
We wish to thank the reviewers for their insightful comments, which substantially improved the 

revision. In this response to reviewers we have focused only on comments that led to revisions. 

For the fuller discussion that includes our responses to all reviewer points, please see the reply 

we published in December. 

 

The major changes we made to the manuscript in this revision are: 1) we performed CFD model 

calculations over the actual topography from one of our study sites to demonstrate that the model 

reproduces the measured z0 value, 2) we demonstrated the multi-scale control on z0 by filtering 

the topography to show that a different z0 value is obtained when high-wavenumber variability is 

removed, and 3) we developed a simple predictive equation for z0 that does not rely on using the 

Fourier transform. This alternative equation (denoted equation (5) in the revised paper) does not 

work as well as the Fourier transform approach but it comes close. As such, both equations have 

their place (equation (4) is more accurate but equation (5) is simpler to apply).    

  

Reviewer 1:   

Q: “3. The CFD parameters are presented in a dimensional way, which is problematic. Rather 

than lengths and velocities, Reynolds numbers are relevant,  and ratios,  e.g. z_0g, height, and 

amplitude of the sinusoid in comparison to the viscous depth nu/u_*. Also I don’t understand 

why the authors do not use periodic boundary conditions, in order to avoid an undesired fetch 

effect.  How is modelled the micro-scale roughness z_0g in the k-epsilon code?” 

A: Reynolds numbers are relevant, but the reader has been provided all of the information to 

calculate them. We don’t think that all CFD model studies must present results in dimensionless 

form. The height of the viscous sublayer is approximately 0.4 mm at threshold, decreasing to 

smaller values with increasing u* (Kok et al., 2012). Therefore, the viscous sublayer is much 

smaller than the roughness elements assumed in our CFD models. The micro-scale roughness is 

included in the model as a boundary condition on the gradient of the turbulent flow velocity (if 

turbulence is present) within the cells nearest the ground. Flow within these cells is assumed to 

be logarithmic in form with micro-scale roughness length z0g if the flow is turbulent, otherwise a 

laminar profile is used based on the viscosity of air. We have not experimented with periodic 

boundary conditions in the PHOENICS CFD model but will pursue this in the future – thanks to 

the reviewer for this excellent suggestion. We propose to add the following sentence to section 

2.3: “In the CFD model the ground surface is treated using a wall-function approach, i.e. the 

velocity profile within the first cell is assumed to be logarithmic with a microscale roughness 

length equal to z0g if the flow is turbulent, otherwise a laminar profile is used based on the 

viscosity of air.” 

 

Q: “4. The authors should give a precise definition of what they call the ‘roughness sublayer’.  Is 

it the same as what is usually called the viscous sublayer, of thickness nu/u_*,  where  the  wind  

profile  is  not  logarithmic,  as  described  by  e.g.   van  Driest (1956)?” 

A: The viscous sublayer and the roughness sublayer are not the same. Both are regions where 

mixing-length theory breaks down, but in the first case it is because flow is laminar and in the 

second case because the structure of the flow is strongly influenced (e.g. via flow separation) by 

individual roughness elements of the surface.   

 The roughness sublayer is a fairly well-known aspect of rough boundary layer flows and 

is defined by the American Meteorological Society 

(http://glossary.ametsoc.org/wiki/Roughness_sublayer) as “The lowest atmospheric layer 



immediately adjacent to a surface covered with relatively large roughness elements such as 

stones, vegetation, trees, or buildings. The roughness sublayer extends from the surface up to 

about two to five times the height of the roughness elements. Within the roughness sublayer the 

flow is three-dimensional, since it is dynamically influenced by length scales of individual 

roughness elements and surface layer scaling cannot be expected to apply”. In the discussion 

paper we defined the roughness sublayer as “the range of heights above the ground comparable 

to the height of the largest roughness elements.” In the revised manuscript we propose to include 

the following two sentences to clarify this issue: “The roughness sublayer is the layer where the 

mean velocity profile deviates from the law of the wall as the flow interacts with individual 

roughness elements. This layer is typically considered to extend from the ground surface to a 

height of approximately twice the height of the tallest roughness elements.” 

 

Q: “5. Fitting z_0: Adjusting a log-profile on the direct data, or fitting a straight line on the log 

of the data is not equivalent,  and the later gives more weight on the data close to the surface.  

What was the choice of the authors?  How were error bars in velocity measurements (or data 

dispersion due to fluctuations) accounted for in the fitting process?” 

A: Our procedure for fitting the data was described on p. 1116, i.e. “least-squares fitting of the 

wind velocities to the natural logarithm of the distance above the ground. The shear velocity is 

equal to the slope of u vs. ln z multiplied by kappa. The roughness length is equal to the 

exponential of the following: minus the intercept divided by the slope.” This procedure precisely 

follows Bergeron and Abrahams (1992), equations (6) and (7). We propose to add the following 

sentences to the revised paper to clarify this issue: “To extract a z0 value from the velocity profile 

data, we followed the procedure of Bergeron and Abrahams (1992), who emphasized the need to 

regress u on ln z rather than ln z on u. The shear velocity is equal to the slope of the regression of 

u on ln z multiplied by kappa (equation (6) of Bergeron and Abrahams (1992)) and the roughness 

length is equal to the exponential of the following: minus the intercept divided by the slope 

(equation (7) of Bergeron and Abrahams (1992)).”     

 

Q: “6. A few missing references that could be relevant: Taylor et al., Boundary-Layer Met. 1989 

Raupach et al., Appl. Mech. Rev. 1991 van Rijn, J. Hydraul. Div. 1983.”  

A: The first reference was added to the revised paper in the introduction. We did not think it 

necessary to cite the Raupach et al. 1991 paper since we are already citing two Raupach papers 

of the same vintage that are more directly relevant to our topic. We could not find van Rijn, J. 

Hydraul. Div. 1983. When we went to this authors list of publications (http://www.leovanrijn-

sediment.com/) and looked under “1.  Bed forms and bed roughness”, there was no paper from 

1983.  

 

Q: “7. Error bars are missing in Fig. 6.” 

A: The sensor accuracy as reported by the manufacturer is 0.2 m/s. As this error is independent 

of wind speed, it is not necessary to weigh the measurements in the regression. It is difficult to 

provide error bars on Fig. 6, however, since the error for a 12-s average value may be lower than 

0.2 m/s due to averaging 12 1-s measurements. We have almost never seen error bars plotted on 

wind velocity profiles for this reason. There is certainly variability in wind speed computed 

within each 12 s interval, but the literature indicates that one should not attempt to measure a 

mean velocity for the purposes of estimating mean velocity profiles using any time interval less 

than approximately 10 s (e.g. Namikas et al., 2003), as discussed in the paper.   

http://www.leovanrijn-sediment.com/
http://www.leovanrijn-sediment.com/


 

Q: “8.  As the authors discuss, I have a problem with a Fourier analysis of a non-linear problem, 

and to me it would make more sense to extract a relevant length (for a given problem) from the 

Fourier spectrum of the bed elevation, and apply a formula like (3), rather than summing up 

over the whole spectrum like in (4).” 

