

Dear Dr Westoby,

The two original reviewers have now considered your submission again. They both remain positive, believing it to be a paper of good scientific value and high quality. I tend to agree with them.

In summary, Reviewer #1 would like the paper accepted as a short communication (i.e. technical note), and Reviewer #2 believes the results to be interesting and in theory sufficient to warrant publication as a full paper but in need some reconsideration in light of the new Fig. 3. Reviewer #2 is interested enough to be willing to see the work again and I would like them to do so, which is what has forced me to class this as a 'major revision' (minor revisions are reviewed by Editor alone).

I very much hope that you re-submit, and if you do so envisage sending the work out again to Reviewer #2 only. Any further endeavours that you can make to firmly move the work into the realm of 'full-paper' rather than 'technical note' would, I feel, also be beneficial.

All the best,
John

We thank Dr. Hillier for his oversight of the revised manuscript and for summarising his requirements for final publication. We thank reviewer #1 for recommending that the revised manuscript is published with no further corrections. In the commentary which follows we address the comments of reviewer #2 and describe how we have revised the manuscript in light of these.

Regarding the format of the paper, we firmly believe that whilst the original submission was perhaps more suited as a technical note, the two rounds of revision which have been carried out have both extended the length of the paper and substantially expanded our discussion of the implications of our topographic differencing results for geomorphological / glaciological process analysis. It is our opinion that the revised manuscript goes beyond the description of the journal's criteria for a short communication (e.g. 'a few pages only') to now report 'substantial and original scientific results' that warrant its publication as a research article.

We believe that we have satisfactorily addressed the reviewer's comments, and trust that the manuscript is now suitable for final publication in *Earth Surface Dynamics*. We look forward to your response.

Sincerely,

Matt Westoby and co-authors.

The paper has been restructured as requested in the reviews, and is much easier to interpret with the redrawn figures. The discussion of the processes and mechanisms driving the change is, in theory, substantive enough to warrant publication.

However, and it is a big however, with the added figure comparing the TLS and SfM data and the production of Figure 4 in colour, serious questions are raised over the use of the two methods to draw conclusions about the geomorphological processes.

Please see detailed responses below.

Firstly the colour scales differ on figures 3 & 5, making it hard to analyse the results in figure 5 in the context of figure 3. On close inspection, the error level is of a similar order to the results that are being presented.

We have changed the colour ramp for Figure 3 to match those of Figure 5. The reviewer is correct to flag this discrepancy, and updating the colour ramp for Figure 3 now makes it more straightforward to analyse topographic differences between the TLS and UAV-SfM datasets from the end of season 1.

There looks to be a systematic bias in the comparison between the TLS and SfM, which I don't think is adequately explained in the paper. The bias trends from a positive bias in the south, then turning negative towards the north, and show some dependence on the moraine ridges. This puts the results of figure 5c into doubt, in particular the large negative surface lowering in the ice marginal area, and the pattern seen along the moraine ridges. Where there is limited data in the ice marginal area in figure 5d, this signal is not seen.

We agree with the reviewer that the apparent systematic bias in the TLS vs. SfM data (Fig. 3) is not adequately explained in the manuscript. We have expanded our description of this bias in section 3.3 and have also revised our interpretation of geomorphological and glaciological processes in light of the results of Figure 3 (sections 4.1, 4.2, also revised section 5). We note that the results of our 3D differencing using the M3C2 algorithm only include 'significant' change which exceeds a 0.103 m confidence threshold. Whilst the Z_{diff} scale on Fig. 5 includes values in the range -0.103 – 0.103 m, these data in fact represent the mean of individual vertical displacements in gridded 10 m² windows, within which values that fall in this range have been excluded (i.e. the product of averaging these significant values may fall in the 'non-significant' range where both surface lowering and surface downwasting occur in a single 10 m² window. We clarify the method of data display in an updated caption for Fig. 5.

The results of TLS-SfM differencing for the end of season 1 (Fig. 3) reveal a zone to the extreme west of the site where the SfM data overestimate surface elevation (bright red) and a zone in the centre-north of the site where the UAV-SfM data underestimate the surface elevation relative to the equivalent TLS data (bright blue). The latter zone encompasses parts of the central moraine ridge. Elsewhere across the moraine, topographic discrepancies between the two datasets are generally much lower.

These two zones of substantial topographic mismatch are explained by a number of factors:

- Firstly, it was difficult to identify corresponding features in the TLS and UAV-SfM datasets in the western (red) sector of the site due to the sparsity of TLS data here – compare coverage in Fig. 5d with Fig. 5c. Furthermore, the UAV initiated sharp banking turns in this location to clear a hillslope spur, which reduced effective forward- and side image overlap. Combined, these issues are likely to have been detrimental to robust feature matching and the accuracy of reconstructed scene and camera geometries. We therefore retain less confidence in both the geometric accuracy of the 3D SfM reconstruction in this location (TLS GCPs are used in PhotoScan's optimisation protocol to refine the estimation of both interior and exterior camera/scene geometries), as well as the final model-to-model alignment.
- Secondly, we attribute the underestimated surface elevations (bright blue) in the SfM data in the centre-north of the site to also be a product of the different spatial extents of the two datasets. Due to topographic occlusion, the TLS data at the end of season 1 do not cover this area of generally subdued ice-marginal topography in any level of substantial detail (Fig. 5d). In contrast, the ice-marginal zone is well-resolved in the corresponding UAV-SfM model (Fig. 5c). Any features that were resolved in the ice-marginal TLS scan data were the faces of sparse large clasts which were oriented towards the scanner. Such near-vertical clast faces were not resolved in detail in the UAV-SfM model due to the nadir perspective of the aerial imagery, which meant that only skyward-facing clast faces were resolved. It was therefore impossible to find and use GCPs in the TLS model in this zone for SfM model optimisation and georeferencing in PhotoScan, and this section of the SfM model would have been redundant in the subsequent ICP (cloud-to-cloud) matching which was used to refine SfM model alignment.

In summary, had the spatial extent of the TLS data better matched that of the UAV-SfM data at the end of season 1, these issues would have been overcome, and discrepancies between the two datasets in these areas would be much lower and more in line with those found across the rest of the moraine complex. The

manuscript has been revised to elaborate on, and better attribute these discrepancies. We have also expanded Figure 6 to include a panel which shows the lateral component of 3D change for TLS-TLS differencing within season 1 and highlight key similarities and differences which arise from the use of the UAV-SfM data. We are also now more conservative in the use of our results for interpreting geomorphological activity.

I would recommend that the authors reinvestigate the difference between the TLS and SfM and revise their analysis on the basis of the robustness of the comparison between the two datasets. Finding that the TLS and SfM don't produce the same result doesn't preclude the publication of the paper as it is a useful discussion to be had. I just think the discussion of the geomorphological processes is now not valid in the light of the evidence brought by the greater clarity in Figure 4 and the insertion of Fig. 3.

We maintain that sections of our discussion of the geomorphological processes remain valid. The results of TLS-SfM differencing (Fig. 3) indeed casts doubt on the quality of TLS-SfM differencing in the western, and ice-proximal sectors of the site, as well as across the ice-proximal face of the central moraine. We have revised our description and discussion of patterns of surface displacement in these areas, and have now largely eliminated these areas from our geomorphological discussion in section 5. However, there remain patterns of vertical and lateral displacement which are reproduced in both the TLS-TLS and TLS-SfM results for both annual and sub-annual differencing periods (i.e. Fig. 5d and Fig. 5f). For example, surface lowering to the rear (south) of the basin, and surface uplift to the centre-east and northwards to the ice-distal areas of the site are mirrored (Fig. 5c vs. Fig. 5d), whilst a dominantly westward trajectory of lateral displacement is observed within season 1 for both TLS-TLS and TLS-SfM data. We have added within season 1 TLS-TLS lateral displacements as a new panel to Fig. 6 which aids comparison of these data.

A small comment on Fig 5: season 2 “end” needs to be labelled properly to help reader interpretation.

We have corrected the labelling on Fig. 5.

1 **Inter-annual surface evolution of an Antarctic blue-ice moraine
2 using multi-temporal DEMs**

3
4 **M. J. Westoby¹, S. A. Dunning², J. Woodward¹, A. S. Hein³, S. M. Marrero³, K. Winter¹
5 and D. E. Sugden³**

6
7 [1]{Department of Geography, Engineering and Environment, Northumbria University,
8 Newcastle upon Tyne, UK}

9
10 [2]{School of Geography, Politics and Sociology, Newcastle University, Newcastle upon
11 Tyne, UK}

12
13 [3]{School of GeoSciences, University of Edinburgh, Edinburgh, UK}

14
15 Correspondence to: M. J. Westoby (matt.westoby@northumbria.ac.uk)

16
17 **Abstract**

18
19 Multi-temporal and fine resolution topographic data products are ~~being~~ increasingly
20 used to quantify surface elevation change in glacial environments. In this study, we
21 employ 3D digital elevation model (DEM) differencing to quantify the topographic
22 evolution of a blue-ice moraine complex in front of Patriot Hills, Heritage Range,
23 Antarctica. Terrestrial laser scanning (TLS) was used to acquire multiple topographic
24 datasets of the moraine surface at the beginning and end of the austral summer
25 season in 2012/2013 and during a resurvey field campaign in 2014. A
26 complementary topographic dataset was acquired at the end of season 1 through the
27 application of Structure-from-Motion with multi-view stereo (SfM-MVS)
28 photogrammetry to a set of aerial photographs taken acquired from an unmanned
29 aerial vehicle (UAV). Three-dimensional cloud-to-cloud differencing was undertaken
30 using the Multiscale Model to Model Cloud Comparison (M3C2) algorithm. DEM
31 differencing revealed net uplift and lateral movement of the moraine crests within
32 season 1 (mean uplift ~0.10 m), with and surface lowering of a similar magnitude in
33 some inter-moraine depressions and close to the current ice margin, although we are
34 unable to validate the latter. Our results indicate net uplift across the site between
35 seasons 1 and 2 (mean 0.07 m). This research demonstrates that it is possible to
36 detect dynamic surface topographical change across glacial moraines over short
37 (annual to intra-annual) timescales through the acquisition and differencing of fine-
38 resolution topographic datasets. Such data offer new opportunities to understand the
39 process linkages between surface ablation, ice flow, and debris supply within
40 moraine ice.

