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Abstract. Quantitative tectonic geomorphology hinges on the analysis of longitudinal river profiles. The model
behind almost all approaches in this field originates from an empirical relationship between channel slope and
catchment size, often substantiated in form of the stream-power model for fluvial incision. A significant method-
ological progress was recently achieved by introducing the χ transform. It defines a nonlinear length coordinate
in such a way that the inherent curvature of river profiles due to the increase of catchment sizes in downstream di-
rection is removed from the analysis. However, the limitation to large catchment sizes inherited from the stream
power approach for fluvial incision persists. As a consequence, only a small fraction of all nodes of a DEM
can be used for the analysis. In this study we present and discuss some empirically derived extensions of the
stream power law towards small catchment sizes in order to overcome this limitation. Beyond this, we introduce
a simple method for estimating the adjustable parameters in the original χ method as well as in our extended
approaches. As a main result, an approach originally suggested for debris flow channels seems to be the best
approximation if both large and small catchment sizes are included in the same analysis.

1 Introduction

The vast majority of the approaches used to derive informa-
tion on tectonic processes from topography is based on the
analysis of longitudinal river profiles. The fundamental rela-
tionship between channel slope S and upstream catchment5

size A,

S = ksA
−θ, (1)

that is used to infer such information, dates back to a seminal
empirical study of Hack (1957) and is often referred to as
Flint’s law (Flint, 1974). The parameters ks and θ are denoted10

steepness index and concavity index, respectively.
Understanding and quantitative interpretation of Eq. (1)

hinges on the stream-power approach (e.g., Howard, 1994;
Whipple and Tucker, 1999; Whipple, 2004; Wobus et al.,
2006) where it is assumed that the rate of fluvial erosion in15

a bedrock channel depends on the product AθS. In this con-
text, Eq. (1) reflects a constant erosion rate along the river as
it occurs, e.g., in equilibrium with homogeneous uplift.

In the simplest version of the stream-power approach it is
assumed that the erosion rate E is linearly proportional to20

AθS. The more general approach implements a power-law
relationship

E =K

((
A

A0

)θ
S

)n
(2)

where K is denoted erodibility. The arbitrary reference
catchment size A0 has been introduced as a scaling param-25

eter in order to avoid an odd physical dimension of K. Us-
ing this scaling, K describes the erosion rate at a catchment
size A0 and a (hypothetical) channel slope of one. Although
called erodibility, K does not only refer to the properties of
the channel bed, but also contains the effect of precipitation30
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as the erosion rate in principle depends on the discharge in-
stead of the catchment size.

Physically based models of bedrock incision suggest that
the concavity index θ of a steady-state bedrock river under
homogeneous conditions does not only depend on the con-35

stitutive laws of the erosion process, but also on the cross-
sectional geometry of the channels (e.g., Whipple, 2004;
Whipple et al., 2013; Lague, 2014). This explains some vari-
ation in θ around the value θ ≈ 0.5 originally found by Hack
(1957) or around the reference value θref = 0.45 being widely40

assumed for perfect bedrock channels under homogenous
steady-state conditions (Whipple et al., 2013; Lague, 2014).

A range of θ between about 0.4 and 0.7 has been found un-
der relatively homogeneous conditions (e.g., Whipple, 2004;
Whipple et al., 2013), while a wider range from less than45

0.2 in steep headwater channels to more than 1 in some allu-
vial channels has been reported (Brummer and Montgomery,
2003; Montgomery, 2001; Sofia et al., 2015). Apparent vari-
ations in θ may also arise from spatial inhomogeneity or
non-steady topography. Analyzing channel slopes at con-50

stant catchment sizes, Hergarten et al. (2010) found a strong
positive correlation between surface elevation and slope in
several orogens, suggesting a correlation between uplift rate
and elevation. This correlation will lead to a higher apparent
steepness index when following individual rivers, which may55

explain why the majority of the values of θ found in nature
are greater than θref = 0.45.

