Supplementary material to manuscript: Humans and the Missing C-Sink: Erosion and burial of soil carbon through time

Thomas Hoffmann1*, Simon M. Mudd2, Kristof van Oost3, Gert Verstraeten4, Gilles Erkens5,6, Andreas Lang7, Hans Middelkoop6, John Boyle7, Jed Kaplan8, Jane Willenbring9, Rolf Aalto10

1 Department of Geography, University Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany
2 School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
3 Earth and Life Institute, Université catholique de Louvain, Bâtiment Mercator, Place L. Pasteur 3, B-1348 Louvain-la-Neuve, Belgium
4 Department of Earth and Environmental Sciences, University of Leuven, Celestijnenlaan 200e, 3001 Heverlee, Belgium
5 Deltares Research Institute, Princetonlaan 6, 3584 CB Utrecht, The Netherlands
6 Department of Physical Geography, University of Utrecht, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
7 School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK
8 Institute of Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland
9 University of Pennsylvania, Department of Earth and Environmental Science, 240 S. 33rd Street, Philadelphia, PA 19104-6313, USA
10 College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter EX4 4RJ, UK

*Correspondence and requests for materials should be addressed to Thomas.Hoffmann@uni-bonn.de

Methods and data for the Figure 1

Lakes and impoundments: Lake data are from Finland (Pahunen, 2000), and impoundment data from Iowa (Downing et al., 2008). Both have their C sink life expectancy calculated as water depth divided by the sediment accumulation rate. The C accumulation rates are normalised to catchment area.

Floodplain deposit: Floodplain data are from overbank deposits within the German part of the Rhine basin (Hoffmann et al. 2009). The life expectancy is based on accommodation space divided by current accumulation rate. In accordance to maximum floodplain thicknesses along the Rhine and its tributaries, the accommodation space is assumed to be 5 m.

Peat bog: Data are from (Clymo, 1984), (Yu et al., 2003), (Belyea and Malmer, 2004), and (Yu, 2011). The rates are present day sink rate, and the life expectancy of the sink is the expected
time in years until the sink rate falls to 10% of its present day value based on quoted fitting parameters for the decay models of (Yu et al., 2003) and (Clymo, 1984). The C flux data for (Clymo, 1984) assumes that C comprises 50% of the dry peat mass.

Forest: Data are from (Fahey et al., 2005), (Goodale et al., 2002) and (Keeton et al., 2011). The C sink rate is taken as the initial value following establishment of the forest. The life expectancy of the C sink is the expected time in years until the sink rate falls to 10% of its initial value based on fitting a saturation exponential representation of the (Bormann and Likens, 1979) conceptual model (by which an asymptote is reached within 300 years).

References