
Responses to Review #1 

We thank the reviewer for taking the time to thoroughly evaluate our work. Our detailed responses 
and the resulting changes to the manuscript are noted below. We have numbered the various 
comments to allow cross referencing. Our responses are in italics and we show text from the 
revised manuscript in quotation marks. We also append the new abstract to the bottom of this 
response. 

R1.01: I am not convinced that the word “secular” used in the title and in other parts of the text 

is good to represent the type and temporal span covered by the national inventory. Is 
this the same type of inventory that Malamud and co-workers (2004) [cited] have called 
“historical”, and Guzzetti et al (2012) [cited] “geomorphological”? Please clarify. 

We prefer to retain the use of secular in the sense of a background level of activity over an 
indefinite amount of geological time; this term is not new in the Earth sciences. The term 
historical in this context is not good, because it refers more generally to a time period that 
is recorded by humans, and therefore a historical dataset can be interpreted as one that is 
recorded via written records, in contrast to one that is recorded by the landscape.  

R1.02: The second paragraph of the Introduction (page 115, lines 5-16) is out of context, really. 
Consider deleting the paragraph. The section 4.4 Implications for hazard assessment 
does not justify the paragraph. 

 We feel that the second paragraph offers an important lead in to the subject matter, 
namely that landslides are both important in a socio-economic sense as well as geomorphic 
agents (paragraph 3). As such we have kept it. 

R1.03: (A) Some confusion exists because in the literature authors have used “cumulative” (e.g., 
Dussauge et al. 2003 [cited]) and “non-cumulative” (e.g., Malamud et al. (2004) [cited]) 
statistics. Comparison of the results of the different studies is therefore problematic. The 
authors should make this clear, and specify which statistics were obtained from 
cumulative distributions, and which from non-cumulative distributions. 

 We concur. Clear statements that our study is only analysing non-cumulative distributions 
have been added to the manuscript.  Moreover as you further state in R1.0, we have mixed 
comparison of landslide area and rock fall volume statistics, which are not directly 
comparable. This has been corrected. 

R1.04: (B) In the text, the author mix (confuse?) statistics of landslide area (e.g., Hovius et al. 
1997, Pelletier et al. 1997, Stark & Hovius 2001, Guzzetti et al. 2002 [all cited]) and 
landslide volume (Dussauge et al. 2003 [cited]). Dussauge et al. (2003) studied rock falls, 
and all the other authors studied landslides of the slide or flow types. The difference is 
relevant, and the statistics may not be comparable. For landslides of the “slide” type 
authors have found that the relationship linking landslide area and volume is non-linear 
(e.g., Parker et al. 2011 [cited], Guzzetti et al. 2009, doi:10.1016/j.epsl.2009.01.005, 
Larsen et al. 2010, doi:10.1038/NGEO776). I am not aware of studies linking the area 
and volume of rock falls. 

 We concur. The data from Dussauge et al. (2003) are also related to the cumulative 
frequency statistics of rock falls (see R1.04), and so there are now two reasons to remove 
this comparison from the manuscript.. We now write: 

 “Several studies have proposed that the non-cumulative size-frequency distribution for 
landslides (i.e. the number of slides of a give size occurring over a given length of time or 
within a given area) follows a negative power-law relationship for medium to large 
landslides (sensu lato) (e.g. Guzzetti et al., 2002; Hovius et al., 1997; Pelletier et al., 1997; 



Stark and Hovius, 2001; Turcotte et al., 2002).  Estimates of the exponent α for power-law 
scaling of large events vary from α =1.4 up to α = 3.3 (Van Den Eeckhaut et al., 2007). Van 
Den Eeckhaut et al. (2007) report an average value of α = 2.3 ± 0.6, and Malamud et al. 
(2004) suggested α = 2.4 might be universally applicable to event-triggered inventories 
based on consensus between three contrasting event-driven datasets. Larsen et al. (2010) 
caution that estimates of volume of material transported by landslides may be very 
sensitive to this scaling exponent, resulting in prediction errors of over an order of 
magnitude. The scaling exponents may vary with underlying geology (e.g. Frattini and 
Crosta, 2013; Guzzetti et al., 2008), and the type of failure event (e.g. Brunetti et al., 2009; 
by analysis of landslide volume rather than area statistics).” 

