of disentrainment in the transition from the bounded form to
the heavy-tailed form of the distribution in crossing isother-
mal conditions – a point of clarity provided by the maximum
entropy analysis.

This result also adds clarity to the idea of nonlocal versus
local transport (Metzler and Klafter, 2000; Schumer et al.,
2009; Foufoula-Georgiou et al., 2010; Furbish and Roering,
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2013). In studies of tracer particle transport, and setting aside
the effects of particle rest times, local behavior is associ-
ated with a light-tailed distribution of particle displacements
during a small interval dt , leading to Gaussian dispersion.
Nonlocal behavior is associated with a heavy-tailed distribu-
tion of displacements leading to non-Gaussian (anomalous)
dispersion as represented by, say, a fractional advection–
diffusion equation with respect to space (Metzler and Klafter,
2000; Schumer et al., 2009). In comparison, consider the sit-
uation in which the shape parameter A of the generalized
Pareto distribution is small, positive or negative. With small
A< 0 the light-tailed form of the distribution has an upper
bound at x = B/|A| (Fig. 1), and as A approaches zero from
below, this upper bound may become exceedingly large but
nonetheless remains finite. With small positive A> 0 close
to zero the distribution has “flipped” to an unbounded heavy-
tailed form (with finite mean and variance). Yet any differ-
ence in the physics of particle motions up to x = B/|A| for
A positive or negative (and small) is imperceptible. Indeed,
except near the upper bound x = B/|A| and beyond, the two
forms of the distribution forA close to zero are essentially in-
distinguishable – the difference representing a mathematical
precision far beyond what one might be capable of detecting
from measurements of particle travel distances (Furbish et
al., 2021b). Thus, within the context of tracer particle behav-
ior, whereas local versus nonlocal behavior defined in terms
of the distribution form may be an important mathematical
distinction – notably if the distribution involves undefined
moments – this distinction offers limited insight regarding
the mechanical interpretation of particle motions. Hence, in
the problem of rarefied particle motions on hillslopes, and
consistent with physical interpretations of nonlocal behav-
ior (Bocquet et al., 2009; Brantov and Bychenkov, 2013;
Henann and Kamrin, 2013), the idea of nonlocal transport
as embodied in Eqs. (1) and (2) reminds us that the flux or
its divergence at position x is determined by factors influenc-
ing entrainment and particle motions “far” upslope from this
position (Furbish and Roering, 2013; Furbish et al., 2016b,
2021a; Doane, 2018; Doane et al., 2018).

Third, focusing on the second part of the quotation above,
the maximum entropy method reminds us of the value of the
principle of parsimony – appealing to the simplest explana-
tion consistent with available evidence – in the presence of
uncertainty. Boltzmann did not know a priori the distribu-
tion of gas particle energy states, Eq. (22); he imposed only
the constraints of a fixed number of particles and a fixed to-
tal energy. The maximum entropy derivation thus honored
his understanding of the system, but no more. In effect the
derived distribution of energy states – including the founda-
tional assumption that each accessible microstate is equally
probable – became a hypothesis to be tested against experi-
mental observations (Tolman, 1938). With respect to appli-
cations of the maximum entropy method to sediment particle
motions, we “highlight the fact that a distribution thus cho-
sen is not necessarily the ‘correct’ distribution (Furbish et al.,

2016a) . . . [I]t is the most reasonable choice in the absence of
additional information . . . [and in] this sense the maximum
entropy method is a formal application of Occam’s razor”
(Furbish et al., 2021c). We therefore suggest that this repre-
sents one viable element of a strategy to deepen our mechan-
ical understanding of attributes of particle motions that we
observe, measure and describe statistically. As noted by An-
cey (2020b) in relation to bed load transport, “One strength
of entropy-based methods is their use of the physical infor-
mation conveyed by data, thereby enforcing physical con-
sistency . . . [opening] new avenues of research combining
statistical information and physics-based models.” On this
point we note that a distribution selected according to a maxi-
mum entropy criterion may serve as an ideal prior hypothesis
in subsequent analysis, including Bayesian analysis (Jaynes,
1988).

4.2 Rarefied versus continuum conditions

4.2.1 Motivation

Perhaps it is obvious that in this problem a description of
the physics of particle motions cannot meaningfully start
from the idea of continuum behavior. Particle motions are
patchy and highly intermittent, and in most settings these
motions are far from conditions that could be considered
continuum-like granular flows. Particle behavior is domi-
nated by particle–surface interactions rather than particle–
particle interactions, and the conventional idea of appealing
to a Knudsen number to ascertain continuum behavior is ir-
relevant. Moreover, aside from descriptions of the physics of
particle motions, in the absence of continuum conditions we
cannot justifiably appeal to familiar continuum-like defini-
tions of the particle flux and its divergence that are based
on the assumption that particle number densities and lo-
cally averaged velocities are well-defined quantities that vary
smoothly over space and time. Yet the particle flux and its di-
vergence are of particular interest in many problems, and we
therefore turn our focus to a thorough description of these
quantities.

As noted above, precise definitions of the sediment parti-
cle flux and its divergence do not assume continuum con-
ditions at the outset (Ancey, 2010; Furbish et al., 2012a,
2016b, 2017; Ancey and Pascal, 2020). For rarefied condi-
tions these definitions are translated into probabilistic ex-
pressions, of which the entrainment forms of the flux and
the Exner equation, Eqs. (1) and (2), are examples. Of con-
cern, then, is the meaning and use of continuously differen-
tiable functions in these nonlocal expressions, namely, the
entrainment rate Es(x, t), the probability density fr (r;x, t)
of travel distances r and the associated exceedance probabil-
ity function Rr (r;x, t). At risk is misinterpreting these con-
tinuous probabilistic functions as implying a continuum-like
description of transport such that the flux q(x, t), if defined
as a time-averaged quantity, may be envisioned as varying
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continuously in space and time akin to continuum-like ex-
pressions of transport – the canonical examples being the
process-response models introduced by Kirkby (1971) and
Carson and Kirkby (1972) involving expressions of the flux
that vary with surface configuration and semi-empirical rate
constants. Similar comments pertain to the rate of change
ζ̇ (x, t).

Consider the nonlocal expressions, Eqs. (1) and (2).
For simplicity of illustration we focus on a single particle
size and rewrite these expressions as follows. Let qn(x, t)
[L−1 T−1] denote the particle number flux at position x and
time t . Dividing Eq. (1) by the particle volume Vp then gives

qn(x, t)=

x∫
−∞

En(x′, t)Rr (x− x′;x′, t) dx′ , (23)

where En(x, t) [L−2 T−1] denotes the particle number en-
trainment rate. In turn, let n(x, t) [L−2] denote the areal par-
ticle number density. Dividing Eq. (2) by Vp then gives

ṅ(x, t)=
∂n(x, t)
∂t

=−En(x, t)+

x∫
−∞

En(x′, t)fr (x− x′;x′, t) dx′ . (24)

In these expressions the flux qn(x, t), the number density
n(x, t) and the entrainment rateEn(x, t) are treated as contin-
uous functions of position x and time t . Moreover, the den-
sity fr (r;x, t) and the exceedance probability Rr (r;x, t) are
continuous functions of the travel distance r , and the forms
of these functions are considered to vary smoothly with x
and t . However, Eqs. (23) and (24) do not imply that trans-
port may be envisioned as a continuum-like behavior or that
the flux and its divergence vary smoothly with position x and
time t in any particular setting. Rather, these are probabilistic
expressions that represent ensemble expected conditions, not
the outcome of any individual realization (Appendix C). In
fact, both the flux qn(x, t) and the rate ṅ(x, t)= ∂n(x, t)/∂t
are to be considered random variables due to rarefied trans-
port conditions.

To illustrate these points, here we consider an idealized
situation in which the entrainment rate En(x, t) is Poisson in
time and space but modified to include effects of intermit-
tency and patchiness. The cases presented next, although in-
volving approximations of the entrainment process, nonethe-
less suffice to illustrate the consequences of a noise-driven
process. This includes an explicit definition of ensemble-
expected conditions versus the outcome of an individual re-
alization, as well as the relation between these and time-
averaged conditions. The presentation reflects elements of
the analysis of Ancey and Pascal (2020) concerning bed load
transport.

4.2.2 Line source

The idea of a line source of sediment particles delivered to
a hillslope is embodied in the experimental and field-based
work of Kirkby and Statham (1975) and Statham (1976) con-
cerning the motions and downslope sorting of particles on
scree slopes. Here we consider a simple version of this prob-
lem.

Flux with Poisson delivery rate. We start by envisioning
a planar hillslope at the base of a cliff. Particles are deliv-
ered from the cliff to the top of the hillslope as a line source
at x = 0, and we neglect particle entrainment on the hills-
lope. In this situation we may simplify the notation. Namely,
the travel distance r→ x, so the density fr (r;x)→ fx(x)
and the exceedance probability Rr (r;x)→ Rx(x). In turn,
the entrainment rate En is reinterpreted as a boundary flux,
the expected number n of particles delivered to the top of
the hillslope per unit width per unit time. For a width 1y,
the expected number of particles delivered per unit time is
η = En1y. The number n of particles delivered during an
interval τ is then given by the Poisson distribution, namely,

fn(n,τ,x = 0)=
(ητ )n

n!
e−ητ , (25)

with mean µn = ητ and variance σ 2
n = ητ . More generally,

the expected number of particles reaching position x per unit
time is ηRx(x), and the number n of particles reaching x dur-
ing τ is again given by a Poisson distribution,

fn(n,τ,x)=
[Rx(x)ητ ]n

n!
e−Rx (x)ητ , (26)

with mean µn = Rx(x)ητ and variance σ 2
n = Rx(x)ητ . For

reference below we note that the distribution of waiting
times w between successive events is exponential with mean
µw = 1/η in the case of Eq. (25) and µw = 1/Rx(x)η in the
case of Eq. (26). (Note that the waiting time w should not be
confused with a particle rest time.)

