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Abstract. We use a geomorphic approach in order to unravel the recent evolution of the diffuse triple

junction between the North American, Caribbean, and Cocos plates in northern Central America.

We intend to characterize and understand the complex tectonic setting that produced an intricate

pattern of landscapes using tectonic geomorphology, and available geological and geophysical data.

We classify regions with specific relief characteristics and highlight uplifted relict landscapes in5

northern Central America. We also analyze the drainage network from the Sierra Madre de Chiapas

and Maya Mountains in order to extract information about potential vertical displacements.

Our results suggest that most of the landscapes of the Sierra Madre de Chiapas and Maya Moun-

tains are in transient stage. Topographic profiles and morphometric maps highlight elevated relict

surfaces that are characterized by a low amplitude relief. The river longitudinal profiles display10

upper reaches witnessing these relict landscapes while lower segments characterized by multiple

knickpoints, that adjust to new base-level conditions.

These results backed by published GPS and seismotectonic data allow us to refine and extend

existing geodynamic models of the triple junction. Relict landscapes are delimited by faults and thus

result from a tectonic control. The topography of the Sierra Madre de Chiapas evolved as the result15

of (1) the inland migration of deformation related to the coupling between the Chiapas Massif and

the Cocos fore-arc sliver, and (2) the compression along the northern tip of the Central America

Volcanic Arc. Although most of the shortening between the Cocos fore-arc sliver and the North

American plate is accommodated within the Sierra de Chiapas and Sierra de los Cuchumatanes, a

small part may be still transmitted to the Maya Mountains and the Belize margin through a “rigid”20

Petén basin.
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1 Introduction

The aim of this work is to examine geomorphic features along two key areas (the Sierra Madre de

Chiapas and the Maya Mountains, Fig. 1) in order to test existing models of the North American-

Caribbean-Cocos plate boundary (e.g., Malfait and Dinkelman, 1972; Burkart, 1983; Guzmán-Speziale25

et al., 1989; Lyon–Caen et al., 2006; Ratschbacher et al., 2009; Authemayou et al., 2011). The

oceanic Cocos plate is subducted beneath the North American and Caribbean plates along the Mid-

dle America Trench while the North American–Caribbean plate boundary is a sinistral transform

system which accommodates the eastward escape of the Caribbean plate(e.g., Lyon–Caen et al.,

2006; Manea and Manea, 2006; Andreani et al., 2008a; Authemayou et al., 2011).30

The complexity of the plate boundary comes from the fact that both the Caribbean and North

American plates are limited to the west by a forearc sliver (Fig. 1) which is coupled to the Cocos

slab (e.g., Turner et al., 2007; Phipps-Morgan et al., 2008). This sliver rotates counterclockwise as

it is pulled by the eastward escape of the Caribbean plate (e.g., Andreani et al., 2008a; Authemayou

et al., 2011). Over the past decades, numerous models regarding the structure and the evolution of the35

triple junction have been proposed (Authemayou et al., 2011, and references therein). Recent models

agree on the fact that the dextral Jalpatagua fault (Fig. 2) coupled with extension along the grabens of

Guatemala represents the limit between the forearc sliver and the Caribbean plate (e.g., Lyon–Caen

et al., 2006; Andreani et al., 2008a; Authemayou et al., 2011; Franco et al., 2012). However, there is

no clear consensus on the boundary between the forearc sliver and the North American plate. This is40

due to the fact that this boundary is highly diffuse and most of the active deformation is distributed

over the Sierra Madre de Chiapas orogenic belt. On top of that, none of the revisited tectonic models

of the North American-Caribbean-Cocos plate boundary attempted to include the Maya Mountains

(Fig. 1 and 2). In spite of evidence for recent (Late Neogene or Pliocene) tectonics (e.g., Weidie,

1985; Lara, 1993; Purdy et al., 2003; Bauer-Gottwein et al., 2011), this region was seldom studied45

due to a dense vegetation cover and scarce roads.

Using geomorphic indices, we attempt to understand the link between tectonics and landscape

evolution within these two regions. We discuss the potential effects of varying uplift, climatic regimes

and lithology on geomorphic markers. In active orogens, landscapes result from a competition be-

tween vertical uplift, which modifies the base-level of rivers, and erosional processes, which result50

in the progressive rejuvenation of topographic features through time (e.g., Mather, 2000; Snyder

et al., 2000). Geomorphic indices are commonly used to detect the response of landscapes to re-

cent deformation processes (Burbank and Anderson, 2001; Keller and Pinter, 1996, and references

therein) and several algorithms and toolboxes allow their extraction from digital elevation models

(e.g., Schwanghart and Kuhn, 2010; Shahzad and Gloaguen, 2011a). We use topographic profiles55

and morphometric maps to classify landscapes. The characterization of elevated surfaces allow us to

discriminate uplifted relict landscapes and the propagating front of river incision. We also analyze

river longitudinal profiles in order to estimate base-level changes which affect the drainage network.
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Finally, we combine the results from the geomorphic analyses with available geophysical data (GPS

and seismicity, Fig. 3) in order to propose a model for the North American–Caribbean–Cocos triple60

junction.

2 Tectonic setting

2.1 Models of the triple junction

Early geodynamic models of the junction between the North American, Caribbean and Cocos plates

consisted in a simple transform-trench boundary. For instance, Burkart (1983) proposed a model in65

which the Polochic fault (and perhaps also the Motagua fault) connected to the Middle America

trench. He proposed that the 300 km Neogene motion between the North American and Caribbean

plates was accommodated by left-lateral slip along the Polochic and Motagua faults and by exten-

sion within the depressions of Honduras and Guatemala. The slip between these two plates was

compensated by a left-lateral offset of the trench.70

Later works challenged the idea of a junction between the Polochic-Motagua fault system and the

trench because the Polochic fault trace terminates within the Chiapas Massif and the Motagua fault

trace is lost within the Central America volcanic arc (e.g., Guzmán-Speziale et al., 1989; Guzmán-

Speziale and Meneses-Rocha, 2000). As a result, more recent models (Fig. 4) argue that the motion

between the North American and Caribbean plates does not result in an offset of the trench but is75

rather absorbed onshore within a complex zone of deformation. However, there is no clear consensus

on the geometry of the plate boundary and on how the deformation is distributed inland.

Using seismotectonic data (Fig. 3a), Guzmán-Speziale and Meneses-Rocha (2000) proposed a

model in which the Polochic-Motagua fault system is unable to propagate across the Chiapas Massif

(Fig. 4a). As a result, a part of the motion between the North American and Caribbean plates is80

absorbed by the reverse and strike-slip faults of Chiapas (Fig. 4a). In this model, the reverse faults

act as a restraining bend between the strike-slip faults and the Polochic-Motagua fault system. Later

on, Guzmán–Speziale (2001) suggested that part of the plate motion is also absorbed by the grabens

of Central America, south of the Motagua fault (Fig. 4a).

A second category of models (Fig. 4b) mainly focused on the extensional province located south85

of the Motagua fault. Gordon and Muehlberger (1994) proposed a model in which the Chortis block

is stretched and rotating counterclockwise along the dextral Jalpatagua fault, which affects the vol-

canic arc (Fig. 2), and the Guayape fault in Honduras. However, more recent works suggest that

dextral slip along the Central America volcanic arc is in fact related to a slip partitioning along the

trench (e.g., DeMets, 2001; Turner et al., 2007; Correa-Mora et al., 2009). Using GPS data (Fig. 3b),90

Lyon–Caen et al. (2006) proposed a model of the plate boundary which took into account both the

extensional province and the forearc sliver. They suggested that the eastward escape of the Caribbean

plate was accommodated by dextral slip along the Jalpatagua fault, sinistral slip along the Polochic-
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Motagua fault system and by extension within the grabens of Central America (Fig. 4b). This model

was refined by Franco et al. (2012) which proposed a difference in coupling along the subduction95

interface (Fig. 4b) in order to explain the GPS velocity field in southern Mexico (Fig. 3b). However,

these two models did not addressed the tectonic evolution of the Sierra Madre de Chiapas.

The latest models (Fig. 4c and 4d) attempted to explain both the eastward escape of the Caribbean

plate as described by Lyon–Caen et al. (2006) and tectonics of the Sierra Madre de Chiapas. Andreani

et al. (2008b) suggested a connection between the strike-slip faults of Chiapas, the Veracruz shear100

zone which affects the Veracruz basin further north, and the transtension of the Mexican volcanic

arc (Fig. 4c). They proposed that these three zones represent the boundary of the so-called ‘Southern

Mexico block’ Andreani et al. (2008a). In their model (Fig. 4c), the dynamic of the plate boundary

is driven by the escape of the Caribbean plate and by the counterclockwise rotation of the Southern

Mexico block. However, this model does not solve the interactions between the Southern Mexico105

block and the Central America forearc sliver. An alternative model was proposed by Authemayou

et al. (2011), in which the Central America forearc sliver extends offshore southern Mexico (Fig. 4d).

In their model, the eastward escape of the Caribbean plate induces a counterclockwise rotation of the

forearc sliver and a ‘zipper’ process (i.e., progressive suturing) between the Jalpatagua and Motagua

fault as the space between the two faults is left ‘empty’ by the moving Caribbean plate. According to110

their model, the Tonalá Shear Zone is a suture resulting from this ‘zipper’ process. However, both the

Motagua and Jalpatagua fault traces are lost west of 91◦W. The western termination of both faults

seems to be associated with extension along the Guatemala City graben (Lyon–Caen et al., 2006).

Furthermore, the Tonalá Shear Zone clearly connects to the Polochic Fault (Fig. 2, Guzmán-Speziale

et al., 1989; Guzmán-Speziale and Meneses-Rocha, 2000).115

In summary, current views on the plate boundary agree on the fact that the North American and

Caribbean plates are limited by a forearc sliver to the west. The counterclockwise rotation of the

forearc sliver results in transpression north of the Polochic-Motagua fault system while the east-

ward escape of the Caribbean plate is accommodated by the strike slip motions of the Motagua and

Jalpatagua faults and by extension along the grabens of Ipala and Guatemala city. However, the120

connections between the western corner of the Caribbean plate and the transpressional tectonics of

the Sierra Madre de Chiapas are still unclear. In addition, none of these recent models attempted to

integrate the recent tectonics of the Maya Mountains and Yucatán peninsula into the dynamics of the

plate boundary.

2.2 North-America–Caribbean plate boundary125

The present-day North American–Caribbean plate boundary consists of three main sinistral faults

which delimitates two crustal-scale slivers: the Motagua (Malfait and Dinkelman, 1972; Plafker,

1976), Polochic (Burkart, 1978; Deaton and Burkart, 1984; Sánchez–Barreda, 1981) and Ixcán

(Guzmán-Speziale, 2010) faults (Fig. 2). These faults are seismically active (Fig. 3a; White, 1984;
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Singh et al., 1984; Ambraseys and Adams, 1996; Guzmán-Speziale, 2010) and Quaternary displace-130

ments are documented (e.g., Burkart, 1978, 1983; Authemayou et al., 2012). Brocard et al. (2011)

described a relict Middle Miocene planation surface which formed at low elevation and covered most

of the Polochic-Motagua sliver (the so-called ‘Mayan paleosurface’). This surface was subsequently

uplifted and deformed. Using this surface as a marker, Authemayou et al. (2011) estimated the crustal

shortening between 17 and 35 km along the western segment of the Polochic fault (Fig. 2), where the135

13 to 7 Ma old Mayan paleo-surface rests on top of the Sierra de los Cuchumatanes at a maximum

elevation of 3800 m.

