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Abstract. Over thousands to millions of years, the landscape evolution is predicted by models based

on fluxes of eroded, transported and deposited material. The laws describing these fluxes, corre-

sponding to averages over many years, are difficult to prove with the available data. On the other

hand, sediment dynamics are often tackled by studying the distribution of certain grain properties in

the field (e.g. heavy metals, detrial zircons, 10Be in gravel, magnetic tracers, etc.). There is a gap5

between landscape evolution models based on fluxes and these field data on individual clasts, which

prevent the latter from being used to calibrate the former. Here we propose an algorithm coupling the

landscape evolution with mobile clasts. Our landscape evolution model predicts local erosion, depo-

sition and transfer fluxes resulting from hillslope and river processes. Clasts of any size are initially

spread in the basement and are detached, moved and deposited according to probabilities using these10

fluxes. Several river and hillslope laws are studied. Although the resulting mean transport rate of the

clasts does not depend on the time step or the model cell size, our approach is limited by the fact that

their scattering rate is cell-size dependent. Nevertheless, both their mean transport rate and the shape

of the scattering-time curves fit the predictions. Different erosion-transport laws generate different

clast movements. These differences show that studying the tracers in the field may provide a way15

to establish these laws on the hillslopes and in the rivers. Possible applications include the interpre-

tation of cosmogenic nuclides in individual gravel deposits, provenance analyses, placers, sediment

coarsening or fining, the relationship between magnetic tracers in rivers and the river planform, and

the tracing of weathered sediment.

1 Introduction20

Numerical models of landscape evolution have significantly improved our understanding of relief

dynamics by recasting competing theories within a general framework (e.g. Kooi and Beaumont,

1994). Within this framework, the relief dynamics are determined by the balance between detached,
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deposited and transferred sediment fluxes under the influence of tectonics and climate (e.g. Tucker

and Hancock, 2010). These fluxes are set by constitutive laws, such as the diffusion law for hills-25

lope creep (Culling, 1960) or the stream-power law for sediment river transport (Howard and Kerby,

1983). Nevertheless, it remains a challenge to justify these laws in geomorphology. Different laws

produce different topographic evolutions, which have been widely studied (e.g. Howard, 1997; Will-

goose et al., 1991; Kooi and Beaumont, 1994, 1996; Whipple and Tucker, 2002; Tucker and Whipple,

2002; Carretier et al., 2009; Davy and Lague, 2009). These laws have been justified or calibrated by30

mechanics (Whipple et al., 2000), experiments (Sklar and Dietrich, 2001) or by comparing their

predictions with natural river profiles (e.g. Stock and Montgomery, 1999; Lague and Davy, 2003;

Carretier et al., 2006; Loget et al., 2006), which has not always resulted in a good agreement (e.g.

Tomkin et al., 2003; van der Beek and Bishop, 2003). The erosion-transport laws in landscape evo-

lution models necessarily apply over long time steps (� 1 yr) and relatively large model cells (�35

10 m). The uncertainty on these laws comes from a lack of methods to directly quantify sediment

fluxes over such time and spatial scales.

At the same time, there are many techniques to trace the provenance and transport of rock frag-

ments (clasts) and minerals. For example, detrital zircons, heavy minerals or trace elements in sedi-40

mentary rocks and river streams are routinely used to determine sedimentary provenance and/or con-

strain the exhumation history of orogenic highlands (e.g. Roddaz et al., 2005; Rodríguez et al., 2012).

To better understand the dynamics of sediment transport in rivers, other approaches used painted

cobbles (e.g. Church and Hassan, 1992), implanted magnets in cobbles (e.g. Hassan et al., 1991;

Haschenburger, 2011), magnetic iron slag as tracer (Houbrechts et al., 2011) or radio-frequency45

identification of passive tracers (e.g. Bradley and Tucker, 2012). In parallel, river dynamics was

explored tracing grains in experimental devices (e.g. Lajeunesse et al., 2010; Kasprak et al., 2015).

Furthermore, U-series disequilibrium studies in sediment fractions and cosmogenic nuclide measure-

ments in individual clasts provide relevant information about erosion processes and rates (Chabaux

et al., 2006; Codilean et al., 2008; Gayer et al., 2008; McPhillips et al., 2014). Many of these meth-50

ods provide information about individual clasts that are part of bulk material fluxes over geological

time scales. Therefore, we hypothesise that this information may be used to derive erosion-transport

laws used in landscape evolution models. The link between erosion-transport laws and the spatial

evolution of a clast population during landscape evolution requires a model that couples fluxes, to-

pography and clasts.55

This type of model would be key to quantitatively link the statistics for provenance tracers with

erosion rates in a catchment. For example, Nibourel et al. (2015) recently showed the potential

of coupling the Raman spectroscopy analysis on carbonaceous material from detrital sands with a

bedrock abrasion model to localise the highest erosion areas in a catchment in New Zealand. More60
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generally, there is a link between zones that erode rapidly, the transport distance of their erosion

byproducts, and the topography, climate and base level at a particular period of time. Thus, the

coupling of the analysis of tracers ages and distribution such as detrital zircons or apatite with a

landscape evolution model could be used to better constrain tectonic or climatic variations. Other

issues concerning the relationship between erosion, weathering and CO2 consumption require a65

grain-flux model. The efficiency of silicate weathering to regulate atmospheric CO2 depends on the

residence time of the sediment through the mountain-basin system (Anderson et al., 2013; Mudd

and Yoo, 2010). Different approaches have led to contradictory mean residence times in the different

reservoirs, particularly in the Ganga Plain (Jain and Tandon, 2010; Hoffmann, 2015). A model that

couples clasts and landscape evolution may help better understand how sediment mixing by lateral70

erosion, avulsions, etc., influence the mean residence time of the particles, and may reconcile differ-

ent estimations (Davy and Lague, 2012).