A: We have developed an alternative equation (equation (5)) that is simpler. Here is the new text 

in the Methods section: 

 “An alternative approach to equation (4) that is easier to apply and does not rely on the 

Fourier transform is 

   6
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where c5 and c6 are unitless coefficients. 

And in the Results section:   

 “An alternative approach is to use the values of HRMSE and Sav to estimate z0 using 

equation (5). We found c5 = 16 and c6 = 2.0 to yield the highest R
2
 value (0.978). Equation (5) is 

thus a useful formula with an advantage of simplicity, but it is somewhat inferior to the multi-

scale analysis of equation (4) based on its lower R
2
 value.”   

 In the discussion we have also addressed this issue as follows: 

“The CFD model results demonstrate that equation (3) works well for a single sinusoid, while 

equation (4) works well for real-world cases that can be represented as a superposition of many 

(i.e., N >> 1) sinusoids. The fact that the value of c4 is larger than c1 indicates that there is no 

seamless transition between equation (3) and equation (4) as the topography changes from the 

idealized case of a single sinusoid to the case of many superposed sinusoids. That is, neither 

formula works well for the case of a small number of superposed sinusoids. The absence of such 

a seamless transition could be a result of applying the superposition principle to a nonlinear 

problem (boundary layer turbulence) for which it cannot apply precisely. In addition, 

experimental studies demonstrate that flow separation (which influences z0) is a function of both 

the slope and the curvature of the bed (Simpson, 1989; Lamballais et al., 2010). Equations (3) 

and (4) do not utilize curvature, hence neither equation can be the basis of a perfect method for 

predicting z0. It is likely that the only way to precisely estimate z0 is to compute the actual flow 

field over the topography using a CFD model. Any other approach will likely involve some type 

of approximation. We propose that equation (4), while imperfect, yields a good approximation 

for z0 values in real-world terrain (i.e. those with many Fourier coefficients contributing to z0), 

based on the R
2
 value of 0.991 we obtained. Equation (5) provides an alternative for users who 

prefer its simplicity. Equation (5) is not accurate for all possible Sav values, since z0 cannot 

increase without bound as Sav increases. As such, equation (5) should only be considered 

applicable to microtopography with  Sav values less than approximately 0.15.” 

 

Reviewer 2: 

Q: “1- Multi-scale analysis:  There is no evidence in the paper that the fact a topography has  

multiple  scales  affects  the  roughness  length  in  any  meaningful  way.  The  CFD simulations 

are run with single scale sinusoidal surfaces, while there is no clear way to measure the 

contribution to the roughness length from the different scales within the topography. I suggest 

the authors to use the CFD code to test this hypothesis and run simulations with multi-scale 

synthetic data (with few sinusoidal modes to get a better picture). That way they could compare 

the simulations with predictions using either Eq. 3 with an effective amplitude and slope or Eq.  



4. Without this basic information any discussion of the effect of multiples scales is merely 

speculative.” 

A: If one accepts that both the amplitude and slope of microtopographic variations influence the 

effective roughness length (which we showed in Figure 10 for the case of a sinusoid), it follows 

that there is no single Fourier mode that controls the effective roughness length, unless the 

topography is a perfect sinusoid (which it never is). This is because the slope is a high-pass filter 

of the topography (i.e. the slope is proportional to k*an where an is the Fourier coefficient) and 

hence is more sensitive to high-wavenumber components of the topography than the amplitude 

is. 

 However, it is straightforward to demonstrate using the CFD model that the effective 

roughness length is a function of the multi-scale variability of the microtopography. In the 

revision we used one of the playa profiles (we chose the Soda Lake smooth site but similar 

results are obtained for other profiles) to compute the effective roughness length with and 

without smoothing of the topography (see text below). This analysis shows that the effective 

roughness length decreases as the high-wavenumber variations are removed, i.e. that the 

roughness length depends on the microtopography at multiple scales.  

 We disagree with the reviewer’s contention that there is “no clear way to measure the 

contribution to the roughness length from the different scales within the topography.” This is 

precisely what Figure 11 shows, i.e. how different scales within the topography contribute to z0. 

New text and figures we propose to add: 

 “To demonstrate the suitability of PHOENICS for modeling atmospheric boundary-layer 

flows and to establish that the effective roughness length depends on the microtopographic 

variability at multiple scales, we performed a numerical experiment using the central 

microtopographic profile measured at the Soda Lake smooth site as input (plotted in Fig. 9A). 

We measured a mean z0 value of 4.6 mm from velocity profiles at this site. Figure 9B presents 

the velocity profiles predicted by the PHOENICS model for 2D flow over the profile, following 

the procedures detailed in the Methods section. PHOENICS predicts an effective roughness 

length of 2.4 mm based on a least-squares fit of the velocity to the logarithms of distance above 

the ground from a height equal to twice the height of the dominant roughness elements to the top 

of the model domain. As such, the PHOENICS model predicts a z0 value similar to the value we 

measured in the field (relative to the four order-of-magnitude variation in z0 values we measured 

across the study sites).  

 To demonstrate that the z0 value depends on microtopographic variability at multiple 

scales, we filtered the Soda Lake smooth profile diffusively to remove some of the small-scale 

(high-wavenumber) variability while maintaining the large-scale variability (i.e. the root-mean-

squared variability of the filtered and unfiltered profiles is identical). Figure 9 plots the original 

profile, the filtered profile, and their amplitude and z0n spectra. The z0 values for the unfiltered 

and filtered cases are 2.4 mm and 0.15 mm, respectively, based on fitting the velocity profiles 

predicted by PHOENICS. That is, the filtered profile has a z0 value more than an order of 

magnitude smaller than the original profile despite the fact that the amplitude of the large-scale 

microtopographic variations is the same as the original profile. Equation (4) predicts 2.8 mm and 

0.25 mm, respectively, for the z0 values. The z0 value decreases in the filtered case because steep 

slopes that trigger flow separation are significantly reduced at a wide range of scales by filtering, 

lowering the z0 value.   

 The results of this numerical experiment demonstrate that z0 values depend on variability 

microtopographic variability at multiple scales. There is also a general theoretical argument that 



supports this conclusion. If one accepts that both the amplitude and slope of the microtopography 

influence the effective roughness length (which we demonstrate below for the case of a single 

sinusoid), it follows that there is no single Fourier mode that controls the effective roughness 

length, unless the topography is a perfect sinusoid. This is because the slope is a high-pass filter 

of the topography (i.e. the slope is proportional to k*an where an is the Fourier coefficient) and 

hence is more sensitive to high-wavenumber components of the topography than the amplitude 

is.”    