Compared to the concavity index θ, less is known about
the exponent n as it cannot be determined from individual
equilibrium river profiles under uniform conditions. Accord-60

ing to Eq. (4), the exponent n can be determined by compar-
ing river segments being in equilibrium with different uplift
rates, and the results tentatively suggest that n should not be
far away from one (Wobus et al., 2006).

Using Eq. (2), the evolution of the surface elevation65

H(x,t) along the stream profile through time under a given
uplift rate U follows the partial differential equation

∂H

∂t
= U −K

((
A

A0

)θ
∂H

∂x

)n
(3)

where the linear coordinate x follows the upstream direction
of the considered river. Both U andK may vary spatially and70

temporally.
The simplest interpretation of Eq. (3) refers to steady-state

topography where uplift and erosion are in local equilibrium.
Under these conditions, the ratio of uplift rate and erodibil-
ity can be directly obtained from the steepness index (Eq. 1)75

according to

U

K
=

(
ks
Aθ0

)n
. (4)

The most interesting applications of the stream-power ero-
sion equation (Eq. 3), however, concern nonequilibrium river

profiles due to temporally changing uplift rates or due to80

climate-induced changes in the erodibility. If such changes
are discontinuous, they result in distinct knickpoints propa-
gating in upstream direction.

2 The χ transformation and its limitation

Recently, the so-called χ plot (or χ transformation) intro-85

duced the perhaps most important methodic progress in eval-
uating and interpreting longitudinal river profiles since the
seminal work of Howard (1994). It transforms the upstream
coordinate x to a new coordinate χ in such a way that the
inherent curvature of equilibrium profiles due to the reduc-90

tion of catchment size in upstream direction vanishes. The
catchment size A can be eliminated from Eq. (3) if the trans-
formation satisfies the condition

dx

dχ
=

(
A

A0

)θ
, (5)

which can be achieved by95

χ(x) =

x∫
x0

(
A(ξ)

A0

)−θ

dξ (6)

where x0 is an arbitrary reference point. As the channel slope
is S = ∂H

∂x , the erosion rate (Eq. 2) can be written in the form

E = K

(
dx

dχ

∂H

∂x

)n
(7)

= K

(
∂H

∂χ

)n
. (8)100

thus, the local erosion rates is directly related to the slope of
the river profile in the H vs. χ representation, and Eq. (3)
simplifies to

∂H

∂t
= U −K

(
∂H

∂χ

)n
. (9)

The solutions of this equation and their potential for unrav-105

eling the uplift and erosion history have been discussed by
Royden and Perron (2013), and a formal inversion procedure
for the linear case (n= 1) has been presented by Goren et al.
(2014).

The most striking property of the χ transformation is im-110

mediately recognized in Eq. (9): If U and K are spatially ho-
mogeneous, all upstream paths starting from x0 are described
by the same differential equation, so that the H vs. χ curves
of all tributaries must collapse with the H vs. χ curve of
the main stream. Conversely, spatial inhomogeneity results115

in a deviation of the curves belonging to different branches
that increases in upstream direction. Thus, a narrow bunch
of H vs. χ curves with a nonlinear overall shape is the fin-
gerprint of temporal variations under spatially homogeneous
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conditions, while a wide, but overall straight bunch points120

towards spatial heterogeneity under steady-state conditions.
This simple interpretation, however, only holds as long as the
drainage pattern has not changed in the past since changes in
catchment sizes also result in deviations between different
branches (Willett et al., 2014; Yang et al., 2015).125

Since a clear distinction requires the consideration of a
large number of tributaries, the inherent limitation of the
stream-power approach to the fluvial regime also limits the χ
method. As addressed in several studies, Flint’s law (Eq. 1)
and thus the stream-power erosion equation (Eq. 2) with a130

constant concavity index θ breaks down at small catchment
sizes where lower limits between about 0.1 km2 and 5 km2

have been reported (Montgomery and Foufoula-Georgiou,
1993; Stock and Dietrich, 2003; Wobus et al., 2006).