These results illustrate that the number n of particles
reaching x during τ involves a distribution of possible out-
comes whose variance increases linearly with the elapsed
time τ . For plotting we normalize this number by the ex-
pected number reaching x, namely, n̂(x)= n(x)/η1t with
1t = 1 (Fig. 3). Note that the numbers used to generate these
plots are somewhat arbitrary, as the width 1y is not explic-
itly specified. That is, for given En, the numbers (and thus η)
increase with 1y.

These plots may be interpreted several ways. First, for
a specified delivery rate η at the line source (x = 0), the
panels (a) to (d) depict a decreasing exceedance probabil-
ityRx(x) representing an increasing distance from the source
for a fixed form of the distribution fx(x) of travel distances x.
Second, the plots (a) to (d) depict a decreasing delivery rate η
at the source viewed at x = 0. In this situation, downslope lo-
cations would display an increasing variability relative to the
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Figure 3. Plot of 10 realizations (colored lines) of normalized number n̂(x) versus elapsed time τ showing increasing variance with τ . Plots
generated with (a) η = 1000, (b) η = 100, (c) η = 10 and (d) η = 1. Black line represents ensemble expected values of n̂(x). Compare with
Fig. 2 in Ancey and Pascal (2020).

source conditions. For example, if Fig. 3a represents condi-
tions at the source (x = 0,Rx(0)= 1), then Fig. 3c represents
conditions at a downslope position x with Rx(x)= 0.01. If
Fig. 3c represents conditions at the source, then Fig. 3d rep-
resents conditions at a position x with Rx(x)= 0.1. And
Fig. 3a could represent conditions at a position x� 0 with
Rx(x)= 0.01 for a rate η that is 102 larger. Third, if in Fig. 3a
the rate η = 1000 represents the expected number of events
per year, then the signals in Fig. 3d could represent this same
rate but plotted in terms of expected events per “milli-year”
(or one event per 8.8 h). Note that individual realizations
never converge to ensemble-expected values, although the
relative variability decreases with large η. That is, the co-
efficient of variation decreases slowly as [Rx(x)ητ ]−1/2, but
this is not a mean-reverting process.

The plots in Fig. 3 also may be reinterpreted in terms
of variations in the form of the generalized Pareto distribu-
tion with respect to hillslope positions x. That is, each plot
may represent different positions of x coinciding with the

same exceedance probability Rx(x) for different values of
the shape and scale parameters A and B. For example, as-
suming fixed B, each plot may represent a relatively small
value x > 0 with small A and a relatively large x > 0 with
large A. Or, for a fixed position x > 0, Fig. 3c might rep-
resent a distribution with small Rx(x) coinciding with small
A, whereas Fig. 3a might represent a distribution with large
Rx(x) coinciding with large A. In general the position x as-
sociated with a specific value of Rx(x) increases with A for
givenB. Note that no particles move past a position x beyond
the upper bound B/|A| for A< 0.

In turn, we compute the normalized time-averaged parti-
cle number flux as q̂n(x)= n̂(x)/τ (Fig. 4). This flux also is
a random variable. It exhibits relatively large variability with
small elapsed times τ and then converges to the ensemble
expected value with increasing τ . The rate of convergence
decreases with decreasing delivery rate η or with decreasing
exceedance probability Rx(x) representing an increasing dis-
tance from the line source.
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Figure 4. Plot of 10 realizations (colored lines) of normalized time-averaged particle number flux q̂n(x) versus elapsed time τ showing
convergence to ensemble expected value (black line) with increasing τ . Plots coincide with conditions in Fig. 3. Note that initial values start
at τ > 0.

Ancey and Pascal (2020) examine the more general ques-
tion of estimating the time-averaged flux associated with
a Poisson process (compare their Fig. 2 with our Fig. 3).
Within the context of measurements of bed load sediment
transport, they show how the variability in estimates of the
time-averaged flux varies with the measurement interval, and
they present a re-sampling (bootstrap) protocol for assessing
how the variance of the flux varies with the sampling interval
based on an individual realization. As noted below, however,
we rarely if ever have time series needed to support this type
of analysis when describing slow systems.

With this example in place we offer an explicit definition
of the idea of ensemble-expected conditions for a Poisson
process. The word “ensemble” refers to a great numberNe of
nominally identical but independent systems, each subject to
the same physics of random events characterized by the rate
constant η (Appendix D) for specific values of A and B. In
this view, each realization plotted in Fig. 3 represents the out-
come of one system in the ensemble. (Note that this meaning
of “ensemble” is quite different from the oft used description

of an ensemble of particles.) For any individual system there
is one possible outcome n at time τ with probability given
by Eqs. (25) or (26). For an ensemble of systems all possible
outcomes n= 0,1,2,3, . . . exist at time τ in the proportions
given by Eqs. (25) or (26). Thus, ensemble conditions in this
example refer to the distribution of possible outcomes with a
well-defined ensemble average and variance. In turn, the par-
ticle flux qn(x, t) given by Eq. (23) represents the ensemble-
expected flux, not the flux associated with any particular re-
alization. Similarly, as described further below the rate of
change in particle numbers ṅ(x, t) given by Eq. (24) repre-
sents the outcome defined by ensemble-expected conditions,
not the rate associated with any realization.

Flux with intermittent delivery rate. The idea of a Pois-
son delivery rate nicely illustrates the growing variance of
particle numbers associated with a simple noise-driven pro-
cess. However, of particular interest are effects of an intermit-
tent delivery rate – recognizing that this rate likely involves
fluctuations in particle numbers with seasonal to longer-term
variations in factors influencing particle entrainment. Again
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consider a line source of particles at x = 0. We assume that
events are Poisson with an expected rate η, where each event,
rather than representing one particle, instead involves n par-
ticles described by a specified distribution. Results described
below are qualitatively insensitive to the choice of this distri-
bution, so for simplicity we use an (integer) exponential dis-
tribution with mean µn, which provides skew in the number
of particles per event. In this situation the delivery of particles
at x = 0 is no longer a Poisson process; increasing intermit-
tency is represented by a decreasing rate η.

As a point of reference, Benjamin et al. (2020) provide an
assessment of efforts to observe and measure rockfall events
contributing to cliff erosion and thus to downslope delivery
of particles. The frequency and magnitude of these events
may vary widely, from the chronic activity of small rockfall
events to large infrequent events, depending on the geologi-
cal and environmental factors that influence the mechanisms
of weathering and failure (Luckman, 2013; Strunden et al.,
2015; Mair et al., 2020). The frequency of occurrence of
rockfall volume typically varies as an approximate inverse
power function of volume, where the specific relation de-
pends on the spatial coverage and temporal duration of the
data set (Benjamin et al., 2020). Rockfall volumes do not
translate directly to particle numbers, both of which are in-
fluenced by the geometry of cliff rock fracturing and frag-
mentation (Domokos et al., 2020; Verdian et al., 2020), and
impact shattering (Luckman, 2013). Nonetheless, these ob-
servations point to the inherent stochasticity of rockfall over
many scales, including variations in intermittency with time
(Sect. 4.3.2).

Like a Poisson particle delivery rate (Fig. 3), the num-
ber of particles n reaching x during τ involves a distribu-
tion of possible outcomes whose variance increases with the
elapsed time τ (Fig. 5). Increasing the average number of
particles per event, µn, tends to decrease the variability about
the ensemble-expected values. However, this variability is far
more influenced by the degree of intermittency. Namely, the
variability increases with decreasing η and is notably larger
than that associated with a purely Poisson process (Fig. 3).
For comparison, each of the plots in Fig. 5 involves 100
times fewer events per year than the corresponding plot in
Fig. 3 but 10 times the number of expected particles per
year. The plots may be interpreted in a manner similar to that
given above for Fig. 3. Although not shown to save space,
the normalized time-averaged particle flux q̂n(x) is similar
in appearance to that associated with a Poisson delivery rate
(Fig. 4), but with larger variability and slower convergence
to the ensemble-expected value with increasing τ .

Steady deposition. Consider the rate ṅ(x)= ∂n(x)/∂t in
Eq. (24). In the idealized situation involving a line source of
particles arriving at x = 0 with rate η, and in the absence of
particle entrainment, the expected rate of deposition within
the small interval 1x at position x is ṅ(x)≈ fx(x)1xη.
However, for an individual realization this rate is discontinu-
ous in time. Let1n denote the number of particles deposited

within a specified interval 1t . The time-averaged rate of de-
position during 1t is then 1n/1t . The number of particles
deposited with1x at x during1t is then again distributed as
a Poisson distribution,

f1n(1n,1t,x)=
[fx(x)1xη1t]1n

(1n)!
e−fx (x)1xη1t , (27)

with mean µ1n = fx(x)1xη1t and variance σ 2
1n =

fx(x)1xη1t . Thus, as above, the variance of the numerator
of 1n/1t increases indefinitely with the interval 1t .

For a Poisson process, the deposition events 1n within
any successive interval 1t are independent. Letting k =

1,2,3, . . . denote successive intervals, then τ = k1t . This
means that summing the number of particles deposited dur-
ing successive intervals 1t is the same as summing over the
total elapsed time τ . Thus, deposition at x proceeds as a
random process whose appearance is qualitatively similar to
the examples above (Fig. 3). The rate 1n/1t similarly con-
verges slowly to the ensemble value ṅ with increasing time
interval τ . Similar conclusions apply to the case of an in-
termittent delivery rate of particles. The expected deposition
rate ṅ(x) thus represents the ensemble average, not the rate of
individual realizations except in the limit of τ = k1t→∞.