 

 
Figure 9. Demonstration of the dependence of z0 values on the multi-scale nature of 

microtopography. (A) Plot of a profile through the Soda Lake smooth site (thin curve). Also 

shown is the same plot with diffusive smoothing (thicker curve). Smoothing maintains the 

amplitude of microtopographic variations at large spatial scales (i.e. the amplitude spectrum is 

unchanged at large scales) but removes some of the small-scale (high-wavenumber) variability. 

(B) Plots of the mean velocity profiles predicted by PHOENICS over the original and filtered 

profile. (C) Amplitude spectra of the two plots in (A). (D) Contributions of each Fourier mode to 

the z0 values for the two plots in (A).     

    

Q: “3- Validation of the CFD model: It is not clear to me that the CFD code is actually able to 

reproduce the real trends of the measured roughness length on different surfaces. Why not use 

the measured microtopography to run the model and compare?  Even a qualitative comparison 

will strengthen the argument of the CFD model as a tool to develop expressions for the 

roughness length.” 

A: The PHOENICS model has been the source of many CFD studies of atmospheric boundary 

layer flows since its original formulation c. 1974. PHOENICS is the engine of WindSim, which 

is a leading code for boundary-layer flow modeling in wind engineering applications. As such, 

the model has been successfully used for atmospheric flows for over 40 years.  



 That said, it is straightforward to include the results of CFD model runs over one of our 

actual surface profiles to demonstrate that it predicts a similar roughness length to that we 

measured. See Figure 9 and associated text above. 

 

Q: “End of page 1121: The description of Fig. 6 is wrong, a steeper slope doesn’t necessarily 

correspond to a smaller z_0.  Please correct with the new version of Fig.  6 (see above).” 

A: A steeper slope does necessarily correspond to a smaller intercept (and hence z0) when the 

velocity data are normalized as in Figure 6. To see this, consider the equation for a line: y = 

mx+b. If the values of y are normalized such that y(x0) = 1, where x0 is a constant, it follows 

that the slope of the line, m, is equal to (1–b)/x0. That is, a steeper slope necessarily corresponds 

to a smaller intercept (hence z0) value.  

 We agree that the two sentences on p. 1121, lines 22-23, are not precisely correct as 

written. We wrote “The law of the wall predicts a constant slope when u is plotted vs. ln z. A 

steeper slope corresponds to a smaller z0 value.” We should have made clear that the plots of u 

vs. ln z we were referring to were those normalized as in Fig. 6. In the revision we propose to 

write “The law of the wall predicts a constant slope when u is plotted vs. ln z. When the 

velocities are normalized as in Figure 6, a steeper slope corresponds to a smaller z0 value.” 

  

Jon Pelletier 
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Abstract 

 The fully rough form of the law of the wall is commonly used to quantify velocity 

profiles and associated bed shear stresses in fluvial, aeolian, and coastal environments. A key 
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parameter in this law is the roughness length, z0. Here we propose a predictive formula for z0 that 

uses the amplitude and slope of each wavelength of microtopography within a discrete-Fourier-

transform-based approach. Computational fluid dynamics (CFD) modeling is used to quantify 

the effective z0 value of sinusoidal microtopography as a function of the amplitude and slope. 

The effective z0 value of landscapes with multi-scale roughness is then given by the sum of 

contributions from each Fourier mode of the microtopography. Predictions of the equation are 

tested against z0 values measured in ~10
5
 wind velocity profiles from southwestern U.S. playa 

surfaces. Our equation is capable of predicting z0 values to 50% accuracy, on average, across a 

four order-of-magnitude range. We also use our results to provide a simpler alternative formula 

that, while somewhat less accurate than the one obtained from a full multi-scale analysis, has an 

advantage of being simple and easier to apply.   

Keywords: boundary layer flow, law of the wall, roughness length, terrestrial laser scanning, 

computational fluid dynamics (CFD) 

 

1. Introduction 

1.1. Problem statement 

 The velocity profiles of turbulent boundary-layer flows are often quantified using the 

fully rough form of the law of the wall:  
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where u(z) is the wind velocity (averaged over some time interval) at a height z above the bed, u* 

is the shear velocity, κ is the von Kármán constant (0.41), and z0 is an effective roughness length 

that includes the effects of grain-scale roughness and microtopography (e.g. Bauer et al., 1992; 

Dong et al., 2001). Velocity profiles measured in the field are commonly fit to equation (1) to 



estimate u* and/or τb for input into empirical sediment transport models (often after a 

decomposition of the bed shear stress into skin and form drag components) (e.g. Gomez and 

Church, 1989; Nakato, 1990). Fits of wind-velocity profiles to equation (1) also provide 

measurements of z0. Given a value for z0, a time series of u* and/or τb can be calculated from 

equation (1) using measurements of velocity from just a single height above the ground. This 

approach is widely used because flow velocity data are often limited to a single height. Equation 

(1) only applies to z   z0, and may be further limited in its accuracy within the roughness 

sublayer, i.e. the range of heights above the ground comparable to the height of the largest 

roughness elements. The roughness sublayer is the layer where the mean velocity profile deviates 

from the law of the wall as the flow interacts with individual roughness elements. This layer is 

typically considered to extend from the ground surface to a height of approximately twice the 

height of the tallest roughness elements. Values of z0 depend on microtopography/land cover 

(quantifying this dependence in unvegetated landscapes is a key goal of this paper) and are 

typically in the range of 10
-2

-10
1
 mm for wind flow over arid regions (Prigent et al., 2005).   

 Most existing methods for estimating z0 using metrics of surface roughness or 

microtopography rely on the concept of a dominant roughness element, the size and density of 

which the user must specify a priori (e.g. Lettau, 1969; Arya, 1975; Smith and McLean, 1977; 

Jacobs, 1989; Taylor et al., 1989; Raupach, 1991,1992; 1994; Kean and Smith, 2006a). 

Procedures are available for estimating z0 in landscapes with multi-scale roughness, but they 

often rely on idealizations such as treating the microtopography as a sequence of Gaussian 

bumps (e.g. Kean and Smith, 2006b). Nearly all natural landscapes have microtopographic 

variability over a wide range of spatial scales. Identifying the dominant scale objectively and 

uniquely can be difficult. For example, the top plot in Figure 1 shows a hypothetical case of a 



landscape composed of two superposed sine waves. The effective roughness length of a 

landscape is related to the presence/absence or extent of flow separation, and flow separation is 

primarily controlled by the derivatives of topography (slope and curvature) rather than the 

amplitude of the bedforms/roughness elements (Simpson, 1989; Lamballais et al., 2010). As 

such, roughness elements of smaller amplitude but steeper slopes may exert greater control on z0 

values compared with roughness elements that are larger in amplitude but gentler in slope. Given 

a landscape with multi-scale roughness in which each scale has distinct amplitudes and slopes, it 

can be difficult to identify the dominant scale or scales of roughness for the purposes of 

estimating z0. 