41 **1. Introduction**

42

43 Fine-resolution topographic data products are now routinely used for the
44 geomorphometric characterisation of Earth surface landforms (e.g. Passalacqua et
45 al., 2014, 2015; Tarolli, 2014). Recent decades have seen the advent and uptake of
46 a range of surveying technologies for characterising the form and evolution of Earth
47 surface topography at the macro- (landscape; kilometres), meso- (landform; metres)
48 and micro-scales (patch-scale; centimetre-millimetre). These technologies have
49 included, amongst others, the use of satellite remote sensing techniques (e.g. Kääb,
50 2002; Smith et al., 2006; Farr et al., 2007; Stumpf, 2014; Noh and Howat, 2015), as
51 well as field-based surveying platforms such as electronic distance meters (total
52 station; e.g. Keim et al., 1999; Fuller et al., 2003), differential global positioning
53 systems (dGPS; e.g. Brasington et al., 2000; Wheaton et al., 2010), terrestrial laser
54 scanning (TLS; e.g. Rosser et al., 2005; Hodge et al., 2009), airborne light detection
55 and ranging (LiDAR; e.g. Bollmann et al., 2011) and softcopy or digital
56 photogrammetry (e.g. Micheletti et al., 2015).

57

58 More recently, geoscientists are increasingly adopting low-cost Structure-from-
59 Motion with multi-view stereo (SfM-MVS) methods, which employ computer vision
60 and multi-view photogrammetry techniques to recover surface topography using
61 optical (e.g. James and Robson, 2012; Westoby et al., 2012; Javernick et al., 2014;
62 Micheletti et al., 2014; Woodget et al., 2015; Smith and Vericat, 2015) or thermal
63 imagery (e.g. Lewis et al., 2015). Concomitant developments in lightweight
64 unmanned aerial vehicle (UAV) technology, specifically decreasing system costs,
65 increased portability, and improvements in the accessibility of flight planning
66 software have encouraged the acquisition of repeat, fine-resolution (metre to
67 centimetre) topographic data products from low-altitude aerial photography platforms
68 (e.g. Niethammer et al., 2010; Ouédraogo et al., 2014; Bhardwaj et al., 2016).
69 Furthermore, the differencing of topographic datasets acquired at different times is
70 | ~~now~~now an established method for quantifying the transfer of mass and energy
71 through landscapes at the spatial scales of observation at which many processes
72 operate (Passalacqua et al., 2015).

73

74 | ~~To-date, f~~ine-resolution topographic datasets produced using airborne or ground-
75 based light detection and ranging (LiDAR), or terrestrial or low-altitude aerial digital
76 photogrammetry have been used for a diverse range of applications in various
77 glacial, proglacial, and periglacial environments at a range of scales, including: the
78 quantification of ice surface evolution (e.g. Baltsavias et al., 2001; Pitkänen and
79 Kajuutti, 2004; Keutterling and Thomas, 2006; Schwalbe and Maas, 2009;

80 Immerzeel et al., 2014; Pepin et al., 2014; Whitehead et al., 2014; Gabbud et al.,
81 2015; Kraaijenbrink et al., 2015; Piermattei et al., 2015; Ryan et al., 2015); mapping
82 the redistribution of proglacial sediment (e.g. Milan et al., 2007; Irvine-Fynn et al.,
83 2011; Dunning et al., 2013; Staines et al., 2015) and moraine development
84 (Chandler et al., 2015); the characterisation of glacier surface roughness (e.g. Sanz-
85 Ablanedo et al., 2012; Irvine-Fynn et al., 2014), glacial sedimentology (Westoby et
86 al., 2015), and hydrology (Rippin et al., 2015); as well as input data for surface
87 energy balance modelling (e.g. Arnold et al., 2006; Reid et al., 2012); and for
88 characterising glacial landforms in formerly glaciated landscapes (e.g. Smith et al.,
89 2009; Tonkin et al., 2014; Hardt et al., 2015).

90
91 In this study, we utilise fine-resolution topographic datasets to quantify the surface
92 evolution of a blue-ice moraine complex in a remote part of Antarctica. Blue-ice
93 areas cover approximately 1% of Antarctica's surface area (Bintanja, 1999), yet they
94 remain relatively understudied. Relict blue-ice moraines preserved on nunataks are
95 key indicators of ice sheet elevation changes; however, limited data exist on rates
96 and patterns of surface reorganisation, which may be of use for contextualising the
97 results of, for example, cosmogenic nuclide dating and geomorphological mapping
98 ([Hein et al., 2016](#)). This research seeks to quantify the short-term surface evolution
99 of a moraine complex in Patriot Hills, Heritage Range, Antarctica (Fig. 1), through the
100 differencing and analysis of multi-temporal topographic datasets acquired using TLS
101 and the application of SfM-MVS photogrammetry to optical imagery acquired from a
102 low-altitude UAV sortie.

103

104 **2. Study site**

105

106 The study site is a blue-ice moraine complex, located on the northern flank of the
107 Patriot Hills massif at the southern-most extent of Heritage Range, West Antarctica
108 (Fig. 1). Blue-ice moraine formation is hypothesised to be the result of preferential
109 ablation of marginal ice by katabatic winds, which in turns prompts the modification
110 of ice flow and englacial sediment transport pathways such that basal sediment is
111 brought to the ice surface, where it is deposited (e.g. Bintanja, 1999; Sinisalo and
112 Moore, 2010; Fogwill et al., 2012; Spaulding et al., 2012; Hein et al., 2016). The site
113 comprises a series of broadly east-west oriented moraine ridges and inter-moraine
114 troughs, as well as an area of subdued moraine topography immediately adjacent to
115 the ice margin (Fig. 2). At this location, the active blue-ice moraines occupy an
116 altitudinal range of 60-70 m above the ice margin (~730 m a.s.l.),
117 and extend for a distance of up to 350 m into a bedrock embayment ([Fig. 1](#)). The blue-ice moraines
118 can be traced for a distance of >4 km to the east and north-east, parallel to the range

119 front, and fill ice-marginal embayments. The site is geomorphologically and
120 sedimentologically complex (e.g. Vieira et al., 2012; Westoby et al., 2015), and,
121 along with moraine ridges and troughs, includes areas of subdued ice-marginal
122 topography with thermokarst melt ponds, local gullying and crevassing on ice-
123 proximal and distal moraine flanks, as well as solifluction deposits at the base of the
124 surrounding hillslopes. The bedrock hillslopes are overlain by a till drape with rare,
125 large exotic sandstone boulder erratics which have some evidence of periglacial
126 reworking. Field observations suggest that the blue-ice moraines are dynamic
127 features which are undergoing localised surface changes. It is these short-term,
128 changes which are the subject of investigation in this paper.

129
130 **3. Methods and data products**
131
132 This research employs two methods for reconstructing moraine surface topography,
133 specifically TLS and SfM-MVS photogrammetry. Two field campaigns at Patriot Hills
134 were undertaken with a 12-month survey interval. Briefly, TLS data were acquired at
135 the beginning and end of austral summer season 1 (December 2012 and January
136 2013, respectively), and in a short resurvey visit in season 2 (January 2014). Low-
137 altitude aerial optical photography was acquired from a UAV at the end of season 1
138 and was used as the primary input to SfM-MVS processing. The following sections
139 detail the two methods of topographic data acquisition, data processing, and
140 subsequent analysis using 'cloud-to-cloud' differencing.

141
142 **3.1. Topographic data acquisition**
143
144 **3.1.1. Terrestrial Laser Scanning**
145
146 TLS data were acquired using a Riegl LMS-Z620 time-of-flight laser scanner, set to
147 acquire ~11,000 points per second in the near-infrared band at horizontal and
148 vertical scanning increments of 0.031°, equivalent to a point spacing of 0.05 m at a
149 distance of 100 m and with a beam divergence of 15 mm per 100 m. Data were
150 acquired from six locations across the site at the beginning of season 1 (7th -11th
151 December 2012; Fig. 1; Table 1). Two of these positions were re-occupied at the
152 end of season 1 (9th January 2013) and three positions were reoccupied in season 2
153 (Fig. 1; 14th January 2014). Following manual editing and the automated removal of
154 isolated points to improve data quality, each set of scans were co-registered in Riegl
155 RiSCAN PRO software (v. 1.5.9) using a two-step procedure employing coarse
156 manual point-matching followed by the application of a linear, iterative, least-squares
157 minimisation solution to reduce residual alignment error. Individual scans were then

158 merged to produce a single 3D point cloud for each scan date. Merged scan data
159 from the end of seasons 1 and 2 were subsequently registered to the scan data from
160 the beginning of season 1 using the methods described above (Table 1).