4.2.3 Distributed entrainment

The idea of distributed entrainment is embodied in the work
of Doane (2018) and Doane et al. (2018) concerning nonlo-
cal sediment transport. This work involves numerical simu-
lations of the time evolution of the profiles of steep lateral
moraines in the Sierra Nevada, California, for comparison
with field-based measurements. It examines entrainment that
occurs over the entire moraine profile due to disturbances and
the role of vegetation in sediment capacitance – the capture,
storage and release of sediment (Furbish et al., 2009a; Lamb
et al., 2011, 2013; DiBiase and Lamb, 2013; Doane, 2018;
Doane et al., 2018). Here we consider a simple version of
this problem involving uniformly random entrainment.

Flux with Poisson entrainment. In contrast to a line source,
here we envision a uniformly random entrainment rate En
over the domain x. We return to our original notation involv-
ing travel distances r with probability density fr (r;x) and
exceedance probability Rr (r;x), neglecting variations with
time t .

For a uniformly random entrainment rate En(x)= En the
expected number of particles reaching x per unit time is

η = En

x∫
−∞

Rr (x− x′;x′) dx′ . (28)

The integral in Eq. (28) is equal to the mean travel distance
µr , if this moment exits. Thus, η = Enµr , which is iden-
tical to the definition of the particle flux provided by Ein-
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Figure 5. Plot of 10 realizations of normalized number n̂(x) versus elapsed time τ showing increasing variance with τ . Plots generated with
µn = 1000 and (a) η = 10, (b) η = 1 (c) η = 0.1 and (d) η = 0.01. Red line represents ensemble expected values of n̂(x).

stein (1950) for steady uniform bed load transport. The ex-
pected number n of particles reaching position x during τ is
ητ , so

fn(n,τ,x)=
(ητ )n

n!
e−ητ , (29)

with meanµn = ητ and variance σ 2
n = ητ . Note that Eq. (29)

is identical in form to Eqs. (25) and (26). This means that the
number of particles reaching position x varies in a manner
that is qualitatively the same as depicted in Fig. 3, and the
time-averaged flux is qualitatively the same as depicted in
Fig. 4. For a given mean travel distance µr , convergence to
the expected value η = Enµr therefore strongly depends on
the entrainment rate En. This convergence decreases with in-
creasingly rarefied conditions.

If the integral in Eq. (28) does not converge – that is, the
mean travel distance is undefined – then the expected par-
ticle flux is undefined. This coincides with a shape param-
eter A≥ 1 for the generalized Pareto distribution. This also
means that the expected divergence of the flux (see below)
is undefined. However, we must be cautious to not over-

interpret this result, as Eq. (28) assumes the upslope integra-
tion of the exceedance probability Rr (r;x) is unbounded. In
reality, the integration associated with any position x extends
only to the hillslope crest, thus truncating Rr (r;x) such that
the integral in Eq. (28) is finite. Nonetheless, numerical simu-
lations confirm that the expected flux increases indefinitely as
the upslope distance of integration increases. The implication
is this: if the distribution of particle travel distances is heavy-
tailed with undefined mean, and if the heavy-tailed distribu-
tion applies to much or all of the hillslope, then the expected
flux at the base of the hillslope depends on its length. Indeed,
if the mean travel distance is undefined and disentrainment is
negligible (i.e., few if any particles stop), then the expected
flux at the base of the hillslope is essentially equal to the en-
trainment rate integrated over the entire hillslope. This rep-
resents the “entrainment-limited” analogue of “detachment-
limited” conditions. Furbish et al. (2021b) report estimates
of A≥ 1 for several of the field-based experiments reported
by DiBiase et al. (2017) and Roth et al. (2020).

Flux with patchy entrainment. Consider uniformly random
entrainment events, where each event, rather than represent-
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ing one particle, instead involves n particles. As above we use
an (integer) exponential distribution with mean µn. In this
situation the random location of events involving different
numbers of particles yields a spatial patchiness in particle en-
trainment. IfEn now denotes the event rate, then the expected
rate at which particles reach position x is η = Enµnµr . How-
ever, unlike the previous example, this is not a Poisson pro-
cess. Nonetheless, similar to the conclusions above, numer-
ical simulations reveal that the number of particles reaching
position x varies in a manner that is qualitatively the same as
depicted in Fig. 3, and the time-averaged flux is qualitatively
the same as depicted in Fig. 4. For a given mean travel dis-
tance µr and mean number of particles µn, convergence to
the expected value η = Enµnµr therefore strongly depends
on the rate En. This convergence decreases with increasingly
rarefied conditions.

As in the preceding example, if the integral in Eq. (28)
does not converge – that is, the mean travel distance is un-
defined – then the expected particle flux is undefined. The
implications of this are similar to those described above re-
garding Poisson entrainment.

Divergence with Poisson entrainment. Consider the chang-
ing number n(t) of particles within an element 1x as par-
ticles arriving from upslope are deposited and particles en-
trained within the element move downslope. Assuming that
uniformly random entrainment is a Poisson process with ex-
pected entrainment rate En, then the expected particle num-
ber flux into the element 1x is equal to the expected flux
out of this element. Specifically, the rate at which particles
moving into 1x become deposited within this element is

En

x∫
−∞

Rr (x− x′;x′) dx′

−En

x∫
−∞

Rr (x+1x− x′;x′) dx′ . (30)

The first term in Eq. (30) is the rate at which particles reach
x from upslope. The second term is the rate at which parti-
cles reaching x from upslope move past the interval1x. The
rate at which particles are entrained within1x and leave this
element is

−En

x+1x∫
x

Rr (x+1x− x′;x′) dx′ . (31)

Adding Eqs. (30) and (31) then leads to the conclusion that,
per unit width, the immigration rate ηI is equal to the emi-
gration rate ηE. That is, ηI = ηE = Enµr , if the mean travel
distance µr is defined.

Alternatively, for positions x′′ such that x ≤ x′′ ≤ x+1x
the expected deposition rate Dn within 1x, including parti-
cles that are entrained within this interval, is

En

x+1x∫
x

x′′∫
−∞

fr (x′′− x′;x′) dx′ dx′′ . (32)

The negative rate at which particles are entrained within1x,
including those that remain within this interval and those that
leave it, is

−En

x+1x∫
x

∞∫
0

fr (r;x′′) dr dx′′ . (33)

The integrals involving x′ and r are equal to unity, so upon
summing Eqs. (32) and (33) the expected rate ṅ=−En+
Dn = 0 with Dn = En. That is, the local expected rate of de-
position is equal to the expected rate of entrainment.

One might anticipate that the balance between expected
immigration and emigration rates involving a uniform ex-
pected flux, or between the expected deposition and entrain-
ment rates, yields a particle number n(t) within the element
1x that fluctuates with time due to the randomness of the
process, but which nonetheless is centered on a fixed mean
value – a decidedly deterministic (continuum) point of view.
This anticipated result, however, is incorrect. In fact, the
number of particles within the element does not possess a
stable distribution, and n(t) is not a mean-reverting process.
Instead, the number n(t) undergoes an uncorrelated random
walk over the n domain, and with finite probability it may
“wander” to an arbitrarily large or small value. If the condi-
tion that n(t) cannot become negative is imposed, then this is
the well-known M/M/1 queuing problem (Stewart, 2009).

With n(t)= 0,1,2,3, . . . and ηI < ηE, the stationary en-
semble distribution fn(n) of states n is a geometric distri-
bution (the discrete version of an exponential distribution)
with mean ρ/(1− ρ) and variance ρ/(1− ρ)2 where ρ =
ηI/ηE. In contrast, with ηI > ηE individual realizations n(t)
increase indefinitely, similar to the example of steady depo-
sition above. Note that this problem is just the beginning of a
rich theory of dynamical systems falling under the headings
of queuing theory, birth–death processes, Markov processes
and generalized elastic models. We mention specific cases
below, but otherwise the example above suffices to illustrate a
basic, perhaps counterintuitive, outcome of noise-driven pro-
cesses.

There is little evidence that numbers n(t) (i.e., local eleva-
tions ζ (t)) on natural hillslopes exhibit unbounded (random-
walk) behavior as in the example above. Entrainment and de-
position do not lead to arbitrarily rough surfaces absent spa-
tial correlation in surface elevation. This reflects that addi-
tional physics becomes involved in the entrainment and de-
position processes. Before addressing this point, first con-
sider a related problem involving bed load transport, initially
focusing on the number na(t) of moving particles rather than
the state of the streambed. The Markov birth–death formu-
lation provided by Ancey et al. (2008) for rarefied transport
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conditions posits that if both the expected deposition rate and
the expected emigration rate associated with an interval 1x
depend on the system state – the number na(t) – then na
possesses a stable (ensemble) binomial distribution fna (na)
with mean µna . If in addition collective entrainment propor-
tional to na(t) is involved (Ancey et al., 2008; Heyman, 2014;
Heyman et al., 2014; Lee and Jerolmack, 2018; Pierce and
Hassan, 2020a), then na is described by a negative binomial
distribution with well-defined mean and variance. The key
lesson is this. With this noise-driven process the distribution
fna (na) of states na is as important as the expected state µna

in characterizing the process. Moreover, whereas the value
of this expected state can be specified in terms of the rate
constants associated with immigration, deposition and en-
trainment, the expected state has no more mechanical sig-
nificance than other values of na; the expected (or modal)
value is just more probable than other values. With regard to
the state n(t) of the bed, because both deposition and collec-
tive entrainment depend on na(t), these have a counterbal-
ancing effect. In addition, Pierce and Hassan (2020a) modify
the formulation of Ancey et al. (2008) to couple erosion and
deposition with the bed state n(t). This explicitly includes a
stabilizing feedback where entrainment preferentially occurs
with aggradation and deposition preferentially occurs with
degradation (Sawai, 1987; Wong et al., 2007). This coupling
ensures that the state n possesses a stable distribution with
finite mean and variance.