A part of the motion between the North American and Caribbean plates is also accommodated

along at least thirteen N-trending grabens (e.g., Mann and Burke, 1984; Guzmán–Speziale, 2001)

located south of the Motagua fault. The main structures form the Guatemala City, Ipala, Esquipulas,140

Sula and Comayagua depressions (Fig. 2). Rogers et al. (2002) related these grabens to the uplift

of the Central America plateau following a slab break-off underneath Central America. The onset

of extension has been determined at 11-8 Ma (Gordon and Muehlberger, 1994; Ratschbacher et al.,

2009). However, most of the present-day extension (11-12 mm.yr−1) seems to be accommodated

along the westernmost grabens (Lyon–Caen et al., 2006; Rodriguez et al., 2009; Franco et al., 2012).145

2.3 Sierra Madre de Chiapas

The Sierra Madre de Chiapas is constituted by four main structural domains: the Chiapas Massif,

the Central Valley, the Sierra de Chiapas and the frontal fold-and-thrust belt (Guzmán-Speziale and

Meneses-Rocha, 2000; Andreani et al., 2008a; Witt et al., 2012b). The Chiapas Massif mostly con-

sists of Permian igneous rocks affected by medium to high grade metamorphism and Middle to late150

Miocene intrusions related to the subduction of the Cocos plate (Damon and Montesinos, 1978; We-

ber et al., 2007; Molina-Garza et al., 2015). The western flank of the Chiapas Massif is bounded

by the left-lateral Tonalá Shear Zone which connects to the south to the western termination of the

Polochic fault (Wawrzyniec et al., 2005; Weber et al., 2005). The displacement along the Tonalá

Shear Zone is synchronous with Miocene magmatic intrusions and could have reached 100 km155

(Molina-Garza et al., 2015). The Central Valley is a ∼170 km long and ∼30 km wide depression

corresponding to a NW-trending synclinorium with superimposed smaller folds (Witt et al., 2012b).

The Sierra de Chiapas has a roughly sigmoidal shape and is bounded to the west by the promi-

nent NW-trending left-lateral Tuxtla fault. It is constituted by blocks culminating at heights between

2000 m and 2400 m and delimited by E-trending left-lateral faults defined as the High Sierra Fault160

System by Witt et al. (2012b). These faults probably connect to the Malpaso fault to the west while

strike-slip motion is absorbed at their eastern terminations by thrusting and folding. The Chiapas

frontal fold-and-thrust belt is located between the Sierra de Chiapas and the western border of the

Yucatán platform. It is constituted by closely spaced faulted folds which are rooted in shallow levels

(Witt et al., 2012b).165
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Thermochronological, tectonic and stratigraphic evidence suggest that renewed exhumation and

topographic growth occurred along the Chiapas region during the middle Miocene (16-10 Ma) and

late Miocene-Pliocene (6-5 Ma), following a phase of rapid exhumation to upper crustal levels at

∼30 Ma (Ratschbacher et al., 2009; Witt et al., 2012a). The Tonalá shear zone may have accom-

modated significant deformation since 16 Ma while the displacement along the transpressive Tuxtla170

and Malpaso faults occurred during the last 6-5 Ma and could have reached 50 to 70 km, involving

0.5 to 0.8 cm.yr−1 of left-lateral motion (Meneses-Rocha, 2001; Witt et al., 2012b).

2.4 Maya Mountains and Belize margin

The Maya mountains and the Belize margin are located north to the Polochic-Motagua fault system

and east to the Yucatán platform. Due to a dense vegetation cover and scarce roads, this region175

was seldom studied in comparison with other areas related to the North American–Caribbean plate

boundary.

The eastern border of the Yucatán peninsula is crosscut by a series of NNE-trending normal faults

(e.g., Weidie, 1982, 1985), which are referred as East Yucatán fault zone (EYFZ) in Fig. 2. The fault

zone is ∼80 km wide and extends over 500 km between the NE tip of the Yucatán peninsula and the180

Maya Mountains. The surface expression of this fault zone is seen in the alignment of topographic

scarps, hydrological features (cenotes, lakes and rivers) and coastal bays (Weidie, 1985; Lesser and

Weidie, 1988; Bauer-Gottwein et al., 2011). The East Yucatán fault zone represents the onshore

continuation of an extensive horst and graben system which affects the western margin of the Yucatán

Basin (Weidie, 1985; Rosencrantz, 1990).185

According to Rao and Ramanathan (1988) and Purdy et al. (2003), the Maya Mountains corre-

spond to a roughly NE-trending structural high where the Paleozoic basement is uplifted. Paleozoic

rocks constitute the highest elevations of the Maya Mountains. The orogen mainly consists in meta-

morphosed Late Carboniferous to Middle Permian volcano-sedimentary rocks overlying Late Sil-

urian granites and are bounded by the Northern and Southern Boundary faults (Kesler et al., 1974;190

Bateson and Hall, 1977; Steiner and Walker, 1996). The Maya Mountains are delimited by fault-

bounded E- to NE-trending depressions: the Corozal Basin located to the north and the Belize Basin

that borders the Maya block offshore to the east and onshore to the south. According to Purdy et al.

(2003), unroofing of the Cretaceous carbonate cap of the Maya Mountains siliciclastic sediment

source did not occur until late Neogene, perhaps no earlier than late Pliocene. Faulting along the195

Belize margin is not accurately documented. The most recent tectonic event is Pliocene or younger

and the resulting structures affected Quaternary carbonate deposition. However, Lara (1993) related

this event to transtensional faulting while Purdy et al. (2003) rather interpreted this event as the result

of a transpression.
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3 Geomorphic analyses: methods and tools200

3.1 Swath topographic profiles

Swath topographic profiles condense elevation data of a complex region into a single profile (e.g.,

Isacks, 1992; Masek et al., 1994; Telbisz et al., 2013; Hergarten et al., 2014). Topography is extracted

from a rectangular swath using a series of parallel profiles, rather than using a single line as in

conventional topographic profiles. Elevation data are then projected onto a vertical plane parallel205

to the longitudinal axis of the swath rectangle, and statistical parameters (the maximum, minimum

and mean elevations) are calculated. The curve for maximum elevation corresponds to the ridgelines

and helps to identify topographic features, such as relicts of paleo-surfaces. The curve for minimum

elevation corresponds to the valley floors or river beds. A quick estimate of the incision is given

by the arithmetic difference between the maximum and minimum elevations in a given longitudinal210

distance (window).

Swath topographic profiles were extracted from 3 arc-seconds SRTM data from CIAT (Jarvis

et al., 2008) using a MATLAB script. The swath width was fixed to 20 km. This width is large

enough to contain both elevated surfaces and major rivers and small enough to avoid topographic

features that are too oblique with respect to the swath axis. Elevation data were sampled using ∼220215

parallel profiles separated by 90 m. Elevations along each individual profile were also sampled using

a 1-pixel (90 m) interval.

3.2 Surface analyses

The combined use different morphometric indices proves to be an efficient way to classify landscapes

according to their state of dynamic equilibrium (e.g., Andreani et al., 2014; Domínguez–González220

et al., 2015). Hypsometric integral (HI) efficiently highlights topographic scarps, surface roughness

(SR) substantially increases with incision and relief anomaly (RA) and surface index (SI) highlight

elevated low relief landscapes.

The hypsometric integral shows the distribution of landmass volume remaining beneath or above

a basal reference plane (Strahler, 1952; Schumm, 1956). This index proved to be efficient in eval-225

uating the response of landscapes to active tectonics (e.g., Pérez-Peña et al., 2009; Mahmood and

Gloaguen, 2012; Siddiqui and Soldati, 2014; Andreani et al., 2014; Domínguez–González et al.,

2015). According to Pike and Wilson (1971), the hypsometric integral (HI) for a given area can be

approximated with Eq. 1:

HI =
hmean − hmin
hmax − hmin

(1)230

with hmean, hmin and hmax being the mean, minimum and maximum elevations of the analyzed

area.
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Surface roughness can be described by several parameters (Smith, 2014, and references therein).

In this work we used the area ratio approach which evaluate the similarities between a topographic

surface with a given area and a flat surface with the same geographic extend (e.g., Hobson, 1972;235

Grohmann, 2004; Grohmann et al., 2009; Shahzad and Gloaguen, 2011b). The ratio is close to 1 for

flat areas and increases rapidly as the real surface becomes irregular. The method used to obtain the

‘real’ and flat surfaces is adapted from the GRASS-R algorithm of Grohmann (2004). First, a slope

map is produced using the neighborhood algorithm included in ArcGIS (Burrough and Mcdonell,

1998). The ‘real’ surface SR is then obtained for each pixel using Eq. 2:240

SR = res ×
√
res2 + (tan(α) × res)2 (2)

where res is the DEM resolution in meters and α is the pixel slope in degrees. The flat area SF is

defined for each pixel by SF = res× res. The surface roughness is then obtained by summing the

pixel values of SR and SF within a moving window and by dividing the sum of SR pixels by the

sum of SF pixels.245

We computed the hypsometric integral and surface roughness from 90 m resolution SRTM data

(CIAT, Jarvis et al., 2008) using TecDEM, a MATLAB-based toolbox (Shahzad and Gloaguen,

2011b). Each pixel of the output raster represents the hypsometric integral and surface roughness

values for a 15 × 15 km moving window. The choice of the window size depends on the objec-

tives. The size of the window will affect the amount of smoothing on the relief (low-pass filtering).250

To get rid of high-frequency signal such as erosion patterns, the window must encompass a suf-

ficient portion of the analyzed landscape and thus be larger than the wavelength of the undesired

signal. Otherwise, computed values will reflect local-scale variations in relief such as hillslopes. In

the present case, a 15 km window allows to filter out the effect of the drainage system as the window

size represents an area that will include several valleys and ridges. (Andreani et al., 2014).255

Finally, we used the relief anomaly (Scotti et al., 2014) and the surface index (Andreani et al.,

2014) to highlight elevated and low relief landscapes. The relief anomaly (RA) represents the eleva-

tions normalized by the local relief. We computed this index for a given area using Eq. 3:

RA =
hmean

hmax − hmin
(3)

with hmean, hmin and hmax being the mean, minimum and maximum elevations of the analyzed260

area. Highest values are obtained for flat and elevated surfaces.

The surface index (SI) combines the elevations from the DEM with the computed maps of hypso-

metric integral and surface roughness. It allows to discriminate areas with low local relief landscapes

from areas with a more rugged topography. To compute this index, rasters of elevations, hypsometric

integral and surface roughness are normalized by their respective minimum and maximum values in265

order to obtain pixels values between 0 and 1. We then combine the newly created rasters using

Eq. 4:

SI = (Nh × NHI) − NSR (4)
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withNh,NHI andNSR being the normalized elevations, hypsometric integral and surface roughness

values, respectively. Positive surface index values correspond to elevated surfaces with low local270

relief while negative values highlight rugged landscapes.

