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Abstract

Many complex systems on the Earth surface show non-equilibrium fluctuations, of-
ten determining the spontaneous evolution towards a critical state. In this context salt
marshes are characterized by complex patterns both in geomorphological and ecolog-
ical features, which often appear to be strongly correlated.5

A striking feature in salt marshes is vegetation distribution, which can self-organize in
patterns over time and space. Self-organized patchiness of vegetation can often give
rise to power law relationships in the frequency distribution of patch sizes. In cases
where the whole distribution does not follow a power law, the variance of scale in its
tail may often be disregarded. To this end, the research aims at how changes in the10

main climatic and hydrodynamic variables may influence such non-linearity, and how
numerical thresholds can describe this. Since it would be difficult to simultaneously
monitor the presence and typology of vegetation and channel sinuosity through in situ
data, and even harder to analyze them over medium to large time-space scales, remote
sensing offers the ability to analyze the scale invariance of patchiness distributions.15

Here, we focus on a densely vegetated and channelized salt marsh (Scheldt estuary
Belgium–the Netherlands) by means of the sub-pixel analysis on satellite images to
calculate the non-linearity in the values of the power law exponents due to the variance
of scale. The deviation from power laws represents stochastic conditions under climate
drivers that can be hybridized on the basis of a fuzzy Bayesian generative algorithm.20

The results show that the hybrid approach is able to simulate the non-linearity inher-
ent to the system and clearly show the existence of a link between the autocorrelation
level of the target variable (i.e. size of vegetation patches), due to its self-organization
properties, and the influence exerted on it by the external drivers (i.e. climate and hy-
drology).25

Considering the results of the stochastic model, high uncertainties can be associated
to the short term climate influence on the saltmarshes, and the medium-long term
spatial and temporal trends seem to be dominated by vegetation with its evolution in
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time and space. The evolution of vegetation patches (under power law) and channel
sinuosity can then be used to forecast potential deviation from steady states in intertidal
systems, taking into account the climatic and hydrological regimes.

1 Introduction

Local ecological interactions can give rise to the formation of regular spatial patterns5

in ecosystems (Rietkerk and van de Koppel, 2008). The potential of inferring underly-
ing processes from the analysis of such patterns is an extremely relevant, yet complex
question. The question becomes particularly significant when considering how the ob-
served patterns can be related to ecosystem response to external forcing, in particular
to environmental drivers. Salt marshes are natural landforms shaped by interactions10

between hydrodynamic forces, sediment input and vegetation colonization (Temmer-
man et al., 2007). The behavior of complex systems like tidal flats or marshes, permit
different interpretation of several landscape trends (D’Alpaos et al., 2005; Marani et al.,
2002; Rigon et al., 1994). They represent one of the most important types of coastal
wetlands, being highly productive environments located in many different contexts, but15

mainly in embayment and in estuaries (Allen, 2000). The estuarine landscape can be
considered as a system where, according to literature (Terjung, 1982; Scheidegger,
1987), a stationary landscape-state could correspond to a dynamic equilibrium, and
to a self-organized exogenic order. Any deviation from the steady state can grow due
to the increases of the sizes. According to Taylor (1950) the dynamic equations de-20

scribing the system are described by the nonlinear differential equations that could
be linearized for short ranges in times and space (Scheidegger, 1979, 1983; Stark
and Stieglitz, 2000). The evolution of a generic point must be described by its trajec-
tories showing the estuarine landscape as an open system where randomness and
nonequilibrium are the “chaotic” initial boundary conditions (Scheidegger, 1987; Cam-25

bel, 1993). It must be considered that the entropy of these systems represents a trend
that can not reach the maximum, showing to follow specific spatially and temporally
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scale-invariant power law (Bak and Chen, 1991) where fractal statistics are applicable
(Malinverno, 1990; Turcotte, 1992).

Recent modeling and computer simulations lead to the conclusion that self-
organization theory in mud flat, could be stochastic only if the individual element of
the system are related to small changes perturbation that undergo continuously to ad-5

justment (Weerman et al., 2010). The spatial self-organization shows to be inhibited by
the top-down control within a well-behaved curve representing the dependence of one
parameter to the others (Weerman et al., 2011), establishing the rapid changes in the
whole landscape.