In order to develop such a model, we couple a landscape evolution model with a clast dispersion

model. The landscape evolution model is a modified version of Cidre (e.g. Carretier et al., 2009),75

which belongs to the family of reduced-complexity models (Murray, 2007). The clasts move accord-

ing to probabilities depending on the erosion, deposition and transport fluxes calculated in Cidre. Our

main goal here is to show that this algorithm yields a clast population movement that is consistent

with the predicted sediment flux in some simple hillslope and river cases.

80

After briefly reporting previous modelling approaches based on flux-particle duality, we present

Cidre and the probabilities used to move clasts. Then we analyse clast movement in the restricted

cases of hillslope diffusion and river transport. Finally, we discuss the potential applications of this

model. They include the 3D tracing of weathered material which initially motivated this modelling

approach.85

2 Previous models coupling fluxes and particles

Models coupling fluxes and particles have been developed in other scientific fields, in particular in

fluid mechanics and are known as Smoothed particle hydrodynamics models (SPH) (Gingold and

Monaghan, 1977). The philosophy of these models is to simplify fluids to a limited set of discrete

fluid particles moving under a force field. The distribution of the particles at the next time step is90

then used to estimate the new field of quantities such as forces, temperatures, densities or water flow.

In geomorphology, the original landscape evolution model introduced by Mitasova et al. (2004) in

the GIS software GRASS belongs to this class of models. In addition, authors used moving grains

to predict topographical variations on hillslopes and in rivers. For example, Tucker and Bradley

(2010) modelled the morphological evolution of 2D scarps using moving grains, while Malmaeus95
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and Hassan (2002) and Lajeunesse et al. (2013) among others used grains to model bed load trans-

port. Grain transport modelling has also been carried out to predict the statistical distribution of

certain geochemical properties. Within that scope, Repka et al. (1997), Gayer et al. (2008), Codilean

et al. (2008), Carretier et al. (2009) and Carretier and Regard (2011) developed approaches in which

grains move over a static landscape in order to trace their cosmogenic nuclide concentrations.100

The modelling approach presented in this paper is different from these published works in the

sense that: (1) particles are not used to estimate the water or erosion fields, (2) the topography

evolves over time in our model, and (3) our modelling is 3D instead of 2D. Nevertheless, our model

is inspired by the coupling of the landscape evolution model Eros and sediment particles (Davy and105

Lague, 2012).

3 Model

3.1 Erosion-sedimentation in Cidre

Cidre is a c++ code modelling the topography dynamics on a regular grid of square cells. At the

beginning of a time step, a specified volume of rain falls. Cells are sorted by decreasing elevations.110

The propagation of water and sediment is proceeded in cascade starting from the highest cell to en-

sure mass conservation. A multiple flow algorithm propagates the water flux Q [L3/T] toward all the

downstream cells proportionally to the slope in each direction.

Mass balance115

The elevation z (river bed or hillslope surface) changes on each cell according to the two following

equations (Figure 1):

∂z

∂t
= −ε+D+U (1)

and we define

D =
qs
L

(2)120

where ε is a local erosion (detachment or entrainment) rate [L/T], D is a local deposition rate

[L/T], U is the uplift or subsidence rate [L/T], qs is the incoming sediment flux per unit width [L2/T]

and L is transport distance. L≥ dx to keep the deposition flux Ddx smaller than the incoming

sediment flux qs. For a complete justification of these equations in the case of river transport, see

Charru (2006), Davy and Lague (2009) or Lajeunesse et al. (2015). We recall some of the elements125

in the Appendix. Here, we generalise this approach for both hillslope and river sediment transport
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processes by specifying ε and L in both cases.

The length L determines the proportion of incoming sediment flux which is deposited. A large L

means that the deposition is small, which is favoured in a real-case scenario by steep slope or high130

water discharge. The cell outflux per unit width qs results from the sum of the sediment detached

from this cell and the sediment eroded from upstream and which then crossed the cell without de-

positing. The sediment flux qs is thus non-local (e.g. Tucker and Bradley, 2010; Lajeunesse et al.,

2015).

135

Hillslope

In the following we establish equations for ε and L first for hillslope processes and then for rivers.

As the hillslope model is new, we begin by recalling how long-term (� 1 ka) hillslope evolution

has been previously simulated using a "non-linear" diffusion model (e.g. Carretier et al., 2009; Per-

ron, 2011; Carretier et al., 2014). This "non-linear" diffusion model has been proposed by different140

authors (e.g. Andrews and Hanks, 1985; Hanks, 1999; Roering et al., 1999) and is supported by
10Be-derived erosion rates (e.g. Binnie et al., 2007) or experiments (Roering et al., 2001). It is usu-

ally presented under the following form (e.g. Roering et al., 1999):

∂z

∂t
= −∂qs

∂x
(3)145

qs =
κ′S

1− (S/Sc)2
(4)

where the first equation is the continuity equation and the second one determines the value of the

sediment outflux per unit width according to the local slope S [L/L] and a critical slope Sc [L/L]. κ′

[L2/T] is a diffusion coefficient. This description is thus based on the definition of a flux of trans-

ported sediment parallel to the downward slope. When the slope is small, this flux refers to diffusion150

processes such as soil creep, rainsplash or diffuse runoff. This flux increases dramatically when the

slope gets closer to the critical slope, simulating in average the cumulative effect of mass wasting

events.