161

162 | **3.1.2. Structure-from-Motion with Multimulti-Vyiew Stereo photogrammetry**

163

164 Low-altitude aerial photographs of the study site were acquired using a 10-Megapixel
165 Panasonic Lumix DMC-LX5 compact digital camera with a fixed focal length (8 mm)
166 and automatic exposure settings, mounted in a fixed, downward-facing (nadir)
167 perspective on a sub-5 kg fixed-wing UAV. Photographs were acquired in a single
168 sortie lasting ~5 minutes. A total of 155 photographs were acquired at a 2-second
169 interval at an approximate ground height of 120 m, producing an average image
170 overlap of 80%, and an approximate ground resolution of 0.07 m² per pixel. Mean
171 point density was ~300 points per m², compared to a mean of 278 points per m² for
172 the TLS datasets. Motion blur of the input images was negligible due to favourable
173 image exposure conditions and an appropriate UAV flying height and speed.

174

175 UAV photographs were used as input to SfM reconstruction using the proprietary
176 Agisoft PhotoScan Professional Edition (v. 1.1.6) software. Unique image tie-points
177 which are stable under variations in view perspective and lighting are identified and
178 matched across input photographs, similar to Lowe's (2004) Scale Invariant Feature
179 Transform (SIFT) method. An iterative bundle adjustment algorithm is used to solve
180 for internal and external camera orientation parameters and produce a sparse 3D
181 point cloud. The results of the first-pass camera pose estimation were scrutinised
182 and only 3D points which appear in a minimum of 3 photographs and possessed a
183 reprojection error of <1.0 were retained. A two-phase method of UAV-SfM data
184 registration was employed: 1) ground control was obtained by identifying common
185 features in the UAV-SfM photographs and TLS data from the end of season 1
186 (acquired 4 days after the SfM data; Table 1), such as the corners of large, well-
187 resolved boulders or bedrock outcrops. GCP data were used to optimise the initial
188 camera alignment and transform the regenerated UAV-SfM data to the same object
189 space as the TLS data, producing an xyz RMS error of 0.23 m. 2) following dense
190 reconstruction using Multi-View Stereo methods, 3D point data were exported to
191 RiSCAN PRO (v. 1.5.9) software, and a linear, iterative, least-squares minimisation
192 employing surface plane matching was used to improve the alignment and reduce
193 the xyz RMS error to 0.03 m.

194

195 | **3.2. Cloud-to-cloud differencing**

196

197 Three-dimensional ‘cloud-to-cloud’ distance calculations were used to quantify
198 moraine surface evolution (e.g. Lague et al., 2013). Since the dominant direction of
199 surface evolution across the study site was unknown *a priori*, the application of an
200 algorithm that is capable of detecting fully three-dimensional topographic change
201 was deemed to be the most appropriate method in this context. To this end, we
202 employ the Multiscale Model to Model Cloud Comparison (M3C2) algorithm (Lague
203 et al., 2013; Barnhart and Crosby, 2013), implemented in the open-source
204 CloudCompare software (v. 2.6.1) for change detection.

205
206 The M3C2 algorithm implements two main processing steps to calculate 3D change
207 between two point clouds: 1) estimation of surface normal orientation at a scale
208 consistent with local surface roughness, and 2) quantification of the mean cloud-to-
209 cloud distance (i.e. surface change) along the normal direction (or orthogonal
210 vector), which includes an explicit calculation of the local confidence interval. A point-
211 specific normal vector is calculated by fitting a plane to neighbouring 3D points that
212 are contained within a user-specified search radius. To avoid the fluctuation of
213 normal vector orientations and a potential overestimation of the distance between
214 two point clouds, the radius, or scale, used for normal calculation needs to be larger
215 than the topographic roughness, which is calculated as the standard deviation of
216 local surface elevations (σ). The orientation of the surface normal around a point, i , is
217 therefore dependent on the scale at which it is computed (Lague et al., 2013). A trial-
218 and-error approach was employed to reduce the estimated normal error, $E_{\text{norm}}(\%)$,
219 through refinement of a re-scaled measure of D , ξ , where:

220
221
$$\xi(i) = \frac{D}{\sigma_i(D)} \quad \text{Eq. (1)}$$

222
223 Using this re-scaled measure of D , ξ can be used as an indicator of estimated normal
224 orientation accuracy, such that where ξ falls in the range $\sim 20\text{--}25$, the estimated
225 normal error is $E_{\text{norm}} < 2\%$ (Lague et al., 2013). A fixed normal scaling of 2 m was
226 found to be sufficient to ensure that $\xi > 20$ for $>98\%$ of points in each topographic
227 dataset.

228
229 The radius of the projection cylinder, d , within which the average surface elevation of
230 each cloud is calculated, was specified as 2 m. This scaling ensured that the number
231 of points sampled in each cloud was ≥ 30 , following guidance provided by Lague et
232 al. (2013). M3C2 execution took ~ 0.3 h for each differencing task on a desktop
233 computer operating with 32 GB of RAM, and a 3.4 GHz CPU. Cloud-to-cloud
234 distances and statistics were projected onto the original point cloud. M3C2 output

235 was subsequently masked to exclude points where change is lower than level of
236 detection threshold for a 95% confidence level, $LoD_{95\%}(d)$, which is defined as:

237

$$238 LoD_{95\%}(d) = \pm 1.96 \left(\frac{\sigma_1(d)^2}{n_1} + \frac{\sigma_2(d)^2}{n_2} + reg \right) \quad \text{Eq. (2)}$$

239
240 where d is the radius of the projection cylinder, reg is the user-specified registration
241 error, for which we substitute the propagated root mean square alignment error for
242 point clouds n_1 and n_2 (Table 2; Eq. (1)) and assume that this error is isotropic and
243 spatially uniform across the dataset.

244
245 To calculate the total propagated error for each differencing epoch, σ_{DoD} , the
246 estimates of errors in each point cloud (i.e. the sum of the average scan-scan RMS
247 error and a project-project RMS error, where applicable) were combined using:

248

$$249 \sigma_{DoD} = \sqrt{\sigma_{C_1}^2 + \sigma_{C_2}^2} \quad \text{Eq. (3)}$$

250
251 where $\sigma_{C_1}^2$ and $\sigma_{C_2}^2$ are the RMS errors associated with point clouds C_1 and C_2 .

252
253
254 **3.3. Data intercomparison: SfM vs. TLS**
255
256 Whilst the UAV-SfM dataset acquired at the end of season 1 significantly improves
257 on the spatial coverage afforded by the use of TLS across the moraine embayment,
258 an analyses of the relative accuracy of the reconstructed surface topography of the
259 former is desirablerequired. To this end, Fig. 3 shows the results of vertical
260 differencing of the UAV-SfM and TLS data and is, complemented by a series of
261 surface elevation profiles (Fig. 4). These results reveal that 83% of the UAV-SfM
262 data are within ± 0.1 m of the equivalent TLS data when gridded as the mean of
263 vertical displacement in 10 m² grid cells.

264
265 However, two zones of substantial vertical discrepancy exist, namely the
266 northernmost (ice-marginal) sector of the site, where locally the UAV-SfM data
267 locally underestimate the equivalent TLS surface elevation by <-0.20 m (mean -0.13
268 m), and a zone to the ~~extreme~~ north-west of the site, where the UAV-SfM data locally
269 overestimate the TLS ground surface elevation by >0.20 m (mean 0.12 m). We
270 propose two explanations for these vertical discrepancies. Firstly, it was difficult to
271 identify corresponding features in the TLS and UAV-SfM datasets in the north-
272 western sector of the site due to the sparsity of TLS data coverage here at the end of

273 season 1 (cf. Fig. 5c and Fig. 5d). Secondly, the UAV executed sharp banking turns
274 in this area of the site to clear a hillslope spur. These manoeuvres were difficult for
275 the on-board camera stabilising gimbal to compensate for, thereby reducing the
276 effective side- and forward overlap of the aerial photography. Similar banking turns
277 were carried out at the eastern edge of the site, however, it was possible to more
278 confidently identify GCPs in the TLS data in this region, which appears to have had a
279 mitigating effect against the effects of reduced image overlap on scene
280 reconstruction. Finally, those features that did appear in the TLS data in this sector
281 were typically near-vertical faces of large clasts which were oriented toward the
282 scanner, and which were not well-resolved in the UAV-SfM data due to its nadir
283 perspective. This made the accurate identification of matching clast features or
284 edges challenging. Ultimately, ~~W~~we attribute less confidence in both the geometric
285 accuracy of the 3D SfM-MVS reconstruction ~~in this location as well as the~~ and final
286 model-to-model alignment in the north-western sector of the site.

287
288 We attribute underestimated UAV-SfM surface elevations in the centre-north of the
289 site to also be a product of the differing spatial extents of the two datasets. In this
290 location, the northernmost extent of the UAV-SfM data encompasses the entire ice-
291 marginal zone, whereas the equivalent TLS data were truncated at the foot of the
292 main moraine crest due to logistical constraints ~~that~~ which precluded the acquisition
293 of a more complete TLS dataset at the end of season 1. Since no robust GCPs could
294 be identified in the TLS data for the ice-marginal zone for use in the UAV-SfM
295 camera optimisation and registration process, the ground surface geometry in this
296 area tends towards a systematic negative elevation bias, possibly as the result of
297 residual radial lens distortion following camera calibration in PhotoScan (e.g. James
298 and Robson, 2014), we were unable to compensate for.