Many of the recent advances in this research field hinge on the ideas and quanti-10

tative tools, like space-borne data (Dadson, 2010; Murray et al., 2009; Taramelli and
Melelli, 2009; Taramelli, 2011; Tolomei et al., 2013). In particular the analysis of the
spatial distribution of vegetation pattern sizes can make use of a powerful method to
characterize vegetation clusters over the broad range of spatial scales in which they
occur (Scanlon et al., 2007; Taramelli et al., 2013b), like Spectral Mixture Analysis15

(SMA – Small, 2004). SMA classifies individual mixed pixels according to the distribu-
tion of spectrally pure endmember fractions (Taramelli et al., 2012, 2013a; Valentini,
2013) leading to a vegetation cluster definition. The inverse relation between the de-
fined cluster size using SMA and the frequency, at which clusters of that size are found,
can give rise to a power law distribution (Clauset et al., 2009; Taramelli et al., 2013b).20

Ecological variables owe much of their dynamic properties to the high dependence on
the surrounding environmental conditions, mainly determined by physical and chemi-
cal variables; when the effect of these variables assumes considerable importance, the
power law approach may be insufficient to describe ecosystem dynamics.

In this paper we show that, on certain occasions, the actual distribution does not25

follow a power law for all its values: in the tail of the distribution, data may lie outside of
a model power law relationship and show a non-linearity, in other words a variance in
the scale invariance. If patches are found to lie outside and deviate from the power law
relationship, they are usually considered as statistical anomalies: as a consequence,
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the non-linearity in the power law tail may often be disregarded. To address this issue, in
this paper we hybridize a power law approach with a fuzzy naïve Bayesian classification
algorithm, in order to (a) identify the possible nonlinearity thresholds in vegetation patch
sizes, (b) to quantify the change of scale in the distribution and (c) to investigate the
specific properties of the non-linear tail of the distribution.5

Naive Bayes classifiers are an old and well-known type of classifiers that assign
a class from a predefined set to an object or case under consideration based on the
values of descriptive attributes. An intuitive approach to deal with regions of higher
and lesser data point density, where the boundaries between the clusters can only be
drawn with a certain amount of arbitrariness, is to make it possible that a data point10

belongs in part to one cluster, in part to a second etc. Fuzzy cluster analysis has the
requirement that a data point must not be assigned to exactly one cluster but it allows
gradual memberships (Bezdek, 1981; Bezdek and Pal, 1992).

The analytical approach in the present study allows to deal with tide-dominated envi-
ronments described as pulsing steady state (Odum et al., 1995), in which the pulse in-15

side the target variable is largely dependent on intermittent external dynamics, namely
the pulsing water flow regime or hydroperiod. The hybrid approach between power laws
and fuzzy naïve Bayes inference, which is potentially able to define the trajectory cov-
ered in the shift between two basins of attraction, represent the evolution of vegetation
patches and channel sinuosity that can be used to forecast potential deviation taking20

into account the climatic and hydrological regimes.

2 Study area

The case study to test the methodology is a salt marsh environment, where strong in-
teractions between organisms and the environment are particularly evident. Here we
examine the spatial and temporal dynamics of the Saeftinghe salt marsh in the Scheldt25

estuary, at the Dutch–Belgian border. Tidal influence is dominant over the whole es-
tuary and in the lower parts of some tributaries. Tidal excursion is variable within the
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estuary, since there are different volumes of water transported. In the portion of the
mouth, near Vlissingen, the average tidal range is 3.8 m (between the 2.81 m at neap
and 4.85 m at spring tide).

The area, comprising approximately 30 km2 and being one of the largest marshes
in Europe, is dominated by tidal influence. On the basis of the salinity gradient in the5

estuary, the study area considered in this work is located in the brackish portion. The
two-way interactions between biological and physical processes are particularly evident
in Saeftinghe: in the 30’s, only 25 % of the area was covered by salt marsh vegetation,
while the rest consisted of mudflats and tidal channels (Vandenbruwaene et al., 2012).
As of today, the proportions are exactly reversed: Saeftinghe is formed by 30 % of10

mudflats and channel systems, while the remaining 70 % of the surface is covered
by salt marsh vegetation. In Saeftinghe, stands of climax common reed Phragmites
australis can be found. Elymus athericus is the dominant species of Saeftinghe, is an
upper-marsh grass, a competitive species for its ability in nitrogen assimilation. Patches
of Spartina anglica, Salicornia europaea, and to a lesser extent colonize the pioneer15

zone by Scirpus maritimus and Puccinellia maritima.
This relatively rapid increase in vegetation, as well as the strong climate and hydro-

logical forcing to which it is subject, make Saeftinghe an ideal setting to explore the
spatio-temporal dynamics of salt marshes (Taramelli et al., 2013a).