Here we use a different approach where the elevation variation results from the difference between155

a local detachment rate and a deposition rate using Equations 1 and 2. In these equations, we specify

ε and the transport length L by
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ε = κS (5)

L =
dx

1− (S/Sc)2
(6)

where κ [L/T] is an erodibility coefficient. If the slope S > Sc then ε is set such that S = Sc.160

The detachment rate is proportional to the local gradient. On the contrary, the deposition rate

(qs/L Equation 2) depends on the slope and the critical slope: When S� Sc, then most of the sed-

iment entering a cell is deposited on this cell. This is the pure diffusion case. The sediment flux

qs does not include sediment eroded from above, it is thus "local" (Furbish and Haff, 2010). When165

S ∼ Sc, L becomes infinity and there is no redeposition on the cell. This behaviour corresponds to

mass wasting where a grain eroded from a place is able to go down a large distance before stopping.

In that case, the flux qs is "non-local" as it incorporates not only sediment that has been detached

locally but also sediment in transit that has eroded from above. For an intermediate S, there is a

progressive transition between pure creep and "balistic" transport of material through the hillslope,170

which seems consistent with experiments (Roering et al., 2001; Gabet and Mendoza, 2012).

Despite these conceptual differences, Equations 5 and 6 predict similar topographic evolutions as

the "non-linear" diffusion equations for κ′ = κdx. This similarity is illustrated by Figure 2, which

displays the evolution of a transverse hill profile during uplift and relief decline. In order to solve175

equations 3 and 4, we use an explicit finite difference approach along a topographic profile. In or-

der to avoid numerical instability when S is close to Sc, we approximate Equation 4 with its linear

approximation when S > 0.99Sc (e.g. Carretier et al., 2009). Equations 5 and 6 do not have this

stability problem because L is simply set at a huge number when S > Sc. Figure 2 shows that both

sets of equations (5, 6 and 3, 4) lead to the same evolution.180

It would be difficult to experimentally verify Equations 5 and 6, because this would require sepa-

rately observing the erosion ε and deposition D rates (Furbish and Haff, 2010; Furbish and Roering,

2013). This may explain why the non-linear diffusion model has been presented in the form of a local

sediment flux qs. Nevertheless, Equations 5, 6 present several conceptual and numerical advantages.185

They may reconcile the different views concerning the "diffusive" or "non-local" nature of erosion

on hillslopes as they predict a progressive transition between local and linear to non-local and non-

linear sediment flux when the slope increases (e.g. Roering et al., 2001; van Milligen and Bons,

2002; Roering et al., 2002; Furbish and Haff, 2010; Foufoula-Georgiou et al., 2010; Tucker and

Bradley, 2010; Gabet and Mendoza, 2012; Falcini et al., 2013; Furbish and Roering, 2013). These190

equations are simple to implement in a 3D model, particularly when there are different sediment and

bedrock layers because the erosion of these layers is separated from the sediment passing through
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the cell or deposited on it. We have not carried out an extensive comparison between the different

resolution schemes of Equations 3, 4 (for example, see the solutions provided in Perron, 2011) and

5, 6. Nevertheless, the solution of Equations 5 and 6 that we propose remains stable for time steps195

that are one order of magnitude larger than with Equations 3 and 4 in the examples given in Figure 2.

Rivers

In the case of river processes, we describe here a simplified version of material detachment (sediment

or bedrock), although the detachment threshold and the explicit expression of bed shear stress in200

particular can be included (e.g. Tucker, 2004):

ε = KqmSn (7)

L = ξq (8)

where K is an erodibility coefficient, q [L2/T] the water discharge per unit flow width on the cell,

S is the steepest slope and the exponents are positive. The transport length L comes from the deriva-205

tion of Davy and Lague (2009) for saltation and ξ [T/L] is a factor depending on particle size and

density. This law implies that the deposition rate decreases when the water discharge per unit width

q increases. As demonstrated by Charru (2006), Davy and Lague (2009) or Lajeunesse et al. (2015),

Equations 1 and 2 are mathematically equivalent to the "under-capacity" or "saturation" transport

model (e.g. Beaumont et al., 1992; Whipple and Tucker, 2002; Andreotti et al., 2010), although L210

has a different physical meaning in both cases. It is a transport length in the Charru (2006) or Davy

and Lague (2009) formulation (e.g. a characteristic transport distance of a population of grains enter-

ing a river locally by landsliding), and a saturation length to reach a maximum or "equilibrium" sed-

iment flux, also called transport capacity in the Beaumont et al. (1992) formulation (e.g. the distance

required for the suspended sediment flux to reach a maximum value downstream an abrupt transition215

between the bedrock and alluvial river bed). As detailed by Davy and Lague (2009), the notion of

transport capacity emerges by rewriting Equations 1 and 2 as ∂z
∂t = qs−εL

L , which is the form of the

under-capacity model with εL defining a transport capacity. Thus, the formulation adopted in Cidre

is equivalent to the under-capacity model.

220

For river processes, the flow width w can be set to the cell width dx or a river width. In the latter

case, the flow width w is:

w = kwQ
0.5 (9)

where kw is a coefficient depending on the lithology and Q [L3/T] is the total water discharge at

a river section. In this case, cell erosion ε in equation 1 is recast as ε wdx (finite volume approach).225
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Erosion for sediment is different from that of bedrock (Equations 5 and 7), and within bedrock,

different layers can be defined by their erodibility and detachment or slope thresholds (κ and Sc for

hillslope processes and K for river processes). On one cell and during a time step dt, different layers

are potentially eroded successively. The erosion of each layer consumes part of dt so that less time230

remains to erode the underlying layer. This time reduction is taken into account by multiplying the

time step dt by (1- volume layer

wdxεdt ) between the layers. If the surface layer is made of sediment, their erosion

takes time and limits the erosion of the bedrock below. This process is known as the "cover" effect

for river (e.g. Whipple and Tucker, 2002; Lague, 2010), and thus is taken into account in Cidre.