299
300 ~~, with a number of outliers at the northernmost margin of the dataset, where the~~
301 ~~UAV-SfM data typically underestimate the TLS surface elevation. Similarly, the UAV-~~
302 ~~SfM data underestimate the surface elevation of the ice-proximal flank of the main~~
303 ~~moraine crest by, on average, -0.13 m. UAV-SfM data overestimate the moraine~~
304 ~~surface elevation in the north-western sector of the site by -0.12 m, with some~~
305 ~~outliers which exceed -0.3 m.~~

306
307
308
309 Transect data also highlight areas of inconsistency, specifically often considerable
310 offsets between the TLS and SfM data which were collected at the end of season 1
311 and which, in places, approach 0.5 m in magnitude (e.g. at ~27 m distance in profile

312 A, and between 22-30 m in profile B; Fig. 4). ~~Given that the SfM data were optimised~~
313 ~~and georegistered using features extracted from the corresponding TLS dataset, one~~
314 ~~might expect that deviations between the two would be barely discernible. However,~~
315 ~~the SfM data variously over- and underestimate the TLS-derived surface elevation~~
316 ~~with little apparent systematicity (Fig. 4). One~~ ~~An additional potential~~ explanation for
317 these inconsistencies could be the evolution of moraine surface topography in the 4-
318 day interval which separated the acquisition of the TLS and SfM data at the end of
319 season 1 (Table 1), with the implication that features used as GCPs in the TLS data
320 and their counterparts in the UAV-SfM data were not static, thereby affecting the
321 georeferencing and SfMM optimisation solution. However, ~~assince~~ we observed no
322 clustering of large GCP errors in areas of activity, ~~as shown in the TLS-TLS~~
323 ~~differencing results~~, this factor is unlikely to account for these topographic
324 inconsistencies.

325
326 ~~An additional, and equally viable explanationT for these inconsistenciesdifferences~~
327 ~~might be explained~~ might include the by the near parallel and largely nadir view
328 directions of the UAV imagery, which represent a largely 'non-convergent' mode of
329 photograph acquisition that has elsewhere been found to result in the deformation, or
330 'doming' of SfM-derived surface topography (e.g. James and Robson, 2014; Rosnell
331 and Honkavaara, 2012; Javernick et al., 2014). ~~T~~Topographic mismatches between
332 the TLS and UAV-SfM data ~~also~~ appear to be the most prominent in areas of steep
333 topography (Fig. 3; Fig. 4). These areas were generally well-resolved in the TLS data
334 (where not topographically occluded), but may have been resolved in less detail and
335 with less accuracy in the UAV-SfM data, where the fixed camera angle promotes the
336 foreshortening of these steep slopes in the aerial photography. ~~These differences~~
337 ~~might also be explained by the near-parallel and largely nadir view directions of the~~
338 ~~UAV imagery, which represent a 'non-convergent' mode of photograph acquisition~~
339 ~~that has elsewhere been found to result in the deformation, or 'doming' of SfM-~~
340 ~~derived surface topography (e.g. James and Robson, 2014; Rosnell and~~
341 ~~Honkavaara, 2012; Javernick et al., 2014).~~

342
343 Model deformations can be countered to some degree through the inclusion of
344 additional, oblique imagery, and ~~the~~ use of ~~a suitable well-distributed and photo-~~
345 ~~visible GCP networks~~ (James and Robson, 2014). However, although the latter were
346 relatively evenly ~~spaced-distributed~~ across our study site, the inclusion of these data
347 and subsequent use for the optimisation of the SfM data prior to dense point cloud
348 reconstruction does not appear to have altogether eliminated these model
349 deformations. We discuss the implications of data quality issues for interpreting
350 geomorphological process analysis in sections 4 and 5.

351
352

353 4. Short-term topographic evolution of blue-ice moraines

354

355 **4.1. Vertical displacement**

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

Formatted: Font: Bold

Formatted: List Paragraph, Indent: Left: 0 cm, Hanging: 1 cm, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.63 cm + Indent at: 1.9 cm

Formatted: Font: 12 pt, Bold

The results of 3D cloud-to-cloud differencing are summarised in Figure 5. Threshold levels of change detection ranged from 0.094 – 0.103 m. The upper (i.e. most conservative) bound of this range was applied to the results from all differencing epochs, so that only 3D surface changes greater than ± 0.103 m were considered in the subsequent analysis. The horizontal (xy) and vertical (z) components of 3D surface change were separated to aid the analysis and interpretation of moraine surface evolution and were gridded to represent the mean of significant change within regular 10 m² grid cells to account for variations in point density across the site (Fig. 5, Fig. 6). Vertical surface changes for a range of epochs, encompassing intra-annual and annual change, are displayed in Fig. 5, whilst illustrative horizontal components of 3D change for intra- and inter-annual differencing epochs are shown in Fig. 6. The longest differencing epoch, representing a period of ~400 days (Fig. 5b) shows a broad pattern of net uplift across the moraine of the order of 0.074 m. Locally, uplift exceeds 0.2 m across parts of the moraine complex, and, whilst on first glance these elevation gains appear to be largely randomly distributed across the site, on closer inspection they occur predominantly on or adjacent to the main, central moraine ridge and close to the current ice margin. The large central moraine ridge exhibits a mean uplift of 0.11 m, whilst specific ice-marginal areas to the west and an area of moraine to the south-west of the embayment also exhibit uplift of a similar magnitude (Fig. 5b). In contrast, an area in the southernmost sector of the basin and an ice-marginal area to the centre-west exhibit a net reduction in moraine surface elevation, up to a maximum of -0.354 m.

Intra-annual change detection mapping was undertaken using TLS-TLS and TLS-SfM differencing (Fig. 5c, d). Key similarities between these two datasets, which represent vertical topographic change over a ~31 and ~27 day period, respectively, include uplift at the southern extent of the embayment (mean 0.081 m and 0.123 m for the TLS-TLS and TLS-SfM differencing, respectively). Similarly, both datasets reveal surface lowering at south-eastern, or true rear, of the basin (mean -0.106 m and -0.112 m for TLS-SfM and TLS-TLS differencing, respectively), and, in the TLS-SfM data, on the ice-distal (southern) side of the central moraine ridge (Fig. 5c; -0.092 m). However, the large area of ice-marginal surface lowering (-0.095 - -0.373 m) that is detected in the TLS-SfM differencing results is not mirrored in the equivalent TLS-TLS differencing data (Fig. 5d) and This stems in large part from the reduced spatial coverage of the usable TLS scan data acquired at the end of season

392 1, which comprised data from only two scan positions (Fig. 1c) and which omits the
393 ice-marginal zone.

394
395 The results of vertical change detection using both SfM-TLS and TLS-TLS
396 approaches also display similarities for differencing undertaken between the end of
397 season 1, and season 2 (Fig. 5e,f), including a largely continuous area of uplift
398 across the centre of the site, as well as areas of surface lowering along the eastern
399 edge of the site. Whilst widespread uplift characterises the entire western edge of
400 the study area in the TLS-TLS data (Fig. 5f), the equivalent SfM-TLS data instead
401 report the occurrence of surface lowering at the base of the hillslope spur which
402 forms the western boundary of the site (Fig. 5e). Furthermore, an area of
403 considerable (mean 0.218 m) uplift characterises the ice-marginal zone in the SfM-
404 TLS differencing data for this epoch, but, once again, the reduced spatial coverage
405 of the TLS datasets mean that no differencing data are available to verify or contest
406 this pattern. However, we note that vertical change at the ice-marginal (northern)
407 limit of the TLS-TLS data for both intra-annual and annual differencing epochs do not
408 correspond with the equivalent ~~SfM-TLS / TLS-SfM or SfM-TLS~~ results (Fig. 5c and
409 5e, respectively).

410
411 In light of our discussion of the sources of substantial topographic discrepancy
412 between the TLS and UAV-SfM datasets (Fig. 3; section 3.3), important questions
413 arise as to whether the differencing results in the ice-marginal zone, and in the
414 western sector of the site truly represent physical surface movement, both within
415 season 1, and between seasons (Fig. 5, 6). On balance, and despite the application
416 of a sufficiently large confidence threshold to remove non-significant change from the
417 differencing results (Table 2), we retain much less confidence in reported surface
418 displacement in these two zones than we do for the central portion and rear arc of
419 the moraine basin, where we note that the results of TLS-SfM and TLS-TLS
420 differencing for near-identical differencing periods exhibit a number of similarities.

421
422 Formatted: Line spacing: Multiple 1.3
ii

423 | **4.2. Lateral displacement**

424
425 Examples of horizontal displacement, calculated here as the *xy* component of the
426 orthogonal distance between two point clouds acquired at separate times, and
427 gridded to represent the average *xy* displacement within 10 m² grid cells, are shown
428 in Fig. 6 for intra- (Fig. 6a,**b**) and inter-annual epochs (Fig. 6**cb**). A range of *xy*
429 displacement orientations are detected, and range from sub-centimetre to >0.2 m in
430 magnitude. Lateral displacements within season 1 are displayed for both TLS-TLS
431 and TLS-SfM differencing products (Fig. 6a and 6b, respectively).

432
433 A comparison of these two datasets reveal similarities, but also differences which
434 also likely arise from data quality issues in the north-west and ice-marginal sectors of
435 the site. Specifically, we cannot confidently corroborate the southerly displacement
436 vectors which are associated with substantial, yet questionable, ice-marginal surface
437 lowering in the TLS-SfM data (Fig. 6b). Similarly, the sparsity of TLS data coverage
438 in the western sector of the site makes ~~corroboration-validation~~ of the northerly
439 vectors associated with surface uplift in the western sector of the site problematic.
440 However, we note that a similar pattern of vertical and lateral displacement is
441 present in the inter-annual TLS-TLS results in the western sector of the site (Fig. 6c),
442 and so it remains unclear as to whether this surface displacement is an artefact
443 produced by poor data quality. Elsewhere in the ~~basinembayment~~, lateral
444 displacements within season 1 exhibit similarities between both sets of differencing
445 data, namely including a dominantly westward trajectory of surface movement, as
446 well as and a localised area of south- to south-westerly movement at the extreme
447 rear of the basin which is associated with a general pattern of surface lowering in
448 both datasets (Fig. 6a, 6b).