R1.05: (C) Brunetti et al. 2009 [doi:10.5194/npg-16-179-2009] have re-examined the dataset 
of rock fall volumes compiled by Dussauge et al. (2003), and have determined a different 
(and larger) scaling exponent for the power law distribution that describes the 
empirical data. These authors have also found a difference on the scaling of the power 
law describing the volume of “falls” and “slides”. 

 Thank you for highlighting this study, which we were unaware of. Whilst we cannot 
directly compare the dataset presented in this study since we are analysing area rather 
than volume, we add to the discussion concerning the exponents and landslide type since 
the interpretations by Brunetti et al. (2009) are pertinent to our own analysis and 
interpretations, and we cite this paper where appropriate (see also R1.04): 

 “Magnitude-frequency scaling of landslides classified by the type of mass movement have 
power-law scaling exponents (α = -0.57 to -1.5) lower than the dataset as a whole (α = -
1.76). Lower exponents suggests the subset of data may be biased towards larger events, 
and indeed it seems likely (and reasonable) that detailed field studies to determine the 
style of failure are preferentially carried out for larger failure events. Unfortunately there 
are few observations of landslide type below areas of 103 m2 (Figure 4b) yet there are a 
large number of landslides in the NLD of this magnitude (Figure 3b). However, whilst the 
sample sizes are small, there is a suggestion that the gradient of the most likely power-law 
decreases with landslide type, for falls/topples is low (exponent α = -0.57). This is broadly 
consistent with the results of Brunetti et al. (2009) who performed analysis of landslide 
volume distributions rather than area as in the present study. Brunetti et al. (2009) 
performed magnitude-frequency analysis of 19 landslide inventories and found that the 
scaling exponents for landslide volume were lower for rock falls and rock slides than for 
slides and soil slides. More data are needed to provide an empirical test that more resistant 
lithologies preferentially yield deep-seated landslides whilst weaker materials 
preferentially yield shallow landslides, as found theoretically by Frattini and Crosta 
(2013).” 

R1.06: (D) The “double Pareto” (Stark & Hovius, 2001 [cited]) and the “inverse Gamma” 
(Malamud et al., 2004 [cited]) are the most common distributions used to model the 
probability/frequency-area distribution of landslides. With a few exceptions (e.g., 
Guzzetti et al. 2008 [cited]), they are not used to describe the probability/frequency-
volume of landslides (of the “slide” or the “flow” types), although this is certainly 
possible. For the investigation of the probability distribution of rock fall volumes see 
e.g., Brunetti et al. (2009) [doi:10.5194/npg-16-179-2009]. Recently, Chen et al. (2011) 
[doi:10.1209/0295-5075/95/49001], based on the application of non-extensive 
statistics, have proposed an analytical distribution function to describe the frequency-
area distribution of landslides. 

 Our analysis is concerned only with landslide area, and not landslide volume statistics. We 
thank the reviewer for highlighting that we may be misleading the reader by erroneously 
comparing volume and area statistics, and have amended the manuscript accordingly (see 
R1.04).  



  

R1.07: I have some concern on the method used to assemble the landslide database that was 
used for the analysis. The authors are clear in explaining the steps they have taken. 
However, inspection of Fig. 2 makes me think that landslides were not mapped very 
accurately, at least for part of the database. This has influence on the frequency-area 
statistics, and on the conclusions drawn. As an example, the shape of the landslide 
polygon centred on coordinates E412000,N384000 in the map shown in Fig. 2 is 
indicative of possibly multiple coalescing landslides, and not of a single (and larger) 
landslide. This may be due to the scale of the mapping, which is relatively small (1:50K). 
The authors should comment a bit more on the quality (and diversity in quality) of their 
inventory.  