Bank or lateral erosion235

Flowing water can erode lateral cells (Figure 1A). These cells are those which are topographically

above the considered cell and in a lateral direction perpendicular to each downstream direction. The

lateral sediment volumetric flux Qsl [L3/T] is simply a fraction of the sediment flux Qs [L3/T] in

the considered direction (e.g. Murray and Paola, 1997; Nicholas and Quine, 2007):

Qsl = αQs (10)240

where α is a bank erodibility coefficient. α is specified for sediment and is implicitly deter-

mined for bedrock layers proportionally to their "fluvial" erodibility such that αsediment/αbedrock =

Ksediment/Kbedrock (K from Equation 7). If sediment covers the bedrock of a lateral cell, α is

weighted by its respective thickness above the target cell. Equation 10 is debatable and alternative

formulations have been proposed (e.g. Davy and Lague, 2009). The main point is that bank erosion245

is introduced here to allow clasts from the sides of rivers to be incorporated into the river by lateral

transport, as we expect this to control clast spreading.

Sediment spreading

The sediment leaving a cell is spread in the same way as water (Figure 1A). This rule is justified250

by the probability of moving proportionally to the slope in the case of diffusive hillslope processes.

As water is spread according to this rule, sediment in suspension is spread in the same way. Flume

experiments may also support this rule for bed load (Seizilles et al., 2014).

Compared to previous published versions of Cidre (Carretier et al., 2009; Pepin et al., 2010;255

Carretier et al., 2014), significant modifications have been made: 1) the introduction of the transport

length scale L, 2) the new hillslope erosion law and 3) the calculation of erosion using the steepest

slope and then the spreading of sediment toward all downstream slopes. In the previous version, a

transport capacity was calculated in each downstream direction and then summed to determine the
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cell erosion. The two approaches are not equivalent, in particular if the river erosion law depends260

non-linearly on water discharge. The advantage of the new version is that it is more stable and rapid

while still allowing flow divergence and spreading. One motivation of these changes was to explicitly

separate erosion, deposition and transfer rates on each cell, so that the treatment of clast movement

will be straightforward.

3.2 Adding and following Clasts265

Once qs, ε and D have been calculated over the entire grid during a time step, the clasts are treated

one after the other (the order does not matter). The philosophy of our approach is to use the local ε

and D rates calculated by Cidre to determine a probability for a clast to move, cross or deposit onto

a cell (Figure 1B).

270

A clast has a specified radius R, with no particular limitation, between a small mineral to a large

cobble. Its initial position and depth zclast (of its base) are specified. When it is set initially in the

bedrock, it corresponds to a piece of rock which will have this size once detached. For example, a

clast can represent a quartz mineral individualized by weathering, or a cobble the size of which is

determined by a particular fracture spacing in the parent rock.275

A clast is detached (eroded) if its depth is shallower than the erosion calculated over the time step

on that cell (if zclast ≤ εdt). If it is detached, its probability to go in one of the downstream directions

is simply the ratio of the local slope and the sum of the downstream slopes, consistently with the

multiple flow algorithm (Figure 1B).280

For a moving clast entering a cell, the probability that it will be deposited is simply the ratio be-

tween the volumetric deposition flux and the volumetric incoming flux Dwdx/Qs. Therefore, its

probability to cross the cell is 1−Dwdx/Qs (Figure 1B). In practice, Dwdx/Qs is compared to

a random value between 0 and 1. If this random value is lower than or equal to Dwdx/Qs, the clast285

deposits on the cell. If not, it continues its travel and is transferred towards one of the downstream

cells and so on. This cell is chosen following a similar procedure so that the probability to go in one

direction is the ratio of the local slope and the sum of the downstream slopes.

A clast may be detached but not leave the cell. This may occur if the clast was at depth. Removing290

material above the clasts takes part of the time step, so that the remaining time may prevent the clast

from leaving the cell. Furthermore, a big clast should have a lower probability to leave the cell than

9



a small one. ln order to take these realities into account, a probability to leave the cell is determined

by

1.25(
εdt

2R
)(1− zclast

εdt
)δ (11)295

where δ = 1 if the direction of movement is parallel to rows or columns, and δ = 1/
√

2 along

diagonals (a longer distance decreases the probability to leave the cell). The value of probability law

11 is set to 1 if it exceeds unity, which may occur if the clast is at the surface and the erosion is

larger than the clast diameter. The first term accounts for the inverse relationship between entrain-

ment probability and clast size (e.g. Malmaeus and Hassan, 2002). The numerator εdt renders the300

travel distance independent of the time step. The second term decreases the probability to move if

the clasts were at depth. The coefficient 1.25 is justified a posteriori to adjust the mean travel rate

of a population of clasts to theoretical predictions (see below). In practice, the decision for a clast

to leave or not a cell is determined as follows: A "leave cell" number (between 0 and 1) is calcu-

lated using Equation 11. It is compared to a random value between 0 and 1. If the "leave cell" number305

is larger or equal than this random value, the clast leaves the cell. If not, it remains at the cell surface.

Note that the probability of deposition could also depend on clast size. This is not implemented

here but we will return to this point in the discussion.

310

The erosion-deposition-transfer fluxes calculated from the deterministic rules of Cidre can be

viewed as the mean values for the distribution of the clast radius R. Consequently, a 20 cm boulder

may travel slowly across a cell because it has a low movement probability (cf. Equation 11 where

the probability to leave the cell is proportional to 1/2R), while the 5 cm sedimentary layer above the

bedrock is removed during a time step. This situation can occur because the transport flux calculated315

by Cidre represents a time-average over an implicit distribution of the grain size (this is a volume

of transported sediment without specifying its size), whereas the clasts are individuals that move

stochastically. This distinction is consistent with what is observed in the field. For example, we can

imagine a situation where boulders go down an eroding bare bedrock hillslope. A mean long-term

denudation rate for the hillslope can be determined, consistent with the diffusion model for example,320

while the boulders go down stochastically.