3.3 Modeling of the Drainage Network

We extracted the drainage network from 30 m resolution SRTM data. The extraction was done using

TecDEM (Shahzad and Gloaguen, 2011a) by calculating flow directions and contributing area for

each pixels using the D8 algorithm (O’Callaghan and Mark, 1984; Fairfield and Leymarie, 1991;275

Jones, 2002). Streams were identified using a minimum contributing area of 1 km2. This threshold

is introduced in order to take into account the transition from colluvial to stream-flow (fluvial) domi-

nated channel, which is usually observed at ∼ 1 km2 in temperate humid regions (e.g., Montgomery

and Foufoula-Georgiou, 1993; Wobus et al., 2006). It is assumed that a theoretical flow accumulation

that drains an area larger than 1 km2 can be associated to a real water channel. Extracted streams280

were then organized hierarchically using Strahler (1957) order.

A DEM-based procedure allows to easily extract and analyze a regional-scale drainage network.

However, there are several uncertainties related to the DEM and methods. Extracted drainage net-

work and contributing areas are affected by the quality and sampling of the DEM. Free and com-

monly used data include the 1 arc-second (ca. 30 m) and the 3 arc-second (ca. 90 m) resolution285

SRTM. For both datasets the absolute vertical error is reported to be less than 20 m. In some areas,

the available 1 arc-second SRTM data presented voids (i.e. pixels with no data) mainly located in

ridges. We filled these voids with 3 arc-second SRTM data.

The flow-routing method we use (D8 algorithm) may introduce bias in flow path orientation as

it discompose flow directions into units of 45◦ (Fairfield and Leymarie, 1991). This is especially290

the case in flat areas. Additional known bias are related to methodological aspects. In our study

area the commonly encountered problem concerned nested depressions which are related to DEM

imperfections. These pits need to be filled to create flow directions. Other artifacts are mainly found

along entrenched rivers and canyons, where bad pixels values ‘block’ the path of the extracted rivers.

In two cases (Sumidero and La Venta canyons) the DEM filling resulted is a significant deviation of295

the modeled rivers with respect to the actual rivers. We thus manually carved the bad pixels blocking

these two canyons in order to obtain a more accurate flow path. The original topography is also

affected by human artifacts such as dammed rivers. This is especially the case for the Grijalva river

in southern Mexico. Artificial flats related to DEM filling or dammed rivers introduces errors in

extracted river paths. These errors are easily detected in river longitudinal profiles and were taken300

into account when interpreting the knickzones in extracted rivers.
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3.4 Analysis of River Longitudinal Profiles

Deviations from the typical concave-up shape of stream longitudinal profiles, such as knickpoints or

convex segments, indicate a disequilibrium state resulting from tectonic, base-level or lithological

perturbations (Kirby and Whipple, 2001; Chen et al., 2003; Troiani and Della Seta, 2008; Pedrera305

et al., 2009; Font et al., 2010). The normalized steepness index (ksn) is widely used to investigate

tectonically-induced perturbations in river longitudinal profiles and has been used to propose patterns

of uplift (Kirby and Whipple, 2001; Wobus et al., 2006; Whittaker et al., 2008). The relationships

between slope and catchment area which define the equilibrium state channel gradient are given by

Eq. 5 and 6 (Flint, 1974; Kirby and Whipple, 2001; Wobus et al., 2006):310

S = ks × A−θ (5)

with

ks =

(
U

K

) 1
n

(6)

where S is the local channel slope, θ is the channel concavity, ks is the steepness index, A is the

upstream drainage area, U is the rock uplift rate and K is the dimensional coefficient of erosion. As315

suggested by Wobus et al. (2006, and the references therein) a normalized steepness index ksn is

used, since ks and θ are strongly correlated.

In some cases, the upstream portions located above prominent knickpoints are associated with an

upper-relict landscape. Landscapes tend towards an equilibrium in which rivers are graded to sea

level or local base-level. Tectonic or climatically-induced base-level falls modify the equilibrium of320

the drainage. The result is an erosion wave propagating upstream and the areas not yet affected by the

erosion wave form an upper-relict landscape (e.g., Clark et al., 2005; Reinhardt et al., 2007; Pérez-

Peña et al., 2015). The reconstruction of the original stream profile downstream of the convexity

provides an estimate for the amount of base-level change and subsequent incision (Schoenbohm

et al., 2004; Clark et al., 2005; Gallen et al., 2013). To reconstruct the original stream profile, we325

used the power law between slope and distance defined by Eq. 7 (Hack, 1957):

S = i × D j (7)

S is the local channel slope and D is the distance from the drainage divide. Parameters i and j are

obtained by regressing the upper segment of the stream profile in a logarithmic plot of slope against

distance.330

We analyzed river longitudinal profiles using TecDEM (Shahzad and Gloaguen, 2011a). Normal-

ized steepness indices were computed from Eq. 5 using regressions of slope versus catchment area

in logarithmic plots with a given reference concavity θref = 0.45 (Kirby and Whipple, 2001; Wobus

et al., 2006). Prominent knickpoints or convex anomalies can be observed directly on river longi-

tudinal profiles. However, logarithmic plots of slope against catchment area allow a more detailed335
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analysis, as minor anomalies in the gradient of rivers can be easily detected. For each longitudinal

profile, we selected and regressed several segments delimited by changes in the gradient of the river.

We then plotted regressed segments and their assigned ksn values on a map. The reconstruction of

stream profiles was done by regressing the segments located upstream of knickzones in logarith-

mic plots of the slope against the distance (Eq. 7). We used a Matlab-based script implemented in340

TecDEM by Andreani et al. (2014).

The integer format of DEMs locally produces multiple flats with zero slope, which cannot be

handled in logarithmic plots (e.g., Kirby and Whipple, 2001; Wobus et al., 2006). This issue is com-

monly solved by smoothing extracted river profiles (Wobus et al., 2006). However, this may induce

bias in extracted geomorphic indices, especially for segments located close to major knickpoints.345

In this study we smoothed extracted river profiles using a 20 pixels (ca. 600 m) moving window.

We used a bootstrapping approach in order to address uncertainties related to both DEM artifacts

and methods (Andreani et al., 2014). Linear regressions used to compute both normalized steepness

indices and reconstruction of stream profiles are based on subsamples. Typically, we randomly se-

lected from logarithmic plots 75 % of the points corresponding to the analyzed segment in order to350

obtain 500 subsets. We then performed a regression on each subset. We obtain the mean values as

well as a range for both normalized steepness indices and reconstructed profiles.

3.5 Isobase Maps from Rivers

The spatial distribution of stream height (isobase map) is a useful proxy for investigating geologic

or tectonic processes (e.g., Dury, 1952; Filosofov, 1960; Golts and Rosenthal, 1993; Grohmann355

et al., 2007, 2011). Drainage networks are commonly organized according to Strahler (1957) stream

order. According to Golts and Rosenthal (1993) streams of similar orders are of similar geological

age and are related to similar geological events. Hence the interpolation of isobase lines, which

connect streams with a similar order, produce a surface resulting from the same erosional events. As

suggested by Grohmann et al. (2011), isobase maps can be seen as a smoothed version of the original360

topographic surface, from which was removed the ‘noise’ of the 1st Strahler order streams erosion.

Sharp topographic changes affecting an isobase surface were used to infer potential structures or

uplifted blocks associated to tectonic movements (e.g., Golts and Rosenthal, 1993; Grohmann et al.,

2007; Domínguez–González et al., 2015).

Isobase maps were computed using the drainage network extracted from the 30 m resolution365

SRTM data (see section 3.3). Using SAGA GIS software we selected streams with a Strahler or-

der ≥ 2 and we interpolated the elevations from extracted rivers using a natural neighbor method.
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4 Results

4.1 Swath topographic profiles

We analyzed the topography of the Sierra Madre de Chiapas and Maya Mountains along five swath370

profiles (location in Fig. 5a). For each profile (Fig. 6) we extracted the minimum, mean and max-

imum elevation along the swath. We estimated the local incision by subtracting the maximum and

minimum elevation. We also plotted the annual averaged precipitation derived from the Tropical

Rainfall Measuring Mission (TRMM, Fig. 5b). Processed TRMM data for the 1998-2009 period are

provided by Bookhagen (2009). Swath profiles 1 to 3 (Fig. 6) are perpendicular to major mountain375

belts and faults in the Sierra Madre de Chiapas. The fourth one (profile 4 in Fig. 6) intersects the

volcanic arc, the Sierra de los Cuchumatanes and the Petén basin. The last profile (Fig. 6) displays

main topographic trends across the Maya Mountains and the Yucatán platform.

4.1.1 Sierra Madre de Chiapas

The Chiapas Massif (profiles 1 to 3, Fig. 6) dominates the pacific coastal plain. Its SW boundary is380

abrupt and corresponds to the linear trace of the Tonalá shear zone. The topography of the Chiapas

Massif increases from 1500 m to 3000 m toward the SE. River incision (green curves in Fig. 6) in-

creases significantly southward (from ∼700 m to ∼1500 m). The range appears strongly asymmetric

in profiles 1 and 2. The drainage divide (indicated by a peak in minimum elevations) is located close

to the trace of the Tonalá shear zone. The SW flank facing the Pacific coastal plain is steep while385

the opposite side of the range is gently dipping towards the NE. The curve for minimum elevations

also indicates that rivers flowing towards the inner part of the Sierra Madre de Chiapas have a gentle

gradient in comparison with those flowing into the Pacific.

The Central Valley (profiles 2 and 3, Fig. 6) corresponds to a ∼40 km wide depression. Despite a

mean elevation of ∼600 m the local incision appears to be less than 100 m. The topographic scarp390

associated to the Concordia fault is barely marked. In contrast, La Venta fault and the Tuxtla fault

delimitate a ∼1500 m topographic high (referred as “La Venta block”, profile 1 in Fig. 6) which acts

as a barrier for rivers coming from the Chiapas Massif.

In profile 1, the Tuxtla and Malpaso faults represent the boundary between the La Venta block and

the Chiapas fold–and–thrust–belt. In profiles 2 and 3 The Tuxtla fault represents the limit between the395

Central Valley and two topographic highs: the Sierra de Chiapas and the Comitán High. The Sierra

de Chiapas forms an impressive bulge which dominates both the Central Valley and the Chiapas

fold–and–thrust–belt. Its central area is relatively flat and culminates at ∼2500 m. The topography

of the Comitán High is flat with very low incision by the drainage network and the mean elevation is

∼1600 m. This flat surface is limited to the east by a topographic high (referred as “Leyva Velázquez400

block”, profile 3 in Fig. 6) which belongs to the Chiapas fold–and–thrust–belt. While in profile 1 the

12



elevation of the fold–and–thrust–belt is constant, in profiles 2 and 3 the topography of the belt is

asymmetric and elevations gently decrease toward the flat Tabasco coastal plain.

Peaks in precipitation indicate orographic effects along the Pacific side of the Chiapas Massif

(profiles 1 to 3 in Fig. 6) and along the northern part of the Chiapas fold-and-thrust belt (profiles405

1and 2 in Fig. 6). However, the shadowing effect of these ranges appear limited as we observe no

significant drop in the amount of precipitation between the inner parts of the Sierra Madre de Chiapas

and suroounding areas (Pacific coast and Tabasco coastal plain).

