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Abstract

Multi-temporal and fine resolution topographic data products are being increasingly
used to quantify surface elevation change in glacial environments. In this study, we em-
ploy 3-D digital elevation model (DEM) differencing to quantify the topographic evolution
of a blue-ice moraine complex in front of Patriot Hills, Heritage Range, Antarctica. Ter-5

restrial laser scanning (TLS) was used to acquire multiple topographic datasets of the
moraine surface at the beginning and end of the austral summer season in 2012/2013
and during a resurvey field campaign in 2014. A complementary topographic dataset
was acquired at the end of season 1 through the application of Structure-from-Motion
(SfM) photogrammetry to a set of aerial photographs taken from an unmanned aerial10

vehicle (UAV). Three-dimensional cloud-to-cloud differencing was undertaken using
the Multiscale Model to Model Cloud Comparison (M3C2) algorithm. DEM differencing
revealed net uplift and lateral movement of the moraine crests within season 1 (mean
uplift ∼ 0.10 m), with lowering of a similar magnitude in some inter-moraine depres-
sions and close to the current ice margin. Our results indicate net uplift across the site15

between seasons 1 and 2 (mean 0.07 m). This research demonstrates that it is possi-
ble to detect dynamic surface topographical change across glacial moraines over short
(annual to intra-annual) timescales through the acquisition and differencing of fine-
resolution topographic datasets. Such data offer new opportunities to understand the
process linkages between surface ablation, ice flow, and debris supply within moraine20

ice.

1 Introduction

Fine-resolution topographic data products are now routinely used for the geomorpho-
metric characterisation of Earth surface landforms (e.g. Passalacqua et al., 2014, 2015;
Tarolli, 2014). Recent decades have seen the advent and uptake of a range of survey-25

ing technologies for characterising the form and evolution of Earth surface topography
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at the macro- (landscape; km), meso- (landform; m) and micro-scales (patch-scale;
cm–mm). These technologies have included, amongst others, the use of satellite re-
mote sensing techniques (e.g. Kääb, 2002; Smith et al., 2006; Farr et al., 2007; Stumpf,
2014; Noh and Howat, 2015), as well as field-based surveying platforms such as elec-
tronic distance meters (total station; e.g. Keim et al., 1999; Fuller et al., 2003), differ-5

ential global positioning systems (dGPS; e.g. Brasington et al., 2000; Wheaton et al.,
2010), terrestrial laser scanning (TLS; e.g. Rosser et al., 2005; Hodge et al., 2009),
airborne light detection and ranging (LiDAR; e.g. Bollmann et al., 2011) and softcopy
or digital photogrammetry (e.g. Micheletti et al., 2015).

More recently, geoscientists are increasingly adopting low-cost Structure-from-10

Motion with multi-view stereo (SfM-MVS) methods, which employ computer vision and
multi-view photogrammetry techniques to recover surface topography using optical
(e.g. James and Robson, 2012; Westoby et al., 2012; Javernick et al., 2014; Micheletti
et al., 2014; Woodget et al., 2015; Smith and Vericat, 2015) or thermal imagery (e.g.
Lewis et al., 2015). Concomitant developments in lightweight unmanned aerial vehicle15

(UAV) technology, specifically decreasing system costs, increased portability, and im-
provements in the accessibility of flight planning software have encouraged the acqui-
sition of repeat, fine-resolution (m to cm) topographic data products from low-altitude
aerial photography platforms (e.g. Niethammer et al., 2010; Ouédraogo et al., 2014).
Furthermore, the differencing of topographic datasets acquired at different times is now20

an established method for quantifying the transfer of mass and energy through land-
scapes at the spatial scales of observation at which many processes operate (Pas-
salacqua et al., 2015).