3 Data and methodology20

The remotely sensed dataset was composed by a total of 18 Landsat Thematic Map-
per (Table 1) and Enhanced Thematic Mapper (Table 2) optical multispectral images
(US Geological Survey, 2003), spanning from 1984 to 2011 (Table 3). Surface char-
acteristics of the Saeftinghe salt marsh were mapped using SMA, and a decision tree
classifier was employed to obtain a final classification map. SMA was used to map25

vegetation cover classes, as well as the calculation of channel network sinuosity.
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3.1 Vegetation mapping and patch size calculation

The two-dimensional spatial structure of vegetation was characterized by the size-
frequency distribution of contiguous pixels showing the same typology of vegetation
cover. SMA was used to identify the presence of patches that occur at sizes that go
below the pixel resolution of Landsat imagery (30 m by 30 m), such as the ones in the5

pioneer zone. We discriminated between a low-pioneer vegetation, a high vegetation
dominated by Elymus athericus and the reed stands of Phragmites australis by clas-
sifying the mixed pixels in the abundance fraction maps. We then applied a threshold
to fraction cover values, to obtain binary matrices of presence/absence for each class.
We defined patch boundaries on the basis of the connectivity of each vegetation pixel10

to its four neighboring pixels (von Neumann neighborhood algorithm). For each patch,
its area was calculated to test the plausibility of the power law distribution.

3.2 Channel sinuosity calculation

Similarly to marsh vegetation patterns, channel network was extracted from fraction
maps, with the difference that in this case the processing started by using the “dark”15

endmember. Channel fraction maps were converted into binary presence/absence im-
ages based on a threshold fraction value. The reclassified image was then imported
in Matlab for the network extraction through the skeletonization algorithm (Gonzalez
et al., 2004). This morphological operation is used on binary images to reduce each
component to the thickness of a single row of pixels and to obtain the object’s skele-20

ton, preserving the original shape and connectivity. The algorithm was repeated until
further reiterations did not bring any changes to the skeleton structure.

The degree of meandering of the channel network was then measured quantitatively
through the calculation of channel sinuosity. Sinuosity s = l/L is the ratio between the
along-stream length l to the straight-line distance L between the starting and ending25

points (the two nodes of each channel). Branch points (points of channel bifurcation)
were detected and subtracted from the channel network skeleton to obtain isolated
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branches. We calculated along-path distance l for each skeletonized branch, while
straight-line distance L between endpoints was calculated using Pythagoras’ theorem.
Finally, sinuosity was computed as the ratio between the two values.

Channel network attributes used as input variables in the model are (i) the number
of bifurcation points, (ii) the total number of channels, (iii) average channel sinuosity for5

each remote sensing acquisition.

3.3 Hydrological and climatic data

The training dataset used for the model also comprises a series of in situ hydrological
and climatic data. The variables used to describe the environmental boundary condi-
tions are (i) salinity, (ii) high water level, (iii) rainfall, (iv) tide level at the time of image10

acquisition, each of them averaged over different time spans (14, 30 and 60 days be-
fore each remote sensing acquisition). Salinity was measured at the reference station
of Baal, water and tidal levels at the station of Bath, and daily historical precipitation
amounts were collected from the meteorological station of Kloosterzande. The three
stations are located in the Netherlands, close to the Saeftinghe marsh (see Fig. 1).15

3.4 Power law

We started from the fact that the aspect of actual landscapes does not correspond to
a “dynamic equilibrium”, but to a self-organized order at the edge of chaos in an open
dissipative system. As already summarized by Scheidegger (1994) “in a fractal set of
dimension D, there exists a power law of subsets: the number N of subsets of linear20

size D is proportional to L−D. In terms of size (M)-frequency (N number of events per
unit time) distributions, the power law mentioned is represented by a Gutenberg and
Richter (1949), type law:

LogN(M) = a−bM (1)

which is a power law for N.”25
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Such power laws have been found everywhere in self-ordered natural system (Hoff
and Bevers, 1998; Malinverno, 1990; Stark and Hovius, 2001; Stark and Guzzetti
2009). But as the natural systems are not linear and not following the growth equation
of the type Eq. (1), they usually follow a logistic equation like (Cambel, 1993; Schei-
degger, 1994):5

dx(t)/dt = rx(t)[1−x(t)] (2)

where x is a normalized deviation-variable and r a system parameter.
Its solution is (Scheidegger, 1994)

x(t) = 1/[1+exp(−rt)] (3)

Based on the vegetation pattern areas defined in Sect. 3.1, we calculated the size-10

frequency distribution of patch size and we investigated whether the relationship could
be described by a power law. If a deviation from the model distribution was found to
occur in the power law tail, we considered that patch size as a non-linearity threshold,
and another power law was calculated only for the values in the tail that exceeded that
threshold.15

We fitted the power law to the data using the methods implemented by Clauset
et al. (2009), through which we estimated α and the lower limit of observed power
law behavior, xmin, using the method of maximum likelihood.

3.5 Fuzzy naïve Bayes approach

The high complexity and uncertainty associated with ecological systems under power20

law tail, can be then treated using a combination of fuzzy logic and a naïve Bayes
compiler. As in ordinary naïve Bayes, the compiler processes the data to estimate the
parameters in the form of instances.

The compiler algorithm consists of the following five steps (Widyantoro and Yen,
2000):25
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1. fuzzyfication of the variables

2. learning phase

3. fuzzy naïve Bayes inference on the new observed instances

4. definition of the result using the centroid rule within the uncertainty interval result-
ing from the compiler5

5. defuzzyfication of the output.

1 – Fuzzyfication of the variables: it consists in the expression of the original vari-
ables according to fuzzy formalism. A fuzzy partitioning is generated within the domain
of values of each variable, for which each domain of the system is described using
a series of fuzzy sets (Taramelli and Melelli, 2008; Gazzea et al., 2009). In particular,10

in this case we used isosceles triangle-shaped membership functions for their charac-
teristics of computational simplicity and objectivity. The domain of existence of each
variable was first standardized in the range 0–100 and then partitioned into 6 triangular
fuzzy sets with the same amplitude, according to which we fuzzyfied the observations
of the training set.15

2 – Learning phase: during this phase, the system estimates the classifier parame-
ters, deriving them from both the marginal and conditioned probabilities of each fuzzy
set. The marginal probabilities are calculated through the equation:

P (xi ) =

(∑
e∈L

µe
xi

)
+1

|L|+ |dom(xi )|
(4)

Where L is the learning set, dom(xi ) is the domain of the i th fuzzy set of the vari-20

able x, and e indicates a generic instance of the learning set L, while the conditional
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probabilities are calculated through the equation:

P (xi |y) =

(∑
e∈L

µe
xiµ

e
y

)
+1(∑

e∈L
µe
xi

)
+ |dom(xi )|

(5)

In the “learning phase”, both the joint and the conditioned probability values are cal-
culated according to the definition of Lebesgue’s probability space and refer to the fuzzy
event, that is to say to the possibility that a given variable is getting values numbered5

in a particular fuzzy set (Zadeh, 1968).
3 – Fuzzy naïve Bayes inference: given an observed, foreseen or simulated new

instance, the compiler calculates the probability of each fuzzy set of the target variable,
conditioned upon the new observed instance:

P (y |e) = P (y)

∑
x∈Xi

P (xi |y)

P (xi )
µe
xi

 . . .

∑
x∈Xn

P (xn|y)

P (xn)
µe
xn

 (6)10

The final output of the target variable will be a series of conditional probabilities
associated to the target fuzzy sets.

4 – The resultant values are obtained according to the maximum aposteriori prob-
ability (MAP) rule through the centroid mode of operation. This will give one or more
values according to the more or less high degree of probability associated to the new15

instances, on the basis of the statistical similarity to the training instances.