Returning to transport on hillslopes, stabilizing effects
may involve local changes in the entrainment rate due to ef-
fects of unstable particle configurations, collective entrain-
ment of surface particles by moving particles, and preferen-
tial “capture” of moving particles within local low spots or by
roughness elements (Furbish et al., 2021b; Roth et al., 2020).
Note that the rules of deposition in the particle-based trans-
port model of Tucker and Bradley (2010) inherently provide
this sort of stabilizing effect. Moreover, although attention
has been given to the role of vegetation in sediment capac-
itance (Furbish et al., 2010; Lamb et al., 2011, 2013; DiBi-
ase and Lamb, 2013; Doane, 2018; Doane et al., 2018), this
topic otherwise is largely unexplored in relation to modulat-
ing rates of entrainment and deposition over long timescales.
In addition we may imagine a configuration involving (in a
Fourier sense) a small-amplitude sinusoidal variation in sur-
face elevation or roughness. The effect of this – including
preferential deposition at certain locations – almost certainly
would influence the behavior of particles whose motions start
upslope, thereby leading to a distribution of travel distances
that deviates from an idealized form associated with uniform
conditions. We may imagine similar effects on planar sur-
faces with nominally homogeneous roughness, but with lo-
cal variations in roughness at the particle and slightly larger
scale. However, whether these local effects could be dis-
tinguished from the inherent randomness of deposition is
an open question. Note also that other processes may oper-
ate on hillslope surfaces such that stabilizing – or “smooth-

ing” – influences do not need to be related just to rarefied
particle motions as envisioned above. As an unusual exam-
ple, “the impacts by small distal ejecta fragments. . . . is the
largest contributor to the diffusive [topographic] degradation
which controls the equilibrium [size–frequency distribution]
of small craters” of the lunar maria (Minton et al., 2019).
More generally, the formalism of generalized elastic mod-
els used to describe the macroscopic dynamics of fluctuating
surfaces due to the competition between processes of surface
roughening and relaxation (Pelletier and Turcotte, 1997; Tur-
cotte, 2007) is now being extended to erosional landscapes
(Schumer et al., 2017). Whether involving stabilizing effects
or not, fluctuations in entrainment and deposition and accom-
panying variations in the land-surface state about expected
conditions are just as important as the expected conditions
in characterizing surface behavior. Moreover, expected con-
ditions may not represent a stable attractor in the sense of a
mean-reverting process, akin to the stable basic state asso-
ciated with slope-dependent soil creep (Furbish and Fagher-
azzi, 2001).

Here is the key lesson. In the presence of noise-driven pro-
cesses with rarefied conditions, one must be cautious about
predicting behavior in response to fixed continuum-like rates
that do not acknowledge noise effects. Individual realizations
associated with these effects can involve rich behavior that is
not anticipated from a simple deterministic perspective.

Divergence with patchy entrainment. Consider a similar
situation in which entrainment events are Poisson in time
and uniformly random in space, but the number of particles
associated with each individual event is represented by an
exponential distribution. Deposition and entrainment within
an element 1x are no longer a Poisson processes. Nonethe-
less, variations in the number of particles n(t) in an element
1x with time (not shown) qualitatively exhibit the same un-
stable behavior as Poisson entrainment. Because individual
events may involve numerous particles, the variability gener-
ally is larger. This reinforces the point made above, that a sta-
ble distribution of particle numbers with finite mean requires
additional physics, for example, where the entrainment and
deposition rates depend on the state n(t).

4.3 Uncertainty with increasing scales

Here we consider uncertainty associated with rarefied parti-
cle motions on hillslopes viewed as a “slow” system, where
changes in hillslope configuration are largely imperceptible
over the human timescale (Sect. 3.3). We highlight results
from above, that with rarefied transport conditions our de-
scriptions of the particle flux and its divergence pertain to
ensemble conditions involving a distribution of possible out-
comes, each realization being compatible with the control-
ling factors. When these factors change over time, individual
outcomes reflect a legacy of earlier conditions that is influ-
enced by the rate of change in the controlling factors relative
to the intermittency of particle motions. The implication of
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this result together with preceding material is that landform
configurations reflect an inherent variability that is just as im-
portant as the expected (average) conditions in characterizing
system behavior.

4.3.1 Ensemble-expected conditions

We start by returning to a key starting point described
in Sect. 4.2. Namely, despite the continuous forms of the
entrainment rate Es(x, t), the probability density function
fr (r;x, t) and the exceedance probability functionRr (r;x, t)
in the expressions of the flux, Eq. (1), and the Exner equation,
Eq. (2), these do not imply that the flux q(x, t) and the rate
of change in the land-surface elevation ζ̇ (x, t)= ∂ζ (x, t)/∂t
may be considered as varying smoothly with space and time.
Rather, for rarefied conditions these quantities are random
variables. As a consequence the expressions Eqs. (1) and (2)
specifically represent ensemble-expected conditions. Indi-
vidual realizations may vary significantly from these ex-
pected conditions.

The simple Poisson processes described in the examples
above suffice to illustrate the consequences of rarefied con-
ditions, where intermittency and patchiness add variability
about expected conditions. Relative to the expected condi-
tions, this variability may be large when viewed over small
timescales. Only in the limit of a large number of parti-
cles with averaging over long timescales do predictions of
the flux and its divergence approach expected (deterministic-
like) values.

For any realization, the flux q(x, t) and the rate ζ̇ (x, t)
do not vary as continuously differentiable functions of po-
sition x or time t . However, these quantities are well-
defined continuously differentiable functions when applied
to ensemble-expected conditions. In other words, when we
write ∂ζ (x, t)/∂t =−∂q(x, t)/∂x as a “model” of land-
surface evolution in which q(x, t) is specified by Eq. (1), we
in fact are imagining a smoothly varying land-surface con-
figuration that would occur if and only if q(x, t) at all times
coincides with the ensemble-expected flux. A similar assess-
ment applies to the entrainment form of the Exner equation,
Eq. (2). Indeed, this description of the flux or the chang-
ing land-surface configuration is an idealization that does
not acknowledge noise effects. It is “continuum-like” in the
sense that the described behavior proceeds in a continuously
differentiable manner according to the (continuous) entrain-
ment rate Es(x, t) convolved with either the smooth (contin-
uous) exceedance probability Rr (r;x, t) or the smooth prob-
ability density fr (r;x, t). In effect Es(x, t), Rr (r;x, t) and
fr (r;x, t) are treated as deterministic functions rather than
probabilistically expected quantities.

More generally, Eqs. (1) and (2) are probabilistic algo-
rithms in which Es(x, t), Rr (r;x, t) and fr (r;x, t) are sta-
tistically expected quantities. Each generated realization of
q(x, t) or ζ̇ (x, t) is entirely compatible with the controlling
quantities and is no less likely to occur than the expected

value – although certain values are more probable than oth-
ers according to the ensemble distribution of possible val-
ues. Thus, the ensemble distribution of possible values (Ap-
pendix D) is as important as the expected value in character-
izing the behavior of the system. In the examples above in-
volving Poisson events (delivery rate, entrainment rate), the
behavior of q(x, t), n(x, t) or ṅ(x, t) (or ζ (x, t) or ζ̇ (x, t) is
not mean-reverting. The expected (average) state of the sys-
tem therefore has no more mechanical significance than other
state values.

As outlined in Sect. 4.2.3, however, additional factors may
provide stabilizing effects. Focusing on the rate ζ̇ (x, t), con-
sider time-varying conditions as the land surface changes
(slope, surface roughness, etc.). One way to conceptual-
ize this involves defining a zeroth-order configuration that
changes slowly and first-order fluctuations about the zeroth-
order state that change relatively rapidly. Following Sweeney
et al. (2020), let ζ0(x, t) denote a zeroth-order land-surface
elevation and let ζ1(x, t) denote a first-order deviation about
the zeroth-order state. Then ζ (x, t)= ζ0(x, t)+ ζ1(x, t) and
ζ̇ (x, t)= ζ̇0(x, t)+ ζ̇1(x, t). The zeroth-order rate ζ̇0(x, t)
may be interpreted as representing ensemble-expected con-
ditions as described above. The first-order rate ζ̇1(x, t) then
is akin to the behavior of an individual realization if this is
conceptualized as a mean-reverting process. (The laboratory-
scale experiments of Sweeney et al., 2020, indicate that this
rate can be described as a first-order autoregressive process,
the discrete version of a mean-reverting Ornstein–Uhlenbeck
process.) In effect, the slowly varying zeroth-order behavior
is akin to the “climate” of the land surface and first-order
fluctuations are akin to its “weather” (Sweeney et al., 2020).

The analyses above focus on one-dimensional downslope
transport. For completeness we note that the particle flux and
its divergence more generally involve two-dimensional trans-
port. For example, Williams and Furbish (2021) consider el-
ements of the two-dimensional forms of Eqs. (1) and (2).
They show how transverse diffusion of particles arises from
particle–surface collisions during downslope travel and how
transverse motions influence the downslope particle flux.
Clarifying the consequences of two-dimensional rarefied par-
ticle transport remains an interesting, open topic.