4.1.2 Volcanic arc and Sierra de los Cuchumatanes

In profile 4 (Fig. 6) the volcanic arc domain appears as an uplifted plateau with elevations reaching410

3500 m. The curve for minimum elevations indicate that the main drainage divide is located close to

the NE limit of the volcanic arc. Rivers flowing towards the Pacific deeply incised the volcanic arc as

the local incision reaches up to 2500 m. We also observe an orographic effect on precipitation. The

region beyond the volcanic arc consists in a relatively flat depression which may in fact represent

a back-arc plateau (profile 4 in Fig. 6). The shadowing effect of the surrounding ranges does not415

result in significantly dryer conditions. Precipitation within the depression range between 1000 and

1500 mm/yr while they range between 1500 and 2000 mm/yr along the Pacific coast and Petén

basin. This area shows a moderate incision by the drainage network in comparison with the volcanic

arc and the Sierra de los Cuchumatanes. The curve for minimum elevations suggests a significant

base-level drop between rivers flowing within the inner part of the back-arc plateau and the drainage420

associated to the Polochic fault trace.

The Sierra de los Cuchumatanes (profile 4 in Fig. 6) is bounded by two impressive scarps as-

sociated to the Polochic and Ixcán faults. The Sierra de los Cuchumatanes is also deeply incised

with local incision values up to 1500 m. The general topographic trend of the range, with higher

elevations along the Polochic fault, suggests a tilt towards the NE. The asymmetry of the drainage is425

possibly related to the tilt of the range or to an orographic effect (or to a combination of both factors).

However, the peak in precipitation is located along the Ixcán fault. In spite of a SW gradient (from

2500 to 1500 mm/yr), most of the Sierra de los Cuchumatanes receives as much as rain as the Petén

basin (2000 mm/yr). Finally, the flat and regular topography of the Petén basin contrasts with the

elevated and incised topography of the others areas.430

4.1.3 Maya Mountains

In topographic profile (profile 5 in Fig. 6) the Maya Mountains are delimited by two major scarps

related to the NE-trending Southern Boundary fault and the two NE- and E-trending Northern bound-

ary faults. The topography of the Maya Mountains is asymmetric and the range appears slightly tilted

towards the NW. The main drainage divide as well as highest elevations (up to 1000 m) are located435

close to the Southern Boundary fault. As indicated by the curve for local incision (profile 4 in Fig. 6),
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the areas located East of the main drainage divide are more eroded (up to 750 m of incision) in com-

parison with the areas located on the other side of the drainage divide were the main river incised

the initial topography by 300 to 400 m. We also observe a drop in the amount of precipitation ( from

2500 to 1500 mm/yr) along the southern side of the Maya Mountains.440

The topography of the Yucatán platform (profile 4 in Fig. 6) appears to be controlled by the NE-

trending Eastern Yucatán Fault Zone. The faults are located within a ∼80 km wide corridor and

delimitate tilted blocks. Highest elevations and incisions are located close to the fault traces and

decrease towards the NW. The inner part of the Yucatán platform (located west of the fault zone) is

characterized by a well defined and continuous surface. This surface is poorly incised (local incision445

is less than 100 m) and appears to be tilted towards the NW.

4.2 Morphometric maps

The hypsometric integral values (Fig. 7a) appear to be essentially controlled by tectonic features.

Highest values are mainly found along fault-related topographic scarps while lowest values are lo-

cated within depressions and flat areas. In Chiapas region areas such as the coastal plain, the Central450

Valley and the inner part of the Comitán High are associated to low hypsometric integral values

(HI≤0.35). These are flat areas as seen in swath topographic profiles. Both the Tonalá shear zone

and the Tuxtla fault scarps are highlighted by higher values (HI>0.35). However hypsometric inte-

gral values are significantly greater for the Tuxtla fault scarp (HI>0.55).

The structural control is also obvious in some other regions. The mountain belt north to the455

Polochic fault displays rather high hypsometric values. Within the extensional province of Central

America, structures such as the Ipala, Comayagua and Sula grabens are associated to hypsometric

lows. The pattern of hypsometric values also highlights the N- to NE-trending lineaments of the

Eastern Yucatán Fault Zone (e.g., Rio Hondo fault) which are located along the Belize margin.

The surface roughness map (Fig. 7b) reveals the location of strongly incised areas as well as flat460

surfaces. Peak values (>1.07 in Fig. 7b) are essentially found along the central and southern part of

the Tonalá shear zone, the NW tip of the Central America volcanic arc, the mountain belt located

north to the Polochic fault (e.g., Sierra de los Cuchumatanes) and Las Minas range (located between

the Motagua and Polochic faults). These areas are both elevated (altitudes comprised between 2500

and 4000 m) and strongly eroded. As seen in our swath topographic profiles (Fig. 5), the difference465

in elevation between ridges and valley floors (local incision) is comprised between 1500 and 2500 m.

Intermediate surface roughness values (1.03 to 1.07 in Fig. 7b) are mainly found within the inner

part of the Chiapas fold–and–thrust–belt, along the eastern part of the Maya mountains and within

the grabens of Central America.

As for hypsometry, the distribution of surface roughness values in the extensional province is470

structurally controlled. Lowest values highlights graben floors while highest values correspond to

horsts. Lowest surface roughness values (<1.03 in Fig. 7b) emphasize flat (i.e. low amplitude) land-

14



scapes. Some of these areas (e.g., Central Valley of Chiapas, Comitán High) correspond to elevated

surfaces and plateaus observed in swath topographic profiles (Fig. 5).

Surface roughness and hypsometric integral do not allow to discriminate low relief landscapes475

according to their topographic elevations. For this purpose we use two additional geomorphic in-

dices: the relief anomaly (Fig. 8a) and the surface index (Fig. 8b). Both maps give similar results

regarding the distribution of elevated and low relief landscapes, which are identified by the highest

relief anomaly values (> 16) in Fig. 8a and by positive (0 to 0.5) surface index values in Fig. 8b.

Within the Sierra Madre de Chiapas, elevated and low relief landscapes are mainly located within480

the Central Valley of Chiapas and the areas located east of the Tuxtla fault (Sierra de Chiapas and

Comitán High). The drainage system of the Chiapas Massif (consisting of large and flat valleys) is

also highlighted. The two maps also show the extend of the elevated plateaus located at the northern

tip of the Central America volcanic arc as well as the relatively flat landscapes of the Petén basin

and Yucatán platform. In other areas, the distribution of the low relief landscapes appears more frag-485

mented. This is the case for the areas located between the Ixcán and Motagua faults, where our maps

highlight the remnants of the Mayan paleosurface described by Brocard et al. (2011).

We propose to compare the distribution of geomorphic indices (Fig. 7 and 8), precipitation data

(Fig. 5a) and geological contours (Fig. 1b) within the Sierra Madre de Chiapas. Our aim is to detect

possible effects of climate or lithology on the location of incised areas and low relief surfaces. At490

first glance, peaks in precipitation (Fig. 5a) seem to coincide with more rugged topography (along

the Pacific coast, the northern Sierra de Chiapas and the eastern part of the Sierra de los Cuchu-

matanes). However, peaks in precipitation are located at the limits of the orogenic belt while the

rugged topography extends inward the Chiapas orogen. On top of that, some areas display a rugged

topography in spite of relatively low precipitation (e.g., west of the Sierra de los Cuchumatanes) and495

vice-versa (e.g., eastern part of the Chiapas fold-and-thrust belt). To compare the distribution of pre-

cipitation and geomorphic indices, we randomly selected 20000 points within the Sierra Madre de

Chiapas. For each point we extracted the corresponding pixel values from surface roughness, surface

index, hypsometric integral, local relief and precipitation maps. We then compared the distribution

of the values using scatterplots (Fig. 9). The co-linearity of the scatterplots was estimated using the500

Pearson correlation coefficient (PCC). PCC values vary between +1 and -1 (1 is total positive corre-

lation, 0 is no correlation, and -1 is total negative correlation). PCC values for plots of precipitation

against several geomorphic indices (Fig. 9) suggest no significant correlation between the amount of

precipitation and the ruggedness of the landscape.

We also compared the distribution of geomorphic indices for different geological units. We made505

three sets of points located within the Sierra Madre de Chiapas. Each set of points corresponds to

one of the main geological units of the Sierra Madre de Chiapas: the Paleogene terrigenous deposits,

the Cretaceous limestones and the Permian granodiorite of the Chiapas Massif (Fig. 2). For each

point we extracted the corresponding surface roughness, surface index, hypsometric integral and
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local relief value. Histograms in Fig. 10 reveals slight changes in the distribution of the geomorphic510

indices which may be related to an effect of lithology. Cretaceous carbonates show lower surface

roughness values when compared to Paleogene deposits or Permian rocks. Most of the Permian

granodiorite display negative surface index values. Cretaceous carbonates show slightly lower Local

relief and higher hypsometric integral values.

4.3 River longitudinal profiles515

Topographic uplift, subsidence or climatically-induced sea-level changes, modify the base-level of

rivers and result in the progressive erosion or rejuvenation of pre-existing topographic features

through time. Thus, the analysis of deviations from the typical concave-up shape of stream longitudi-

nal profiles (i.e., knickpoints or convex segments) is a suitable approach to explore these phenomena.

4.3.1 Tonalá Shear Zone and volcanic arc520

We analyzed 36 rivers draining the western flank of the Chiapas Massif and the Central America

volcanic arc (Fig. 11). We focused our analysis on the areas located between the main drainage

divide and the alluvial Pacific coastal plain. Longitudinal profiles were extracted from the modeled

drainage network (Fig. 11 and 12).

Figure 12 displays characteristic stream profiles. Longitudinal profiles 6 and 15 (Fig. 12) are rep-525

resentative of main trunk rivers located upstream of the Tonalá Shear Zone (streams and catchments

1 to 17 in Fig. 11). The shear zone marks the boundary between the Permian batholith of the Chia-

pas Massif to the northeast and the Pacific coastal plain to the southwest. Two third of the analyzed

rivers display a rather smooth and graded longitudinal profile with a single concave segment (such as

profile 6 in Fig. 12). The remaining rivers display a gentle knickzone which separates two main seg-530

ments (such as profile 15 in Fig. 12). Profiles 23 to 36 (Fig. 11) drain the Central America volcanic

arc domain. Half of the analyzed rivers display a prominent knickzone (such as profile 24 in Fig. 12)

which separates a gently concave upper reach from a steeper lower reach. Profiles 18 to 22 (Fig. 11)

are located within a transition zone between the two previous regions, where the NW-trending Tonalá

Shear Zone connects to the E-trending Polochic fault system along a WNW-tending fault zone. The535

longitudinal profiles of streams 21 and 22 display two main knickzones (see profile 21 in Fig. 12).

The upper knickzone extends a few kilometers upstream of the fault which makes the junction be-

tween the Tonalá Shear Zone and the Polochic fault system. However, the lower knickzone appears

more prominent and thus seems to be associated to a larger base-level change.