To date, fine-resolution topographic datasets produced using airborne or ground-
based light detection and ranging (LiDAR), or terrestrial or low-altitude aerial digital25

photogrammetry have been used for a diverse range of applications in various glacial,
proglacial, and periglacial environments at a range of scales, including: the quantifica-
tion of ice surface evolution (e.g. Baltsavias et al., 2001; Pitkänen and Kajuutti, 2004;
Keutterling and Thomas, 2006; Schwalbe and Maas, 2009; Immerzeel et al., 2014;
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Pepin et al., 2014; Whitehead et al., 2014; Gabbud et al., 2015; Kraaijenbrink et al.,
2015; Piermattei et al., 2015; Ryan et al., 2015); mapping the redistribution of proglacial
sediment (e.g. Milan et al., 2007; Irvine-Fynn et al., 2011; Dunning et al., 2013; Staines
et al., 2015) and moraine development (Chandler et al., 2015); the characterisation of
glacier surface roughness (e.g. Sanz-Ablanedo et al., 2012; Irvine-Fynn et al., 2014),5

sedimentology (Westoby et al., 2015), and hydrology (Rippin et al., 2015); as well as
input data for surface energy balance modelling (e.g. Arnold et al., 2006; Reid et al.,
2012); and for characterising glacial landforms in formerly glaciated landscapes (e.g.
Smith et al., 2009; Tonkin et al., 2014; Hardt et al., 2015).

In this study, we utilise fine-resolution topographic datasets to quantify the surface10

evolution of a blue-ice moraine complex in a remote part of Antarctica. Blue-ice areas
cover approximately 1 % of Antarctica’s surface area (Bintanja, 1999), yet they remain
relatively understudied. Relict blue-ice moraines preserved on nunataks are key indica-
tors of ice sheet elevation changes; however, limited data exist on rates and patterns of
surface reorganisation, which may be of use for contextualising the results of, for exam-15

ple, cosmogenic nuclide dating and geomorphological mapping. This research seeks
to quantify the short-term surface evolution of a moraine complex in Patriot Hills, Her-
itage Range, Antarctica (Fig. 1), through the differencing and analysis of multi-temporal
topographic datasets acquired using TLS and the application of SfM-MVS photogram-
metry to optical imagery acquired from a low-altitude UAV sortie.20

2 Study site

The study site is a blue-ice moraine complex, located on the northern flank of the
Patriot Hills massif at the southern-most extent of Heritage Range, West Antarctica
(Fig. 1). Blue-ice moraine formation is hypothesised to be the result of preferential
ablation of marginal ice by katabatic winds, which in turns prompts the modification25

of ice flow and englacial sediment transport pathways such that basal sediment is
brought to the ice surface, where it is deposited (e.g. Bintanja, 1999; Sinisalo and
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Moore, 2010; Fogwill et al., 2012; Spaulding et al., 2012). The site comprises a series
of broadly east–west oriented moraine ridges and inter-moraine troughs, as well as an
area of subdued moraine topography immediately adjacent to the ice margin. At this
location, the active blue-ice moraines occupy an altitudinal range of 60–70 m above
the ice margin (∼ 730 ma.s.l.), and extend for a distance of up to 350 m into a bedrock5

embayment. The blue-ice moraines can be traced for a distance of > 4 km to the east
and north-east, parallel to the range front, and fill ice-marginal embayments. The site is
geomorphologically and sedimentologically complex (e.g. Vieira et al., 2012; Westoby
et al., 2015), and, along with moraine ridges and troughs, includes areas of subdued
ice-marginal topography with thermokarst melt ponds, local gullying and crevassing10

on ice-proximal and distal moraine flanks, as well as solifluction deposits at the base
of the surrounding hillslopes. The bedrock hillslopes are overlain by a till drape with
rare, large exotic sandstone boulder erratics which have some evidence of periglacial
reworking. Field observations suggest that the blue-ice moraines are dynamic features
which are undergoing localised surface changes. It is these short-term changes which15

are the subject of investigation in this paper.