449
450 In contrast, Within season 1, a range of *xy* displacement orientations are detected,
451 and range from sub-centimetre to >0.2 m in magnitude. These displacements include
452 extensive southern (or 'inward') movement of the moraine surface in the ice-marginal
453 zone, which is associated with surface lowering, and which grades into a largely
454 western-oriented displacement signal on the ridgeline of the main moraine crest and
455 across the western sector of the moraine complex (Fig. 6a). Total *xy* displacement
456 over a >1 year period (Fig. 6**cb**) appears to be less uniform and comparatively
457 chaotic. However, a number of local and largely consistent patterns of horizontal
458 displacement are discernible, such as predominantly westward movement along the
459 central moraine ridge, and north- to north-eastern motion along the western edge of
460 the site (Fig. 6**cb**), which also occurs within season 1 (Fig. 6a). Both trends are

Formatted: List Paragraph, Indent: Left: 0 cm, Hanging: 1 cm, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.63 cm + Indent at: 1.9 cm

Formatted: Font: Bold

461 associated with net surface uplift. In contrast, isolated patches of surface lowering
462 are generally characterised by southern or south-westerly *xy* displacement.

463
464 The analysis of ~~a series of~~ surface profile transects ~~which bisect the moraines~~ shed
465 further light on the evolution of their surface topographic topography evolution (Fig.
466 4). These data are particularly useful for examining the interplay between vertical
467 and lateral moraine surface displacement, which is alluded to in Fig. 6. For example,
468 a combination of surface uplift and lateral displacement between the start and end of
469 season 1 is visible between 28-40 m in profile A (Fig. 4, inset 1). Similarly, lateral
470 (southern) translation of the moraine surface between 15-22 m in profile C (Fig. 4,
471 inset 2) is visible for the same differencing epoch.

472
473 Formatted: Justified

473 5. Implications for glaciological process analysis

474
475 Here we highlight some implications arising from the measurement of these short-
476 term changes in surface morphology. Topographically, the Patriot Hills blue-ice
477 moraine confirms the morphological observations of the embayment, described by
478 Fogwill et al. (2012) as comprising sloping terraces and blocky, pitted boulder
479 moraine ridges. These ridges are thought to be fed from beneath by steeply dipping
480 debris bands coming from depth, driven by ice-flow compensating for katabatic wind
481 ablation of the glacier. Vieira et al. (2012) classify what we term blue-ice moraines as
482 'supraglacial moraine', and the debris bands in the blue ice outside of the basin as
483 blue-ice moraines. It is from clasts emerging from these bands that Fogwill et al.
484 (2012) have produced their model of blue-ice moraine formation in the basin. The
485 supraglacial moraines of Vieira et al. (2012) are described as slightly creeping
486 debris-mantled slopes – both Fogwill et al. (2012) and Vieira et al. (2012) consider
487 the features in the basin as active, but without measurements of observations of
488 rates, or the nature of change. Our differencing results confirm the hypothesis that
489 these features are active, and develops this idea further to demonstrate that moraine
490 slope evolution is active over annual to intra-annual timescales.

491
492 Hättestrand and Johansen (2005) discussed the evolution of blue-ice moraine
493 complexes in Dronning Maud Land, Antarctica, and hypothesised that, following ice-
494 marginal deposition of debris when the adjacent ice surface was higher, the
495 subsequent lowering of the exposed ice surface would produce a slope 'outwards'
496 from an embayment, followed by gradual movement of material towards the ice-
497 margin in a manner similar to that exhibited by active rock glaciers – features that
498 Vieira et al. (2012) interpret in the next basin along the Patriot Hills range. However,
499 whilst the former holds true as an explanation for the general gradient of the Patriot

500 Hills moraine complex (e.g. Fig. 4), our results suggest that the short-term evolution
501 of the moraines does not necessarily conform to the latter hypothesis of such as
502 simple process of consistent downslope movement, and in fact exhibits far more
503 dynamic complexity.

504

505 The moraine ridges both close to, and far from the ice margin emerge as axes of
506 activity and uplift (Fig. 5c), despite initial field observations suggesting that the ridges
507 most distant from the exposed ice surface were older and less active. However, we
508 exercise caution in the interpretation of surface displacements in the western, and
509 ice-marginal sectors of the site due to UAV-SfM data quality issues, and instead
510 confine our discussion of geomorphological activity to the remaining ~50% of the
511 basin area, where we retain confidence in the results of TLS-TLS and TLS-SfM
512 differencing.

513

514 Fogwill et al. (2012) suggest that once upcoming debris is at a sufficient thickness,
515 wind-driven ablation shuts off. Our observations suggest that if this is the case, these
516 ridges are not left stagnant at this point. THE interplay between ice flow and
517 surface elevation lowering by wind, but reduced by thicker debris, may continues
518 despite the possible ages of the surface debris relative to ridges closer to the
519 contemporary blue-ice margin. This activity is not simply confined to 'inward' or
520 'outward' movement of moraines within the embayment, but also involves a lateral
521 component. Fig. 6. It is notable that most lowering occurred near the ice margin
522 where the debris layer is typically thinnest and less than ~0.15 m. Whilst we are
523 unable to corroborate the substantial surface lowering reported in the TLS-SfM
524 differencing for the ice-marginal zone within season 1 (Fig. 5c) and between seasons
525 (Fig. 5e), areas of seemingly persistent uplift are located on the ice-distal face of the
526 central moraine ridge, as well as along moraine ridges toward the rear of the basin.
527 These trends appear in both the TLS-SfM and TLS-TLS differencing results (Fig. 5,
528 Fig. 6).

529

530 Similarly, surface lowering appears to operate at the rear, or southern, extent of the
531 basin within season 1 (Fig. 5c,d) and between the beginning of season 1 and the
532 end of season 2 (Fig. 5b). However, it is characterised by surface uplift from the end
533 of season 1 to the end of season 2 (Fig. 5e,f). This surface lowering trend may be
534 the product of focussed katabatic wind-driven sub-debris ice ablation, coincident with
535 a break (reduction) in slope. There may therefore exist an interplay between moraine
536 uplift and sub-debris ice ablation, where the latter dominates over the longest
537 differencing period (Fig. 5b,c). Sedimentological characterisation of the moraine
538 basin by Westoby et al. (2015) revealed low median surface grain sizes toward the

539 rear of the basin, which may be indicative of a longer sediment exposure time for, or
540 preferential exposure to, *in situ* weathering relative to the remainder of the site,
541 leading to the comminution of surficial deposits and the enhancement of sub-debris
542 ice ablation, which promotes terrain relaxation (e.g. Krüger and Kjær, 2000;
543 Schomacker, 2008; Irvine-Fynn et al., 2011; Staines et al., 2015).
544 Surface lowering in this area exceeds 0.3 m within season 1 (Fig. 5c), and may be
545 the result of sub-debris ice ablation, which promotes terrain relaxation and has been
546 widely reported in other ice-proximal landscapes (e.g. Krüger and Kjær, 2000;
547 Schomacker, 2008; Irvine-Fynn et al., 2011; Staines et al., 2015).

548 Formatted: Left

549 Lateral movement within the moraine ridges (Fig. 6) may reflect lateral extension or
550 'stretching' of the ridges as they encroach into the embayment. Such lateral
551 movement is corroborated from the orientation of crevasse-based grooves in the
552 moraine (Fig. 2c). The apparent inward encroachment of the Patriot Hills moraines
553 (Fig. 6) may be the product of the pressure exerted on the moraines by glacier ice
554 flow into the embayment in compensation for preferential ice ablation by katabatic
555 winds, which is consistent with blue-ice moraine formation theory (Fogwill et al.,
556 2012). Finally, the close match of inter-season surface elevation cross-profiles (Fig.
557 5) points to medium-term stability of the moraine system. This conclusion will be
558 investigated through the application of cosmogenic isotope evidence to assess
559 change since the Holocene.

560
561 More broadly, this study has demonstrated the potential for the combination of
562 different high-resolution surveying technologies and advanced, 3D topographic
563 differencing methods for elucidating the short-term evolution of glaciated and ice-
564 marginal landscapes. Whilst this study has focussed exclusively on the surface
565 evolution of Antarctic blue-ice moraines, the application of 3D differencing methods
566 to quantify change between repeat, accurate topographic surveys has a wide range
567 of potential glaciological applications, which cryospheric researchers have already
568 begun to capitalise on (e.g. Piermattei et al., 2015, Gabbud et al., 2015;
569 Kraaijenbrink et al., 2016). A key contribution of this study to the wider Earth surface
570 dynamics community is the demonstration of truly 3D differencing methods to reveal
571 not only vertical surface change, but also the magnitude and direction of any lateral
572 component to surface movement. Such methods may have particular value for
573 quantifying the 3D surface evolution of, for example, rock glaciers, degrading ice-
574 cored moraines, or slope instabilities in permafrost regions, where information
575 regarding both vertical and lateral components of landscape development may be
576 both of scientific interest and practical application.