4.3.2 Legacy of realizations

The factors that control particle delivery rates and entrain-
ment, as well as the conditions that influence particle mo-
tions and deposition, change with time at different scales.
For example, particle entrainment and surface-roughness tex-
ture associated with vegetal sediment capacitance may vary
at fire recurrence timescales. Over longer timescales, contin-
uing entrainment with downslope particle motions and de-
position may contribute to changes in surface roughness and
local land-surface slopes, thus changing the distribution of
particle travel distances. At climate-change timescales, par-
ticle delivery rates to scree slopes may vary in relation to
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changing weathering rates and particle release from bedrock.
Thus, we must acknowledge an adaptable view of particle de-
livery and entrainment. Namely, an intermittent “event” dur-
ing an episode of fire might be represented by the release of
sediment from a vegetation capacitor. At the climate-change
timescale, in contrast, an “event” may be viewed as consist-
ing of the entirety of the release (or entrainment) of sedi-
ment associated with a fire and the period of post-fire recov-
ery to vegetated conditions. Here we consider one element of
the consequences of changes in the factors controlling parti-
cle motions, in particular the possible mismatch between the
timescale over which expected rates of delivery or entrain-
ment change relative to the scale of intermittency in these
rates.

Recall that the time-averaged flux eventually converges to
the ensemble-expected value with increasing elapsed time
and that the rate of convergence decreases with increas-
ing intermittency in the delivery or entrainment of particles
(Sect. 4.2.2). However, over intervals that are much shorter
than the time required for convergence, the time-averaged
flux in an individual realization may differ significantly from
the ensemble-averaged value. This is the same as saying that
the number of particles moving past a position x over a spec-
ified interval may be much different from the expected num-
ber, where the likely difference increases with increasing in-
termittency.

Consider for illustration the situation where particles are
delivered intermittently to the top of a hillslope as a line
source (Sect. 4.2.2). For illustration we specify the ensemble-
expected rate η of events as an inhomogeneous rate that de-
clines as an exponential function with e-folding time Tη. A
small value of Tη implies a relatively rapid change in η, and
a large value of Tη implies a slow change. Recall that a de-
creasing value of η coincides with increasing intermittency
and that the variability in particle numbers reaching a downs-
lope position x is more strongly influenced by this intermit-
tency than by the expected number of particles per event.
Then, a relatively large value of the dimensionless ratio
ηTη = Tη/µw implies the expected delivery rate changes suf-
ficiently slowly that the variability of individual realizations
about ensemble-expected conditions is small. A relatively
small value of ηTη implies that the expected delivery rate
changes faster than the rate at which the time-averaged flux
converges to the expected rate (Fig. 4). Thus, for decreas-
ing Tη and decreasing exceedance probabilityRx(x), individ-
ual realizations of the number of particles reaching position
x exhibit increasing variability about the ensemble-expected
values (Fig. 6). Note that numerous other scenarios are pos-
sible. For example, a linear change in the expected rate (not
shown) illustrates the same idea depicted in Fig. 6. Specif-
ically, these plots illustrate the growing effects of legacy in
previous controlling conditions with increasing intermittency
and increasingly rarefied conditions. Namely, what occurs by
chance under these conditions in the early part of the time
series during rapidly changing expected conditions is inher-

ited in later stages of the series as the rate of change in ex-
pected conditions decreases. It is only in the limit of vanish-
ing intermittency relative to the e-folding time Tη with large
particle numbers near the source (x = 0, Rx = 1) that indi-
vidual realizations track the ensemble-expected conditions.
With rapidly changing expected conditions, and far from the
source, uncertainty in particle numbers increases with time.

Specifically, and with reference to Fig. 6d, if by chance
during the early part of the series a relatively large number of
events occur, then this preconditions the total number n̂(x, t)
as η decreases with time t . The realization thus overshoots
the ensemble-expected state. If by chance during the early
part of the series only a small number of events occur, despite
an initially large rate η, then this again preconditions the total
number as η decreases. The realization thus undershoots the
expected state.

Consider the slopes of the individual realizations in Fig. 6
estimated by projecting lines of varying duration through
different parts of the stepped curves. These slopes repre-
sent estimates of the particle flux. With increasingly rar-
efied conditions, notably when the expected rate η rapidly
changes, such estimated rates may be markedly different
from the local expected rate associated with η. Further note
that the idea of convergence of a time-averaged flux to an
ensemble-expected value with increasing averaging interval,
as in the situation depicted in Fig. 4, is not relevant in Fig. 6.
The ensemble-expected value continuously changes over a
timescale Tη that is shorter than the timescale required for
convergence, particularly with increasingly rarefied condi-
tions.

5 Discussion and conclusions

In keeping with our philosophical objectives, we begin this
section at a high level. This is to reinforce our view that it
is important for growing efforts centered on probabilistic de-
scriptions of sediment transport to include the philosophical
underpinnings of this work within the conversation.

In 1943 Kurt Lewin first offered his oft quoted maxim
that “there is nothing so practical as a good theory” (Lewin,
1943) for providing a framework to guide analyses of com-
plex systems. This basic, lasting principle appears to res-
onate in many fields, particularly the social sciences (Mc-
Cain, 2016). More recently, Deutsch (2009, 2011) built from
ideas of Karl Popper to strongly argue for the essential guid-
ing role of theory in the development of scientific explana-
tion – that compelling explanations of natural phenomena are
“theory laden”. He forcefully rejects the idea of empiricism,
that observation of the world alone can suggest which ideas
to adopt. In addition, Eugene Wigner provides an important
elaboration of Lewin’s maxim for the natural sciences. In
his classic essay entitled “The unreasonable effectiveness of
mathematics in the natural sciences”, Wigner (1960) notes
that the triumph of physics resides in principles of invariance
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Figure 6. Plot of 10 realizations (colored lines) of normalized number n̂(x, t) versus elapsed time t showing increasing variability with t .
Plots generated with η(0)= 10, η(∞)= 0.1, µn = 1000 and (a) Tη = 1000, Rx = 1, (b) Tη = 1000, Rx = 0.01, (c) Tη = 100, Rx = 1 and
(d) Tη = 100, Rx = 0.01. Black line represents ensemble expected values of n̂(x, t).

(Wigner, 1985) – that the laws of nature are invariant with
any suitable transformation of space or time, thereby ren-
dering them independent of initial conditions, position and
history yet holding true for all time. He suggests that it is
precisely the existence of this invariance that gives us the
confidence and inspiration – what he calls the “empirical law
of epistemology” – for continuing the endeavor of discov-
ery with growing complexity and uncertainty. Without this
invariance, we would lose trust in our use of the laws of
physics in different problems and settings – just as we would
lose confidence and interest in playing the game of chess if
the rules continually changed from one match to the next,
precluding any gain in expertise from experience with fixed
rules.

Turning these ideas toward sediment systems, we suggest
that the statistical mechanics framework outlined herein of-
fers a compelling strategy for examining particle motions and
transport, particularly with rarefied conditions and in view
of the uncertainty that goes with describing slow systems.
This framework has two key elements that embody the points

above. First, this framework is grounded in principles and
methods for dealing with particle systems, continuum and
rarefied, that have been rigorously scrutinized for more than
a century. Its principles rest on Wigner’s views of invariance,
and its familiarity lends confidence for investing trust in its
mechanical basis when examining unfamiliar problems out-
side of classical statistical mechanics. Second, this frame-
work embraces uncertainty at the outset in its use of prob-
ability. It offers established ways to formulate expressions
of conservation, clear rules for counting and averaging parti-
cle states, and the foundational concept of a Gibbs ensemble
(Furbish et al., 2012a; Furbish and Schmeeckle, 2013; Bi et
al., 2015; Furbish et al., 2018c). Again, we are inspired to in-
vest trust in this formalism applied to unfamiliar systems. In
particular, this framework points us in the right direction for
examining the physics of rarefied particle motions on hill-
slopes, wherein we see the behavior of the particle system
precisely for what it is – an unusual granular gas. The ef-
fort then consists of elucidating a micro-view of the mechan-
ical behavior of the particles during their downslope motions,
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which, when described probabilistically, leads to a macro-
scopic view of their collective (emergent) behavior.

The theoretical analysis of particle motions involves
threading together elements of statistical mechanics, con-
cepts from granular gas theory, particle collision mechanics,
and probability distribution theory (Furbish et al., 2021a, c).
Importantly, the analysis leans on the style of thinking of sta-
tistical mechanics while recognizing – as a delightfully chal-
lenging twist – that it is not about simply adopting, off the
shelf, theory and methods from this field. Instead, the work
must be tailored to the transport process and scale of interest.

Each of the examples used in Sect. 4.1 to highlight the
merits of a probabilistic description of particle motions and
disentrainment – particle energy extraction, energy states and
the Fokker–Planck equation, and the generalized Pareto dis-
tribution as a maximum entropy distribution – represents a
direct extension of established concepts in statistical me-
chanics as applied to both ordinary gases and granular gases.
The analyses are not as straightforward as describing the be-
havior of ideal gas particle systems. Nonetheless, they nicely
illustrate the transferability of basic principles, for example,
the treatment of dissipative collisions as a random process,
the value of appealing to a Gibbs ensemble as applied to a
cohort of particles, and the use of an energetic cost to con-
strain the entropy maximization method. Thus, these exam-
ples illustrate elements of a coherent statistical mechanics
framework for describing sediment particle motions – that a
mechanistic yet probabilistic analysis is possible. Moreover,
the maximum entropy analysis specifically offers clarity on
particle behavior that is not otherwise accessible. Namely,
that all three forms of the generalized Pareto distribution are
constrained in the same manner demonstrates that nothing
special or unusual changes in the physics of disentrainment
in the transition from the bounded form to the heavy-tailed
form of the distribution in crossing isothermal conditions.
The analyses thus rest on a solid foundation of statistical
mechanics. Nonetheless, it is essential that these results be
challenged, and, if necessary, culled and replaced with fresh
ideas.