3 Methods and data products

This research employs two methods for reconstructing moraine surface topography,
specifically TLS and SfM-MVS photogrammetry. Two field campaigns at Patriot Hills
were undertaken with a 12 month survey interval. Briefly, TLS data were acquired at the20

beginning and end of austral summer season 1 (December 2012 and January 2013,
respectively), and in a short resurvey visit in season 2 (January 2014). Low-altitude
aerial optical photography was acquired from a UAV at the end of season 1 and was
used as the primary input to SfM-MVS processing. The following sections detail the two
methods of topographic data acquisition, data processing, and subsequent analysis25

using “cloud-to-cloud” differencing.
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3.1 Topographic data acquisition

3.1.1 Terrestrial laser scanning

TLS data were acquired using a Riegl LMS-Z620 time-of-flight laser scanner, set to ac-
quire ∼ 11 000 pointss−1 in the near-infrared band at horizontal and vertical scanning
increments of 0.031◦, equivalent to a point spacing of 0.05 m at a distance of 100 m and5

with a beam divergence of 15 mm per 100 m. Data were acquired from six locations
across the site at the beginning of season 1 (7–11 December 2012; Fig. 1; Table 1).
Two of these positions were re-occupied at the end of season 1 (9 January 2013) and
three positions were reoccupied in season 2 (Fig. 1; 14 January 2014). Following man-
ual editing and the automated removal of isolated points to improve data quality, each10

set of scans were co-registered in Riegl RiSCAN PRO software (v. 1.5.9) using a two-
step procedure employing coarse manual point-matching followed by the application
of a linear, iterative, least-squares minimisation solution to reduce residual alignment
error. Individual scans were then merged to produce a single 3-D point cloud for each
scan date. Merged scan data from the end of seasons 1 and 2 were subsequently reg-15

istered to the scan data from the beginning of season 1 using the methods described
above (Table 1).

3.1.2 Structure-from-Motion with Multi-View Stereo photogrammetry

Low-altitude aerial photographs of the study site were acquired using a 10-Megapixel
Panasonic Lumix DMC-LX5 compact digital camera with a fixed focal length (8 mm) and20

automatic exposure settings, mounted in a fixed, downward-facing (nadir) perspective
on a sub-5 kg fixed-wing UAV. Photographs were acquired in a single sortie lasting
∼ 5 min. A total of 155 photographs were acquired at a 2 s interval at an approximate
ground height of 120 m, producing an average image overlap of 80 %, and an approxi-
mate ground resolution of 0.07 m2 per pixel. Mean point density was ∼ 300 pointsm−2,25

compared to a mean of 278 pointsm−2 for the TLS datasets. Motion blur of the input
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images was negligible due to favourable image exposure conditions and an appropriate
UAV flying height and speed.

UAV photographs were used as input to SfM reconstruction using the proprietary
Agisoft PhotoScan Professional Edition (v. 1.1.6) software. Unique image tie-points
which are stable under variations in view perspective and lighting are identified and5

matched across input photographs, similar to Lowe’s (2004) Scale Invariant Feature
Transform (SIFT) method. An iterative bundle adjustment algorithm is used to solve for
internal and external camera orientation parameters and produce a sparse 3-D point
cloud. The results of the first-pass camera pose estimation were scrutinised and only
3-D points which appear in a minimum of 3 photographs and possessed a reprojection10

error of < 1.0 were retained. A two-phase method of UAV-SfM data registration was
employed: (1) ground control was obtained by identifying common features in the UAV-
SfM photographs and TLS data from the end of season 1 (acquired 4 days after the
SfM data; Table 1), such as the corners of large, well-resolved boulders. GCP data were
used to optimise the initial camera alignment and transform the regenerated UAV-SfM15

data to the same object space as the TLS data, producing an xyz RMS error of 0.23 m.
(2) following dense reconstruction, 3-D point data were exported to RiSCAN PRO (v.
1.5.9) software, and a linear, iterative, least-squares minimisation employing surface
plane matching was used to improve the alignment and reduce the xyz RMS error to
0.03 m.20