 Figure 1 illustrates two examples of microtopography from playa surfaces in the 

southwestern U.S. The middle plot shows a transect through the Devil’s Golf Course in Death 

Valley, California and the bottom plot shows a transect through a relatively smooth section of 

Lordsburg Playa, New Mexico. These plots are presented using different vertical scales because 

the amplitude of the microtopography at the Death Valley site is approximately 100 times greater 

than that of the Lordsburg Playa site. Both landscapes have no vegetation cover, no loose sand 

available for transport, and are flat or locally planar at scales larger than ~1 m. As such, they are 

among the simplest possible natural landscapes in terms of their roughness characteristics. 

Nevertheless, as Figure 1 demonstrates, they are characterized by significant roughness over all 

spatial scales from the resolution of the data (1 cm) up to spatial scales of ~1 m. To our 

knowledge, there is no procedure for predicting z0 in a way that honors the multi-scale nature of 

microtopography in real cases such as these. To meet this need, we have developed and tested a 

discrete-Fourier-transform-based approach to quantifying the effects of microtopographic 



variations on z0.values. The method simultaneously provides an objective measure of the spatial 

scales of microtopography/roughness that most strongly control z0.   

 In a recent paper similar in spirit to this one, Nield et al. (2014) quantified the z0 values of 

wind velocity profiles over playas as a function of various microtopographic metrics. Nield et al. 

(2014) proposed an empirical, power-law relationship between z0 and the root-mean-squared 

variations of microtopography, HRMSE:   

  
66.1
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where the coefficient c is equal to ln(-1.43) or 0.239 m
-0.34

. Equation (2) is one example of 

several predictive formulae that Nield et al. (2014) proposed for different surface types (equation 

(2) applies to surfaces with large roughness elements or that exhibit mixed homogenous patches 

of large and small roughness elements). Nield et al. (2014) concluded that “the spacing of 

morphological elements is far less powerful in explaining variations in z0 than metrics based on 

surface roughness height.” In this paper we build upon the results of Nield et al. (2014) to show 

that z0 can be most accurately predicted using a combination of the amplitudes and slopes of 

microtopographic variations measured at multiple scales using Fourier analysis. 

 The presence of multi-scale roughness in nearly all landscapes complicates attempts to 

quantify effective z0 values for input into regional and global atmospheric and Earth-system 

models. In such models, topographic variations are resolved at scales larger than a single grid 

cell (10-100 km at present, but steadily decreasing through time as computational power 

increases) but the aerodynamic effects of topographic variations on wind velocity profiles at 

smaller scales are not resolved in these models and must be represented by an effective z0 value 

(sometimes in combination with an additional parameter, the displacement height, which shifts 

the location of maximum shear stress to a location close to the top of the roughness sublayer 



(Jackson, 1981)). Topographic variations at spatial scales below 10-100 km are typically on the 

order of tens to hundreds of meters. Currently available maps of z0 values do not incorporate the 

aerodynamic effects of topography at such scales. For example, Prigent et al. (2005) developed a 

global map of z0 in deserts by correlating radar-derived measurements of decimeter-scale 

roughness with z0 values inferred from wind velocity profiles. This approach assumes that the 

dominant roughness elements that control the effective z0 value over scales of 10-100 km occur 

at the decimeter scale captured by radar. It is possible that, in some landscapes, the roughness 

that controls z0 occurs at scales that are larger or smaller than those measured by radar. 

Therefore, a procedure is needed that predicts z0 values using data for topographic variations 

over a wide range of scales, including but not limited to decimeter scales. This study aims to fill 

that gap. 

1.2. Study Sites 

 We collected wind-velocity profiles and high-resolution topographic data using terrestrial 

laser scanning (TLS) from ten playa sites in the southwestern U.S. (Fig. 2) during the spring of 

2015. These sites were selected based on the range of microtopographic roughness they exhibit 

(Table 1). Roughness can be quantified in multiple ways, but HRMSE, the root-mean-squared 

deviation of elevation values measured at a sampling interval of 0.01 m, provides one 

appropriate metric (Nield et al., 2014). The ten sites range in HRMSE from approximately 0.55 

mm to 36 mm (see Section 2.1). In addition to the HRMSE we computed Sav, the average slope 

computed at 0.01 m scale, for each site. Values of Sav range from 0.01 to 0.159 (Table 1).  

 Each study site was an area of at least 30 m x 30 m with relatively uniform roughness, as 

judged visually and by analysis of the TLS data. The minimum fetch required for an equilibrium 

boundary layer flow is typically assumed to be 1000 times the height of the dominant roughness 



elements (Counehan, 1971). Based on this criterion, 30 m was adequate fetch for seven of the ten 

sites, i.e. all except for the three Death Valley sites, where roughness elements were up to 300 

mm, hence the area of homogeneous roughness was verified to a distance of only ~100 times the 

height of the dominant roughness elements. However, the required fetch must also depend on the 

maximum height above the ground where velocities are measured to compute a z0 value locally, 

since any roughness transition triggers an internal boundary layer that grows indefinitely in 

height with increasing distance downwind of the transition. Using the Elliot (1958) formula for 

the height of the internal boundary layer downwind of a roughness transition, the minimum fetch 

required for an log-law profile between 0 and 3 m above the ground over a landscape with z0 ≈ 

30 mm (the value measured at the Death Valley rough site) is 31.8 m. According to this 

alternative criterion, 30 m may be adequate for an equilibrium boundary layer flow to be 

established to a height of 3 m despite the limited fetch-to-roughness height ratio at the Death 

Valley sites.  

 The playa surfaces at our study sites were predominantly crusted and ranged from flat, 

recently formed crust to well-formed polygons with deflated and broken crust ridges. All of the 

sites were completely devoid of vegetation. Sand blows episodically across some portions of the 

playas we studied but we chose study areas in which we observed no sediment transport during 

fast winds. We considered only landscapes without vegetation and loose, erodible sand because 

such cases must be understood first before the additional complications of flexible roughness 

elements and saltation-induced roughness can be tackled. That said, we anticipate that concepts 

from this paper may be relevant to quantifying z0 over vegetated landscapes also.  

 Our goal is to understand the controls on boundary layer flows over rough terrain 

generally, not playa surfaces specifically or exclusively. As such, we use playa surfaces as 



“model” landscapes. Playas are useful for this purpose because they are macroscopically flat but 

exhibit a wide range of microtopographic roughness at small scales. The relative flatness of 

playas at scales larger than ~1 m makes it possible to characterize their boundary layer flows 

using relatively short anemometer towers. Of course, playas are also of special interest to aeolian 

geomorphologists because they can be major dust sources when sand from playa margins is 

transported across the playa surface, disturbing crusted surfaces and liberating large volumes of 

silt- and clay-rich sediments. 