The transition from a fluvial regime at large catchment135

sizes to a regime dominated by hillslope processes is ex-
plored by an example from Taiwan in Fig. 1. Based on the re-
cently released SRTM1 DEM with a mesh width of 1 arc sec-
ond, flow directions (D8 algorithm, O’Callaghan and Mark,
1984), catchment sizes, and channel slopes were computed140

for the entire island after filling all local depressions. For
comparison, the same analysis was performed on the older
SRTM3 DEM with a mesh width of 3 arc seconds. The mean
slope (black markers) follows Eq. (1) well above some square
kilometers catchment size with a steepness index θref = 0.45.145

Clear deviations from this behavior are visible at catchment
sizes below about 2 km2 in the Taiwan dataset. These devia-
tions are even more pronounced in the finer SRTM1 dataset
than in the SRTM3 dataset, suggesting that they indeed arise
from a limitation of the stream-power approach and not from150

the potentially inadequate representation of the drainage pat-
tern on coarse DEMs (Stock and Dietrich, 2003).

On the other hand, the number of nodes with a catchment
size of A or larger roughly decreases like A−0.5 (Maritan
et al., 1996). For a DEM with a mesh width of 1 arc sec-155

ond, this means that only some 2 % of all DEM nodes have
a catchment size A≥ 2 km2, so that about 98 % of all nodes
cannot be used in the χmethod here. Therefore, an extension
of the χ method towards smaller catchment sizes is desirable
if maps of χ shall be derived in order to separate tempo-160

ral variations from effects of spatial heterogeneity. Beyond
increasing the pure data density, it is also helpful with re-
gard to the contest of catchments brought into discussion by
Willett et al. (2014). Growing or shrinking catchments are
characterized by a curvature in the H vs. χ plot becoming165

more and more significant close to the migrating drainage di-
vide. Therefore, analyzing the migration of drainage divides
quantitatively requires a χ transform free of any bias at small
catchment sizes induced by the limited applicability of the
stream-power law.170

3 Extending the χ method to small catchment sizes

In the following we present two extensions of the basic re-
lationship between channel slope and catchment size (Eq. 1)
towards small catchment sizes and their implementation in
the χ method. In most applications of the χ method, the175

concavity index θ is considered as an adjustable parame-
ter and used to improve either the straightness of the H vs.
χ plot or the collinearity with tributaries. In the following,
the approach with adjustable concavity index θ is denoted
χθ, while χ represents the version with the reference value180

θref = 0.45. However, the curvature of the data in Fig. 1 al-
ready suggests that the adjustment of θ may only introduce
a limited improvement at small catchment sizes compared to
the reference value θref.

The approaches presented in the following are intended185

to be as simple as possible. First, we aim at a representa-
tion by a uniform equation without distinguishing different
regimes, although the domain below (concerning catchment
size, but spatially above) the region where Flint’s law holds
is sometimes described as the debris flow regime (Stock and190

Dietrich, 2003). Second, it shall involve as few parameters as
possible in order to limit the numerical effort of parameter
estimation.

The data shown in Fig. 1 suggest that the erosion rate still
depends on the catchment size at least for A≥ 0.01 km2,195

but this dependence is weaker than predicted by the stream-
power law. A simple modification of Eq. (1) consists in
adding a constant value a to the catchment size, i.e., to as-
sume

S = ks (A+ a)
−θ
. (10)200

The respective modification of the χ transformation is ob-
tained by replacing A in Eq. (6) with A+ a:

χa(x) =

x∫
x0

(
A(ξ)+ a

A0

)−θ

dξ. (11)

This extension can be either considered as a one-parametric
approach where a is an adjustable parameter, while θ = θref is205

pre-defined, but also as a two-parametric approach with both
a and θ being free parameters. For consistency, the latter is
denoted χθa in the following.