3.2 Cloud-to-cloud differencing

Three-dimensional “cloud-to-cloud” distance calculations were used to quantify
moraine surface evolution (e.g. Lague et al., 2013). Since the dominant direction of
surface evolution across the study site was unknown a priori, the application of an al-
gorithm that is capable of detecting fully three-dimensional topographic change was25

deemed to be the most appropriate method in this context. To this end, we employ the
Multiscale Model to Model Cloud Comparison (M3C2) algorithm (Lague et al., 2013;
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Barnhart and Crosby, 2013), implemented in the open-source CloudCompare software
(v. 2.6.1) for change detection.

The M3C2 algorithm implements two main processing steps to calculate 3-D change
between two point clouds: (1) estimation of surface normal orientation at a scale con-
sistent with local surface roughness, and (2) quantification of the mean cloud-to-cloud5

distance (i.e. surface change) along the normal direction (or orthogonal vector), which
includes an explicit calculation of the local confidence interval. A point-specific normal
vector is calculated by fitting a plane to neighbouring 3-D points that are contained
within a user-specified search radius. To avoid the fluctuation of normal vector orien-
tations and a potential overestimation of the distance between two point clouds, the10

radius, or scale, used for normal calculation needs to be larger than the topographic
roughness, which is calculated as the standard deviation of local surface elevations
(σ). The orientation of the surface normal around a point, i , is therefore dependent
on the scale at which it is computed (Lague et al., 2013). A trial-and-error approach
was employed to reduce the estimated normal error, Enorm (%), through refinement of15

a re-scaled measure of D, ξ, where:

ξ(i ) =
D

σi (D)
. (1)

Using this re-scaled measure of D, ξ can be used as an indicator of estimated normal
orientation accuracy, such that where ξ falls in the range ∼ 20–25, the estimated normal
error is Enorm < 2 % (Lague et al., 2013). A fixed normal scaling of 2 m was found to be20

sufficient to ensure that ξ > 20 for > 98 % of points in each topographic dataset.
The radius of the projection cylinder, d , within which the average surface elevation

of each cloud is calculated, was specified as 2 m. This scaling ensured that the num-
ber of points sampled in each cloud was ≥ 30, following guidance provided by Lague
et al. (2013). M3C2 execution took ∼ 0.3 h for each differencing task on a desktop com-25

puter operating with 32 GB of RAM, and a 3.4 GHz CPU. Cloud-to-cloud distances and
statistics were projected onto the original point cloud. M3C2 output was subsequently
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masked to exclude points where change is lower than level of detection threshold for
a 95 % confidence level, LoD95%(d ), which is defined as:

LoD95 % (d ) = ±1.96

(
σ1(d )2

n1
+
σ2(d )2

n2
+ reg

)
, (2)

where d is the radius of the projection cylinder, reg is the user-specified registration
error, for which we substitute the propagated root mean square alignment error for5

point clouds n1 and n2 (Table 2; Eq. 1) and assume that this error is isotropic and
spatially uniform across the dataset.

To calculate the total propagated error for each differencing epoch, σDoD, the esti-
mates of errors in each point cloud (i.e. the sum of the average scan-scan RMS error
and a project-project RMS error, where applicable) were combined using:10

σDoD =
√
σ2
C1
+σ2

C2
, (3)

where σ2
C1

and σ2
C2

are the RMS errors associated with point clouds C1 and C2.