 We are pleased that the steps we have taken to compile the dataset are clear. We were 
particularly anxious to communicate explicitly to the reader that there are concerns over 
data quality and we required total transparency to the data processing which was carried 
out.  There may be issues with the quality of the landslide data we analyse, and we tried to 
be explicit about this from the outset, stating that mapping has taken place over a long 
timescale by numerous individuals. During quality assurance the source of the mapped 
deposit is revisited where available (usually a field map), and the polygon is compared to 
and verified against aerial photography and high resolution (5 m) topographic data. There 
is the possibility that landslides in our dataset may consist of several amalgamated events 
when only a single event exists in the National Landslide Database. Our policy of linking 
only single recorded landslide event to single mapped landslide deposits goes someway to 
dealing with these problems, in that we retain only data that has undergone quality 
assurance procedures. However, with a large incomplete record, and with the scale at 
which mapping took place there may be some issues still. In the case of the specific 
landslide you refer to, we cannot observe any convincing evidence from surface features 
observed using topographic data and aerial photography that there are multiple failure 
tongues, though we acknowledge that the polygon shape could suggest this. We note from 
the underlying OS map that there are streams draining the surface of the landslide 
inbetween the potential tongues and therefore the morphology may just be the result of 
reworking of the deposit.  At this stage, we prefer to provide the reader with the clear 
caveat that the data are not perfect and that our conclusions are inevitably limited in this 
context. Nonetheless, we also note that the data are in general well-behaved, and that our 
interpretations are not offering a radical new model of landslide behaviour. In other 
words, we do not believe that we have over-interpreted a dataset that is inevitably limited.  

 “These mapped deposits have been recorded by a multitude of geologists whose primary 
concern may not have been the precise recording of landslide deposits, thus the quality of 
the dataset is likely to be highly variable. The NLD is not considered to be a complete 
inventory of landslide occurrence in the UK. The data were collated from a multitude of 
sources and therefore approaches to mapping are unlikely to have been consistent. 
Additionally the spatial coverage of landslide mapping is unlikely to have been consistent. 
As part of the continuing collection, updating and verification of landslide information by 
the BGS, existing landslide data are subjected to a standardized QA procedure designed to 
improve the consistency and reliability of the these datasets, and areas with poor coverage 
are identified for detailed resurveying (Foster et al., 2012).” 

R1.08: It is not entirely clear to me how the frequency/probability density was obtained, and 
showed in the Figures 3, 4 and 5. The authors first state that they have (page 121) 
“calculated FD and PD for the NLD dataset by sorting the data into logarithmically-
spaced bins in A”. It is unclear how this was done. Were bins all of the same size, in log 
coordinates, or not? Logarithmic binning has problems when the number of points is 
reduced. This may be the case for the very large landslides. Then the authors state (page 
123) that the double Pareto and the inverse Gamma distributions were estimated using 



“maximum likelihood estimates to find the best fit parameters”. I presume MLE was 
applied to the raw data (and not to the log-binned data), but this is not clear. More 
information is required on the technique(s) used to determine the 
frequency/probability densities. 

 We have improved our statistical approach in order to provide greater confidence in our 
interpretations. To do so, we now include a new section in the “Data and Methods” section 
to document the analysis we now perform, which is different to the analysis presented in 
our submitted manuscript. 

 Previously we were performing MLE to the binned data rather than the raw data (note, we 
are analysing the SLI dataset, not the NLD dataset).We now perform MLE on the raw data 
when finding the most likely parameter combinations for the various models. We obtain 
uncertainties on our parameter fits by performing a bootstrap method by replacement and 
taking our estimated parameters as the mean bootstrapped value ±1 standard error. For 
power-law fitting this is done following the analytical solutions of Clauset et al. (2009). We 
subsequently still bin the data into bins spaced evenly in logarithmic space for visualisation 
purposes only. 

 The new statistical methods section reads: 

“To visualize the size distribution of the SLI we calculated FD and PD following section 2.3.1 
for the dataset as a whole and for subsets grouped by lithology, landslides type (see Figures 
3, 4 and 5). We use a maximum likelihood estimation (MLE) approach to fit statistical 
models in equations 2-4 to the data and various subsets but apply this to the raw data 
rather than the binned frequencies and probabilities shown in Figures 3, 4 and 5. To do so 
we calculate the log-likelihood L according to: 
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where PD is a probability density model (e.g. equations 3-4), and θ is the parameter to 
optimize. The log-likelihood of a particular set of parameters θ is therefore the sum of 
probabilities for all landslides in the dataset or subset (of size n). Finding the combination 
of parameters which optimizes L gives the MLE of parameters for a given model. 