3.6 Hybridization

The combined utilization of the fuzzy logic and naïve-Bayes classifier provides a clas-
sification output, which is very close to being as accurate as the output of a predic-
tive methodology. The domain of the output (target) variable, which has undergone20
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fuzzyfication, is represented by indistinct classes so that the domain is continuous with
respect to the possible values of described variable.

The power law non linearity was then hybridized with a fuzzy naïve Bayesian classi-
fication algorithm, in order to identify the patch sizes of the nonlinearity thresholds in
the tail, to quantify the change of scale in the distribution and investigate its specific5

properties. The methodology is concerned with the prediction of the values at which
environmental variables may lead the system towards a nonlinearity threshold. The
identification of such threshold through simulations may then be used in the monitoring
phase of intertidal marshes.

We developed a nested fuzzy Bayesian model consisting of three steps, in each of10

which we estimated a different target variable. The model was applied in a nested way
to enter the complex structure of the system by increasing, run after run, the degree of
complexity of the target variable. Only one of the three vegetation classes – the “High”
vegetation dominated by Elymus athericus – was used as target variable to test the
model. This choice was made to obtain a more consistent dataset, using a class in15

which the deviations in the power law tails were more frequently observed: this way, we
explored all three steps of the nested model with a sufficiently large number of samples.

To achieve the desired level of complexity, we performed a first fuzzy Bayesian mod-
eling in which the target variable was the patch size corresponding to a deviation from
the linear logarithmic relationship. The patch size was quantified as the quantile of the20

distribution at which the emergence of a nonlinearity is most likely to occur. This first
step is estimated using the average salinity, high water levels and rainfall measure-
ments observed before each image acquisition.

Along with the variables already used in the first model, the results of the first run
become the input of the second one. Within the tail of the distribution the target for the25

nested fuzzy Bayesian model variable becomes the power law exponent.
In reaching a greater level of complexity, the outputs of the first two steps and the

channel network properties (sinuosity and number of bifurcation points – Taramelli
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et al., 2013b) have been used as input for the final, third step, to estimate the inun-
dated salt marsh area for a given tidal level.

The final classification is not therefore absolute but it specifies an uncertainty range
within the continuous domain of the target variable. Inside this uncertainty range, the
centroid rule determines a punctiform prevision with accuracy comparable to a deter-5

ministic prevision. The amplitude of the uncertainty range, within which the classifica-
tion falls, is a function of the original fuzzy partitioning and of the statistical likelihood
between the training data set and the new calculated instances.

4 Results

The patch sizes calculated for the whole time series (18 images between 1984 and10

2011), using the binary images of vegetation presence/absence, have been plotted by
ranking the patch size classes from the smallest to the largest (Fig. 2). This diagram
clearly shows the overall consistency of a power law relationship and confirms the
general higher frequency of smaller patches.

By comparing patch sizes and the main typology of vegetation for each patch size,15

we observed how the variety of vegetation typologies varies as a function of the patch
size (Fig. 3). The lower sizes of the distribution represent the higher level of diversity
in patch typology, with a dominance of high and dense stands of Elymus athericus
vegetation. In fact, with increasing patch sizes, there is a decrease in the variety of
vegetation typologies until, after a certain size, patches become monospecific. The20

dashed line in Figs. 2 and 3 indicates this threshold, relative to the largest patches and
equal to 2245 pixels.

Observing the channel network characteristics across the salt marsh (Fig. 4), the
higher sinuosity values can be found around the smaller patches, while a lower number
of channels seem to develop near the larger ones. Although some fluctuations are25

found in average sinuosity values along the time series, the average for the 18 Landsat
images is 1.08±0.016.
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Observing the power law distributions for the different vegetation classes in the
dataset, we established the presence of a frequent deviation in the distribution tails,
with the “High” vegetation class being the one where this deviation is more consistent
throughout the years (as shown in Fig. 5). Most of the observed distribution must be
disregarded taking into account the literature (Weerman et al., 2012).5

Figure 6 shows vegetation size data, for the Saeftinghe salt marsh (Landsat acquisi-
tion 24 August 2000), plotted as probability density p(x) for size x in log-linear forms.
The variance in the scale invariance of the distribution is clearly visible as a trunca-
tion in the power law tail. The region of the distribution considered to exhibit power-law
scaling describes 96 % of the observations.10

The non-linearity threshold until which the data follow a power law corresponds to
a patch size x of 27 vegetated pixels; nonetheless, much of the information regarding
the largest vegetation patches is contained inside the distribution’s tail.