4 Short-term topographic evolution of blue-ice moraines

The results of 3-D cloud-to-cloud differencing are summarised in Figs. 3 to 5. Threshold
levels of change detection ranged from 0.094–0.103 m. The upper (i.e. most conser-15

vative) bound of this range was applied to the results from all differencing epochs, so
that only 3-D surface changes greater than 0.103 m were considered in the subsequent
analysis. The horizontal (xy) and vertical (z) components of 3-D surface change were
separated to aid the analysis and interpretation of moraine surface evolution. Vertical
surface changes for a range of epochs, encompassing intra-annual and annual change,20

are displayed in Fig. 3, whilst the horizontal component of 3-D change are shown in
Fig. 4. The longest differencing epoch, representing a period of ∼ 400 days (Fig. 3b)
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shows a broad pattern of net uplift across the moraine of the order of 0.074 m. Locally,
uplift exceeds 0.2 m across parts of the moraine complex, and, whilst on first glance
these elevation gains appear to be largely randomly distributed across the site, on
closer inspection they occur predominantly on or adjacent to the main, central moraine
ridge and close to the current ice margin. The large central moraine ridge exhibits5

a mean uplift of 0.11 m, whilst specific ice-marginal areas to the bottom-right (west),
and an area of moraine in the top-right (south-west) of the embayment also exhibit
uplift of a similar magnitude (Fig. 3b). In contrast, an area at the centre-top (south-
ernmost) extent of the basin and an ice-marginal area to the centre-west exhibit a net
reduction in moraine surface elevation, up to a maximum of −0.354 m.10

Intra-annual change detection mapping was undertaken using TLS-TLS and TLS-
SfM differencing (Fig. 3c and d). Key similarities between these two datasets, which
represent vertical topographic change over a ∼ 31 and ∼ 27 day period, respectively,
include uplift at the centre-left (south-eastern) extent of the embayment (mean 0.081
and 0.123 m) for the TLS-TLS and TLS-SfM differencing, respectively. Similarly, both15

datasets reveal surface lowering to the centre-rear of the site (mean −0.106 and
−0.112 m) for TLS-SfM and TLS-TLS differencing, respectively), and, in the TLS-SfM
data, on the ice-distal (southern) side of the central moraine ridge (Fig. 3c; −0.092 m).
However, the large area of ice-marginal surface lowering (−0.095 to −0.373 m) that is
detected in the TLS-SfM differencing results is not mirrored in the equivalent TLS-TLS20

differencing data (Fig. 3d). This stems in large part from the reduced spatial coverage
of the usable TLS scan data acquired at the end of season 1, which comprised data
from only two scan positions (Fig. 1) and which omits the ice-marginal zone.

The results of vertical change detection using both SfM-TLS and TLS-TLS ap-
proaches also display striking similarities for differencing undertaken between the end25

of season 1, and season 2 (Fig. 3e and f), including a largely continuous area of up-
lift across the central portion of the site, as well as areas of surface lowering to the
centre-left (eastern) extent of the site. Whilst widespread uplift characterises the entire
western (right) edge of the study area in the TLS-TLS data (Fig. 3f), the equivalent SfM-

1326

http://www.earth-surf-dynam-discuss.net
http://www.earth-surf-dynam-discuss.net/3/1317/2015/esurfd-3-1317-2015-print.pdf
http://www.earth-surf-dynam-discuss.net/3/1317/2015/esurfd-3-1317-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESURFD
3, 1317–1344, 2015

Inter-annual surface
evolution of an

Antarctic blue-ice
moraine

M. J. Westoby et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

TLS data instead report the occurrence of surface lowering at the base of the hillslope
spur which forms the western boundary of the site (Fig. 3e). Furthermore, an area of
considerable (mean 0.218 m) uplift characterises the ice-marginal zone in the SfM-TLS
differencing data for this epoch, but, once again, the reduced spatial coverage of the
TLS datasets mean that no differencing data are available to verify or contest this pat-5

tern. However, we note that vertical change at the ice-marginal (northern) limit of the
TLS-TLS data for both intra-annual and annual differencing epochs do not correspond
with the equivalent SfM-TLS/TLS-SfM results.