3.3 Initial setup

The initial set up of the 3D landscape model is an initial elevation grid, a grid or uniform value for

the uplift-subsidence rates, a grid or uniform value for the precipitation rates, a geological model,

and the boundary conditions. The geological model consists of different erodible layers. Their thick-325

ness is specified on each pixel. Values for the "erodability" parameters (Equations 5, 6 and 7) are

10



attributed to these different materials. Sediment erodability (either resulting from the deposition of

physically detached material or in situ regolith production by bedrock weathering) can be set differ-

ently from that of the bedrock. Nevertheless, in the experiments presented in this manuscript, there

is only one bedrock type.330

In addition, the clasts are initially listed in an input file specifying their initial location in the

grid, as well as their depth, radius and mineralogy. There is no limitation to their number except for

the one imposed by the computational times. Their initial localisation can be chosen according to

a specific goal. For example, they can be grouped within one pixel to follow their transport from335

a specified source, or spread randomly in the model grid to study the mean transport rate of the

sediment particles at the catchment scale. The distribution of the initial clast size can be freely

chosen to trace one particular grain size, or a distribution of the grain sizes.

4 Results

4.1 Linear diffusion340

One way to validate the above model is to demonstrate that the displacement of a clast population

follows predictions in simple cases. We begin with the case of linear diffusion. In Cidre, linear dif-

fusion is obtained by using equations 5 and 6 only, where ε= κS and L= dx. The resulting linear

and local sediment flux per unit width is q′s = κdxS, and the product κdx defines the diffusivity κ′

[L2/T].345

We consider an inclined plane of slope S. Clasts initially set at the top surface of the plan will

travel at a mean velocity ẋ given by the ratio of the sediment flux per unit width qs and a depth corre-

sponding to one clast diameter: ẋ= qs
2R = κ′S

2R . Thus, the mean travel distance of the clast population

x̄= κ′S
2R t. Furthermore, within the framework of Fickean’s diffusion theory, the standard divergence350

of the distances between particles is predicted to vary as σ =
√

2κ′ t (Einstein, 1905).

These predictions are tested on a bedrock plan of S = 0.1. The same κ is used for the bedrock

and sediment (product of erosion) to simplify. Sediment and clasts can only go out on the lowest

boundary condition, the elevation of which is fixed at 0 m. Different values of κ, dx and dt are tested355

in order to evaluate the effect of cell size and time step on the results. The diffusivity is κ′ = 0.01

m2/yr in all cases. Initially, 1000 clasts are set at the top of the plan and then followed during their

descent. Their radius R= 0.005 m.

Figure 3 illustrates the progressive spreading of the clast population during the plane’s erosion. x̄360

well fits the predicted evolution and is not sensitive to the cell size or the time step for a given κ′.

11



This non-dependence comes from the chosen form of the probability law 11. In this law, the factor

1.25 was added to better adjust the calculated x̄ to κ′S
2R t. This coefficient works for other κ, dx, dt

values. It may correspond to the numerical diffusion or to the c++ random function used to move the

clasts.365

As predicted by the diffusion theory, the scattering of the clasts σ ∝
√
t. It does not depend on dt

for a large range of time steps (5 to 50 years in Figure 3), but σ is significantly lower for larger dt

values (250 years). For this time step, the eroded thickness at each step is larger than the diameter

of the clasts, so that the "leave cell" probability 11 is increased. Hence, at each time step, there is370

less chance that a clast will stay while the other ones move. The clast population moves more ho-

mogeneously, and consequently, σ is lower than with a smaller time step. Note that the effect of this

time step on σ is consistent with natural processes where erosion occurs by discrete events. A thick

erosion event necessarily entrains clasts that have a smaller diameter. For large time steps, the mean

travel rate of the clast population remains equal to κ′S
2R , the effect of the time step only affects the375

scattering.

In all cases, σ strongly overestimates the predicted
√

2κdxt. However, σ tends towards this pre-

dicted value when dx decreases or dt increases. When a clast moves, it travels a distance which is at

least dx. Thus, the distance between immobile and moving clasts necessarily depends on dx. This is380

a limitation of this modelling approach. It is possible to adjust σ to the correct value, independent of

dx, by replacing ( εdt2R ) by (κdtdx ) in Equation 11. However, the mean travel distance becomes strongly

dependent on dx in this case.

In this version, we prefer probability law 11 which allows the mean travel distance to be respected,385

for three reasons. x̄ is directly linked to the sediment mass balance of a portion of the landscape, not

σ. In practice, in a realistic topography, convergence zones and canals naturally limit the scattering

of the clasts. Finally, many potential applications will be more sensitive to x̄, which determines the

mean residence time, rather than σ.