 The questions addressed in this paper could, in principle, be addressed using wind tunnel 

experiments. Wind tunnels certainly have the advantage of user control over wind velocities. 

However, Sherman and Farrell (2008) documented that z0 values in wind tunnels are, on average, 

approximately an order of magnitude lower than those measured in the field for otherwise similar 

conditions (e.g. grain size). One interpretation of the Sherman and Farrell (2008) results is that 

the confined nature of wind tunnel flows and/or their limited fetch can limit the development of 

boundary layers in equilibrium with bed roughness. For this reason, we focused on measuring 

wind flow over natural surfaces with homogeneous roughness characteristics over distances of at 

least 30 m surrounding our measurement locations.  

 

2. Methods 

2.1. Terrestrial laser scanning and analyses of playa surface microtopography 

 A Leica C10 terrestrial laser scanner was used to acquire point clouds of the central 10 m 

x 10 m ground surface upwind of the anemometers at each of the 10 study sites. The areas 

surrounding each 10 m x 10 m area were also surveyed to check for approximate homogeneity in 

the roughness metrics out to areas of 30 m x 30 m, but the central 10 m x 10 m areas were the 



focus of the subsequent data analysis. Each area was scanned from four stations surrounding the 

10 m x 10 m area and merged into a single point cloud using a Leica disk target system. 

Registration errors were a maximum of 2 mm in all cases. The Leica C10 has an inherent 

surface-model accuracy of 2 mm, but this value decreases as the number of overlapping scans 

increases (Hodge, 2010), resulting in a value of approximately 1 mm in the case of four 

overlapping scans. The scanner was mounted on a 3.5 m tripod to maximize the angle of 

incidence (low angles of incidence elongate the “shadows” or occlusions behind 

microtopographic highs (Brown and Hugenholtz, 2013)). All of the returns within each 1 cm
2
 

domain were averaged to create a Digital Elevation Model (DEM) with point spacing of 0.01 m. 

Voids were filled using natural-neighbor interpolation. Voids requiring interpolation were 

limited to <1% of the area at the smoothest five sites (Lordsburg and Willcox Playas), between 

1% and 3% at the two Soda Lake sites, and between 10% and 20% at the three Death Valley 

sites.    

 In addition to the calculation of basic topographic metrics such as HRMSE and Sav (the 

latter being the average slope computed at 0.01 m scales) (Table 1), we also computed the 

average amplitude spectrum of all 1D topographic transects at each study site. The amplitude 

spectrum is equal to two times the absolute value of the complex discrete Fourier transform 

(DFT). The average amplitude spectrum refers to the fact that the one thousand amplitude 

spectra of each 1D transect computed along the east-west direction were averaged to obtain a 

single average spectrum for each study site. We used the DFT implemented in the IDL 

programming language. The DFT coefficients were also used as input to a filter that uses the 

amplitude and slope of each Fourier mode to compute its contribution to the z0 value. We created 

“mirror” images of each transect before application of the DFT. This approach has been shown 



to work as well or better than windowing for minimizing truncation error (i.e. incomplete 

sampling) in data sets characterized by the broadband/multi-scale variability characteristic of 

many environmental data series (Smigelski, 2013).  

2.2. Measurement and analyses of wind profiles 

 Wind speeds were measured at 1 s intervals and at 7 heights above the surface (0.01 m, 

0.035 m, 0.076 m, 0.16 m, 0.52 m, 1.22 m, and 2.80 m) using four Inspeed Vortex rotating cup 

anemometers and four AccuSense hotwire anemometers (F900 series) (the latter calibrated to 

work over the 0.15-10 m s
-1

 range of wind velocities) (Fig. 3). The hotwire sensors were secured 

to an L-shaped steel frame and placed above the surface such that the small opening in the sensor 

head was oriented as perpendicular to the wind direction as possible (Fig. 3). The 10 m s
-1

 range 

of the hotwire sensors was not a limiting factor because all of the hot-wire sensors were located 

close to the ground, i.e. within 0.16 m from the surface, where velocities were lower than 10 m s
-

1
 during our deployments. We collected data at each of the ten sites for ten to thirty hours 

spanning multiple days, times of day, and a wide range of wind velocities. 

 The lowest cup and the highest hotwire anemometers were positioned at the same height 

(0.16 m) above the surface to standardize measurements between the two types of wind sensors. 

When positioned at the same height, the hotwire sensors measured wind speeds (based on the 

factory calibration) that were approximately 10% lower than the values obtained from the cup 

anemometers. We used the ratio of the wind velocities measured by the bottom cup anemometer 

to the wind velocities measured by the top hotwire sensor to standardize the hotwire 

measurements to the cup anemometer measurements in real time. This scaling-factor approach 

also serves a second purpose, which is to minimize the effects of wind-direction variability on 

the velocities measured by the hotwire sensors. The cup sensors measure wind speeds effectively 



from nearly any direction, but the hotwire sensors are required to be oriented within 20° 

perpendicular to the wind for greatest accuracy. The hotwires were manually repositioned 

following large and sustained changes in wind direction, but short-duration changes may have 

resulted in oblique incidence angles with a bias towards lower velocities. Continually rescaling 

the velocities measured by the highest hotwire sensor to the lowest cup sensor mitigated this 

potential problem.         

 Scaled values from the bottom three (0.01 m, 0.035 m, and 0.076 m) hotwire sensors 

were combined with the four cup anemometers to calculate shear velocities, u*, and aerodynamic 

roughness lengths, z0, based on the average velocities measured in each 12-s interval via least-

squares fitting of the wind velocities to the natural logarithm of the distance above the ground. 

To extract a z0 value from the velocity profile data, we followed the procedure of Bergeron and 

Abrahams (1992), who emphasized the need to regress u on ln z rather than ln z on u. The shear 

velocity is equal to the inverse of the slope of u vs.the regression of u on ln z multiplied by κ. 

(equation (6) of Bergeron and Abrahams (1992)) and the roughness length is equal to the 

exponential of the following: minus the intercept. divided by the slope (equation (7) of Bergeron 

and Abrahams (1992)). The 12-s interval was chosen based on the results of Nimakas et al. 

(2003), who found that time intervals greater than 10 s resulted in the most accurate results, 

while those obtained from smaller averaging intervals were less reliable. Values of z0 can be 

influenced by deviations from neutral stability. A common way to address this issue is to remove 

profiles from the analysis in which the velocity at a given height is below some threshold value 

(e.g. Nield et al., 2014). In this study we repeated our analysis using only those profiles with a 

wind velocity of at least 3 m s
-1

 at a height of 0.16 m. The mean and standard deviations of z0 



were nearly identical to those obtained using all of the data, likely reflecting the fact that we 

targeted time periods of fast winds for measurement.   