Examples of horizontal displacement, calculated here as the xy component of the
orthogonal distance between two point clouds acquired at separate times, and gridded10

to represent the average xy displacement within 10 m2 grid cells, are shown in Fig. 4
for intra- (Fig. 4a) and inter-annual epochs (Fig. 4b). Within season 1, a range of xy
displacement orientations are detected, and range from sub-cm to > 0.2 m in magni-
tude. These displacements include extensive southern (or “inward”) movement of the
moraine surface in the ice-marginal zone, which is associated with surface lowering,15

and which grades into a largely western-oriented displacement signal on the ridgeline
of the main moraine crest and across the centre-right (western) sector of the moraine
complex (Fig. 4a). Total xy displacement over a > 1 year period (Fig. 4b) appears to
be less uniform and comparatively chaotic. However, a number of local and largely
consistent patterns of horizontal displacement are discernible, such as predominantly20

westward movement along the central moraine ridge, and north- to north-eastern mo-
tion along the western edge of the site (Fig. 4b), which also occurs within season 1
(Fig. 4c). Both trends are associated with net surface uplift. In contrast, isolated patches
of surface lowering are generally characterised by southern or south-westerly xy dis-
placement.25

The analysis of a series of surface profile transects which bisect the moraines shed
further light on their topographic evolution (Fig. 5). These data are particularly useful
for examining the interplay between vertical and lateral moraine surface displacement,
which is alluded to in Fig. 4. For example, a combination of surface uplift and lateral

1327

http://www.earth-surf-dynam-discuss.net
http://www.earth-surf-dynam-discuss.net/3/1317/2015/esurfd-3-1317-2015-print.pdf
http://www.earth-surf-dynam-discuss.net/3/1317/2015/esurfd-3-1317-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESURFD
3, 1317–1344, 2015

Inter-annual surface
evolution of an

Antarctic blue-ice
moraine

M. J. Westoby et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

displacement between the start and end of season 1 is visible between 28–40 m in
profile A (Fig. 5, inset (1). Similarly, lateral (southern) translation of the moraine surface
between 15–22 m in profile C (Fig. 5, inset (2)) is visible for the same differencing
epoch.

These transect data also highlight areas of inconsistency, specifically often consider-5

able offsets between the TLS and SfM data which were collected at the end of season 1
and which, in places, approach 0.5 m in magnitude (e.g. at ∼ 27 m distance in profile
A, and between 22–30 m in profile B; Fig. 5). Given that the SfM data were optimised
and georegistered using features extracted from the corresponding TLS dataset, one
might expect that deviations between the two would be barely discernible. However,10

the SfM data variously over- and underestimate the TLS-derived surface elevation with
little apparent systematicity (Fig. 5). One potential explanation for these inconsisten-
cies could be the evolution of moraine surface topography in the 4 day interval which
separated the acquisition of the TLS and SfM data at the end of season 1 (Table 1),
with the implication that features used as GCPs in the TLS data and their counterparts15

in the UAV-SfM data were not static, thereby affecting the georeferencing and SfM op-
timisation solution. However, as we observe no clustering of large GCP errors in areas
of activity, this factor is unlikely to account for these topographic inconsistencies.

An additional, and equally viable explanation for these inconsistencies might include
the near-parallel and largely nadir view directions of the UAV imagery, which represent20

a largely “non-convergent” mode of photograph acquisition that has elsewhere been
found to result in the deformation, or “doming” of SfM-derived surface topography (e.g.
James and Robson, 2014; Rosnell and Honkavaara, 2012; Javernick et al., 2014). To-
pographic mismatches between the TLS and UAV-SfM data appear to be the most
prominent in areas of steep topography (Fig. 5). These areas were generally well-25

resolved in the TLS data (where not topographically occluded), but may have been
resolved in less detail and with less accuracy in the UAV-SfM data, where the fixed
camera angle promotes the foreshortening of these steep slopes in the aerial pho-
tography. Model deformations can be countered to some degree through the inclusion
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of additional, oblique imagery, and use of suitable GCPs (James and Robson, 2014).
However, although the latter were relatively evenly spaced across our study site, the
inclusion of these data and subsequent use for the optimisation of the SfM data prior to
dense point cloud reconstruction does not appear to have altogether eliminated these
model deformations (Fig. 5).5