As an alternative approach, a constant value can be added
to the term Aθ. In order to avoid odd physical dimensions,210

this term is written in the form bθ where b has the dimension
of an area. With this extension, Eq. (1) turns into

S =
ks

Aθ + bθ
, (12)

and the erosion rate (Eq. 2) becomes

E =K

(
Aθ + bθ

Aθ0
S

)n
. (13)215
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In the linear case (n= 1), this extension can be interpreted
as an erosion rate consisting of two additive components be-
ing both proportional to the channel slope. One of them de-
pends on the catchment size according to the stream-power
law, while the second one is independent of the catchment220

size and may correspond, e.g., to hillslope erosion.
Equation (12) is essentially the same as the empirical rela-

tionship

S =
s0

1+ a1Aa2
(14)

suggested by Stock and Dietrich (2003) for debris flow val-225

leys. Here, s0 is the hypothetic slope at the valley head
(A= 0), and a2 is the counterpart of the concavity index θ.
The parameters a1 and s0 are related to those from Eq. (12)
by a1 = b−θ and s0 = ksb

−θ. In this sense the difference be-
tween the approaches only concerns the considered regime230

and the definition of the parameters. We use a parameter b
characterizing the catchment size where fluvial erosion and
the sum of surface processes independent of the catchment
size contribute equally to total erosion, while Stock and Di-
etrich (2003) used a more abstract parameter a1.235

The respective modified χ transformation reads

χb(x) =

x∫
x0

Aθ0
A(ξ)θ + bθ

dξ. (15)

Similarly to the first approach, χb(x) refers to the one-
parametric version with θ = θref in the following, while χθb
denotes the two-parametric version with adjustable parame-240

ters b and θ.
As shown by the red and green lines in Fig. 1, both exten-

sions with θ = θref do not capture the behavior of the mean
slope at small catchment sizes perfectly. While the first ver-
sion (χa) should be better at catchment sizes moderately be-245

low the range where the original stream-power approach is
valid, the second version (χb) should be preferable if the en-
tire range shown in Fig. 1 is considered.

Each of the approaches contains one or two adjustable pa-
rameters (a, b and/or θ) where the optimum value differs250

from catchment to catchment. As already pointed by Perron
and Royden (2013) for the one-parametric version χθ with
variable θ, determining the respective optimum parameter
value is nontrivial. In the simplest situation, a steady state
topography under homogeneous uplift and erodibility, the H255

vs. χ plot should be a straight line. Here, the R2 value (co-
efficient of determination) of a linear fit and Pearson’s cor-
relation coefficient provide equivalent objective functions to
be minimized. However, this may lead to systematic bias for
transient topographies. An extension based on fitting piece-260

wise linear functions was recently suggested by Mudd et al.
(2014), but this algorithm may become numerically expen-
sive, in particular if applied to a large number of catchments
or if two adjustable parameters are involved.

Including small catchment sizes in the analysis even facili-265

tates the determination of the adjustable parameters since the
collinearity of a large bunch of lines in the H vs. χ plot can
be tested. Therefore, a criterion that measures how well the
data follow a monotonic relationship between H and χ with-
out being too sensitive towards the shape of this relationship270

(such as R2 and Pearson’s correlation coefficient preferring
linear relations) should be used. Spearman’s rank correlation
coefficient is the most widely used criterion in this context.
Here, both the H values and the χ values are sorted inde-
pendently. Then, a H rank and a χ rank are assigned to each275

data point, and the correlation coefficient of the two ranks is
computed. However, this approach suffers from the χ rank
being a discontinuous function of the χ values and thus of
the adjustable parameters. As a consequence, the rank corre-
lation coefficient is a piecewise constant function of the pa-280

rameters with a huge number of discontinuities, which makes
its numerical maximization at least theoretically problematic.
This problem could be avoided by considering the correla-
tion between the χ values themselves and the H rank as the
elevations are fixed values. However, this would introduce a285

bias towards a certain overall relationship depending on the
hypsographic curve of the catchment, so that there is no ad-
vantage to the R2 value or Pearson’s correlation coefficient
(preferring a linear relationship).

Due to the problems with the rank correlation coefficients290

discussed above, we suggest an alternative criterion for as-
sessing the collinearity of all rivers in the H vs. χ plot. In a
first step, all pairs of χi andHi are sorted in order of increas-
ing H , and the sum

S =
∑
i

|χi+1−χi| (16)295

is computed. This sum becomes minimal if H and χ are re-
lated monotonically and increases with each pair of subse-
quent points where χ decreases. However, S linearly scales
with the absolute χ values, so that minimizing S would in-
troduce a bias towards parameters leading to small overall300

χ values. Thus, S must be rescaled appropriately. As the χ
values start from zero, the lowest possible value of S is the
maximum χ value, χmax, occurring for the given parameter
set. Thus, the straightforward rescaled objective function to
be minimized is305

D =
S−χmax

χmax
(17)

=

∑
i |χi+1−χi| −χmax

χmax
, (18)

denoted χ disorder in the following. A perfect monotonic re-
lationship between H and χ is characterized by D = 0.