 During the data collection, the hotwire sensors were moved to approximately 25-50 

random locations within each site. We moved the hotwire sensors to numerous locations within 

each site because wind velocities measured close to the ground are sensitive to the 

microtopography of the specific spot above which they are measured, i.e. the z0 value measured 

on the stoss side of a microtopographic high tends to be smaller than the z0 value measured on 

the lee due to the convergence/divergence of flow lines. Since our goal was to characterize the 

average or representative z0 value over each surface, it is appropriate to move the hotwire sensors 

around the surface to ensure that the results are not specific to one location but instead represent 

a statistical “sample” of the flow above the surface at multiple locations. This approach is also 

consistent with how the CFD model output was analyzed (see Section 2.3).  

 Velocity profiles can deviate from equation (1) close to the ground over rough terrain. As 

such, it is important to identify which sensors, if any, are located within the roughness sublayer 

prior to computing u* and z0 values by fitting wind velocity data to equation (1). To do this, we 

plotted the average of all wind velocity measurements at each site as a function of ln z. The 

results (described in Section 3.2) show that the lowest two (hotwire) sensors (located 0.10 and 

0.035 m above the ground) at the three Death Valley sites and the rough Soda Lake site deviated 

noticeably from equation (1). The fact that these sensors were within the roughness sublayer is 

consistent with the fact that the height of the largest roughness elements at these sites is greater 

than or comparable to 0.035 m (the height of the second lowest sensor). Data from the lowest 

sensor at the next four smoothest sites (i.e. smooth Soda Lake, the two Willcox Playa sites, and 

the rough Lordsburg Playa site) also deviate noticeably from equation (1). Data from these 



sensors were not used in the calculation of u* and z0 at those sites. In addition, we verified in all 

cases that the removal of these sensors deemed to be within the roughness sublayer improved the 

mean correlation coefficients, R
2
, at each site. Only profiles with R

2
 values greater than 0.95 

were retained.  

2.3. Computational fluid dynamics  

 CFD modeling was used to quantify the effects of the amplitude and slope of sinusoidal 

microtopography on z0. We used the 2013 version of the PHOENICS CFD model (Ludwig, 

2011) to estimate the time-averaged wind velocities associated with neutrally stratified turbulent 

flow over sinusoidal topography with a range of amplitudes and slopes. PHOENICS uses a 

finite-volume scheme to solve simultaneously for the time-averaged pressure and flow velocity. 

PHOENICS solves the flow equations using the iterative SIMPLEST algorithm of Spalding 

(1980), which is a variant of the SIMPLE algorithm of Patankar and Spalding (1972). The 

solution was considered converged when the state variables changed by less than 0.001% from 

one iteration to the next. We used the renormalization group variant of the k-ε closure scheme 

first proposed by Yakhot and Orszag (1986) and later updated by Yakhot et al. (1992), which is 

widely used for sheared/separated boundary layer flows. 

 Inputs to our model runs include a topographic profile (in these cases, a sinusoid of a 

prescribed amplitude and maximum slope), a grain-scale roughness length, z0g (set to be 0.003 

mm for all runs), and a prescribed horizontal velocity at a reference height far from the bed (ur = 

10 m s
-1

 at zr = 10 m was used for all of the model runs presented). The value of z0g was chosen 

based on the measured value of z0 at the two flattest sites (Lordsburg smooth and intermediate), 

both of which yield z0 = 0.003002 mm as described in Section 3.2. This value is also consistent 

with the grain-scale roughness expected at a site with a median grain size of fine sand if the 



Bagnold (1938) relation z0g = d50/30 is used. The ground surface is prescribed to be a fully rough 

boundary, i.e. one that results in a law of the wall velocity profile characterized by a roughness 

length equal to z0g (0.003 mm) and a shear velocity equal to  
grr zzu 0ln/κ  (0.26 m s

-1
) in the 

absence of topography. In the CFD model the ground surface is treated using a wall-function 

approach, i.e. the velocity profile within the first cell is assumed to be logarithmic with a 

microscale roughness length equal to z0g if the flow is turbulent, otherwise a laminar profile is 

used based on the viscosity of air. At the upwind boundary of the model domain an “inlet” law of 

the wall velocity profile is prescribed with a roughness length equal to z0g. At the downwind 

boundary (i.e. the “outlet”) a fixed-pressure boundary condition is used.   

 The computational grids we used consisted of 2D terrain-following coordinate systems.  

Thirty logarithmically spaced grid points were used in the vertical direction, ranging from 0.1 

mm to 10 m above the bed. We used 2000 grid points in the horizontal direction. The absolute 

size of the horizontal domain varied depending on the slope of the bedforms. That is, the 

topographic profile was identical for all of the runs (except for the fact that an amplitude of 0.05 

m used for half of the runs and an amplitude of 0.1 m was used for the other half). Steeper slopes 

were obtained by decreasing the horizontal grid spacing or “compressing” the input topographic 

profile horizontally. The minimum length/fetch of the model domain was 30 m. Our analysis of 

the wind profiles output by the model was restricted to the last 20% of the model domain, i.e. the 

portion farthest downwind. This was necessary because the upwind boundary of the model is a 

roughness transition triggered by the interaction of the input velocity profile (characterized by 

roughness length z0g) with the microtopography. This roughness transition generates an internal 

boundary layer that grows with distance from the upwind end of the domain. Within the internal 

boundary layer, the velocity profile is characterized by an effective roughness length z0 set by the 



amplitude and slope of the bedforms. To properly compute the value of z0 based on velocity 

profiles from the top of the roughness sublayer to a height of 3 m, it is necessary to restrict the 

analysis of the wind profiles to the downwind end of a model domain that is at least 30 m in 

length as described in Section 1.2.     

 Model runs were performed using two different amplitudes (0.05 and 0.1 m) and a range 

of maximum slopes from 0.001 to 2.0. Each of the four hundred vertical velocity profiles of the 

last 20% of the model domain were fit to equation (1) from the top of the roughness sublayer 

(assumed to be equal to twice the maximum height of the bedforms) to a height of 3 m (to match 

the maximum height measured in the field). The four hundred z0 values were then averaged to 

obtain an effective z0 value for each value of the sinusoidal amplitude and slope. Values of z0 

were fit to the expression 
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where a is the amplitude (in units of m) of the sinusoid, S is the maximum slope (the slope at the 

point of inflection of the sinusoid in units of m/m), and c1, c2, and c3 are unitless coefficients.   

2.4. Fourier analysis of topography and a multi-scale approach to quantifying z0 

 The results of the CFD modeling (described in Section 3.3) suggest that the slope and 

amplitude of microtopographic variations control z0 values via the sigmoidal relation of equation 

(43). This result provides a basis for quantifying the multi-scale controls on z0 within a discrete-

Fourier-transform-based approach that treats each Fourier mode as a sinusoid, uses equation (43) 

to quantify the effective roughness associated with each sinusoid, and then sums the 

contributions of each sinusoid to determine the total effective z0 value, fully taking into account 

microtopographic variations across a wide range of scales.  