The above shortcomings notwithstanding, this research nevertheless represents the
first successful application of a combination of high resolution surveying methods for
quantifying the topographic evolution of ice-marginal topography in this environment.
This study has demonstrated that, whilst a number of operational considerations, such
as the requirement for multiple TLS station positions to acquire satisfactory spatial cov-10

erage across a topographically complex site of this size, and the necessary deployment
of an independent set of dedicated GCPs for accurate UAV-SfM georegistration or the
acquisition of additional, oblique aerial photographs, must be taken into account, these
technologies are appropriate for reconstructing blue-ice moraine surface topography.
Furthermore, the use of fully 3-D differencing algorithms is appropriate for quantifying15

inter-annual to annual moraine surface evolution.
A comprehensive analysis of the evolution of the Patriot Hills blue-ice moraine and its

relationships to ablation and underlying ice structure is the focus of another study, but
it is worth highlighting some implications arising from the measurement of these short-
term changes in surface morphology. Firstly, the moraine ridges both close to, and far20

from the ice margin emerge as axes of activity and uplift (Fig. 3c). This activity is not
simply confined to “inward” or “outward” movement of moraines within the embayment,
but also involves a lateral component. Secondly, the surface lowering is the result of
ablation and it is notable that most lowering occurred near the ice margin where the
debris layer is typically thinnest and less than ∼ 0.15 m. Finally, the close match of sur-25

face elevation cross-profiles between seasons (Fig. 5) points to medium-term stability
of the moraine system. This conclusion will be investigated through the application of
cosmogenic isotope evidence to assess change since the Holocene.
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5 Summary

This research has employed a combination of TLS and UAV-based SfM-MVS pho-
togrammetry and 3-D differencing methods to quantify the topographic evolution of an
Antarctic blue-ice moraine complex over annual and intra-annual timescales. Segmen-
tation of lateral and vertical surface displacements reveal site- and local-scale patterns5

of geomorphometric moraine surface evolution beyond a threshold level of detection
(95 % confidence), including largely persistent vertical uplift across key moraine ridges,
both within a single season, and between seasons. This persistent uplift is interspersed
with areas (and periods) of surface downwasting which is largely confined to the rear of
the moraine basin for both differencing epochs, and in ice-marginal regions within sea-10

son 1. Analysis of lateral displacement vectors, which are generally of a much smaller
magnitude than vertical displacements, provide further insights into moraine surface
evolution. A number of methodological shortcomings are highlighted. Briefly, these re-
late to the incomplete spatial coverage afforded by the use of TLS in a topographically
complex environment, and issues associated with obtaining suitable ground control for15

SfM-MVS processing and potential implications for the accuracy of SfM-derived topo-
graphic data products. The research represents the first successful application of these
techniques in such a remote environment.
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Table 1. Terrestrial laser scanning and UAV-SfM survey dates and registration errors. Within
each season, individual scans were registered to a single static position to produce a single,
merged point cloud (scan-scan registration error). TLS data from the end of season 1 and for
season 2 were subsequently registered to TLS data acquired at the start of season 1, producing
a project-project registration error. The UAV-SfM data (season 1 end) were registered to TLS
data from the end of season 1.