4.2 "Non-linear" diffusion with a slope threshold390

Here we illustrate the scattering of the clasts in the case of "non-linear" diffusion. We use Equations

5 and 6 with Sc = 0.105, a value just above the plan slope S = 0.1. This Sc value is much lower

than published values ∼ 0.6 (e.g. Roering et al., 2001), but our goal here is to compare this with the

previous linear diffusion case. We also use coarser clasts with R= 0.05 m to obtain similar mean

transport rates as in the previous case. The other parameter values are the same as in the linear dif-395

fusion case.
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Figure 4 shows the pattern of clasts at different times. Compared to the linear diffusion case,

once detached, clasts move a longer distance because L� dx when S ∼ Sc. Consequently, the clast

population presents a much more elongated distribution along the hillslope. This pattern seems con-400

sistent with colluvial sediment covering steep hillslopes in the real world. The mean travel distance

x̄ does not depend on dx nor dt, while σ does depend on dx. Note that σ varies as
√
t but with much

larger values representing the downstream spreading of the clasts. The different patterns obtained

in the linear and non-linear diffusion cases illustrate the progressive transition from diffusion for

S� Sc to ballistic movements for S ∼ Sc.405

4.3 River transport

River transport usually implies the formation of incisions, local depositions and lateral movements

of sediment by bank erosion. The movement of clasts associated with this dynamic is an active re-

search field (e.g. Seizilles et al., 2014). In order to verify that x̄ is consistent with the description

of the river process using erosion and deposition rates, we simplify the problem by using a planar410

and stable portion of a river bed. This bed corresponds to the same bedrock plan with the slope of

0.1 used above. Detachment is determined by ε=KqS. The same K is used for both bedrock and

sediment. The flow width w is set at cell size dx, Thus, ε corresponds to the "stream power law"

(e.g. Whipple and Tucker, 1999). The transport length L= ξ q is close to dx, by setting ξ to a low

value 10−6 (L cannot be smaller than dx). Consequently, the sediment flux per unit width qs is close415

to εdx∝ q. The linear relationship between qs and q prevents incisions from forming (Smith and

Bretherton, 1972), which is what we want here. A precipitation rate of P = 1 m/yr is imposed on

the grid. Thus, the water discharge per unit width q = P x grows linearly downstream, as does the

probability of clast entrainment.

420

The mean travel velocity of a clast ẋ can be written as ẋ= qs
2R = Kdx

2R SP x. A solution to this

equation is x(t) = xo exp(Kdx
2R P S t) where xo is the initial distance. For a clast population, x̄ must

follow this solution.

We use larger clasts with a radius of 0.05 m in order to have a transport rate of the same or-425

der of magnitude as in the diffusion case. Figure 5 shows that clasts are spread from the injection

point, forming a downstream plume. This pattern results from the downstream increase in the en-

trainment probabilities. x̄ fits the above solution acceptably well and does not depend on dx or dt.

The scattering σ increases more than linearly because the water discharge increases downstream.

Note that despite similar plan view patterns, σ evolves very differently in the non-linear diffusion430

and river cases. This difference illustrates the interest of coupling clasts and flux in order to identify

erosion-transport processes.
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4.4 A more general case

We present here an illustration of clasts moving in a mountain-foreland context. Our goal is not to

precisely analyse the clast dynamics in that case, but to qualitatively describe a possible situation in435

a real case scenario.

The mountain-foreland system consists of an uplifting block (the mountain) and a stable domain

where sediment eroded from the block is deposited or in transit. The grid is 200x200 cells, the cell

size is 500 m, and the mountain is 37.5 km wide, which could correspond to the Pyrenees, or certain440

Andean foothills in Argentina for example. A constant uplift rate is fixed at 0.5 mm/yr. The precipi-

tation rate is homogeneous and constant at 1 m/yr. Sediment, water and clasts can escape the model

grid on the southern boundary, where the elevation is fixed at 0 m. The east and west boundaries

are periodic, so that sediment, water and clasts can go out from one side and re-enter on the other

side. No sediment, water or clasts can leave the northern side. Erosion parameters are chosen so that445

the maximum elevation is 3000 m when the topography reaches a rough steady-state at around 3

My (see Figure 6 caption). Additional Figures in Electronic Supplement provide more information

concerning the Slope-Area distribution of the uplifting block at steady-state (Figures ES1 and ES2)

and the scaling between valley width and water discharge (Figure ES3).

450

The experiment begins from a flat topography with small random elevations (< 1 m) (Figure

6). The sediment eroded from the uplifting block is propagated through the foreland, forming allu-

vial fans and rivers. An upstream drainage develops in the mountain, and a divergent river network

progrades over the alluvial apron. Initially, 2000 clasts were seeded at two different places in the

mountain at depths of 500 to 600 m (green clasts) and 400 to 500 m (red clasts), as if they were455

belonging to two intrusive bodies. When erosion reaches this depth, clasts begin to exhume, move

and deposit in the foreland. They stop because they are progressively buried under sediment. The red

clasts exhume first and are spread within an alluvial fan. Deposition of the green clasts ends 0.5 Myr

after the deposition of the red clasts. The complete deposition of both populations lasts 1 Myr. Both

populations are mainly included in a sediment layer that is thinner than 100 m. They are mixed at460

similar depths at the transition zone between the two alluvial fans. This situation illustrates a lateral

diachronism between close alluvial aprons which may have been erroneously correlated in the field.

If these grains were detrital zircons of different ages, the analysis of their age distribution at

different places would allow the mixed zone to be mapped, and thus, the dynamics of the lateral465

alluvial fan to be reconstructed.
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5 Perspectives

The modelling approach described in this paper and its developments may have different applications

which we propose in the following.

River-erosion law470

River dynamics involve processes acting on a large range of time periods, from hours in the case of

catastrophic flooding to thousands of years to transport huge volumes of glacier sediment, for ex-

ample. Determining simplified laws to predict this complexity remains a challenge (Murray, 2007).

Recently, Kasprak et al. (2015) showed a tight relationship between the inter-bar distance and travel

distance of marked grains in experiments on braided rivers. At the same time, Davy and Lague (2009)475

evidenced a relationship between this inter-bar distance and L, a fundamental transport-length pa-

rameter used in the Eros landscape evolution model and which has been also introduced in Cidre.