The power-law model does not fit the remaining 4 % of the observed data in this
case showing that a power-law model distribution could be not enough. In fact, the15

majority of the information regarding the largest (and less frequent) vegetation patches
is contained inside this apparently negligible percentage of the data. So that to test
the functioning of the fuzzy naïve Bayesian model, six of the instances (vegetation
distributions obtained from remote sensing acquisitions) were used as training data set
for the algorithm. The remaining 12 observed instances were used to test the model20

predictions using naïve Bayes inference.
The results of the nested fuzzy Bayesian approach show a very high accuracy in the

estimation of the target variables in the three subsequent steps of the model. The high-
est estimation accuracy is found in the first and third steps (Fig. 7a and c), where the
target variables are the percentile of threshold vegetation size (after which a nonlinear-25

ity in the tail is observed) and the percentage of inundated salt marsh area for a given
tidal level. The latter is the one with the highest accuracy, since the observed values all
fall within the uncertainty interval of the output values. For the second step (Fig. 7b),
which predicts the power law exponent in the new distributions in the tail, the fitting is
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less precise, but still the model is able to calculate uncertainty ranges that closely fit
the target variable.

The uncertainty associated with each result is the range of values of the target vari-
able with the highest probability of occurrence. In fact, the model output is not a series
of point values, but rather ranges of equally likely values. The width of the interval is5

determined by the similarity between the classified instance and the training data, on
which we carried out the learning phase of the model. The fuzzy naïve Bayes uncer-
tainty thus indicates the output accuracy, based on the data on which the stochastic
model has learned the deterministic/empirical parameters of the system to be mod-
eled. The nature of this uncertainty implies the possibility to improve the accuracy of10

the simulations, by adjusting the amount of information in the parameter estimation and
the fuzzy partition used in data processing and in the simulations. Another important
consequence of the MAP (maximum a posteriori probability) uncertainty is the ability
to continuously recalibrate the model parameters in order to chase the uncertainty ex-
panding within the system, especially when extreme drivers or unobserved values are15

present. Therefore, the range of uncertainty describes the confidence of the model in
the results it has produced and the similarity between the learning instances and the
instances used for the simulations. Consequently, it indicates the variability that can be
observed in the system in response to the drivers used in the simulations.

The estimation of non-linearity thresholds, inferred from the observed vegetation20

patch size distributions, can be used to describe the emergence of another power law
relationship in the tail of the distribution. This is because the errors in each estimate are
strictly asymmetrically distributed biasing any regression fit in the whole original power
law distribution which assumes only normally distributed errors. Smoothing hides any
crossover from non-power-law scaling to a power law induced by the application of25

the fuzzy-Bayesian approach that can justify and explain the non–linear relationship
observed between the percentage of inundated salt marsh area and the tidal level in
the third step (Fig. 8). In this step, leading to the estimation of the percentage of in-
undated salt marsh area, the model runs into a non-linearity threshold beyond which
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the response of the target variable (here inundation time) shows different dynamics re-
lated to changes of the ecosystem state that the tail in the power law was highlighting
(Fig. 8). This reveals a non-linearity in forecasting the evolution of the response vari-
able. The threshold appears to be at around −50 cm NAP and at 95 cm NAP. Therefore
for a potential change in external environmental variables – in this case the tidal level5

and hydroperiod – the corresponding variations in overflowed salt marsh area may be
accurately predicted using the tail of the power law.

It is important to note that pairwise correlations between each target and the single
environmental variables were not enough to accurately describe the phenomenon in
question (see Table 4). This result stresses the limitations of using variables alone to10

describe intertidal systems, and at the same time it confirms the importance of using
a more complex approach, such as the one presented in this paper.