 Within the implementation of the DFT in the IDL programming language, the amplitude 

of each Fourier mode is equal to 2 times the amplitude of the complex Fourier coefficient, i.e. an 

= 2|fn|, and the maximum slope is given by Sn = 2πka, where k is the natural wavenumber. As 

such, the generalization of equation (4) to multiscale topography as quantified using the DFT is 
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where c4 is a unitless coefficient analogous to c1 but with a potentially different value, and k is 

the natural wavenumber defined as the inverse of the wavelength. We verified that equation (54) 

returns the same value of z0 as predicted by equation (43) for the case of a sinusoidal bed if c4 = 

c1. We also verified that the z0 values predicted by equation (54) were independent of the total 

number of data points and the sampling interval of the input data (provided that the dominant 

scales of roughness were represented and resolved). The best-fit value of c4 was obtained by a 

brute-forced trial-and-error minimization of the least-squared difference between the predictions 

of equation (54) and the mean z0 values measured at the ten sites.  

 An alternative approach to equation (4) that is easier to apply and does not rely on the 

Fourier transform is 
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where c5 and c6 are unitless coefficients.  

 

3. Results 

3.1. TLS surveying 



 Figure 4 presents color maps of the topography of the roughest and smoothest sites at 

each playa. Table 1 presents summary statistics for the ten sites, including the topographic 

metrics HRMSE and Sav.    

 Figure 5 plots the average amplitude spectrum of all 1D topographic transects for each 

site. These spectra demonstrate that significant topographic variability exists at all spatial scales 

of measurement, i.e. from 0.02-10 m (note that two samples are required for Fourier analysis, 

hence the smallest wavelength captured in our analysis is 2Δx or 0.02 m). A surface with a single 

scale of roughness, such as wind ripples, would have power concentrated at a narrow range of 

wavelengths, unlike the “broadband” spectra of Figure 5. Also, note that the different shapes of 

the spectra reflect the different spatial scales that dominate topographic variability at each site. 

At Willcox Playa, for example, the largest roughness elements occur at horizontal spatial scales 

~1-3 m (Figs. 4D&4E). As a result, the power spectra for the Willcox sites exhibit a “bend” at 

wavelengths of approximately 1-3 m, indicating that the amplitude of the microtopography drops 

off substantially at wavenumbers larger than 0.3-1, i.e. wavelengths smaller than 1-3 m. A 

similar bend occurs in the Lordsburg rough site but at a higher wavenumber corresponding to a 

wavelength of ~0.03-0.1 m. The color map of the Lordsburg rough site is consistent with this, i.e. 

it shows a “dimpled” surface with large roughness elements ~0.03-0.1 m in size.  

3.2. Measurement and analyses of wind profiles 

 Figure 6 plots the relationship between the average wind velocity (normalized to the 

value measured at 2.8 m above the ground) and the natural logarithm of height above the ground 

for all sites. The data have been normalized to emphasize how z0 and deviations from equation 

(1) vary among the sites (neither of which depend on absolute velocity values). Note that the 



three Death Valley sites have been shifted to the left along the x axis by 0.1 m s
-1

 to help 

differentiate the plots. 

 The law of the wall predicts a constant slope when u is plotted versus ln z.vs. ln z. When 

the velocities are normalized as in Figure 6, a steeper slope corresponds to a smaller z0 value. 

The slopes of the lines in Figure 6 systematically decrease (hence mean z0 values increase) from 

the smoothest playa (Lordsburg) to the roughest (Death Valley). Within each playa, the slopes 

also systematically decrease from relatively smooth sites to rough sites (Table 1). The plots in 

Figure 6 suggest that the lowest two sensors (located 0.01 and 0.035 m above the ground) at the 

Death Valley sites and the rough Soda Lake site reside within the roughness sublayer and hence 

should not be used to obtain z0 values via least-squares fitting of data to equation (1). The same 

is true for the lowest sensor at the four smoother sites (all but the two smoothest sites at 

Lordsburg Playa). 

 Histograms of z0 values measured at each site are presented in Figures 7A&7C. As noted 

in section 2.2, a z0 value was calculated for each 12 s interval for which a least squares fit of u to 

ln z yielded a R
2
 value of greater than 0.95. Figure 7 shows that z0 values are approximately 

lognormally distributed. Sites that have higher-amplitude microtopographic variations at the 0.01 

m scale (as measured by the average amplitude spectra in Figure 5) have higher z0 values. Aside 

from measurement error/uncertainty, there are two reasons for variance in measured z0 values. 

The first is the fluctuating nature of turbulence itself. This source of variance can be reduced by 

averaging the wind velocities over longer time intervals before fitting to equation (1). The 

second source of variance comes from moving the hotwire sensors to different locations around 

each site, thereby “sampling” different patches of microtopography. We found this second source 

to be the dominant source of variation based on the fact that z0 values exhibit much greater 



variability over time scales of ~1 h, i.e. the time scale over which the hot-wire sensors were 

moved around the landscape.   

 Values of mean z0 for each site have a power-law dependence on HRMSE (Fig. 8A), i.e. 

  
b
RMSEcHz 0         (65) 

where c = 6 ± 1 m
-1

 and b = 2.0 ± 0.1 and the uncertainty values represent 1σ standard 

deviations. Equation (65) is broadly consistent with the results of Nield et al. (2014) (equation 

(2)). The value of the exponent b we obtained is slightly higher than that of Nield et al. (2014), 

but such a difference is not unexpected considering that we are studying different playas. 

 There are several limitations with using HRMSE as the sole or primary predictive variable 

for z0. First, a nonlinear relationship between z0 and HRMSE yields unrealistic values when applied 

outside the range of spatial scales considered here and in Nield et al. (2014). For example, using 

equation (65) with HRMSE values in the range of predicts z0 values in the range of 6-54 m, i.e. 

values larger than any value ever measured. Playa surfaces rarely, if ever, have HRMSE values of 

1-3 m, but many other landscapes (e.g. alluvial fans) do. Since the goal of this work is to use 

playas as model landscapes for understanding the multi-scale controls on z0 above landscapes in 

general (not playas specifically), it is necessary for any empirical equation to predict reasonable 

results for a broad range of landscape types and a range of spatial scales beyond the specific 

range considered in the model calibration. Second, HRMSE values are problematic to use as the 

sole or dominant variable for use in predicting z0 values because they contain no information 

about terrain slope. A topographic transect with a point spacing of 0.01 m can be “stretched” to 

obtain any slope value, with importance consequences for flow separation and z0 values. 