The link between both observations can be made using the modelling approach proposed in this

paper. By using a try-and-guess approach, investigating different erosion and deposition laws of dif-

ferent complexities, it may be possible to identify which laws predict the distribution of the clasts480

and the river bed forms observed in experiments (Kasprak et al., 2015) or rivers (Bradley et al., 2010;

Bradley and Tucker, 2012). As far as we know, the study that was carried out by introducing moving

clasts in Eros is the only study of this kind (Davy and Lague, 2012).

Grain sorting, coarsening

Fining of the grain size by attrition in very steep catchments and by selective deposition in most of485

the other catchments is a well-observed phenomena. (Paola et al., 1992; Paola and Seal, 1995; Attal

and Lave, 2006; Fedele and Paola, 2007; Miller et al., 2014). Selective deposition could be simply

included by allowing the deposition probability to depend on clast size. Physical attrition could also

be included by decreasing the clast size according to the travel distance. Local surface coarsening

could be also studied, as clast entrainment depends on their size. This model may represent an alter-490

native to models requiring a depth discretization of sediment layers containing different grain sizes

(Cohen et al., 2009).

Grain-size dependent landscape evolution

In the real world, material erosion and transport depend on the clast size and the grain size evolves495

spatially. The feedback of grain size on the landscape dynamics has been little explored (Sklar et al.,

2008). In Cidre, entrainment and deposition parameters may vary according to the mean radius of

the grains on each cell. The number of model parameters would be kept small (K, L specified

initially for the median size, for example), while accounting for complex feedbacks. This could be
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an alternative to other approaches which incorporate explicitly different classes of grain sizes to500

simulate fluvial dynamics (e.g. Coulthard et al., 2002).

Provenance problems and alluvial or placer-type deposits

Provenance studies on detrital grains help constrain the chronology of the exhumation of the sedi-

ment source (e.g. Roddaz et al., 2005; Rodríguez et al., 2012). Grains of a particular lithology can be

used to identify the provenance of certain material of economic interest, like distant gravels eroded505

from a hidden porphyry copper deposit (Sillitoe, 2010). These provenance studies come up against

uncertainties regarding the landscape evolution. The coupled modelling of landscape evolution and

clast movement may help constrain this link in specific cases.

Placer-type deposits are secondary ores that can contain free particles with very fine gold and510

other native metals (e.g., platinum-group elements, PGE). The occurrence of gold grains in super-

gene environments, such as soil, sediments and placers in rivers, is controlled by physical (as well

as bio-geochemical) processes of redistribution from a distant gold-quartz vein (Reich and Vascon-

celos, 2015). Gold grains between 0.1 and 4 mm in diameter constitute most of alluvial and eluvial

gold, and represent economically important ores, such as the Witwatersrand paleoplacer gold de-515

posits in South Africa (Mossman et al., 1999; Fairbrother et al., 2013). Measurements of geometric

grain parameters such as roundness, degree of bending, and grain flatness have been used to con-

strain the source-type of the gold and transportation distances (e.g. Townley et al., 2003; Mudaliar

et al., 2007). Therefore, an approach that involves the modeling of gold grain transport during the

landscape evolution might provide an independent test to check the validity of transport distance520

estimations based on grain morphology.

Cosmogenic nuclides

The analysis and modelling of cosmogenic nuclide concentration in individual clasts give quanti-

tative information about the erosion-transport processes at the landscape scale (Repka et al., 1997;

Codilean et al., 2008; Gayer et al., 2008; McPhillips et al., 2014; Carretier et al., 2009; Carretier525

and Regard, 2011; Vassallo et al., 2011). It would be straightforward to compute the cosmogenic nu-

clide concentration evolution in clasts in Cidre, using for example the model of Carretier and Regard

(2011). This may be particularly useful to link cosmogenic nuclides from buried sediment in basins

to quantify the erosion-sediment history of mountain-foreland systems.

Tracing weathering material530

In the 1990’s, Raymo and Ruddiman (1992) proposed that the uplift of Tibet has driven the post-

Eocene global atmospheric cooling by accelerating the chemical weathering of silicate rocks and the

associated consumption of atmospheric CO2. However, recent studies at the foot of the Himalayas
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and Andes suggest that the weathering flux may be larger in the foreland basin than in the mountain

range itself (Lupker et al., 2012). A key issue is to understand the distribution of the residence times535

in the different reservoirs (Mudd and Yoo, 2010; Anderson, 2015; Hoffmann, 2015). These studies

call for for the development of 3D models able to trace the weathered material from source to sink

(Anderson et al., 2012; Vanwalleghem et al., 2013; Minasny et al., 2015). The clast-flux modelling

approach may be developed within that scope, by allowing clasts to weather. This will be the aim of

a future paper.540

6 Conclusions

The algorithm predicts a consistent clast velocity and surface erosion rate in simple cases. The mean

travel distance of the clasts does not depend on the model cell size or time step. The scattering of the

clasts depends on the cell size and is overestimated. Nevertheless, decreasing the cell size decreases

the overestimation. This model has numerous potential applications allowing field data on distinct545

grains to be linked to a large-scale landscape evolution. The differences between the simple river and

hillslope cases illustrated here (e.g. Figures 4 and 5) show that the movement of tracers in the field

or in experiments may provide a way to establish local erosion-transport laws at spatial and temporal

scales adapted to landscape evolution models.
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Appendix

In order to derive the variation in the soil or river bed surface elevation z two downstream length

dx systems are considered above and below the surface. In the first subsurface system, the mass

balance is:

∂z

∂t
= −∂qs

∂x
(12)560

where qs [L2/T] is the sediment flux per unit width. In the second fluid system, from a Lagrangian

point of view the transported mass of the sediment M varies as

DM

Dt
=

∂M

∂t
+u

∂M

∂x
(13)

= ρwdxε− ρwdxD (14)
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where u is the flow velocity, w is the flow width, ρ is the sediment density and ε and D are the565

erosion-detachment and deposition rates, respectively.