5 Discussion

The applied non-linear power law shows a high dependence of the detected vegetation
patchiness on the surrounding environmental conditions (salinity, rainfall, water height).15

The simulations clearly show the existence of a link between the autocorrelation level of
the target variable (vegetation), due to its self-organization properties, and the influence
exerted on it by the external drivers. The hybrid approach is able to simulate the non-
linearity inherent to the system, which would otherwise be undetectable from a classic
power law approach that can individually characterize only a part of the stochasticity of20

the system.
The results are in agreement with the theory of complex systems, in which the sys-

tem dynamics are influenced by emergent behaviors that cannot be described by single
variables but by their synergistic interaction. In particular, the phenomenon of emer-
gent behavior is related to the power law distribution of vegetation patches for which,25

in some cases, the points do not seem to thoroughly follow the power law that they
themselves have generated. It should be noted that even the points that appear not
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to follow a power law, they continue to follow a power law when taken apart from the
rest of the distribution, as in the case of the larger patches. In a predictive context,
it is important to be able to understand how scale invariance can vary inside a scale
invariant distribution, both in the body and in the tails. In particular, the assessment of
the effects of climatic extremes would fall within this category, where we observe the5

nesting of a power law in the tails of a power law distribution over an entire dataset.
The study establishes that within the estimates of power-law scaling the tail represents
important points to look at:

1. the power-law model distribution have a real cutoff scale located usually above
the 90th percentile of the distribution as seen in Saeftinghe tidal marshes; the cut10

off present at its tail represent a cumulative distribution rather than a probability
density p(x);

2. the log binning method used as in (Stark and Hovius, 2001), represent the size
distribution as a probability density p(x) that clearly shows an estimation of non-
linearity thresholds;15

3. the estimation of non-linearity thresholds, inferred from the observed patch size
distributions and the related environmental variables accurately describe the
emergence of another power law relationship in the tail of the distribution that
is finally related to the small patches vegetation’s pixels;

4. the application of the fuzzy-Bayesian approach justify and explain the non-linear20

relationship observed between the percentage of inundated salt marsh area and
the tidal level. Therefore for a potential change in external environmental variables
– in this case the tidal level and hydroperiod – the corresponding variations in
overflowed salt marsh area is accurately predicted.

The result for the size distribution of observed climatic events (high water levels and25

rainfall), can account for the whole population of mapped vegetation patches distri-
butions. The model quantify the undersampling of smaller events and provide better
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estimation of the power-law scaling considering larger surge events on the size of the
vegetation patches. The scaling suggests that the areas disturbed by different patches
of vegetation are linked to the sinuosity yield, and are essentially reliant on the fre-
quency of smaller surge/rain. Other results also indicate that the probability of extreme
events is less than previous studies would predict (Taramelli et al., 2013b). The −505

and +95 cm thresholds indicate, in fact, the state case where the amount of flooding
is more variable and should depend more on the climate of the daily rates of rain,
added to tide levels. Less rainy days drives mudflats to surficial dryness and cohe-
siveness, especially in small patches where the higher salinity and vegetation thirsty
determines scarce water uptake, while after rainy days, mud is less cohesive and plants10

less thirsty can dedicate themselves to the growth of both stands and roots so that, the
increased sediment transport and deposition increase the size of the intermediate and
large patches. The flood, as observed from fuzzy Bayes model could have a greater
effect on smaller patches that are subject to pulse and continuous disturbance (tide)
but at the same, they are especially encouraged to leave the steady state because15

often more influenced by the abrupt changes (but not extreme) of water level, salinity
and sediment deposition. That is, the small patches suffer the daily effect of the climate
and its changes. They deliver to the patches, variable amounts of water making them
exposed to more stable conditions in term of size and sinuosity. Here vegetation is
stable, advances and collaborates with the sediment.20

6 Conclusions

Tide-dominated ecosystems, regulated by the pulsing of the water flow regime, have
been shown to be well suited for a hybrid approach between power laws and a fuzzy
naïve Bayes algorithm, which is potentially able to describe the ecosystem’s state and
evolution in response to external dynamics.25

The joint approach was able to add a specific component of non-linearity in the power
laws, in the level of complexity reached by the external environmental variables. The
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approach has allowed the application of fuzzy Bayesian nested models to enter the
complex structure of the system by increasing, run after run, the degree of complexity
of the target variable.

The approach would thereby contribute to the prediction of the values at which envi-
ronmental variables could lead the system towards a nonlinearity threshold. The iden-5

tification of such threshold through simulations may then be used in the monitoring
phase of such environments, in the event of approaching such critical values. In a cli-
mate change perspective, this new technique may be used to predict potential vari-
ations in estuarine systems as a consequence of changes in the normal regimes of
rainfall, water levels and salinity.10
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Table 1. Specifications of the Landsat Thematic Mapper (TM) sensor (US Geological Survey,
2003).