577

578 **6. Summary**

579

580 This research has employed a combination of TLS and UAV-based SfM-MVS
581 photogrammetry and 3D differencing methods to quantify the topographic evolution
582 of an Antarctic blue-ice moraine complex over annual and intra-annual timescales.
583 Segmentation of lateral and vertical surface displacements reveal site- and local-
584 scale patterns of geomorphometric moraine surface evolution beyond a threshold
585 level of detection (95% confidence), including largely persistent vertical uplift across
586 the moraine complex~~key moraine ridges~~, both within a single season, and between
587 seasons. This persistent uplift is interspersed with areas (and periods) of surface
588 downwasting which is largely confined to the rear of the moraine basin for both
589 differencing epochs, and in ice-marginal regions within season 1, the latter of which
590 we deem as non-significant. Analysis of lateral displacement vectors, which are
591 generally of a much smaller magnitude than vertical displacements, provide further
592 insights into moraine surface evolution.

593

594 A number of methodological shortcomings are highlighted. Briefly, these relate to the
595 incomplete spatial coverage afforded by the use of TLS in a topographically complex
596 environment, and issues associated with obtaining suitable ground control for SfM-
597 MVS processing and potential implications for the accuracy of SfM-derived
598 topographic data products. This research represents the first successful application
599 of a combination of high-resolution surveying methods for quantifying the
600 topographic evolution of ice-marginal topography in this environment. Furthermore,
601 we have demonstrated that, whilst a number of operational considerations must be
602 taken into account at the data collection stage, these technologies are highly
603 appropriate for reconstructing moraine surface topography and for quantifying Earth
604 surface evolution in glaciated landscapes more generally.

605

606

607 **Author contribution**

608

609 S. A. Dunning, J. Woodward, A. Hein, K. Winter, S. M. Marrero and D. E. Sugden
610 collected field data. TLS and SfM data processing and differencing were undertaken
611 by M. J. Westoby. Data analysis was performed by M. J. Westoby, S. A. Dunning
612 and J. Woodward. Manuscript figures were produced by M. J. Westoby. All authors
613 contributed to the writing and revision of the manuscript.

614

615 **Acknowledgements**

616

617 The research was funded by the UK Natural Environment Research Council
618 (Research Grants NE/I027576/1, NE/I025840/1, NE/I024194/1, NE/I025263/1). We
619 thank the British Antarctic Survey for logistical support.

620 **References**

621

622 Agisoft: Agisoft PhotoScan Professional Edition v.1.1.6. Available:
623 <http://www.agisoft.com>, 2014.

624

625 Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic controls on
626 the surface energy balance of a high Arctic valley glacier. *Journal of Geophysical*
627 *Research*, 111, F02011, doi: 10.1029/2005JF000426, 2006.

628

629 Baltsavias, E. P., Favey, E., Bauder, A., Bösch, H., and Pateraki, M.: Digital surface
630 modelling by airborne laser scanning and digital photogrammetry for glacier
631 monitoring. *Photogrammetric Record*, 17, 243-273, doi: 10.1111/0031-868X.00182,
632 2001

633

634 Barnhart, T. B. and Crosby, B. T.: Comparing two methods of surface change
635 detection on an evolving thermokarst using high-temporal-frequency terrestrial laser
636 scanning, Selawik River, Alaska. *Remote Sensing*, 5, 2813-2837, doi:
637 10.3390/rs5062813, 2013.

638

639 Bhardwaj, A., Sam, L., Akanksha, Martín-Torres, F.J., and Kumar, R.: UAVs as
640 remote sensing platform in glaciology: Present applications and future prospects.
641 *Remote Sensing of Environment*, 175, 196-204, doi: 10.1016/j.rse.2015.12.029,
642 2016.

643

644 Bintanja, R.: On the glaciological, meteorological, and climatological significance of
645 Antarctic blue ice areas. *Reviews of Geophysics*, 37, 337-359, doi:
646 10.1029/1999RG900007, 1999.

647

648 Bollmann, E., Sailer, R., Briese, C., Stotter, J., and Fritzmann, P.: Potential of
649 airborne laser scanning for geomorphologic feature and process detection and
650 quantifications in high alpine mountains. *Zeitschrift fur Geomorphologie*, 55, 83-104,
651 doi: 10.1127/0372-8854/2011/0055S2-0047, 2011.

652

653 Brasington, J., Rumsby, B. T., and McVey, R. A.: Monitoring and modelling
654 morphological change in a braided gravel-bed river using high resolution GPS-based
655 survey. *Earth Surface Processes and Landforms*, 25, 973-990, doi: 10.1002/1096-
656 9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y, 2000.

657

658 Chandler, B. M. P., Evans, D. J. A., Roberts, D. H., Ewertowski, M., and Clayton, A.
659 I.: Glacial geomorphology of the Skálafellsjökull foreland, Iceland: A case study of
660 'annual' moraines. *Journal of Maps*, doi: 10.1080/17445647.2015.1096216, 2015.

661

662 Dunning, S. A., Large, A. R. G., Russell, A. J., Roberts, M. J., Duller, R., Woodward,
663 J., Mériaux, A-S., Tweed, F. S., and Lim, M.: The role of multiple glacier outburst
664 floods in proglacial landscape evolution: The 2010 Eyjafjallajökull eruption, Iceland.
665 *Geology*, 796 41(10), 1123-1136, doi: 10.1130/G34665, 2013.

666

667 Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M.,
668 Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J.,
669 Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar topography

670 mission. *Reviews of Geophysics*, 45(2), RG2004, doi: 10.1029/2005RG000183,
671 2007.

672

673 Fogwill, C. J., Hein, A. S., Bentley, M. J., and Sugden, D. E.: Do blue-ice moraines in
674 the Heritage Range show the West Antarctic ice sheet survived the last interglacial?
675 *Palaeogeography, Palaeoclimatology, Palaeoecology*, 335-336, 61-70, doi:
676 10.1016/j.palaeo.2011.01.027, 2012.

677

678 Fuller, I. C., Large, A. R. G., and Milan, D.: Quantifying channel development and
679 sediment transfer following chute cutoff in a wandering gravel-bed river.
680 *Geomorphology*, 54, 307-323, doi: 10.1016/S0169-555X(02)00374-4, 2003.

681

682 Gabbud, C., Micheletti, N., and Lane, S. N.: Lidar measurement of surface melt for a
683 temperate Alpine glacier at the seasonal and hourly scales. *Journal of Glaciology*,
684 61(229), 963-974, doi: 10.3189/2015JoG14J226, 2015.

685

686 Hardt, J., Hebenstreit, R., Lüthgens, C., and Böse, M.: High-resolution mapping of
687 ice-marginal landforms in the Barnim region, northeast Germany. *Geomorphology*,
688 250, 41-52, doi: 10.1016/j.geomorph.2015.07.045, 2015.

689

690 Hättestrand, C., and Johansen, N.: Supraglacial moraines in Scharffenbergbotnen,
691 Heimafrontfjella, Dronning Maud Land, Antarctica – significance for reconstructing
692 former blue ice areas. *Antarctic Science*, 17(2), 225-236, doi:
693 10.1017/S0954102005002634, 2005.

694

695 Hein, A.S., Woodward, J., Marrero, S.M., Dunning, S.A., Steig, E.J., Freeman,
696 S.P.H.T., Stuart, F.M., Winter, K., Westoby, M.J., and Sugden, D.E.: Evidence for
697 the stability of the West Antarctic Ice Sheet divide for 1.4 million years. *Nature
698 Communications*, 7, 10325, doi: 10/1038/ncomms10325, 2016.

699

700 Hodge, R., Brasington, J., and Richards, K.: In-situ characterisation of grain-scale
701 fluvial morphology using Terrestrial Laser Scanning. *Earth Surface Processes and
702 Landforms*, 34, 954-968, doi: 10.1002/esp.1780, 2009.

703

704 Immerzeel, W. W., Kraaijenbrink, P. D. A., Shea, J. M., Shrestha, A. B., Pellicciotti,
705 F., Bierkens, M. F. P., and de Jong, S. M.: High-resolution monitoring of Himalayan
706 glacier dynamics using unmanned aerial vehicles. *Remote Sensing of Environment*,
707 150, 93-103, doi: 10.1016/j.rse.2014.04.025, 2014.

708

709 Irvine-Fynn, T. D. L., Sanz-Ablanedo, E., Rutter, N., Smith, M. W., and Chandler, J.
710 H.: Measuring glacier surface roughness using plot-scale, close-range digital
711 photogrammetry. *Journal of Glaciology*, 60(223), 957-969, doi:
712 10.3189/2014JoG14J032, 2014.

713

714 James, M. R., and Robson, S.: Straightforward reconstruction of 3D surfaces and
715 topography with a camera: accuracy and geoscience application. *Journal of
716 Geophysical Research*, 117, F03017, doi: 10.1029/2011JF002289, 2012.

717

718 James, M. R. and Robson, S.: Mitigating systematic error in topographic models
719 derived from UAV and ground-based image networks. *Earth Surface Processes and*
720 *Landforms*, 39, 1413-1420, doi: 10.1002/esp.3609, 2014.

721

722 James, M. R., Robson, S., Pinkerton, H., and Ball, M.: Oblique photogrammetry with
723 visible and thermal images of active lava flows. *Bulletin of Volcanology*, 69, 105-108,
724 doi: 10.1007/200445-006-0062-9, 2006.

725

726 Javernick, L., Brasington, J., and Caruso, B.: Modelling the topography of shallow
727 braided rivers using Structure-from-Motion photogrammetry. *Geomorphology*, 213,
728 116-182, doi: 10.1016/j.geomorph.2014.01.006, 2014.