We extracted two parameters from analyzed longitudinal profiles in order to illustrate the along-540

strike changes in the geometry of rivers. The first one is the steepness index (ksn) extracted from

logarithmic plots of slope against area (see examples in Fig. 12). Graded profiles show a single ksn

value while non-equilibrated profiles are characterized by changing ksn values associated to several

segments. In this latest case we considered the ksn value of the lowermost segment as it is the one
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along which rivers adjust to new base-level conditions (e.g., Kirby and Whipple, 2001; Wobus et al.,545

2006; Whittaker et al., 2008). The second parameter is the estimated base-level change. If the profile

displayed a well defined upper reach, we projected the segment located above the knickzone using a

logarithmic plot of slope against distance (see equation 7). We then estimated the base-level change

according to the difference in elevations between the projected and the actual profiles at the outlet

(see examples in Fig. 12).550

Both ksn values and estimated base-level changes were plotted along a profile passing through the

outlets of the analyzed catchments (Fig. 11). The results suggest a substantial alongstrike increase

in ksn values, from ∼100 along the northern tip of the Chiapas Massif to >200 along the volcanic

arc. Estimated base-level changes seem to be low for the Chiapas Massif (<200 m) but increase

significantly along the southern tip of the Tonalá Shear Zone (where it connects to the E-trending555

Polochic fault) and are higher within the volcanic arc (1000 to 2000 m).

4.3.2 Grijalva river

The Grijalva river (profile 1 in Fig. 13) flows from the northern tip of the volcanic arc towards the

Tabasco coastal plain. Two main knickzones are located upstream of the Necta fault. They mark

the transition between the elevated volcanic arc plateau, the back-arc domain and the local base-560

level of the central depression of Chiapas. The reconstructed profile made using the segment located

above the lowest knickzone suggests a ∼500 m base-level fall between the back-arc domain and the

central depression of Chiapas. Segments located within the central depression of Chiapas (between

the Necta and Tuxtla faults) and the Tabasco coastal plain display a lower gradient in comparison

with those located upstream of the Necta fault. Despite numerous artifacts related to hydroelectric565

dams (e.g., La Angostura, Chicoasén and Malpaso dams) and canyons (e.g., Sumidero), we can

infer a major knickzone located between the Tuxtla fault and the Chicoasén dam. We attempted to

infer the geometry of the Grijalva river profile using the segments upstream and downstream of the

flooded areas. The segments of the river upstream and downstream of La Angostura dammed lake

could be fit by the same regression in a logarithmic plot of slope vs area (see profile 1 in Fig. 13).570

We are confident that no knickpoints are hidden below this dammed lake otherwise it would have

been witnessed by a change in gradient of the river). In contrast, the gradient of the river upstream

and downstream of the Chicoasen dammed lake differ and can not be fit by a single regression. The

gradient of the Grijalva river is 200 m between the Tuxtla fault and the Chicoasén dam (∼30 km

apart) while it is less than 50 m between La Angostura dam and the Tuxtla fault (∼60 km apart).575

We thus suspect that the Chicoasen dammed lake hides a major flooded knickzone which marks a

∼350 m base-level fall between the central depression of Chiapas and the Tabasco coastal plain. For

the Malpaso and Peñitas dam the gradient of the river became too low and the scatter in slope-area

data too high to make such tests.
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The Seleguá river (profile 2 in Fig. 13) is a right bank tributary of the Grijalva river which flows580

from the southern tip of the Sierra de los Cuchumatanes into the central depression of Chiapas. A

prominent knickzone is observed upstream of the Polochic fault. This knickzone separates an upper

segment with a gentle gradient (ksn < 50) from a lower and much steeper (ksn > 300) segment.

The upper segment is associated to the relicts of the Mid-Miocene Mayan paleosurface which is

preserved on top of the Sierra de los Cuchumatanes (Authemayou et al., 2011). Downstream of the585

Polochic fault the profile displays an overall convex shape related to numerous knickzones. The

lowermost segment is located within the central depression of Chiapas and shows a gentle gradient.

Longitudinal profiles 3 to 5 (Fig. 13) are from left-bank tributaries located within the Chiapas

Massif. Longitudinal profile 3 (southern tip of the Chiapas Massif) display two prominent knick-

zones. The upper knickzone is located close to the drainage divide and separates an upper segment590

with a gentle gradient (ksn < 75) from a lower and much steeper (ksn > 150) segment. The lower

knickzone is more gentle and located downstream of the Necta fault trace. Profiles 4 and 5 intersect

the lineament made by La Venta and Concordia faults. In both profiles the upper reach (60 to 80 km

from the drainage divide) is gently concave (ksn values around 30). The upper segment are limited

downstream by a knickzone which correspond both to the boundary between the Chiapas Permian595

batholith and the Cretaceous/Tertiary sedimentary cover and to La Venta–Concordia lineament. In

both profiles the knickzone is associated to canyons as the river incised through the sedimentary

cover (mainly Cretaceous limestones). In profile 4 this knickzone marks a minor base-level fall (ap-

proximately 50 m) between the upper reach and the central depression of Chiapas. In profile 5 the

knickzone is associated to a major base-level fall as the lower reach connects to the portion of the600

Grijalva river which is in equilibrium with the base-level of the Tabasco coastal plain. The recon-

struction of the upper reach suggests approximately 200 m base-level fall. However, the lower part

of the tributary is flooded by the Malpaso dammed lake and the real base-level fall could be higher.

4.3.3 Sierra de Chiapas

Figure 14 displays river longitudinal profiles from the northern part of the Sierra de Chiapas. Profiles605

1 to 3 are characteristic of the tributaries of the Grijalva river flowing across the Tuxtla fault. Almost

all longitudinal profiles display prominent knickzones located upstream of the fault scarp. Upper

reaches display either a smooth concave shape (as in profiles 1 and 3, Fig. 14) or a convex shape (as

in profile 2). Convex upper reaches are mainly observed in the areas where the fault trace intersect

volcano-sedimentary deposits related to Plio-Quaternary volcanoes or in the area where the fault610

trend change from NW to NNW. The lower reaches are strongly concave and are associated to

higher ksn values. Reconstructions of upper reaches (profiles 1 and 3 in Fig. 14) suggest a 500 to

800 m base-level change along the Tuxtla fault scarp.

Longitudinal profiles 4 to 6 are located within the northern parts of the Sierra de Chiapas. They are

complex, as rivers flow through the E-trending left-lateral faults and then through the NW to NNW-615
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trending structures of the Chiapas fold-and-thrust belt. As a result, these profiles display several

knickzones (e.g., profile 4 in Fig. 14). However, the upper knickzones are more prominent as they

mark a sharp transition between the uppermost segments characterized by gentle gradients and low

ksn values (<100) and the lower segments which show steeper gradients and higher ksn values

(between 150 and 250). Reconstructions of upper reaches suggest a 700 to 1100 m base-level change620

with respect to the Grijalva river (profiles 5 and 6 in Fig. 14) or the Tabasco coastal plain (profile 4

in Fig. 14).

4.3.4 Steepness index map

The analysis of river longitudinal profiles shows that major base-level changes (i.e., higher than

100 m) are associated to prominent knickzones and to a substantial increase in steepness index (ksn)625

values. We propose thus to map the variations of ksn values within the Sierra Madre de Chiapas in

order to assess the locations of main drainage network perturbations. We computed ksn values from

extracted river profiles using a 5 km moving window. We then interpolated obtained values using a

natural neighbor (NN) method. The result is shown in Figure 15.

The overall distribution of ksn appears to be tectonically controlled, as highest values are found630

close to major tectonic features. In Chiapas highest ksn values (>150 in Fig. 15) are mainly dis-

tributed along the Tuxtla fault, the E-trending strike slip faults of the Sierra de Chiapas and the

portion of the fold-and-thrust belt located north of the Sierra de Chiapas. Areas located along the La

Venta fault and the Tonalá Shear Zone display intermediate ksn values (90 to 120). Uniformly low

ksn values suggests that most of the tributaries of the Grijalva river flowing in the northern part of635

the Chiapas Massif and the Central Valley of Chiapas share a common base-level.

To the south, the Polochic fault exerts a strong control over the drainage network. The Sierra de los

Cuchumatanes and the SE tip of the Chiapas Massif (limited by the Polochic fault to the south and

the Ixcán and Necta faults to the north) display especially high values (>180). By contrast, most of

the areas located south of the Polochic fault are associated to lower ksn values (<150). Lowest ksn640

values (<90) are found within the back-arc region and the graben of Guatemala City. The last area

displaying high ksn values (>180 in Fig. 15) corresponds to the SW flank of the Central America

volcanic arc where rivers are affected by a very steep topographic gradient.

4.3.5 Maya mountains

We analyzed the drainage network of the Maya Mountains using a map of isobases from rivers645

and several longitudinal profiles (Fig. 16). Longitudinal profiles 1 to 5 (Fig. 16) are part of the

Belize river watershed, which drain the northern and western side of the Maya Mountains. All these

profiles display prominent knickpoints which mark the transition between the upper reaches which

are usually gently concave and the lower segments which are either concave with a steeper gradient

or convex. The knickpoints are located upstream of the ENE- to E-trending Northern Boundary fault650
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for profiles 1 to 3 (Fig. 16) and upstream of a NE-trending fault zone in profiles 4 and 5 (Fig. 16).

The reconstructed profiles made using the upper reaches suggest that the drainage network faced a

300 to 500 m base level change.

Profiles 6 to 9 (Fig. 16) are located in the southern and eastern parts of the Maya Mountains

and flow directly into the Caribbean sea. Only southernmost profiles display prominent knickpoints655

which delimitate a well defined upper reach (e.g., profile 6 in Fig. 16). These knickpoints are located

upstream of the NE-trending Southern Boundary fault and a ENE-trending fault zone. By contrast,

most of profiles located along the eastern side of the Maya Mountains display an almost smooth and

concave shape such as profile 7 (Fig. 16). In particular, there is no significant change in the gradient

of the rivers along the Southern Boundary fault. However, in some cases a knickpoint associated to a660

relict upper reach is found close to the drainage divide (profiles 8 and 9 in Fig. 16). The reconstructed

upper reaches in profiles 5 and 8 (Fig. 16) suggest a 500 m base level change.

Isobases from rivers (Fig. 16) allows to summarize the geometry of the drainage network. Within

the Maya Mountains, the isobase surface forms a roughly sigmoidal-shaped plateau. Spaced contour

lines indicate gentle gradient in rivers flowing in the central part of the range. The top of the isobase665

surface is more elevated (>800 m) in the southern part of the Maya Mountains (between 16.30◦N

and 16.60◦N) where it forms a flat structural high delimited by two parallel ENE-trending fault

zones. North of 16.60◦N, the top of the isobase surface rather forms a tilted panel, with elevations

decreasing towards the NW (from ca. 700 m to ca. 400 m). The isobase surface of this tilted panel is

almost flat but the drainage network of the Macal river (stream 3 in Fig. 16) appears entrenched with670

elevations ca. 200 m below the average elevation of the isobase surface. This can also be observed

in swath profiles (Fig. 6) crossing this drainage basin. The western and northern sides of the tilted

northern panel are controlled by major structures, as indicated by sharp isobase gradients associated

to a NE-trending fault zone and to the ENE- to E-trending Northern Boundary fault. Areas located

along the northern segment of the Southern Boundary Fault appear significantly incised and the top675

of the isobase surface is located ca. 25 km East of this fault.

5 Discussion

5.1 Equilibrium of landscapes

The evolution of landscapes results from complex interactions between climatic and tectonic pro-

cesses (e.g., Hack, 1960; Willett and Brandon, 2002; Matmon et al., 2003; Pazzaglia, 2003; Ferrater680

et al., 2015, and the references therein). Recent tectonic or climatically-induced base-level fall are

associated to the propagation of an erosion wave, which represents the limit between an upper-relict

landscape and a lower adjusting zone (e.g., Reinhardt et al., 2007; Pérez-Peña et al., 2015). As a

result, relict portions of landscapes (i.e., where uplift is not yet counterbalanced by fluvial erosion)
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may persist though time (e.g., Burbank and Anderson, 2001; Clark et al., 2005; Legrain et al., 2014;685

Giletycz et al., 2015).