Band no. Wavelength (µm) Spatial resolution (m)

1 0.45–0.52 30
2 0.52–0.60 30
3 0.63–0.69 30
4 0.76–0.90 30
5 1.55–1.75 30
6 10.4–12.5 120
7 2.08–2.35 30
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Table 2. Specifications of the Landsat Enhanced Thematic Mapper (ETM+) sensor (US Geo-
logical Survey, 2003).

Band no. Wavelength (µm) Spatial resolution (m)

1 0.45–0.515 30
2 0.525–0.605 30
3 0.63–0.69 30
4 0.75–0.90 30
5 1.55–1.75 30
6 10.4–12.5 60
7 2.09–2.35 30
8 0.52–0.9 15
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Table 3. List of Landsat images used.

Acquisition date Sensor Path Row

20 Aug 1984 TM 199 24
10 Aug 1986 TM 199 24
23 Apr 1987 TM 199 24
9 May 1987 TM 199 24
25 May 1987 TM 199 24
14 Feb 2000 ETM 199 24
1 Aug 2000 ETM 198 24
24 Aug 2000 ETM 199 24
23 May 2001 ETM 199 24
30 Oct 2001 ETM 199 24
15 Nov 2001 ETM 199 24
8 Apr 2002 ETM 199 24
29 Jul 2002 ETM 199 24
26 Mar 2003 ETM 199 24
29 May 2003 ETM 199 24
30 Jun 2006 TM 199 24
16 Jul 2006 TM 199 24
9 Apr 2011 TM 199 24
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Table 4. Pairwise correlations between the model target variables (patch size threshold and
scaling exponent in the tails) and each environmental variable used for the fuzzy naïve Bayes
inference. Mean high water level and average rainfall were averaged at different time steps (14,
30 and 60 days) before each satellite acquisition.

Mean High Average Average No. of
Water Level Rainfall channel bifurcation

sinuosity points

14 d 30 d 60 d 14 d 30 d 60 d
Patch size threshold 0.66 0.73 0.76 0.34 0.56 0.62 – –
Scaling exponent in the tail −0.69 −0.78 −0.69 −0.74 −0.58 −0.30 0.04 0.14
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Fig. 1. Left: landsat satellite image of the Scheldt estuary and location of the measurement
stations used in this study (see Sect. 3.3). Right: Zoom on the Saeftinghe salt marsh (R/G/B:
3/2/1, acquisition date: 26 May 2005).
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Fig. 2. Power law distribution for the patch sizes for the whole time series (1984–2011). The
dashed line indicates the size after which patches are monospecific (represented only by the
Elymus athericus vegetation typology).
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Fig. 3. Main vegetation typology inside each patch size. (1) High veg. (E. athericus), (2) Low-
Pioneer, (3) Reed veg. (4) Equal frequency of Low/Pioneer-High veg. (E. athericus), (5) Equal
frequency of Low/Pioneer-Reed veg.; (6) Equal frequency of high veg. (E. athericus)-Reed veg;
(7) Equal frequency for all the three classes.
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Fig. 4. Fraction maps for the Landsat image of 9 April 2011. The dark fraction map was used
to calculate the sinuosity of the channel network.
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Fig. 5. Power law patch size distributions for the “High” vegetation class. A frequent deviation
in the tail of the distributions – related to the largest patches – is observed in the dataset.
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Fig. 6. Power law distribution for the Landsat acquisition of 24 August 2000.
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Fig. 7. Observed and estimated values for (a) the power law nonlinearity thresholds in the
first step of the fuzzy Bayesian model (the threshold was transformed into the corresponding
percentile in the whole distribution); (b) the power law scaling exponent in the tail of the original
distribution, in the second step of the model; (c) the percentage of inundated salt marsh area
in the third step of the model.
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Fig. 8. Relationship between tidal level (cm NAP) and corresponding percentage of inundated
salt marsh. The two variables appear to show a linear relationship until a tide level of −50 cm,
and again for tidal levels greater than 95 cm.
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