Scan-scan Project-project
Scan registration registration

Field survey position Scan date error (RMS; m) error (RMS; m)

Season 1 start (TLS) 1 07 Dec 2012 Static Static
2 08 Dec 2012 0.0327
3 08 Dec 2012 0.0391
5 09 Dec 2012 0.0301
6 01 Dec 2012 0.0258
7 11 Dec 2012 0.0258

Season 1 end (TLS) 1 09 Jan 2013 Static 0.0145
2 09 Jan 2013 0.0145

Season 1 end (UAV-SfM) – 05 Jan 2013 – 0.0306

Season 2 (TLS) 1 14 Jan 2014 Static 0.0149
2 14 Jan 2014 0.0205
3 14 Jan 2014 0.0255
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Table 2. Registration error propagation for specific differencing epochs. The propagated error
for each differencing epoch is calculated using Eq. (3). The 95 % level of detection, or detection
threshold is calculated in M3C2 as the product of the propagated error and a measure of local
point cloud roughness (Lague et al., 2013). The results of 3-D differencing were filtered in
CloudCompare so that only differences largest than the most conservative (largest) LoD95 %
(i.e. 0.103 m) were considered to represent significant change.

Propagated
Differencing epoch error (RMS; m) M3C2 LoD95 % (m)

S1 start (TLS) – S1 end (TLS) 0.049 0.098
S1 start (TLS) – S1 end (SfM) 0.050 0.103
S1 end (TLS) – S2 end (TLS) 0.048 0.098
S1 end (SfM) – S2 end (TLS) 0.049 0.102
S1 start (TLS) – S2 end (TLS) 0.050 0.099
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Figure 1. Blue-ice moraine embayment, Patriot Hills, Heritage Range, Antarctica. (a) Antarctica
context map. Red star is location of the Heritage Range. Black dot indicates location of the
geographic south pole. (b) The Patriot Hills massif. The location of the study embayment and
area displayed in (c) highlighted in red. (c) Detailed study site overview map. Contours and
underlying hillshade are derived from a UAV-SfM-derived DEM. TLS scanning positions for the
start of season 1 are shown in red, blue and yellow. The two scan positions re-occupied at the
end of season 1 are shown in blue, whilst the three scan positions reoccupied in season 2 are
shown in blue and red. Background to (b) is ©2015 DigitalGlobe, extracted from Google Earth
(imagery date: 3 October 2009).
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A 

B C 

Horseshoe Glacier 

4 m 

Figure 2. Field photographs of the Patriot Hills blue-ice moraine study site. (a) Panoramic
photograph of the moraine embayment – view north-east towards the ice margin from the rear
of the embayment. Area shown in (c) and position and view direction of camera (b) shown
for reference. (b) View to the north-west with moraine crest in foreground and subdued, ice-
marginal moraine surface topography in middle-ground. (c) Close-up of moraine topography,
highlighting ridges and furrows on moraine crests and in inter-moraine troughs.
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Figure 3. Vertical component of 3-D topographic change (Zdiff) overlain on a UAV-SfM-derived
hill-shaded DEM of the Patriot Hills blue-ice moraine complex. Topographic evolution was quan-
tified using the Multiscale Model to Model Cloud Comparison (M3C2) algorithm in CloudCom-
pare software. (a) UAV-SfM orthophotograph of the study site. Panels (b) to (f) cover specific
differencing epochs using a combination of TLS and SfM data (see panel headings). Dashed
line in (b) to (f) indicates locations of primary moraine ridge crest.
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Figure 4. Change detection mapping for (a) intra-annual (season 1 start to season 1 end)
and (b) annual (season 1 start to season 2) differencing epochs. Horizontal difference vectors
(XYdiff) are scaled by magnitude and oriented according to the direction of change. The vertical
component of 3-D change (Zdiff) is shown in the background. Transects A–C denote the location
of moraine surface profiles displayed in Fig. 5. Red dashes on both panels show approximate
location of primary moraine ridge crest.
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Figure 5. Moraine surface elevation profiles, extracted from gridded (0.2 m2) digital elevation
models of TLS- and SfM-derived topographic datasets. Profile locations are shown in Fig. 4.
Profiles A and B bisect the main central moraine crest, whilst profile C is located on moraine
deposits at the back of the embayment. Inset numbered boxes in profiles A and C show areas
referred to in the text.
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