Previous works indicate the occurrence of such relict landscapes along the Polochic-Motagua

fault system and within the Chortis block (western corner of the Caribbean plate). Rogers et al.

(2002) interpreted the topography of the northern Central America highlands (east of the modern

volcanic arc and south of the Motagua fault) as an uplifted ignimbritic plateau (Fig. 17). More690

recently, Brocard et al. (2011) and Authemayou et al. (2011) described a relict Middle Miocene

planation surface (the so-called ‘Mayan paleosurface’) which covered most of the areas between

the Ixcán and Motagua faults (Fig. 17) and was subsequently uplifted and deformed. Our results

suggest that relict landscapes are also preserved within the Sierra Madre de Chiapas and Maya

Mountains. Topographic profiles (Fig. 5 and 6) and both relief anomaly and surface index maps695

(Fig. 8) highlight elevated areas which are characterized by a low amplitude relief. These areas are

surrounded by more dissected landforms which are characterized by high surface roughness values

(Fig. 7). The surface index map (Fig. 8) shows very well this dual distribution of elevated and low

relief (positive values in Fig. 8) and dissected (negative values in Fig. 8) landforms. This is a clear

indication that landscapes within the Sierra Madre de Chiapas and Maya Mountains are in transient700

stage, and morphometric maps allows to discriminate between the areas forming part of an upper-

relict landscape and the propagating front of river incision. Moreover, river longitudinal profiles

display an upper reach associated to these relict landscapes while lower segments represent one or

several knickzones along which channels adjust to new base-level conditions.

Our results suggest a limited effect of climate. Within the Sierra Madre de Chiapas we found no705

clear correlation between peaks in precipitation and the distribution of rugged topography. There is

no scaling between the amount of precipitation and the ruggedness of the topography or the amount

of incision (Fig. 9). We observe a clear orographic effect on precipitation (swath profiles in Fig 6).

This effect is confined to the borders of the orogen and may locally be superimposed to a rugged

topography. However the incision by the drainage network extends more inward where precipitation710

are no significantly different from the surrounding coastal plains. The erosion is related to the uplift

of the Sierra Madre de Chiapas rather than to a change in climatic conditions. Indeed, recent studies

suggest a dominance of tectonics over climate in the denudation of active mountain ranges (e.g.,

Godard et al., 2014; Fuchs et al., 2015). There is a possible effects of lithology on the location

of incised areas and low relief surfaces. The distribution of morphometric indices suggests slight715

changes related to lithology (Fig. 10). Lower surface roughness and local relief values observed in

Cretaceous limestones are probably related to karst processes. The fact that a part of the drainage is

subterranean may have contributed to the extensive preservation of La Venta and Sierra de Chiapas

elevated plateaus. By contrast in other areas where bedrock erosion prevail (for instance within the

Paleogene terrigenous deposits of the northern Sierra de Chiapas) elevated relict landscapes have720

been deeply incised.
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We attempted to map the distribution of elevated relict landscapes from northern Central America

(Fig. 17). The surface index and relief anomaly maps (Fig. 8) highlights well areas where elevated

and low relief surfaces are extensively preserved and provide thus a good basis for mapping the ex-

tend of relict landscapes. In some areas where elevated surfaces are incised by the drainage network725

and for the Chiapas Massif where surfaces are nested between ridges, we refined our map using

slopes and topographic contours derived from the SRTM data.

Relict landscapes from the Sierra Madre de Chiapas can be divided in four main domains. The

westernmost domain consist in a monadnock-type landscape which developed over the Chiapas Mas-

sif (Fig. 17). In morphometric maps, this area is characterized by low hypsometric integral and sur-730

face roughness values (Fig. 7). In fact, these geomorphic indices respond to an extensive system of

large and relatively flat valleys. The drainage system appears in steady-state as rivers display smooth

concave profiles and low ksn values (upper segments of profiles 4 and 5 in Fig. 13). The isobase sur-

face of the rivers is almost flat (see curves for minimum elevations in swath profiles 1 and 2, Fig. 5).

Such low gradients are characteristic of lowland alluvial rivers. We interpret the topography of the735

Chiapas Massif as the result of a sustained erosion which resulted in the development of a low relief

surface and a system of alluvial valleys. In other words, the Permian batholith of the Chiapas Massif

and its sedimentary cover were incised until rivers reached an almost flat and steady-state base-level.

However, this isobase surface is now located ∼400 m above the present-day sea level. We suspect

thus that the topography of the Chiapas Massif was much lower than it is today and that it has been740

subsequently uplifted.

The large valleys of the Chiapas Massif connects to the east to two morphological domain: the

Central Valley of Chiapas and La Venta plateau (Fig. 17). The eastern boundary of these two domains

corresponds to the Tuxtla and Malpaso faults. The Central Valley of Chiapas consists in gently folded

tertiary sediments. The topography of this area is smooth as suggested by high relief anomaly (Fig. 8)745

and low surface roughness (Fig. 7) values. However, high hypsometric integral values along the

Grijalva river reflect an entrenchment of the drainage network. The canyons are filled by the water

of La Angostura dammed lake but their depth probably did not exceeded 150 m. The Mesozoic

carbonates of La Venta plateau were uplifted and gently tilted along La Venta and Tuxtla faults. This

area is also associated to an entrenchment of the drainage network. The analysis of river longitudinal750

profiles (Fig. 13) suggests a ∼350 m base level change between the inner part of the Sierra Madre de

Chiapas and the Tabasco coastal plain. We relate the entrenchment of the drainage network within the

Central Valley of Chiapas and La Venta plateau to the uplift of the areas located between the Tuxtla

fault and the Tonalá shear zone. This uplift resulted in an erosional wave propagating upstream

within the drainage of the Grijalva river.755

The last domain encompasses the elevated plateaus east of the Tuxtla fault (Comitán High and

Sierra de Chiapas, Fig. 17). The northwest part of this plateau is heavily incised as shown by high

surface roughness values (Fig. 7). By contrast, the areas south of the Tectapan fault appear to be less
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dissected. In spite of elevations up to 2400 m, surface roughness values (Fig. 7) remains low. Indeed,

the top of the plateau is associated to a low relief topography which is disrupted by incisions along the760

E-trending faults. These differences are probably related to several factors, including lithology (the

southern areas consist mainly in Mesozoic carbonates with subterranean drainage limiting surface

erosion), climate (the northern areas may receive more precipitation from the Gulf of Mexico), and

local base-level changes. The analysis of river longitudinal profiles (Fig. 13) suggests a ∼500-700 m

base level change along the Tuxtla fault and ∼700-1100 m in the northern part of the Sierra de765

Chiapas.

The age of the relict landscapes in Sierra Madre de Chiapas is unknown. Thermochronological and

stratigraphic evidence suggest two main periods of topographic growth. The first one occurred dur-

ing the middle Miocene (16-10 Ma) and the latest one started during the late Miocene-Pliocene and

is still ongoing (Guzmán-Speziale and Meneses-Rocha, 2000; Meneses-Rocha, 2001; Ratschbacher770

et al., 2009; Witt et al., 2012a). We assume that the relict landscapes of the Sierra Madre de Chia-

pas have developed following the middle Miocene phase of topographic growth. The development

of large alluvial valleys within the Chiapas Massif suggests that the Permian batholith and its sedi-

mentary cover were uplifted and significantly eroded until rivers reached an almost flat base-level.

Indeed, Witt et al. (2012a) show that the middle to late Miocene period is associated to marked in-775

crease in erosion of the Chiapas Massif and sedimentation within the basins of the Tabasco region.

The distribution of morphometric indices (Fig. 7) and the location of knickzones upstream of major

faults such as the Tuxtla fault (profiles 1 to 3 in Fig. 14) indicate that this late Miocene erosional

topography was subsequently uplifted and fragmented by tectonics. This probably happened during

the latest period of deformation (∼5 Ma to present). A middle Miocene age for the erosional topog-780

raphy of the Sierra Madre de Chiapas would be consistent with the timing of similar topographic

features, such as the so-called “Mayan paleosurface" which covered most of the Polochic-Motagua

sliver (Authemayou et al., 2011; Brocard et al., 2011). According to Brocard et al. (2011), this

widespread planation surface formed at low elevation during the middle Miocene (between 13 and

7 Ma).785

Our results show that most of the Maya Mountains consist in an elevated relict landscape (Fig. 17).

Geomorphic maps (Fig. 7 and 8) as well as isobases from rivers (Fig. 16) indicate that low relief

surfaces have been extensively preserved in the central and western parts of the Maya Mountains,

while the eastern part of the range has been more eroded. Most of the analyzed river longitudinal

profiles (Fig. 16) display an upper reach associated to these low relief surfaces. Here again, the age790

of this relict landscape is unknown. According to Purdy et al. (2003), uplift in the Maya Mountains

did not occur until late Neogene and perhaps no earlier than late Pliocene. The low relief surfaces

we observe in the Maya Mountains may have formed during the Middle Miocene as the Mayan

paleosurface. In the southern part of the range, the low relief surface of the Maya Mountains gently

dip towards the west and seems to connect to the flat topography of the Petén basin.795
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5.2 Morpho-tectonic interpretations

Landscapes from the Sierra de Chiapas and the Maya Mountains were fragmented and locally reju-

venated by tectonics. We propose to combine our topographic profiles (Fig. 5 and 6), geomorphic

maps (Fig. 7 and 8) and analyzed river profiles (Fig. 11 to 16) with published GPS and seismotec-

tonic data in order to locate main active deformation zones. We attempted to define coherent tectonic800

blocks (Fig. 18) in order to produce a comprehensive map of the plate boundary.

The Tonalá Shear Zone has been depicted as a relict left-lateral structure (Wawrzyniec et al.,

2005; Weber et al., 2005). Indeed, it shows no signs of seismic activity (Fig. 3b). However, the

differential motion between GPS stations ESPO and CONC (Fig. 18) suggests that the fault zone

currently accommodates a ∼2.5 mm.yr−1 ENE extension. Our geomorphic analyzes suggest that the805

landscapes of the Chiapas Massif are mostly in steady-state. However, the southern tip of the massif

displays evidence of topographic rejuvenation. River profiles crossing the northern segment of the

Tonalá Shear Zone (profile 6 in Fig. 12) show no major perturbations and indicate thus an equilibrium

between erosion and uplift. Towards the SE, river profiles display gentle knickzone associated to a

50-150 m base-level fall (profile 15 in Fig. 12). In the same area, Authemayou et al. (2011) observed810

that alluvial fans across the fault zone are affected by vertical offsets ranging between 15 and 60 m.

The base-level drop we observe in river profiles is thus related to a gentle uplift along the central

portion of the Tonalá Shear Zone. Finally, river profiles along the southern termination of the fault

zone (profile 21 in Fig. 12) exhibit prominent knickpoints and convex segments which indicate a

major disequilibrium. The ksn values increase southward along the Tonalá Shear Zone but in fact all815

the areas located between the Polochic fault and the Necta fault display high ksn values (Fig. 15).