 To constrain the uncertainty on MLE parameters we perform bootstrap analyses in which 
we repeat the MLE method on 10,000 datasets sampled by replacement from the SLI (and 
subsets). We therefore generate 10,000 estimates of the most likely parameter 
combinations for the respective models and use the mean and standard deviation to report 
our most likely parameter combinations. For fitting of power-law distributions we use the 
MLE solutions for α provided by Clauset et al. (2009). Testing their solutions against our 
bootstrapping approach for fitting power-laws yields identical parameter estimates but 
with larger standard errors. We use these analytical error estimates for power-law MLE, 
and report standard deviations about bootstrapped parameter means when performing 
MLE for double pareto and inverse gamma functions (equations 3 and 4 respectively).” 

  

R1.09: Some of the discussion is based on the qualitative (visual) or quantitative (using the 
parameters controlling the equation) comparison of the different probability density 
models obtained for the different subdivisions of the landslide dataset. However, it is not 



clear what is the uncertainty associated with the different probability densities. 
Depending on the uncertainty, in Fig. 4a the densities for the surficial, mudstones, 
interbedded and coarse clastic deposits may be indistinguishable, or may be statistically 
different. The same is [true] for the density for carbonates, metamorphic and igneous 
rocks. In Fig. 4b, the four frequency densities for rotational, planar, flow and fall type 
landslides may also be statistically indistinguishable, or not, depending on the 
associated uncertainties. This is a crucial point that needs to be resolved. The density 
models were determined using MLE. It should therefore be possible to determine the 
confidence levels for the individual density models (e.g., using a bootstrap method), and 
to compare them. My doubt is that for some of the datasets the number of samples may 
be too limited to constrain sufficiently the density models. 

 See R1.08. We thank the reviewer for their helpful suggestions. We have revised our 
methods accordingly. As a result there have been some changes to the absolute parameter 
values we estimate but the general distributions observed remain consistent with many of 
our interpretations (to be expected now that we are analysing the raw dataset rather than 
binned data). 

 

R1.10: The authors observe a paucity of very large landslides in their distributions. The 
explanations given for this finding are plausible. I have two suggestions on this topic. 
First, clearly the size of the very large landslides is somewhat controlled by the size of 
the slopes where the large landslides occur. Is it possible that the lack of large landslides 
is related to the lack of very large slopes? Second, is it possible to segment the landslide 
database for the UK on time, and use the (relatively) recent landslides (e.g., those 
occurred in the last 50 or 100 years) to investigate the extent to which the power law 
scaling for large landslides holds? 

 The suggestion by the reviewer that a deficit of large landslides may be related to the lack 
of large slopes is entirely consistent with our interpretation that conditions have changed 
since the emergence of the UK from the last glacial maximum. One of those conditions is 
the initial exposure of relatively steep slopes that were previously ice-supported (whether 
by the ice-sheet or by permafrost): these slopes are able to yield relatively large landslides, 
but because there is no tectonic regeneration of such slopes, the landscape is gradually 
weaned of steep slopes and associated large landslides. The reviewer has articulated this 
better than we had, and the revised manuscript now clarifies this interpretation.  

R1.11: In the text and the Table, do not use e.g., 15.3 x 10ˆ3 kmˆ2, but instead 1.53 x 10ˆ4 kmˆ2. 

 OK. 

R1.12: Fig. 1. Add geographical reticule to the map. 

 OK 

R1.13: Fig. 2. Add scale bar, or clarify in the map that coordinates are in metres (m). 

 OK 

R1.14: Fig. 3. The journal accepts colour figures at no extra cost. The authors should exploit this 
opportunity and make the Figure in colours. This will improve the readability of the 
Figure. Indicate the number of samples in the landslide dataset. A suggestion: do not use 
dashed lines in the box plot, and provide a legend for the box plot (different criteria can 
be used to prepared the box plots, and without a legend it is impossible to tell what the 
different elements of the box plot (rectangle, central line, range) represent.  