Some attention should be paid to pairs of identical ele-310

vation values occurring frequently in integer-valued DEMs.
Here we suggest to assume that all χ values belonging to the
same elevation are always in ascending order, so that they do
not increase D artificially.
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4 Results and discussion315

In the following we compare the different approaches χa, χb,
χθ, χθa, and χθb using the recently released SRTM1 DEM
with a mesh width of 1 arc second. Taiwan was selected as
a region with high tectonic activity where glaciation only
affected rather small regions around the highest mountains320

(Ono et al., 2005). Therefore, Taiwan should be an almost
perfect example of a fluvial landscape.

In order to get a sufficient number of catchments of similar
sizes where each catchment contains a significant portion in
the fluvial regime, a procedure to delineate catchments with a325

size A≈ 100 km2 automatically was implemented. In a first
step, all sites with catchment sizes A< 100 km2 where the
catchment size of the respective flow target is greater than
100 km2, and where the site itself makes the largest con-
tribution to its flow target, are determined. These points or,330

more precisely, their flow targets, are considered as the base
points (x0) of the respective catchments. The drainage pat-
tern is then followed in upstream direction down to a catch-
ment size of 0.01 km2, and the different methods are applied
to each of the catchments. All DEM nodes without valid ele-335

vation data or where the surface elevation had to be increased
when filling local depressions were disregarded.

The topography of Taiwan yields 89 catchments meeting
these criteria with each of them containing between 6464
and 27732 valid SRTM1 DEM nodes. These catchments are340

shown in Fig. 2, while Fig. 3 displays the resulting cumula-
tive distribution of the χ disorder of the five approaches χa,
χb, χθ, χθa, and χθb compared to the reference χ. As ex-
pected, the three approaches involving an adjustable param-
eter are much better than χ, and χb is the best among these345

approaches if the entire range 0.01 km2 ≤A≤ 100 km2 is
considered. For 46 out of the 89 catchments, χb yields the
best approximation (lowest χ disorder) among the three one-
parametric approaches, while χa was found to be best for 17
catchments, and χθ for 26 catchments. As an immediate con-350

sequence of the additional parameters, both two-parametric
approaches χθa and χθb yield a further improvement. The
benefit is, however, weaker than that of the one-parametric
approaches towards the version χ involving no adjustable pa-
rameters. The difference between χθa and χθb seems to be355

negligible.
Figures 4 and 5 show two examples of catchments and

their representation in the H vs. χ plot. The first one (Fig. 4)
is the catchment with the lowest χ disorder in all approaches
except χ (ranging from D = 199 for χθb to D = 230 for χθ)360

located in the mountain range. The χ disorder of the second
example (Fig. 5) is more than two times higher than in the
first catchment (ranging from D = 474 for χθa to D = 502
for χθ). These values are close to the two-thirds quantile of
the respective distribution, which means that about two thirds365

of the 89 considered catchments have a lower χ disorder than
this example.

Taking into account the width of the H vs. χ bunches,
none of the two catchments shows a significant overall curva-
ture in theH vs. χ plot except for the lowermost region of the370

first example (Fig. 4). However, this small part of the catch-
ment is located at the edge of the mountain belt and even in
an anthropogenically disturbed region. This finding suggests
that spatial heterogeneity has a stronger effect on theH vs. χ
plot than potential temporal changes in uplift rate in the past.375

This heterogeneity may be due to spatial variations in uplift
rate, precipitation or, perhaps most likely at the catchment
scale, the resistance of the rocks towards erosion.