Under constant climate and lithologies, the steepness index (ksn) correlates with uplift rates (e.g.,

Kirby and Whipple, 2001; Wobus et al., 2006; Kirby and Whipple, 2012). We suspect thus higher

uplift rates along the southern border of the Chiapas Massif (north of the Polochic fault and south of

the Necta fault). The Necta fault separates the northern domain, where the topography is almost in820

steady-state, from the southern domain, where landscapes are being rejuvenated due to an increase

in uplift rates. We propose to define a rigid block (referred as ‘Chiapas Massif sliver" in Fig. 18b)

delimited by the Tonalá shear zone to the west, by the La Venta and Tuxtla faults to the east and by

the Necta fault to the south. The Tonalá shear zone seems to accommodate a 2.5 mm.yr−1 extension

while the Tuxtla fault instead accommodates a 2.5 mm.yr−1 shortening (Fig. 18b).825

The northern tip of the Central America volcanic arc forms an uplifted plateau with a mean el-

evation of ∼3000 m. The drainage network developed prominent knickzones as it responded to

high-amplitude base level changes (Fig. 11 and 12 and ksn map in Fig. 15). The differential mo-

tion between GPS stations TPCH and SOL (Fig. 18) indicates a ∼5.8 mm.yr−1 NNE shortening

between the Pacific coastal plain and the Sierra de los Cuchumatanes. We also noted that the motion830

of GPS stations located along the volcanic arc (MAZ, CHL and SSIA in Fig. 18) is intermediate

between the Cocos forearc sliver and the Caribbean plate. From the motion of these GPS stations
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we infer a dextral fault zone bounding the southern edge of the volcanic arc. We suspect that the

volcanic arc acts as a tectonic sliver which accommodates a significant part of the motion between

the Cocos forearc sliver and the overriding plates. East of the Graben of Guatemala City, the sliver835

is possibly delimited by two right-lateral fault zones which accommodates each half of the motion

(∼13 mm.yr−1) between the Cocos forearc sliver and the Caribbean plate. West of the Graben of

Guatemala City, the volcanic arc sliver is pinned between the Cocos forearc sliver to the SW, the

Polochic sliver to the NE and the Chiapas Massif to the north (Fig. 18b). Though a 6.3 mm.yr−1

shortening is expected between GPS stations MAZ and JOY, we could not find a clear limit between840

this volcanic arc sliver and the Motagua sliver.

Within the Sierra Madre de Chiapas orogenic belt, most of the present day seismicity (Fig. 3b)

is located along the strike-slip faults of Chiapas, which delimitate the La Venta block (profile 1

in Fig. 5) and the northern part of the Sierra de Chiapas, and along the inner part of the Chiapas

fold-and-thrust belt, east of the Sierra de Chiapas and Comitán High uplifted domain. In addition,845

two historical events were documented within the Central valley of Chiapas: the 14 March 1591

(García-Acosta and Suárez-Reynoso, 1996; Peraldo and Montero, 1999; Guzmán-Speziale, 2010)

and the 23 September 1902 (Böse, 1903; Figueroa, 1973) earthquakes. Historical earthquakes of this

area were attributed either to the Concordia (Guzmán-Speziale, 2010) or to the Tuxtla (Andreani

et al., 2008a) faults. The differential motion between GPS stations CONC and SOLE suggests a850

∼2.5 mm.yr−1 NE-trending compression which is perpendicular to the azimuth of mapped faults.

Our geomorphic data suggest that the Tuxtla fault is more likely to have produced these earthquakes.

The Concordia fault trace is not associated to any major fault scarps and rivers display a rather

low degree of perturbation. By contrast the Tuxtla fault scarp displays a very young and prominent

morphology (high hypsometry and low surface roughness) and the drainage network responded to a855

significant base-level fall (>500 m, profiles 1 to 3 in Fig. 14). Moreover, major topographic uplift

took place east of the Tuxtla fault (Comitán High and the Sierra de Chiapas) where the elevation of

relict landscapes is between 1600 and 2400 m.

Finally, our results bring new evidence for topographic uplift within the Maya Mountains. Most

of the Maya Mountains consist in an uplifted low relief landscape. The isobase surface from rivers860

is more elevated in the southern part of the Maya Mountains. It suggests thus stronger uplift in the

south. The analysis of rivers longitudinal profiles is consistent with this interpretation. The recon-

struction of profiles made using the upper reaches (associated to the low relict surface) show that

rivers faced a ∼500 m base level fall in the south (profiles 6, 4 and 8 in Fig. 16). Northern rivers

(profiles 1 to 3 in Fig. 16) were affected by a lower (ca. 300 m) base level change. The topographic865

profile across the Maya Mountains and the Yucatán peninsula (Fig. 5) is consistent with a geometry

of blocks tilted towards the NW along NE-trending normal faults.
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5.3 Proposed model of the plate boundary

The proposed model for the North American–Caribbean–Cocos plate boundary is displayed in Fig. 19.

This model incorporate main ideas from previous works. East of 91◦W the dynamic of the plate870

boundary is guided by the eastward escape of the Caribbean plate. This motion results in sinistral

shear along the Polochic and Motagua slivers, dextral shear along the Jalpatagua fault and exten-

sion mainly concentrated along the grabens of Guatemala City and Ipala (Fig. 18b and 19; e.g.,

Lyon–Caen et al., 2006; Authemayou et al., 2011). Recent models of the triple junction also agree

on the fact that both North American and Caribbean plates are limited by a rigid forearc sliver875

to the west (Turner et al., 2007; Phipps-Morgan et al., 2008; Authemayou et al., 2011). The east-

ward escape of the Caribbean plate results in a counterclockwise rotation of the rigid forearc sliver

(Phipps-Morgan et al., 2008; Authemayou et al., 2011).

The interactions between the forearc sliver and the North American plate were summarized as

distributed compression north of the Polochic fault (Guzmán-Speziale and Meneses-Rocha, 2000;880

Andreani et al., 2008a; Witt et al., 2012b). Our interpretation, based on the characterization of ele-

vated relict landscapes and published geophysical data, is that the compression between the forearc

sliver and the North American is mainly absorbed at the boundary of small tectonic blocks which

act as ‘buffers’ (Fig. 18b). As a result, significant topographic uplift occurred along two narrow do-

mains. The first one encompasses the Sierra de Chiapas and the western tip of the Polochic sliver885

(Sierra de los Cuchumatanes) and the second one correspond to the northern tip of the volcanic arc

(Fig. 19).

Within the Sierra Madre de Chiapas, the distribution of highest relict landscapes (>1500 m) in-

dicates that significant topographic uplift occurred between the Tuxtla fault and reverse structures

located east of the Sierra de Chiapas and Comitán High. Our results and those of Authemayou et al.890

(2011) also provide evidence for vertical motions along the Tonalá Shear Zone. There are evidence

for a Miocene sinistral motions along the Tonalá Shear Zone and for Tuxtla and Malpaso faults

(Guzmán-Speziale and Meneses-Rocha, 2000; Witt et al., 2012b; Molina-Garza et al., 2015). How-

ever, the GPS data suggest a present-day ∼2.5 mm.yr−1 extension along the Tonalá Shear Zone and

a similar amount of compression along the Tuxtla fault (Fig. 18). These two opposite movements are895

possibly related to a counterclockwise rotation of the Chiapas Massif (Fig. 19) following a reorga-

nization of the subduction interface. The Middle Miocene to present evolution of the Sierra Madre

de Chiapas is associated to an inland migration of the Chiapanecan volcanic arc (Damon and Mon-

tesinos, 1978) resulting from a flattening of the subduction beneath southern Mexico (Manea and

Manea, 2006; Manea et al., 2013). This flattening would have resulted in higher coupling along the900

subduction interface, as suggested by Franco et al. (2012). As a result, the areas west of the Tuxtla

fault (which is located along most of the present day volcanic centers) became partially incorporated

into the forearc domain. This would explain why significant Plio-Quaternary topographic growth (>

1000 m) mainly occurred east of the Tuxtla fault rather than along the Tonalá Shear Zone.
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The compression between the rotating forearc sliver and the North American plate resulted in905

topographic uplift along the Sierra de los Cuchumatanes and the northern tip of the Central America

volcanic arc (Authemayou et al., 2011, this study). In existing models, the westernmost corner of

the Caribbean plate is stretched along NE-trending normal faults and the counterclockwise rotation

of the forearc sliver is associated to a zipping (i.e. a suture zone) between the inferred prolongation

of the Jalpatagua and Motagua faults (Authemayou et al., 2011; Franco et al., 2012). However, a910

suture zone between the Jalpatagua and Motagua faults may not fully explain why the volcanic arc

is uplifted, mainly because most of the elevated Volcanic arc plateau is located west of the area where

both faults would be zipped. To explain the atypical motions of GPS stations along the volcanic arc

and the topographic elevation of the plateau (MAZ, CHL and SSIA in Fig. 18a) we infer a fault

zone bounding the western edge of the volcanic arc (Fig. 18 and 19) and along which the volcanic915

arc plateau is uplifted. The indentation of the volcanic arc to the north possibly resulted in the

topographic rejuvenation of the southern Chiapas Massif as well.

The interaction between the Maya Mountains and the rest of the plate boundary are unclear. Our

hypothesis is that a part of the compression associated to the uplift of the volcanic arc and the Sierra

de Cuchumatanes is transmitted towards the Yucatán platform and the Maya Mountains through the920

Petén basin. The Petén basin is a surprisingly flat and low area with a mean elevation of ∼150 m

(swath profile 4 in Fig. 5). It contrast greatly with the topography of the Sierra de Chuchumatanes

which instead culminates at ∼3800 m and the scarp of the Ixcán fault is almost 1000 m high (profile

4 in Fig. 5). We suspect that the Petén basin is underlaid by a rigid basement which acts as a rigid

crustal block. The extreme topography of the Sierra de Chuchumatanes can be explained by an925

abutment along this more rigid block. A rigid Petén block would also explain how a residual part of

the motion along the triple junction may have been transmitted to the Yucatán peninsula and Maya

Mountains. This residual motion may have reactivated NE-trending faults inherited from the Eocene

opening of the Yucatán basin (Rosencrantz, 1990; Leroy et al., 2000).

6 Conclusions930

We demonstrate that a geomorphic analysis allows to classify zones of similar relief patterns that

we assume witnessed different tectonic and erosive histories. Using DEM-based geomorphic in-

dices, we examined the topography of the Sierra Madre de Chiapas and the Maya Mountains. We

used topographic profiles and morphometric maps in order to understand the spatial distribution of

landscapes and we also analyzed in detail the disequilibrium of drainage network in order to map935

potential vertical displacements. Finally, we combined our results with existing GPS and seismolog-

ical data in order to better understand the interactions between tectonics and landscapes within the

highly diffuse North American–Caribbean–Cocos plate boundary.
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Our analysis indicates that the topography of the Sierra Madre de Chiapas and the Maya Moun-

tains is in transient stage. Topographic profiles and morphometric maps highlight elevated relict land-940

scapes which are characterized by a low amplitude relief. These relict landscapes are surrounded by

areas being actively eroded. River longitudinal profiles display knickzones which separate an upper

reach associated to these relict landscapes from lower and steeper segments along which channels

adjust to new base-level conditions. The relict landscapes from the Sierra Madre de Chiapas and the

Maya Mountains probably evolved from an initially low topography which was then uplifted and945

fragmented by tectonics. This initial low relief topography is possibly a northern equivalent of the

so-called “Mayan paleosurface" (Authemayou et al., 2011; Brocard et al., 2011) which covered most

of the Polochic-Motagua sliver and formed at low elevation during the Middle Miocene (between 13

and 7 Ma).