With respect to consequences of rarefied versus continuum
conditions, herein we focused on descriptions of the particle
flux and its divergence (Sect. 4.2). Inasmuch as the particle
delivery rate (as a line source) or the entrainment rate can be
approximated as a Poisson or intermittent Poisson-like pro-
cess, then the analysis clearly points to the idea that the flux
or its divergence involves a distribution of possible outcomes,
not just a single expected value – an idea that is decidedly
different from conventional continuum descriptions of these
quantities. Note that the descriptions of the flux and its diver-
gence do not depend on the results described above concern-
ing the physics of particle motions. Indeed, the probabilistic
nonlocal expressions of the flux and its divergence, Eqs. (1)
and (2), are independent of the form of the probability den-
sity fr (r;x, t) of particle travel distances r and the associ-
ated exceedance probability function Rr (r;x, t). Nonethe-

less, these expressions are firmly grounded in the methods of
classical statistical mechanics, albeit specialized to sediment
motions.

Here we reinforce the idea that Eqs. (1) and (2) are prob-
abilistic algorithms. For rarefied conditions the entrainment
rate Es(x, t), although expressed as a continuously differen-
tiable function of position x and time t , is actually an ex-
pected rate constant. Particle entrainment “events” are de-
cidedly discontinuous (Figs. 3 and 5). Similarly, the con-
tinuous forms of the density fr (r;x, t) and the exceedance
probability function Rr (r;x, t) indicate that these represent
ensemble-expected conditions, not the outcome of any indi-
vidual realization (Appendixes C and D). During an inter-
val of time 1t a finite number n of particles is entrained at
the expected rate Es(x, t). This is equivalent to saying that a
sample of size n is drawn from the density fr (r;x, t). Such a
sample, if plotted as a histogram of distances r , would have
an irregular (discontinuous) form that only roughly mimics
the smooth form of fr (r;x, t). Similar irregular histograms
involving different values of n, no two alike, would occur
during successive intervals 1t . As a consequence the flux
q(x, t) and the rate ζ̇ (x, t), although expressed as continu-
ous functions, are decidedly discontinuous. All realizations
are distinct, and none matches the ensemble-expected state
(Figs. 3, 4, 5 and 6).

As written, then, the flux q(x, t) and the rate ζ̇ (x, t)
are physically imagined quantities – as if the rate constant
Es(x, t) represented a time-continuous “stream” of particle
material distributed instantly and smoothly over space ac-
cording to fr (r;x, t) or Rr (r;x, t). It is only in this sense
that Eqs. (1) and (2) yield a single value of the flux or
its divergence for specified controlling factors embodied in
Es(x, t), fr (r;x, t) and Rr (r;x, t). More precisely, these
expressions describe how ensemble-expected values of the
flux q(x, t) and the rate ζ̇ (x, t) vary smoothly with posi-
tion and time. That is, these ensemble-expected quantities are
well-defined continuously differentiable functions. Then, as
noted in Sect. 4.3.1, if we write ζ̇ (x, t)=−∂q(x, t)/∂x as a
“model” of land-surface evolution in which q(x, t) is speci-
fied by Eq. (1), we in fact are describing an imaginary land-
surface configuration that changes in a continuously differ-
entiable manner if and only if q(x, t) at all times coincides
with the ensemble-expected flux, neglecting any noise ef-
fects. Viewed in this manner, simulations of hillslope evo-
lution based directly on Eq. (2) (Furbish and Haff, 2010;
Furbish and Roering, 2013; Doane et al., 2018) represent
ensemble-expected behavior. In contrast, simulations of hill-
slope evolution based on particle-based models (Tucker and
Bradley, 2010; Bithell et al., 2014) represent individual real-
izations.

The examples involving Poisson or intermittent Poisson-
like processes described in Sect. 4.2 and 4.3 highlight the in-
herent variability that goes with noise-driven processes and
point to an important consideration in interpreting landform
configurations. Namely, for rarefied transport conditions a
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landform at any instant represents one of many possible re-
alizations for the same controlling factors, whether fixed
or varying with time. This view is distinctly different from
the perspective offered by a smoothly varying deterministic
model prediction that is based on fixed or slowing varying
controlling factors without acknowledging noise effects that
lead to a distribution of possible outcomes. The implication
is that landform configurations reflect an inherent variability
that is not simply attributable to perturbations about a de-
terministically expected state as in a mean-reverting behav-
ior (Furbish and Fagherazzi, 2001). This variability is just
as important as an expected state in characterizing the land-
form behavior. Unfortunately, unlike fast systems, we cannot
necessarily constrain the values of the controlling factors by
direct measurements or in the manner of controlled experi-
ments. We therefore must embrace the uncertainty that goes
with rarefied transport conditions and enjoy the weather of
landforms as much as we do their imagined climate.

This perspective also induces us, while acknowledging
consequences of the noisiness of rarefied systems, to exam-
ine the dynamics of competition between roughening and
smoothing processes (Schumer et al., 2017). As mentioned
in Sect. 4.2.3, this may involve collective entrainment, the
sediment capacitance of vegetation and other roughness ele-
ments, preferential entrainment and deposition in relation to
surface geometry and roughness, effects of particle size sort-
ing, or “smoothing” processes that are not related to rarefied
particle motions per se. We suggest that there is value in tak-
ing cues from current work on noise-driven bed load trans-
port, including the coupling between moving particles and
the streambed state (Ancey et al., 2008; Ancey and Heyman,
2014; Pierce and Hassan, 2020a). Whereas we have focused
on local consequences of noisy delivery rates and entrain-
ment, there is a need to systematically examine land-surface
behavior in relation to rarefied particle transport.

In their examination of experimental time series of bed
load flux, Ancey and Pascal (2020) provide an interesting les-
son for considering slow systems. They show that for a noise-
driven process the time-averaged flux calculated from an in-
dividual realization (Figs. 3 and 4) may differ significantly
from the (known) sediment feed rate. We can imagine having
information, for example from a sediment deposit, that al-
lows us to estimate the time-averaged sediment delivery rate
associated with a slow, noisy system. However, this estimated
rate, representing an individual realization, may not coincide
with the ensemble-expected rate associated with the extant
controlling conditions. In the absence of a high-fidelity time
series of the delivery rate analyzed by re-sampling methods
(Ancey and Pascal, 2020), the result is unavoidable uncer-
tainty in this averaged rate.

We end with an anecdote to reinforce the starting point of
this section. Last fall we wandered into Guilherme Gualda’s
graduate class on phase transformations in magmatic systems
and, to our delight, discovered on the chalkboard a derivation
of the Boltzmann distribution of the energy states of atoms
in a crystal lattice – complete with a pictorial rendering of
the energy macrostates and microstates of a simple example
system. The derivation continued with a description of the
particle diffusion coefficient containing the Gibbs activation
energy, as a direct consequence of the Boltzmann distribu-
tion, thence to the Arrhenius equation. We then enjoyed the
discussion surrounding the idea that, in practice, one would
experimentally determine the diffusion coefficient for a real
(i.e., not ideal) system rather than predict it from the statisti-
cal mechanics theory for specified atomic constituents and
thermodynamic conditions. The students were quick! “So
what is the value of the theory?” “Aha!”, Gualda responded
with delight, “the theory provides an unambiguous frame-
work for interpreting our experimental data in view of the
uncertainties of real systems! For example, in addition to pro-
viding a coherent, testable explanation of the phenomenon,
the theory points to the appropriate functional form – the
logical basis – of the expected relationship in curve fitting.
This in turn provides the basis of error assessment – either
by classic propagation using the calculus or by Monte Carlo
methods – which is particularly valuable given that experi-
mental data often are sparse and of variable quality. And it
assigns clear meaning to estimated parameters for compari-
son with other work.”

It is such a lovely, simple lesson: “There is nothing so
practical as a good theory . . . ” and we would add in the case
of sediment systems, “. . . that pays as much attention to fluc-
tuations as it does to expected (mean) values.”
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Appendix A: Recent work on probabilistic elements
of sediment motions and transport

Here we offer a partial list of papers (81) representing re-
cent work on probabilistic elements of sediment motions and
transport in five topical areas. These papers contain numer-
ous references to related work, including early probabilistic
descriptions of transport and related material in the mathe-
matics and physics literature. Under each heading we list the
papers in the order of their appearance.

Although these papers are just a sample, the relative num-
bers in the five areas accurately reflect the unevenness of ef-
forts among these areas. The notable difference in efforts per-
taining to rivers versus hillslopes is in part a direct reflection
of the differences in our ability to observe and measure the
transport processes. As noted in the main text, we know far
more about bed load sediment transport in shear flows based
on flume experiments than, say, soil particle transport and
mixing associated with bioturbation and granular creep.