729

730 Kääb, A.: Monitoring high-mountain terrain deformation from repeated air- and
731 spaceborne optical data: examples using digital aerial imagery and ASTER data.
732 *ISPRS Journal of Photogrammetry and Remote Sensing*, 57(1-2), 39-52, doi:
733 10.1016/S0924-2716(02)00114-4, 2002.

734

735 Kääb, A., Girod, L., and Berthling, L.: Surface kinematics of periglacial sorted circles
736 using structure-from-motion technology. *The Cryosphere*, 8, 1041-1056, doi:
737 10.5194/tc-8-1041-2014, 2014.

738

739 Keim, R. F., Skaugset, A. E., and Bateman, D. S.: Digital terrain modelling of small
740 stream channels with a total-station theodolite. *Advances in Water Resources*, 23,
741 41-48, doi: 10.1016/S0309-1708(99)00007-X, 1999.

742

743 Keutterling, A. and Thomas, A.: Monitoring glacier elevation and volume changes
744 with digital photogrammetry and GIS at Gepatschferner glacier, Austria. *International*
745 *Journal of Remote Sensing*, 27(19), 4371-4380, doi: 10.1080/01431160600851819,
746 2006.

747

748 Kraaijenbrink, P., Meijer, S. W., Shea, J. M., Pellicciotti, F., de Jong, S. M., and
749 Immerzeel W. W.: Seasonal surface velocities of a Himalayan glacier derived by
750 automated correlation of unmanned aerial vehicle imagery. *Annals of Glaciology*,
751 57(71), 103-113, doi: 10.3189/2016AoG71A072, 2016.

752

753 Krüger, J., and Kjær, K.H.: De-icing progression of ice-cored moraines in a humid,
754 subpolar climate, Kötlujökull, Iceland. *The Holocene*, 10(6), 737-747, doi:
755 10.1191/09596830094980, 2000.

756

757 Lague, D., Brodus, N., and Leroux, J.: Accurate 3D comparison of complex
758 topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z).
759 *ISPRS Journal of Photogrammetry and Remote Sensing*, 82, 10-26, doi:
760 10.1016/j.isprsjprs.2013.04.009, 2013.

761

762 Lewis, A., Hilley, G. E., and Lewicki, J. L.: Integrated thermal infrared imaging and
763 structure-from-motion photogrammetry to map apparent temperature and radiant
764 hydrothermal heat flux at Mammoth Mountain, CA, USA. *Journal of Volcanology and*
765 *Geothermal Research*, 303, 16-24, doi: 10.1016/j.jvolgeores.2015.07.025, 2015.

766

767 Lowe, D. G.: Distinctive image features from scale-invariant keypoints. International
768 Journal of Computer Vision, 60(2), 91-110, doi:
769 10.1023/B%VISI.0000029664.99615.94, 2004.

770

771 Micheletti, N., Chandler, J. H., and Lane, S. N.: Investigating the geomorphological
772 potential of freely available and accessible structure-from-motion photogrammetry
773 using a smartphone. *Earth Surface Processes and Landforms*, 40(4), 473-486, doi:
774 10.1002/esp.3648, 2014.

775

776 Micheletti, N., Lane, S. N., and Chandler, J. H.: Application of archival aerial
777 photogrammetry to quantify climate forcing of Alpine landscapes. *The
778 Photogrammetric Record*, 30(150), 143-165, doi: 10.1111/phor.12099, 2015.

779

780 Milan, D. J., Heritage, G. L., and Hetherington, D.: Application of a 3D laser scanner
781 in the assessment of erosion and deposition volumes and channel change in a
782 proglacial river. *Earth Surface Processes and Landforms*, 32, 1657-1674, doi:
783 10.1002/esp.1592, 2007.

784

785 Niethammer, U., Rothmund, S., James, M. R., Traveletti, J., and Joswig, M.: UAV-
786 based remote sensing of landslide. *International Archives of the Photogrammetry,
787 Remote Sensing and Spatial Information Sciences*, 38(5), 496-501, doi:
788 10.1016/j.enggeo.2011.03.012, 2010.

789

790 Noh, M-J. and Howat, I. M.: Automated stereo-photogrammetric DEM generation at
791 high latitudes: Surface Extraction with TIN-based Search-space Minimization
792 (SETSM) validation and demonstration over glaciated regions. *GIScience and
793 Remote Sensing*, 52(2), doi: 10.1080/15481603.2015.1008621, 198-217, 2015.

794

795 Ouédraogo, M. M., Degré, A., Debouche, C., and Lisein, J.: The evaluation of
796 unmanned aerial system-based photogrammetry and terrestrial laser scanning to
797 generate DEMs of agricultural watersheds. *Geomorphology*, 214, 339-355, doi:
798 10.1016/j.geomorph.2014.02.016, 2014.

799

800 Passalacqua, P., Hillier, J., and Tarolli, P.: Innovative analysis and use of high-
801 resolution DTMs for quantitative interrogation of Earth-surface processes. *Earth
802 Surface Processes and Landforms*, 39, 1400-1403, doi: 10.1002/esp.3616, 2014.

803

804 Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J. R., Bode,
805 C. A., Crosby, C., DeLong, S. B., Glenn, N. F., Kelly, S. A., Lague, D., Sangireddy,
806 H., Schaffrath, K., Tarboton, D. G., Wasklewicz, T., and Wheaton, J. M.: Analyzing
807 high resolution topography for advancing the understanding of mass and energy
808 transfer through landscapes: A review. *Earth-Science Reviews*, 148, 174-193, doi:
809 10.1016/j.earscirev.2015.05.012, 2015.

810

811 Pepin, N. C., Duane, W. J., Schaefer, M., Pike, G., and Hardy, D. R.: Measuring and
812 modeling the retreat of the summit ice fields on Kilimanjaro, East Africa. *Arctic,
813 Antarctic and Alpine Research*, 46(4), 905-917, doi: 10.1657/1938-4246-46.4.905,
814 2014.

815

816 Piermattei, L., Carturan, L., and Guarnieri, A.: Use of terrestrial photogrammetry
817 based on structure-from-motion for mass balance estimation of a small glacier in the
818 Italian alps. *Earth Surface Processes and Landforms*, 40, 1791-1802, doi:
819 10.1002/esp.3756, 2015.

820

821 Pitkänen, T. and Kajuutti, K.: Close-range photogrammetry as a tool in glacier
822 change detection. *International Archives of the Photogrammetry, Remote Sensing*
823 and Spatial Information Sciences (ISPRS)

824

825 Reid, T. D., Carenzo, M., Pellicciotti, F., and Brock, B. W.: Including debris cover
826 effects in a distributed model of glacier ablation. *Journal of Geophysical Research: Atmospheres*, 117, D18105, doi: 10.1029/2012JD017795, 2012.

827

828

829 Rippin, D. M., Pomfret, A., and King, N.: High resolution mapping of supra-glacial
830 drainage pathways reveals links between micro-channel drainage density, surface
831 roughness and surface reflectance. *Earth Surface Processes and Landforms*,
832 40(10), 1279-1290, doi: 10.1002/esp.3719, 2015.

833

834 Rosnell, T. and Honkavaara, E.: Point cloud generation from aerial image data
835 acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still
836 camera. *Sensors*, 12, 453-480, doi: 10.3390/s120100453, 2012.

837

838 Rosser, N. J., Petley, D. N., Lim, M., Dunning, S. A., and Allison, R. J.: Terrestrial
839 laser scanning for monitoring the process of hard rock coastal cliff erosion. *Quarterly
840 Journal of Engineering Geology & Hydrogeology*, 38, 363-375, 2005.

841

842 Ryan, J. C., Hubbard, A. L., Box, J. E., Todd, J., Christoffersen, P., Carr, J. R., Holt,
843 T. O., and Snooke, N.: UAV photogrammetry and structure from motion to assess
844 calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet.
845 *The Cryosphere*, 9, 1-11, doi: 10.5194/tc-9-1-2015, 2015.

846

847 Sanz-Ablanedo, E., Chandler, J. H., and Irvine-Fynn, T. D. L.: Studying glacial melt
848 processes using sub-centimeter DEM extraction and digital close-range
849 photogrammetry. *ISPRS Archives*, 39(B5), 435-440, 2012.

850

851 Schomacker, A.: What controls dead-ice melting under different climate conditions?
852 A discussion. *Earth-Science Reviews*, 90, 103-113, doi:
853 10.1016/j.earscirev.2008.08.003, 2008.

854

855 Schwalbe, E. and Maas, H. G.: Motion analysis of fast flowing glaciers from multi-
856 temporal terrestrial laser scanning. *Photogrammetrie Fernerkundung
857 Geoinformation*, 1, 91-98, doi: 10.1127/0935-1221/2009/0009, 2009.

858

859 Sinisalo, A. and Moore, J. C.: Antarctic blue ice area – towards extracting
860 paleoclimate information. *Antarctic Science*, 22(2), 99-115, doi:
861 10.1017/S0954102009990691, 2010.

862

863 Smith, M. J., Rose, J., and Booth, S.: Geomorphological mapping of glacial
864 landforms from remotely sensed data: An evaluation of the principal data sources

865 and an assessment of their quality. *Geomorphology*, 76(1-2), 148-165, doi:
866 10.1016/j.geomorph.2005.11.001, 2006.

867

868 Smith, M. J., Rose, J., and Gousie, M. B.: The Cookie Cutter: A method for obtaining
869 a quantitative 3D description of glacial bedforms. *Geomorphology*, 108, 209-218, doi:
870 10.1016/j.geomorph.2009.01.006, 2009.

871

872 Smith, M. W. and Vericat, D.: From experimental plots to experiment landscapes:
873 topography, erosion and deposition in sub-humid badlands from Structure-from-
874 Motion photogrammetry. *Earth Surface Processes and Landforms*, doi:
875 10.1002/esp.3747, 2015.