Assuming the mass of the sediment in movement is locally constant in the water (steady state -
∂M
∂t = 0) and recognising that u∂M∂x = ρwdx ∂qs∂x , the mass balance in the first system is

∂z

∂t
= −ε+D (15)
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Figure 1. Illustration of erosion-deposition processes in Cidre. A- Multiple flow and the different calculated

fluxes: qs [L2/T] incoming sediment flux per unit width. Ti [L/T] transferred sediment rate in each downward

direction. ε [L/T] detachment rate of material (sediment or bedrock) from the cell calculated in the steepest di-

rection. D [L/T] deposited sediment rate on the cell. QsL [L3/T] lateral volumetric sediment flux deposited on

the cell. Si slope in each downward direction.w = flow width. dx = cell width. The incoming water flow is prop-

agated towards lower cells proportionally to the local slope in each direction (not illustrated). B- Probabilities

that clasts will sediment, transfer or detach using fluxes calculated by Cidre.
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Figure 2. Comparison between the profile evolutions of the hill predicted by Equations 5, 6 (the model pro-

posed in this paper - in red) and Equations 3 and 4 (the "non-linear" diffusion model proposed for example

by Roering et al. (1999) - in black). The "non-linear" diffusion model is solved by explicit finite differences

along a 2D profile. The distance between points dx= 10 m, κ′ = 0.01 m2/yr, Sc = 0.6, dt= 1000 yr. For the

model presented in this paper, the diffusivity κ′ = κdx= 0.01 m2/yr and Sc = 0.57 (=tan 30o). The red pro-

files represent 2D averaged elevations across 3D topographies. Note that Sc is slightly larger in the "non-linear"

model because of stability reasons, the non-linear flux in Equation 4 is approximated by the tangent to the curve

qs = f(S) when S is close to Sc, resulting in a small underestimation of qs. A- Relaxation from a triangular

hill with a slope of 0.5. Profiles every 2.5 Myr. B- Uplift (0.1 mm/yr) from an initial horizontal surface. Profiles

every 0.5 Myr. The elevation is fixed at 0 m at the two boundary conditions in A and B.
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Figure 3. Model test in the linear diffusion case (ε= κS and L= dx). The initial plan slope is S = 0.1. 1000

clasts are initially set at the surface and top of this plan. The diffusivity κ′ = κdx= 0.01 m2/yr in all the cases.

A- Example of clasts spreading in the case κ= 0.0001, dx= 100 m and dt= 50 yr. B- Evolution of the mean

travel distances of the clasts for the different dx, dt and κ values. Note that the mean transport distance fits well

with the prediction and does not significantly depend on dt or dx. C-Evolution of the standard deviation of the

travel distances of the clasts σ. The black dashed curve is a
√
t fit to the reference (green-red) model curves,

showing that σ ∝
√
t, consistently with the diffusion theory. Nevertheless, this fit overestimates by more than

one order of magnitude the predicted curve (σ =
√
2κdxt), which should correspond to a value of 0.036 km at

t = 50 kyr for the green and red curves.
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Figure 4. Model test in the non linear diffusion case (ε= κS and L= dx
1−(S/Sc)2

). The initial plan slope is

S = 0.1 and Sc is set close at 0.105. The mean sediment flux per unit width qs = εdx is the same in all cases

(same κ′ = κdx). 1000 clasts are initially set at the surface and top of this plan. A- Example of clasts spreading

in the case κ= 0.0001, dx= 100 m and dt= 50 yr. B- Evolution of the mean travel distances of the clasts for

the different dx, dt and κ values. Note that the mean transport distance fits well with the prediction and does

not depend significantly on dt or dx. C-Evolution of the standard deviation of the travel distances of the clasts

σ. σ ∝
√

(t), consistently with the diffusion theory.
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Figure 5. Model test in the river case (ε=KqS and L= dx). The initial plan slope is S = 0.1 and the pre-

cipitation rate is 1 m/yr. Initially, 1000 clasts are set at the surface and top of this plan. The mean sediment

flux per unit width qs = εdx is the same in all cases by keeping Kdx= 310−5 constant. A- Example of clasts

spreading in the case K = 310−7 m−1, dx= 100 m and dt= 50 m. B- Evolution of the mean travel distances

of the clasts for the different dx, dt and K.The blue color indicates an increase in the downstream water dis-

charge. Note that the mean transport distance fits well with the prediction and does not significantly depend on

dt or dx. C-Evolution of the standard deviation for the travel distances of the clasts σ. Note that σ increases

exponentially downstream, differently from the diffusion cases.
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Figure 6. Example of clasts exhumation from two locations (intrusive body) located initially at a depth of

0.5 km (green clasts) and 0.4 km (red clasts). The final maximum elevation for the mountain is 3000 m. The

domain size is 100x100 km. There is constant rainfall over the whole grid (1 m/yr). The northern block is

continuously uplifting at 0.5 mm/yr. The elevation of the clasts is increased to see them. Note that the green

grains stop depositing 1 Myr after the red ones. Nevertheless, both populations are mixed between the two

alluvial fans at similar depth, showing that 1 My of difference may separate two adjacent sediment layers

that are apparently synchronous. Ksediment =0.6 10−3 m/yr, Kbedrock =0.3 10−3 m/yr, m= 0.5, n= 1, ξ =

0.1 yr/m, αsediment = 0.01, κsediment = κbedrock =10−4 m/yr, Scsediment = Scbedrock = 0.8, dx= 500 m,

dt= 100 yr.
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