A1 Bed load particle motions and transport

Ancey et al. (2006),
Ancey et al. (2008),
Ancey (2010),
Lajeunesse et al. (2010),
Furbish et al. (2012a),
Furbish et al. (2012b),
Furbish et al. (2012c),
Roseberry et al. (2012),
Campagnol et al. (2013),
Furbish and Schmeeckle (2013),
Ancey and Heyman (2014),
Heyman (2014),
Heyman et al. (2014),
Seizilles et al. (2014),
Ancey et al. (2015),
Fathel et al. (2015),
Bohorquez and Ancey (2016),
Fan et al. (2016),
Fathel (2016),
Fathel et al. (2016),
Furbish et al. (2016a),
Furbish et al. (2016b),
Heyman et al. (2016),
Furbish et al. (2017),
Salevan et al. (2017),
Ballio et al. (2018),
Dhont and Ancey (2018),
Lee and Jerolmack (2018),
Ballio et al. (2019),
Ancey (2020a),

Ancey (2020b),
Ancey and Pascal (2020),
Ashley et al. (2020),
Chartrand and Furbish (2021),
Pierce and Hassan (2020a),
Wu et al. (2020).

A2 Bed load tracer particle motions, including effects of
particle–bed exchanges

Hassan and Church (1991),
Ferguson and Wathen (1998),
Parker et al. (2000),
Ferguson and Hoey (2002),
Ferguson et al. (2002),
Nikora et al. (2002),
Wong et al. (2007),
Schumer et al. (2009),
Bradley et al. (2010),
Ganti et al. (2010),
Hill et al. (2010),
Martin et al. (2012),
Hassan et al. (2013),
Phillips et al. (2013),
Voepel et al. (2013),
Martin et al. (2014),
Pelosi et al. (2014),
Phillips and Jerolmack (2014),
Fathel et al. (2016),
Bradley (2017),
Hassan and Bradley (2017),
Liu et al. (2019),
Pierce and Hassan (2020b).

A3 Nonlocal sediment transport on hillslopes

Foufoula-Georgiou et al. (2010),
Furbish and Haff (2010),
Gabet and Mendoza (2012),
Furbish and Roering (2013),
Doane (2018),
Doane et al. (2018),
Doane et al. (2019),
Furbish et al. (2021a),
Furbish et al. (2021b),
Furbish et al. (2021c),
Roth et al. (2020),
Williams and Furbish (2021).
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A4 Particle motions in soils, including tracer particles

Furbish et al. (2009b),
Furbish et al. (2018a),
Furbish et al. (2018b),
Furbish et al. (2018c),
Gray et al. (2020).

A5 Rain splash transport

Furbish et al. (2007),
Furbish et al. (2009a),
Dunne et al. (2010),
Furbish et al. (2016b),
Sochan et al. (2019).

Appendix B: Divergence form of Exner equation

Consider the entrainment forms of the flux and the Exner
equation, Eqs. (1) and (2). Here we show that Eq. (2)
is consistent with the divergence expressed as csζ̇ (x, t)=
−∂q(x, t)/∂x when the flux q(x, t) is given by Eq. (1).

We start by writing h(x,x′)= Es(x′, t)Rr (x− x′;x′, t) so
that Eq. (1) becomes

q(x, t)=

x∫
−∞

h(x,x′) dx′ . (B1)

Taking the derivative of Eq. (B1) and applying Leibniz’s rule,

dq(x, t)
dx

=
d

dx

x∫
−∞

h(x,x′) dx′

=

x∫
−∞

∂

∂x
h(x,x′) dx′+h(x,x)

=

x∫
−∞

∂

∂x
[Es(x′, t)Rr (x− x′;x′, t)]dx′

+Es(x, t)Rr (0;x, t) . (B2)

With r = x− x′ we observe that the operation ∂/∂x = ∂/∂r .
Evaluating the derivative in Eq. (B2), noting that fr (r;x, t)=
−dRr (r;x, t)/dr and Rr (0;x, t)= 1, then yields

dq(x, t)
dx

=−

x∫
−∞

Es(x′, t)fr (x− x′;x′, t) dx′

+Es(x, t) . (B3)

Reverting to partial notation the entrainment form of the
Exner equation, Eq. (2), then follows from csζ̇ (x, t)=
−∂q(x, t)/∂x.

Consider an alternative formulation. With r = x− x′ we
note that dx′ =−dr . We now use this change of variable to
rewrite Eq. (1) as

q(x, t)=

∞∫
0

Es(x− r, t)Rr (r;x− r, t) dr . (B4)

This form of the convolution may be expanded as a Taylor
series to show that the flux consists of advective and diffusive
parts so long as the integral of Rr (r;x, t) converges (Furbish
and Roering, 2013; Furbish et al., 2017). In turn we use the
communicative property of convolutions to write Eq. (B4) as

q(x, t)=

x∫
−∞

Es(r, t)Rr (x− r;r, t) dr , (B5)

which has the same form as Eq. (1). We then take the deriva-
tive of Eq. (B5) and proceed as above to obtain the entrain-
ment form of the Exner equation, Eq. (2).

Appendix C: Rarefied versus continuum conditions

The material in this appendix is mostly extracted directly
from Appendix A in Furbish et al. (2018c). Our aim is to fur-
ther illustrate the significance of rarefied versus continuum
conditions, and the interpretation of the Fokker–Planck equa-
tion applied to these conditions. We focus on the familiar ex-
ample of Brownian motion, the initial formal description of
which is separately attributable to Einstein (1905) and von
Smoluchowski (1906). For additional background, Schumer
et al. (2009) provide a particularly clear description of the
Lagrangian perspective of particle motions and its relation to
the Eulerian perspective of particle behavior as embodied in
the Fokker–Planck equation.

With reference to Fig. C1, let x denote a coordinate
along which Brownian particles take one-dimensional ran-
dom walks, where x extends indefinitely in the positive and
negative directions about the origin x = 0. Suppose that a
particle starts at the origin at time t = 0 and with equal prob-
ability moves in the positive or negative direction during
successive small intervals dt . By the definition of a random
walk, the motion of the particle – specifically its expected po-
sition x after an interval of time t > 0 – can be predicted only
in a probabilistic sense. Namely, letting fx(x, t) denote the
probability density function of possible positions x, then this
density satisfies a Fokker–Planck equation involving only its
diffusion term:

∂fx(x, t)
∂t

= k2
∂2fx(x, t)
∂x2 , (C1)

where the particle diffusivity k2 is assumed to be constant.
The solution of Eq. (C1) is the Gaussian distribution with
mean µx = 0, namely,
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Figure C1. Plot of coordinate position x of particle undergoing a
random-walk motion showing Gaussian distribution fx (x, t) of ex-
pected positions at time t as the solution, Eq. (C2), of the Fokker–
Planck equation, and the actual (example) particle position x = xa,
and uniform steady-state distribution fx (x)= 1/2 for a bounded
domain such that −1< x < 1. Figure reproduced from Furbish et
al. (2018c).

fx(x, t)=
1

√
4πk2t

e−x
2/4k2t . (C2)

For this highly rarefied system involving a single particle, we
can only offer probabilistic predictions of its position at time
t . For example, we may confidently state that with probabil-
ity p = 1/2 the particle is either at a position x < 0 or at a po-
sition x > 0. Or we may state that with probability p ≈ 0.68
the particle is within the domain defined by plus 1 and mi-
nus 1 standard deviations about the mean position, namely,
−
√

2k2t < x <+
√

2k2t . For this single-particle system (re-
alization), the actual particle position xa is represented by a
Dirac distribution δ(xa− x, t) (Fig. B1), but this cannot be
predicted deterministically (Schumer et al., 2009).

Let us now imagine an arbitrarily great number N of iden-
tical, independent particles that start at the origin x = 0 at
time t = 0, each undergoing a random walk during t > 0.
When viewed together, the distribution of these particles
at time t = 0 is given by the Dirac distribution, namely,
fx(x,0)= δ(x). At any time t > 0 these particles are dis-
tributed according to Eq. (C2). That is, because N is ar-
bitrarily large, the proportion of particles within any small
interval x to x+ dx closely matches what is predicted by
Eq. (C2), namely fx(x, t)dx, such that in the limit of dx→ 0
the actual distribution of positions x varies smoothly (contin-
uously) and converges to Eq. (C2) (Fig. C2). In contrast to the
highly rarefied single-particle system in the previous exam-
ple, we may thus assume that this great number of particles,
occurring in one system (realization), satisfies the continuum

Figure C2. Histograms of particle positions x at time t for one
system showing that (a) with a great number N of particles rep-
resenting a continuum condition this histogram converges to the
smooth Gaussian distribution in Fig. B1 as dx→ 0; in this example
N = 100000, and (b) with a modest number of particles represent-
ing a rarefied condition this histogram is irregular and discontinu-
ous; in this example N = 200. Figure reproduced from Furbish et
al. (2018c).

hypothesis. Nonetheless, upon randomly selecting a single
particle from this system, we still can only offer probabilis-
tic predictions of its position at time t – as in the example
above involving a system with a single particle. Moreover,
note that the continuous distribution of positions x realized
at time t for this one system involving a great number N of
particles is identical to the distribution that would be realized
upon pooling the x positions at time t associated with a great
number N of independent systems, each involving a single
particle.

Now select a system with a modest number N of particles
such that conditions are rarefied. By this we mean that, after
some time t , the actual distribution of particle positions x
is at best represented by an irregular histogram that roughly
appears Gaussian but is decidedly discontinuous (Fig. C2).
Moreover, any realization involving N particles possesses a
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similar irregular form at time t , and no two are the same. In
effect, each realization represents a sample of size N drawn
from an imagined population represented by Eq. (C2). Also
note that each realization involving N particles at time t is
the same as N realizations, each involving a single particle,
when viewed collectively at time t .