The relevance of spatial heterogeneity to the H vs. χ plot
is obviously related to the topology of the drainage network.380

The example shown in Fig. 4 is an elongated catchment con-
sisting of one main river and several smaller tributaries. The
drainage network of the other example (Fig. 5) is character-
ized by confluences of rivers of similar sizes, so that sub-
catchments with comparable χ values may occur at quite385

large spatial distances. For such a topology, spatial hetero-
geneity will likely generate diverging segments in the overall
H vs. χ plot. In this example, it is readily recognized that a
large part of the heterogeneity even arises from a small region
when plotting χ (here χθb) and elevation in a map (Fig. 6).390

In a region east of the center of the map, the contour lines of
χ are at significantly higher elevations than elsewhere in the
domain. This behavior corresponds to the single very steep
tributary visible in Fig. 5. So a limited region east of the cen-
ter of the map seems to be characterized by a lower erodibil-395

ity than the rest of the domain.
If only a smaller range of catchment sizes is considered,

the differences between the methods partly melt away. Fig-
ure 7 shows the same analysis applied down to catchment
sizes of 1 km2 instead of 0.01 km2. Here the approach χθ400

out-competes the other one-parametric concepts by provid-
ing a better approximation in 78 out of 89 catchments and
even comes close to the two-parametric approaches. As the
extensions involving the parameters a and b were designed
to capture the behavior at small catchment sizes, this result is405

not surprising.
It is also immediately recognized that restricting the lower

limit of catchment size reduces the absolute values of the
χ disorder. The reduction mainly arises from the number of
valid DEM nodes decreasing by more than one order of mag-410

nitude to a range from 670 to 2174. However, the χ disorder
is diminished by less than one order of magnitude here. This
nonlinear scaling is presumably related to the scale depen-
dence of spatial heterogeneity. Nonlinear scaling properties
can also be expected with respect to the total catchment size415

and to the resolution of the DEM, but investigating this in
detail would go beyond the scope of this study. So the χ dis-
order is found to be a good criterion for comparing differ-
ent extensions of the χ method and for determining the re-
spective parameter values, but cannot be used for comparing420

catchments of different sizes and data obtained from different
DEMs.



6 S. Hergarten et al.: Tectonic geomorphology at small catchment sizes

As a second example we consider the European Alps as
an orogen that was heavily affected by glacial erosion in the
past. For simplicity, we define the region as the domain in-425

side the 600 m elevation contour line as previously done by
Hergarten et al. (2010). Although the properties having an
influence on the absolute values of the χ disorder (upper and
lower limit of catchment size and DEM resolution) are the
same as for the Taiwan example, the values of the χ disorder430

shown in Fig. 8 are significantly higher than those obtained
for Taiwan. This increase is presumably related to glacia-
tion causing strong local deviations from fluvial topography.
The observed differences between the different approaches,
however, persist or become even more pronounced. Here, the435

method χb yields the best results among the one-parametric
approaches for more than 75 % of all catchments (280 out of
371).

Beyond the goodness of the fit expressed by the χ disor-
der, the best-fit parameter values may also be taken into ac-440

count when comparing the different approaches. In this con-
text, the concavity index θ is the most important parameter as
it has already been addressed in numerous studies on larger
catchment sizes. Figure 9 compares the statistical distribu-
tions of the best-fit θ values for the three methods involving445

θ as an adjustable parameter in the Taiwan example. If θ is
the only parameter (χθ), the best-fit θ values tend to be below
the widely used reference value θref = 0.45. This effect be-
comes more pronounced if points with small catchments size
are included. The median for 0.01 km2 ≤A≤ 100 km2 is450

θ = 0.33, and 82 out of 89 catchments have θ < 0.45. As the
deviations from Flint’s law at small catchment sizes can only
be compensated by smaller θ values here, the significant bias
towards smaller θ values found for χθ is not surprising. In
return, the two-parametric approach χθa exhibits a tendency455

towards values θ > θref, reflected in median of θ = 0.56. The
other two-parametric approach, χθb, yields best-fit θ val-
ues with a median of θ = 0.47 close to the reference value
θref = 0.45. While χθa and χθb are evenly matched with re-
spect to the χ disorder on average, χθa obviously needs ar-460

tificially increased θ values for achieving the best fit. The
approach χθb turns out to be more robust against this bias,
although some tendency towards larger θ values occurs if
the catchment sizes are restricted to a narrower range (here,
1 km2 ≤A≤ 100 km2). Under this aspect, the approach χθb465

should be superior to χθa if a wide range of catchment sizes
is taken into account.