East of 91◦W the dynamic of the triple junction is mainly related to the eastward escape of the950

Caribbean plate (Lyon–Caen et al., 2006; Authemayou et al., 2011), which resulted in sinistral shear

along the Polochic and Motagua slivers, dextral shear along the Jalpatagua fault and extension mainly

concentrated along the grabens of Guatemala City and Ipala. West of 91◦W we mainly observe

compression resulting from the counterclockwise rotation of the Cocos forearc sliver. Within the

Sierra Madre de Chiapas, this compression resulted in a major topographic uplift east of the Tuxtla955

and La Venta faults (Sierra de Chiapas and La Venta slivers in Fig. 18b). Within the Sierra de Chiapas

and Comitán High, relict landscapes are found at elevations between 1600 and 2400 m. The areas

between the Tuxtla and La Venta faults to the east and the Tonalá shear zone to the west were also

uplifted but to a lesser extend (400 to 600 m). Major uplift is also observed along the western tip of

the Polochic sliver (Sierra de los Cuchumatanes) and the northern tip of the volcanic arc. Using GPS960

data and morphotectonic analyses, we propose that the northern tip of the Central America volcanic

arc is part of a tectonic sliver which has been pinned between the Cocos forearc sliver and the North

American plate (Fig. 18b). Our study also bring new evidence for a 250 to 500 m topographic uplift

within the Maya Mountains. Our hypothesis is that a residual part of the compression along the

plate boundary is transmitted towards the Yucatán platform and the Maya Mountains through a rigid965

basement underlying the Petén basin.
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Figure 1. Main plate boundaries in Central America (black lines) and location of the Sierra Madre de Chiapas

(SMC) and Maya Mountains (MM) in red. The red box shows the extend of Fig. 2. Abbreviations: CB – Chortis

block, CFS – Central America forearc sliver, MB – Maya block, SMB – Southern Mexico block. Topography

and bathymetry from the General Bathymetric Chart of the Oceans (GEBCO, http://www.gebco.net/)
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Figure 2. Topography (A) and simplified geological map (B) for northern Central America. Geological contours

from Garrity and Soller (2009). Structures compiled from Guzmán–Speziale (2001); Meneses-Rocha (2001);

Rogers et al. (2002); Purdy et al. (2003); Ratschbacher et al. (2009); Authemayou et al. (2011) and Witt et al.

(2012b). Morpho-tectonic domains: CAVA – Central America volcanic arc, CFTB – Chiapas fold-and-thrust

belt, CH – Comitán High, CM – Chiapas Massif, CR – Chuacus range, CVC – Central Valley of Chiapas,

EYFZ – East Yucatán fault zone, GCA – Grabens of Central America, LMR – Las Minas range, MM – Maya

Mountains, PB – Petén basin, SCH – Sierra de Chiapas, SdC – Sierra de los Cuchumatanes, TCP – Tabasco

coastal plain, YP – Yucatán platform. Main structures: CoF – Concordia fault, CoG – Comayagua graben,

GuG – Guatemala City graben, HSFS – High Sierra fault system, IpG – Ipala graben, IxF – Ixcán fault, JaF –

Jalpatagua fault, LVF – La Venta fault, MaF – Malpaso Fault, MoF – Motagua fault, NaF – Necta fault, NBF –

Northern boundary fault, PoF – Polochic fault, RHF – Rio Hondo fault, SBF – Southern boundary fault, SuG –

Sula graben, TSZ – Tonalá shear zone, TuF – Tuxtla fault.
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Figure 3. Superficial (depth <40 km) seismicity in northern Central America (A) and GPS velocities with re-

spect to the fixed North American plate (B). Focal mechanisms from Guzmán-Speziale et al. (1989); Guzmán-

Speziale (2010) (in greys) and Global CMT Catalog (in black, http://www.globalcmt.org). Historical earth-

quakes (red circles) from White (1984); Singh et al. (1984) and Guzmán-Speziale (2010). GPS velocities are

from Franco et al. (2012). See Fig. 2 for abbreviations.
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Figure 4. Recent models for the North American–Caribbean–Cocos plate boundary in northern Central Amer-

ica. A: ‘fault-jog’ model from Guzmán-Speziale and Meneses-Rocha (2000) and Guzmán–Speziale (2001). B:

model from Lyon–Caen et al. (2006) and Franco et al. (2012). C: model from Andreani et al. (2008a). D: ‘zip-

per’ model from Authemayou et al. (2011). Main plates and blocks: CAFS – Central America forearc sliver,

CB – Chortis block (part of the Caribbean plate), NAP – North American plate, SMB – Southern Mexico block.

Main structures: JF – Jalpatagua fault, GCA – grabens of Central America, MAT – Middle America trench,

PMFS – Polochic-Motagua fault system, SSF – strike-slip faults of Chiapas, TSZ – Tonalá shear zone.
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Figure 5. Location of swath topographic profiles (A) and annual averaged precipitation derived from the Tropi-

cal Rainfall Measuring Mission (TRMM) for the 1998 to 2009 period (B). Processed TRMM data are provided

by Bookhagen (2009). See Fig. 2 for abbreviations.
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Figure 6. Swath profiles across the Sierra Madre de Chiapas, volcanic arc, and Maya Mountains. Upper plots:

topographic profiles (swath width is 20 km). Vertical exaggeration is 10 for profiles 1 to 4 and 25 for profile 5.

Red, black and blue curves represent the maximum, mean and minimum elevations, respectively. Lower plots:

Green lines represent the local incision in km (subtraction of minimum and maximum elevations). Blue dashed

lines represent annual averaged precipitation (derived from TRMM data) in m/yr. See Fig. 2 for abbreviations.
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Figure 7. Hypsometric integral (A) and surface roughness (B) for northern Central America. See Fig. 2 for

abbreviations.
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Figure 8. Relief anomaly (A) and surface index (B) for northern Central America. See Fig. 2 for abbreviations.
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Figure 9. Comparison between precipitation(derived from TRMM data) and morphometric indices within the

Sierra Madre de Chiapas. Points represents pixel values extracted from the precipitation (Fig. 5b) and mor-

phometric maps (Fig. 7 and 8). The linear correlation between the variables was estimated using the Pearson

correlation coefficient (PCC).
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Figure 10. Distribution of morphometric indices for the main lithological groups of the Sierra Madre de Chi-

apas. Histograms are based on three sets of 5000 pixel values extracted from the morphometric maps (Fig. 7

and 8). Red line represents the median.
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Figure 11. Analyzed streams in Chiapas Massif and Central America volcanic arc. Top: location map. Blue

lines represent channels extracted from the modeled drainage network. White dots represent major knickzones.

Red lines show limits of catchments. Black lines and red triangles represent main faults and active volcanoes,

respectively. Bottom: plot of steepness index (ksn) values and estimated base-level changes along a profile

passing through the outlet of each catchment. Abbreviations: MoF – Motagua fault. NaF – Necta fault. PoF –

Polochic fault. TSZ – Tonalá shear zone.
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Figure 12. Examples of stream profiles extracted from the modeled drainage network in Chiapas Massif and

volcanic arc. Upper plots: blue lines represent longitudinal profiles, green lines show the contributing area

(flow accumulation), red lines show reconstructed profiles (interpolation of the slope-distance relation from

segments above the upper knickzones, see equation 7) and pink polygons represent the uncertainties (based on

a bootstrapping method). Central plots: black lines represent extracted steepness index (ksn) values for a given

segment and grey polygons show the uncertainties (based on a bootstrapping method). Lower plots: logarithmic

plots of slope vs area (grey crosses) and envelopes of regressions (black lines) used to estimate the ksn values.
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Figure 13. Longitudinal profiles for the Grijalva river and the tributaries from the Sierra de los Cuchumatanes

and Chiapas Massif. Profiles were extracted from the modeled drainage network. See Fig. 2 for faults abbrevi-

ations and Fig. 12 for plot description.
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Figure 14. Longitudinal profiles for the Sierra de Chiapas. Channels and profiles were extracted from the mod-

eled drainage network. See Fig. 12 for plot description. Abbreviations: LVF – La Venta fault, MaF – Malpaso

Fault, SCF – San Cristobal fault, TecF – Tectapan fault, TenF – Tenejapa fault, TuF – Tuxtla fault.
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Figure 15. Interpolated map of steepness index (ksn) for the Sierra Madre de Chiapas and the northern segment

of the Central America volcanic arc. Values were extracted from river longitudinal profiles using 5 km long

segments and interpolated using a natural neighbor (NN) method. See Fig. 2 for abbreviations.
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Figure 16. Analysis of drainage network for the Maya Mountains. Top: map of isobases (i.e., interpolated ele-

vations) from rivers with a Strahler order ≥ 2. Main faults (black lines), analyzed streams (blue lines) and main

knickpoints (blue dots) are also reported. Bottom: longitudinal stream profiles. Blue dots are main knickpoints

(location on the map). Red lines show profiles reconstructed using segments located above the knickpoints (see

equation 7). Black arrows show the intersection with main faults. Abbreviations: NBF – Northern Boundary

fault, SBF – Southern Boundary fault, RHF – Rio Hondo fault, F – other faults.
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Figure 17. Proposed extension of elevated surfaces and relict landscapes in northern Central America (inter-

pretative map based on morphometric maps, Fig. 7 and 8). Legend: 1 – Remnants of the Miocene ignimbritic

plateau (Rogers et al., 2002), 2 – Plio-Quaternary volcanic arc plateau, 3 – Middle Miocene Mayan paleosurface

(Authemayou et al., 2011; Brocard et al., 2011), 4 – relict landscape of the Maya Mountains, 5 – tilted surfaces

of the Yucatán platform, 6 – Petén basin, 7 – elevated plateaus of La Venta and northern Sierra Madre de Chi-

apas, 8 – inferred extension of the plateau within the fold-and-thrust belt, 9 – monadnock landscape developed

over the Chiapas batholith, 10 – Central valley of Chiapas. See Fig. 2 for faults and morpho-tectonic domains

abbreviations.
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Figure 18. Proposed limits of tectonic slivers forming the plate boundary. A: GPS velocities with respect to the

fixed North American plate (Franco et al., 2012). Colors emphasize vectors with similar azimuths and velocities.

The diagram of northern and eastern components (bottom left corner) allows to deduce motions between paired

GPS stations. B: Main tectonic blocks defined using known major faults (Fig. 2), our geomorphic maps (Fig. 7

and 8) and published GPS data (Fig. 18a) and seismicity (Fig. 3a). Black arrows show the motion along blocks

boundaries deduced from paired GPS stations (values are in mm.yr−1). See Fig. 2 for faults abbreviations.
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Figure 19. Proposed model for the North American–Caribbean–Cocos plate boundary in northern Central

America. Abbreviations: EYFZ – East Yucatán fault zone, GCA – Grabens of Central America, HSFS – High

Sierra fault system, IxF – Ixcán fault, JaF – Jalpatagua fault, MAT – Middle America Trench, MoF – Motagua

fault, PoF – Polochic fault, TSZ – Tonalá shear zone, TuF – Tuxtla fault.
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