Let us now consider a great number Ne of independent
but nominally identical systems – an ensemble – at any fixed
time t , where each system contains N particles, large or
small. We now wish to describe the ensemble-expected con-
ditions. To envision this, consider any small interval x to
x+dx. IfN = 1 as in the first example above, then fx(x, t)dx
is just the proportion of the Ne systems containing a particle
within x to x+ dx at time t . Note that this is identical to
the result above involving an individual system containing a
great number N =Ne of particles. If instead each system in-
volves a great number N of particles, then fx(x, t)dx simply
becomes the expected proportion of the N particles within x
to x+ dx at time t , where the expectation is calculated over
theNe systems. And note that this outcome is identical to the
proportion of N ×Ne independent systems, each involving a
single particle, which contain a particle within x to x+dx at
time t . In either case, the expected proportion within the in-
terval is the same. Moreover, we reach the same conclusion
in considering a great number Ne of systems, each involv-
ing a modest number N of particles. Thus, when calculated
over a great number of systems for all intervals dx, then in
the limit of dx→ 0, the continuous function, Eq. (C2), is re-
trieved. The key points are these: first, whetherN is relatively
small (representing a rarefied condition) or N is large (rep-
resenting a continuum condition), the ensemble-expected be-
havior represented by Eq. (C2) applies equally to both con-
ditions in a probabilistic sense. Second, if N is small, then
Eq. (C2) represents the ensemble-expected behavior, not the
actual behavior of any one system (realization); if N is large,
then the actual behavior of the system is expected to converge
to the smooth ensemble behavior represented by Eq. (C2).

To complete the picture, suppose that the x domain in
Fig. C1 is bounded such that −1< x < 1. Particles that
reach these boundaries are “reflected” and remain within
the domain, continuing their random walks. In the limit
of t→∞, the probability density of particle positions
x reaches a steady-state form, that is, ∂fx(x, t)/∂t→ 0
such that fx(x, t)→ fx(x). In this limit, Eq. (C1) be-
comes d2fx(x)/dx2

= 0. Moreover, the probability flux qx =
−k2dfx(x)/dx = 0 at all positions x, which means that
dfx(x)/dx = 0. These constraints together with the fact that
the distribution fx(x) must integrate to unity yield the result
that fx(x)= 1/2 over the bounded domain (Fig. C1). That is,
the expected distribution fx(x) is uniform. As with the un-
steady problem described above, a modest number N of par-
ticles representing rarefied conditions in any one realization
is at best represented by an irregular histogram that roughly
appears uniform but is decidedly discontinuous (Fig. C3).
Moreover, at an arbitrary later time, the resulting distribution

(histogram) would be just as irregular; it does not become
smoother with increasing time. As above, the expected con-
tinuous steady-state distribution is retrieved when expected
values are calculated over a great number Ne of systems.

Figure C3. Histogram of particle positions x at time t→∞ for
one system showing that with a modest number of particles repre-
senting a rarefied condition this histogram is irregular and discon-
tinuous; in this example N = 500. Figure reproduced from Furbish
et al. (2018c).

With respect to developments in the text, the Fokker–
Planck equation describes the time evolution of the proba-
bility density fx(x, t). The formulation does not assume ei-
ther rarefied or continuum conditions. It is indifferent to these
conditions yet equally applicable to both.

Appendix D: Ensemble expected conditions of a
Poisson process

Here we provide an explicit definition of an ensemble-
expected value or state and its relation to a time-averaged
value. Recall that the Poisson distribution, Eq. (25), describes
the probability that n events will occur within a specified in-
terval of time t when these events occur randomly with a
fixed rate constant η [T−1]. Here we write this distribution as

fn(n, t)=
(ηt)n

n!
e−ηt , (D1)

with mean µn = ηt and variance σ 2
n = ηt . As written,

Eq. (D1) looks like a description of the time evolution of a
system involving Poisson events. However, note that for an
individual realization of a Poisson process over a specified
interval (0, t) there is only one outcome, that is, precisely n
events. As usually presented, we are to imagine such an in-
terval of time and use Eq. (D1) to assess the likelihood that
n events will occur during the interval. Here we alternatively
consider an ensemble of systems.

Let us imagine, as did Gibbs (1902), a great number Ne of
nominally identical but independent systems (an ensemble),
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each subject to the same physics of random events charac-
terized by the rate constant η. (One may consider each re-
alization plotted in Fig. 3, for example, as representing the
outcome of one system in the ensemble.) Let the subscript
i = 1,2,3, . . .,Ne denote the individual systems composing
the ensemble. We now imagine starting each system at time
t = 0 with the initial conditions,

fn(0,0)i = 1 and fn(n,0)i = 0 , n≥ 1 . (D2)

That is, at time t = 0 each of the Ne systems has a value of
unity at n= 0 and a value of zero for all n≥ 1. Taking the
ensemble expectations,

fn(0,0)=
1
Ne

Ne∑
i=1

fn(0,0)i =
Ne

Ne
= 1 and (D3)

fn(n,0)=
1
Ne

Ne∑
i=1

fn(0,0)i =
0
Ne
= 0 , n≥ 1 . (D4)

Thus, fn(0,0) is just the proportion of the Ne systems with
n= 0 events and fn(n,0) is the proportion of the Ne systems
with n≥ 1 events at time t = 0.

Now, at any time t > 0 each system has precisely n events
with probability one. Those that have n= 0 events are repre-
sented by

fn(0, t)i = 1 with fn(n, t)i = 0 , n 6= 0 , (D5)

those that have n= 1 events are represented by

fn(1, t)i = 1 with fn(n, t)i = 0 , n 6= 1 , (D6)

those that have n= 2 events are represented by

fn(2, t)i = 1 with fn(n, t)i = 0 , n 6= 2 , (D7)

and so on for systems with n= 3,4,5, . . . events. Now let
N (n) denote the number of systems with n events. Taking
ensemble expectations,

fn(0, t)=
1
Ne

Ne∑
i=1

fn(0, t)i =
N (0)
Ne

, (D8)

fn(1, t)=
1
Ne

Ne∑
i=1

fn(1, t)i =
N (1)
Ne

, (D9)

and so on for systems with n= 2,3,4, . . . events. That is,
each probability fn(n, t) for n= 0,1,2, . . . is just the propor-
tion of the Ne systems with n events at time t . More gener-
ally,

fn(n, t)=
1
Ne

Ne∑
i=1

fn(n, t)i =
(ηt)n

n!
e−ηt , n≥ 0 , (D10)

which is our starting point. At this juncture the form of
Eq. (D10) now may be interpreted as describing the time evo-
lution of the ensemble distribution fn(n, t) (Fig. D1). To re-
iterate, upon starting each member of the ensemble at t = 0

according to Eq. (D2) then letting time proceed, Eq. (D10)
describes the distribution of the values of n associated with
the Ne members of the ensemble when viewed at any in-
stant. Whereas at time t = 0 all members of the ensemble
have n= 0 events with a probability of 1, the proportion
fn(0, t) decays as e−ηt with t > 0. The proportion fn(1, t)
initially grows, reaches a peak, and then decays as ηte−ηt .
The proportion fn(2, t) likewise initially grows, reaches a
peak, and then decays as (1/2)(ηt)2e−ηt . This pattern con-
tinues for proportions involving n= 3,4,5, . . ..

The essential idea is this. For any individual system there
is one possible outcome n at time t with probability given by
Eq. (D1). For an ensemble of systems all possible outcomes
n= 0,1,2,3, . . . exist at time t in the proportions given by
Eq. (D1). In fact, these ensemble proportions constitute the
formal, classic definition (Hájek, 2012) of the probabilities
fn(n, t) of n events at time t .

Consider the situation where particles are delivered as a
line source (x = 0) at the expected rate η. In this problem the
ensemble-expected particle flux at position x > 0 is Rx(x)η,
which by definition is the expected time-averaged flux for
any averaging interval t . This generally is not the same as
the time-averaged flux of any realization. Namely, if ni(x, t)
denotes the total number of particles moving past x during
the interval t for the ith realization, then the time-averaged
flux is ni(x, t)/t . This time average converges to the expected
rate Rx(x)η only in the limit of t→∞. To gain a sense
of this convergence we may consider the value of the time-
averaged flux coinciding with 1 standard deviation in the ex-
pected number of particles moving past x during t , which
is
√
Rx(x)ηt/t = [Rx(x)η/t]1/2. This suggests that the flux

converges as ∼ t−1/2, which is slower than exponential con-
vergence.

Whereas the ensemble distribution represented by
Eq. (D10) evolves with time t , for completeness we comment
here on the idea of a “stable”, or stationary, ensemble distri-
bution that is independent of time. The geometric distribution
associated with the M/M/1 queuing problem with ηI < ηE
(Sect. 4.2.3) is a stable distribution. Individual realizations
of n(t) may fluctuate over the domain n= 0,1,2,3, . . ., but
at any instant the ensemble distribution fn(n) is independent
of time. Similarly, the binomial and negative binomial distri-
butions fna (na) describing the number na of active particles
(Ancey et al. 2008; Heyman, 2014; Heyman et al., 2014) are
stable distributions. The uniform distribution associated with
a Brownian particle as described in Appendix D is a stable
(time-independent) distribution. The exponential distribution
of particle velocities described by Furbish et al. (2012b), Fur-
bish and Schmeeckle (2013), and Fathel et al. (2015) is con-
sidered to be a time-independent ensemble distribution.
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Figure D1. Plot of time evolution of (a) Poisson ensemble distribution fn(n, t) of the proportion N (n)/Ne of systems with n events at time
t = 0, 1, 2, 3, 4 and 5, and (b) proportion N (n)/Ne of systems with n= 0, 1, 2, 3, 4 and 5 events. Plots are based on η = 1. Lines connecting
the probability values (circles) in (a) are to aid visualization of successive states of the discrete distribution and do not imply the presence of
non-integer values of n.
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