876

877 Spaulding, N. E., Spikes, V. B., Hamilton, G. S., Mayewski, P. A., Dunbar, N. W.,
878 Harvey, R. P., Schutt, J., and Kurbatov, A. V.: Ice motion and mass balance at the
879 Allan Hills blue-ice area, Antarctica, with implications for paleoclimate
880 reconstructions. *Journal of Glaciology*, 58(208), 399-406, doi:
881 10.3189/2012JoG11J176, 2012.

882

883 Staines, K. E. H., Carrivick, J. L., Tweed, F. S., Evans, A. J., Russell, A. J.,
884 Jóhannesson, T., and Roberts, M.: A multi-dimensional analysis of pro-glacial
885 landscape change at Sólheimajökull, southern Iceland. *Earth Surface Processes and*
886 *Landforms*, 40, 809-822, doi: 10.1002/esp.3662, 2015.

887

888 Stumpf, A., Malet, J-P., Allemand, P., and Ulrich, P.: Surface reconstruction and
889 landslide displacement measurements with Pléiades satellite images. *ISPRS Journal*
890 *of Photogrammetry and Remote Sensing*, 95, 1-12, doi:
891 10.1016/j.isprsjprs.2014.05.008, 2014.

892

893 Tarolli, P.: High-resolution topography for understanding Earth surface processes:
894 Opportunities and challenges. *Geomorphology*, 216, 295-312, doi:
895 10.1016/j.geomorph.2014.03.008, 2014.

896

897 Tonkin, T. N., Midgley, N. G., Graham, D. J., and Labadz, J. C.: The potential of
898 small unmanned aircraft systems and structure-from-motion for topographic surveys:
899 a test of emerging integrated approaches at Cwm Idwal, North Wales.
900 *Geomorphology*, 226, 35-43, doi: 10.1016/j.geomorph.2014.07.021, 2014.

901

902 Vieira, R., Hinata, S., da Rosa, K. K., Zilberstein, S., and Simoes, J. C.: Periglacial
903 features in Patriot Hills, Ellsworth Mountains, Antarctica. *Geomorphology*, 155-156,
904 96-101, doi: 10.1016/j.geomorph.2011.12.014, 2012.

905

906 Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.:
907 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience
908 applications. *Geomorphology*, 179, 300-314, doi: 10.1016/j.geomorph.2012.08.021,
909 2012.

910

911 Westoby, M. J., Dunning, S. A., Woodward, J., Hein, A. S., Marrero, S. M., Winter,
912 K., and Sugden, D. E.: Sedimentological characterisation of Antarctic moraines
913 using UAVs and Structure-from-Motion photogrammetry. *Journal of Glaciology*,
914 61(230), 1088-1102, doi: 10.3189/2015JoG15J086, 2015.

915
916 Wheaton, J. M., Brasington, J., Darby, S. E., and Sear, D. A.: Accounting for
917 uncertainty in DEMs from repeat topographic surveys: improved sediment budgets.
918 *Earth Surface Processes and Landforms*, 35, 136-156, doi: 10.1002/esp.1886, 2010.
919
920 Whitehead, K., Moorman, B., and Wainstein, P.: Measuring daily surface elevation
921 and velocity variations across a polythermal arctic glacier using ground-based
922 photogrammetry. *Journal of Glaciology*, 60(224), 1208-1220, doi:
923 10.3189/2014JoG14J080, 2014.
924
925 Woodget, A. S., Carboneau, P. E., Visser, F., and Maddock, I. P.: Quantifying
926 submerged fluvial topography using hyperspatial resolution UAS imagery and
927 structure from motion photogrammetry. *Earth Surface Processes and Landforms*,
928 40(1), 47-64, doi: 10.1002/esp.3613, 2015.
929

← **Formatted:** Justified, Line spacing: At least 1.2 pt

Field survey	Scan position	Scan date	Scan-scan registration error (RMS; m)	Project-project registration error (RMS; m)
Season 1 start (TLS)	1	07 Dec 2012	Static	Static
	2	08 Dec 2012	0.0327	
	3	08 Dec 2012	0.0391	
	5	09 Dec 2012	0.0301	
	6	01 Dec 2012	0.0258	
	7	11 Dec 2012	0.0258	
Season 1 end (TLS)	1	09 Jan 2013	Static	0.0145
	2	09 Jan 2013	0.0145	
Season 1 end (UAV-SfM)	-	05 Jan 2013	-	0.0306
Season 2 (TLS)	1	14 Jan 2014	Static	0.0149
	2	14 Jan 2014	0.0205	
	3	14 Jan 2014	0.0255	

Table 2

Differencing epoch	Propagated error (RMS; m)	M3C2 $LoD_{95\%}$ (m)
S1 start (TLS) - S1 end (TLS)	0.049	0.098
S1 start (TLS) - S1 end (SfM)	0.050	0.103
S1 end (TLS) - S2 end (TLS)	0.048	0.098
S1 end (SfM) - S2 end (TLS)	0.049	0.102
<u>S1 start (TLS) - S2 end (TLS)</u>	<u>0.050</u>	<u>0.099</u>

933 **Figure captions**

934

935 **Figure 1.** Blue-ice moraine embayment, Patriot Hills, Heritage Range, Antarctica. **(a)**
936 Geographical context of Patriot Hills within the Heritage Range, southern Ellsworth
937 Mountains. **(b)** The Patriot Hills massif. The location of the study embayment and
938 area displayed in **(c)** is highlighted in red. **(c)**: Detailed study site overview map.
939 Contours and underlying hillshade are derived from a UAV-SfM-derived DEM. TLS
940 positions for the start of season 1 are shown in red, blue and yellow. The two scan
941 positions re-occupied at the end of season 1 are shown in blue, whilst the three scan
942 positions reoccupied in season 2 are shown in blue and red. Background to **(a)** ©
943 U.S. Geological Survey, **(b)** 2015 DigitalGlobe, both extracted from Google Earth.

944

945 **Figure 2.** Field photographs of the Patriot Hills blue-ice moraine study site. **(a)**
946 Panoramic photograph of the moraine embayment – view north-east towards the ice
947 margin from the rear of the embayment. Area shown in **(c)** and position and view
948 direction of camera **(b)** shown for reference. **(b)** View to the north-west with moraine
949 crest in foreground and subdued, ice-marginal moraine surface topography in
950 middle-ground. **(c)** Close-up of moraine topography, highlighting ridges and furrows
951 on moraine crests and in inter-moraine troughs.

952

953 **Figure 3.** Results of vertical (Z_{diff} ; m) differencing of the UAV-SfM and TLS datasets
954 acquired at the end of season 1, represented as the mean difference within 10 m²
955 grid cells. 83% of the UAV-SfM data were found to be within ± 0.1 m of the equivalent
956 TLS data. Profiles A-C are displayed in Fig. 4.

957

958

959 **Figure 4.** Moraine surface elevation profiles, extracted from gridded (0.2 m²) digital
960 elevation models of TLS- and SfM-derived topographic datasets. Profile locations are
961 shown in Figures 3 and 6. Profiles A and B bisect the main central moraine crest,
962 whilst profile C is located on moraine deposits at the back of the embayment. Inset
963 numbered boxes in profiles A and C show areas referred to in the text.

964

965 **Figure 5.** Vertical component of 3D topographic change (Z_{diff}) overlain on a UAV-
966 SfM-derived hill-shaded DEM of the Patriot Hills blue-ice moraine complex.

967 Topographic evolution was quantified using the Multiscale Model to Model Cloud
968 Comparison (M3C2) algorithm in CloudCompare software. Vertical change is
969 represented as the mean of significant change beyond a threshold of ± 0.103 m
970 within 10 m² grid cells. **(a)** UAV-SfM orthophotograph of the study site. Panels **(b)** to
971 **(f)** cover specific differencing epochs using a combination of TLS and SfM data (see
972 panel headings). Dashed line in **(b)** to **(f)** indicates locations of primary moraine ridge
973 crest.

974

975 **Figure 6.** Change detection mapping for **(a,b)** intra-annual (season 1 start to season
976 1 end) and **(c,f)** annual (season 1 start to season 2) differencing epochs. Horizontal

977 difference vectors (XY_{diff}) are scaled by magnitude and oriented according to the
978 direction of change. The vertical component of 3D change (Z_{diff}) is shown in the
979 background. Transects A-C denote the location of moraine surface profiles displayed
980 in Fig. 3 and Fig. 4. Red dashes on both all panels shows the approximate location
981 of primary moraine ridge crest.

982

983

984 **Table 1.** Terrestrial laser scanning and UAV-SfM survey dates and registration
985 errors. Within each season, individual scans were registered to a single static
986 position to produce a single, merged point cloud (scan-scan registration error). TLS
987 data from the end of season 1 and for season 2 were subsequently registered to TLS
988 data acquired at the start of season 1, producing a project-project registration error.
989 The UAV-SfM data (season 1 end) were registered to TLS data from the end of
990 season 1.

991

992 **Table 2.** Registration error propagation for specific differencing epochs. The
993 propagated error for each differencing epoch is calculated using Eq. 3. The 95%
994 level of detection, or detection threshold is calculated in M3C2 as the product of the
995 propagated error and a measure of local point cloud roughness (Lague et al., 2013).
996 The results of 3D differencing were filtered in CloudCompare so that only differences
997 largest than the most conservative (largest) $LoD_{95\%}$ (i.e. 0.103 m) were considered to
998 represent significant change.

999