5 Conclusions

We have presented and investigated several concepts of ex-
tending Flint’s law and the χ method towards small catch-470

ment sizes. Including points with small catchment sizes into
the analysis of stream profiles strongly increases the data
density and thus allows for a better distinction between ef-

fects temporal changes in uplift rate or climate and spatial
heterogeneity.475

Among the approaches considered in this study, an exten-
sion of Flints’s law similar to an equation originally sug-
gested for debris flow channels (Stock and Dietrich, 2003)
turned out to be the most suitable concept if a wide range of
catchment sizes is included. The respective definition of the480

extended χ transform (Eq. 15) can be implemented either as
a two-parametric approach where both θ and b are adjustable
parameters as well as a one-parametric approach where b is
variable and θ = θref with θref = 0.45 or any other fixed ref-
erence value.485

Minimizing the χ disorder defined in Eq. (18) provides a
simple way to determine the best values of the adjustable pa-
rameters. It refers to the collinearity of tributaries and does
not require any further assumptions such as spatial homo-
geneity or an uplift rate being constant over distinct time in-490

tervals and should thus be applicable in a wide context.
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Figure 2. Map of the 89 considered catchments in Taiwan with
catchment sizesA≈ 100 km2. The two catchments bordered in ma-
genta and yellow are considered in detail in Figs. 4–6.
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Figure 3. Cumulative distribution of the χ disorder for the 89 con-
sidered catchments in Taiwan for 0.01 km2 ≤A≤ 100 km2. Each
curve describes the relative number of the catchments with a χ dis-
order lower than or equal to the value D on the x axis.
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Figure 4. The mountainous catchment in Taiwan with the lowest
χ disorder. (a) Topography and drainage pattern for A≥ 0.01 km2.
The largest river is drawn in light blue. (b)H vs. χ plots of the main
river. χ0 refers to θ = 0, so that χ0 = x, and the plot describes the
original river profile. (c) H vs. χ plots for the entire drainage net-
work. The plots are shifted horizontally in order to avoid overlap-
ping curves. The black lines show the part of the drainage network
with A≥ 1 km2.
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Figure 5. A catchment in Taiwan with a rather high χ disorder.
(a) Topography and drainage pattern for A≥ 0.01 km2. The largest
river is drawn in light blue. (b) H vs. χ plots of the main river. χ0

refers to θ = 0, so that χ0 = x, and the plot describes the original
river profile. (c) H vs. χ plots for the entire drainage network. The
plots are shifted horizontally in order to avoid overlapping curves.
The black lines show the part of the drainage network with A≥
1 km2.
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Figure 6. Map of elevation (encoded by colors) and χθb values
(contour lines) of the catchment considered in Fig. 5. The contour
line interval is 0.5 km, and the lines of χθb = 2.5 km and χθb =
5 km are emphasized by white color.
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Figure 7. Cumulative distribution of the χ disorder for the 89 con-
sidered catchments in Taiwan for 1 km2 ≤A≤ 100 km2. Each
curve describes the relative number of the catchments with a χ dis-
order lower than or equal to the value D on the x axis.
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Figure 8. Cumulative distribution of the χ disorder for the 371
considered catchments in the European Alps for 0.01 km2 ≤A≤
100 km2. Each curve describes the relative number of the catch-
ments with a χ disorder lower than or equal to the value D on the x
axis.
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Figure 9. Cumulative distribution of the concavity index θ for the
89 considered catchments in Taiwan. Each curve describes the rel-
ative number of the catchments with an estimated concavity index
lower than or equal to the value θ on the x axis. Solid lines refer to
fits over the entire range 0.01 km2 ≤A≤ 100 km2, while dashed
lines correspond to fits for A≥ 1 km2 only.