 We have made the MLE for the double pareto and inverse gamma functions contrasting 
colours and line thicknesses so that they can be distinguished. We no longer used dashed 



lines for the ‘Malamud’ model or the box plot. Description of the box plot is provided in the 
figure caption: 

“Figure 3: (a) Probability distribution of landslide deposit area for n = 8453 landslides in 
the UK organized into bins spaced evenly in logarithmic space (open diamonds). Solid red 
and blue lines show MLE of a double Pareto function (αp = 1.01 ± 0.01; β = 1.71 ± 0.07; Apeak 
= 8.09 ± 0.6 × 10-3 km2) and inverse Gamma function (αg = 0.95 ± 0.02; r = 10.9 ± 0.4 × 10-3 
km2; s = -1.91 ± 0.08 × 10-3 km2) respectively (error ranges based on one standard 
deviation of bootstrapped MLE parameters) . The grey line is a proposed general 
distribution for landslides put forward by Malamud et al. (2004). Box plot shows the 
median (central line), upper/lower quartiles (extent of rectangle) and 5th and 95th 
percentiles (whiskers) of area data with a median value of 1.53×10-2  km2 (b) Frequency 
density distribution for landslides in the UK. Solid lines represent the general distribution 
proposed by Malamud et al. (2004) for varying total number of landslides NT.”  

R1.15: Fig. 4. Suggestion: Indicate the number of samples in the different landslide datasets. Do 
not use dashed lines in the box plot, and provide a legend for the box plot (different 
criteria can be used to prepared the box plots, and without a legend it is impossible to 
tell what the different elements of the box plot (rectangle, central line, range) represent. 

 The number of landslides in each dataset is included in table 1, which we now refer to in 
the caption. Dashed lines have been removed from box plots and the box plots are now 
clearly explained in the figure caption as per R1.14. 

R1.16: Fig. 5. The journal accepts colour figures at no extra cost. The authors should exploit this 
opportunity and make the Figure in colours. This will improve the readability of the 
Figure. Indicate the number of samples in the landslide dataset. Do not use dashed lines. 

 We have made the MLE for the double pareto and inverse gamma functions contrasting 
colours and line thicknesses so that they can be distinguished. The number of landslides in 
each dataset is included in table 1, which we now refer to in the caption. Dashed lines have 
been removed from box plots and the box plots are now clearly explained in the figure 
caption as per R1.14. 

 

The new abstract:  

 

Linking landslide size and frequency is important at both human and geological time-scales for 
quantifying both landslide hazards and the effectiveness of landslides in the removal of 
sediment from evolving landscapes. The statistical behaviour of the magnitude-frequency of 
landslide inventories is  are usually compiled following a particular triggering event such as an 
earthquake or storm, and their statistical behavior is often characterized by a power-law 
relationship with a small landslide roll-over . The occurrence of landslides is expected to be 
influenced by the material properties of rock and/or regolith in which failure occurs. Here we 
explore the statistical behavior and the controls of a secular landslide inventory (SLI) (i.e. 
events occurring over an indefinite geological time period) consisting of mapped landslide 
deposits and their underlying lithology (bedrock or superficial) across the United Kingdom. The 
magnitude-frequency distribution of this secular inventory exhibits an inflected power law 
relationship, well approximated by either an inverse Gamma or double Pareto model. The 
scaling exponent for the power-law scaling of medium to large landslides is α = -1.71 ± 0.02. The 



small-event rollover occurs at a significantly higher magnitude (1.0-7.0 × 10-3 km2) than 
observed in single-event landslide records (~4 × 10-3 km2). We interpret this as evidence of 
landscape annealing, from which we infer that the SLI underestimates the frequency of small 
landslides. This is supported by a subset of data where a complete landslide inventory was 
recently mapped.  Large landslides also appear to be under-represented relative to model 
predictions. There are several possible reasons for this, including an incomplete dataset, an 
incomplete landscape (i.e. relatively steep slopes are under-represented), and/or a reflection of 
a transient landscape response as the UK emerged from the last glacial maximum through a 
highly variable climate and toward a generally more stable late Holocene state. The proposed 
process of landscape annealing and a transient response of the landscape has the consequence 
that it is not possible to use the statistical properties of the current SLI database to rigorously 
constrain probabilities of future landslides in the UK. 

 