 Figure 8B plots the relationship between mean z0 and Sav, the mean slope computed 

between adjacent points at the 0.01 m scale, for the ten study sites. This figure documents a 



systematic nonlinear relationship between z0 and Sav, suggesting that the nonlinearity between z0 

and HRMSE in equation (6) may reflect a dependence of z0 on Sav in addition to a dependence of z0 

on HRMSE. This hypothesis is consistent with Figure 8C, which demonstrates that HRMSE values 

are highly correlated with Sav values, i.e. that, in the playa surfaces we studied, playas with larger 

microtopographic amplitudes are systematically steeper. We would not expect such a correlation 

between amplitude and steepness to apply to all landform types because, as microtopography 

transitions into mesotopography and HRMSE increase from 0.1 to 1 and higher, slope gradients do 

not continually steepen without bound. If our goal is to understand the controls on z0 values in 

landscapes generally, the data in Figure 8 suggests that it is necessary to quantify the separate 

controls of amplitude and slope on z0 values. This was the purpose of the CFD modeling 

described in the next section. 

3.3. Computational fluid dynamics 

 Figure 9 To demonstrate the suitability of PHOENICS for modeling atmospheric 

boundary-layer flows and to establish that the effective roughness length depends on the 

microtopographic variability at multiple scales, we performed a numerical experiment using the 

central microtopographic profile measured at the Soda Lake smooth site as input (plotted in Fig. 

9A). We measured a mean z0 value of 4.6 mm from velocity profiles at this site. Figure 9B 

presents the velocity profiles predicted by the PHOENICS model for 2D flow over the profile, 

following the procedures detailed in the Methods section. PHOENICS predicts an effective 

roughness length of 2.4 mm based on a least-squares fit of the velocity to the logarithms of 

distance above the ground from a height equal to twice the height of the dominant roughness 

elements to the top of the model domain. As such, the PHOENICS model predicts a z0 value 



similar to the value we measured in the field (relative to the four order-of-magnitude variation in 

z0 values we measured across the study sites).  

 To demonstrate that the z0 value depends on microtopographic variability at multiple 

scales, we filtered the Soda Lake smooth profile diffusively to remove some of the small-scale 

(high-wavenumber) variability while maintaining the large-scale variability (i.e. the root-mean-

squared variability of the filtered and unfiltered profiles is identical). Figure 9 plots the original 

profile, the filtered profile, and their amplitude and z0n spectra. The z0 values for the unfiltered 

and filtered cases are 2.4 mm and 0.15 mm, respectively, based on fitting the velocity profiles 

predicted by PHOENICS. That is, the filtered profile has a z0 value more than an order of 

magnitude smaller than the original profile despite the fact that the amplitude of the large-scale 

microtopographic variations is the same as the original profile. Equation (3) predicts 2.8 mm and 

0.25 mm, respectively, for the z0 values. The z0 value decreases in the filtered case because steep 

slopes that trigger flow separation are significantly reduced at a wide range of scales by filtering, 

lowering the z0 value.   

 The results of this numerical experiment demonstrate that z0 values depend on variability 

microtopographic variability at multiple scales. There is also a general theoretical argument that 

supports this conclusion. If one accepts that both the amplitude and slope of the microtopography 

influence the effective roughness length (which we will demonstrate below for the case of a 

sinusoid), it follows that there is no single Fourier mode that controls the effective roughness 

length, unless the topography is a perfect sinusoid. This is because the slope is a high-pass filter 

of the topography (i.e. the slope is proportional to k*an where an is the Fourier coefficient) and 

hence is more sensitive to high-wavenumber components of the topography than the amplitude 

is.  



 Figure 10 presents color maps that illustrate the output of the CFD model for an example 

case (a = 0.05 m and S = 0.79 m/m). Figure 9A10A, which shows a color map of the turbulent 

kinetic energy, illustrates the growth of the internal boundary layer with increasing distance from 

the upwind boundary of the domain as the input velocity profile interacts with and adjusts to the 

presence of the microtopography. Figures 9B&9C10B&10C zoom in on the flow and illustrate 

the zones of flow separation that occur in this example. These figures also illustrate the 

terriainterrain-following and logarithmically spaced nature of the computational grid in the 

vertical direction.     

 Figure 1011 plots the z0 values computed from an analysis of the CFD-predicted wind 

profiles over sinusoidal topography for two different values of the sine-wave amplitude (a = 0.05 

m and 0.1 m) and for a range of values of the maximum slope S from approximately 0.001 to 2.0. 

For maximum slope values less than approximately 0.004, the z0 value is equal to z0g, as we 

would expect (the topography is effectively flat). As the slope of the microtopography increases, 

the wind field is increasingly perturbed by the roughness of the terrain. Eventually, flow 

separation is triggered and flow recirculation zones are created in the wakes of each bedform, 

further increasing z0 values. For very steep slopes, i.e. S ~ 0.4-1, z0 values still increase with 

increasing slope but at a slower rate than for gentler slopes since the flow as already separated 

and additional steepening has only a modest effect on the spatial extent of flow separation and z0 

values. The nonlinear dependence of z0 on S is well fit by a sigmoidal relationship of the form 

given by equation (4). Best-fit values are c1 = 0.1, c2 = 0.4, and c3 = 2.0.   

3.4. Fourier analysis of topography and a multi-scale approach to quantifying z0 and the z0n 

spectrum 



 Using a brute-force minimization of the squared difference between the mean measured 

values of z0 and the values predicted by equation (5) for all study sites, we found the optimal 

value of c4 to be 1.5. Figure 1112 plots z0n values computed by equation (5) as a function of the 

natural wavenumber, k. The sum of all the z0n values is the predicted value of z0 for each surface. 

There is also value, however, in examining the dependence of z0n on the wavenumber. The plot 

in Figure 1112 shows which spatial scales are most dominant in controlling the value of z0 for a 

given landscape (see arrows in Fig. 1112). On Lordsburg Playa, the only spatial scales that have 

non-negligible slope gradients are those at 0.01-0.3 m. At the rougher sites, the dominant 

roughness elements are found at different scales, from 0.1-1 m (Soda Lake) to 1-10 m (Willcox 

Playa) to 0.3-3 m (Death Valley). This plot also shows that in some cases there is one dominant 

scale of roughness elements (e.g. Soda Lake and Death Valley) while in others there are two or 

more scales that are equally dominant (e.g. Willcox Playa).           

 Figure 1213 plots the z0 values predicted by equation (54) versus the mean measured 

values for the ten study sites. Note that there appears to be only nine points plotted in Figure 

1213 because two of the points (for Lordsburg smooth and Lordsburg intermediate) are nearly 

indistinguishable. The correlation between the logarithms of the predicted and measured mean z0 

values is quite good (R
2
 = 0.991). Equation (54) is capable of predicting z0 values to 50% 

accuracy, on average, across a four order-of-magnitude range.  

 An alternative approach is to use the values of HRMSE and Sav to estimate z0 using 

equation (5). We found c5 = 16 and c6 = 2.0 to yield the highest R
2
 value (0.978). Equation (5) is 

thus a useful formula with an advantage of simplicity, but it is somewhat inferior to the multi-

scale analysis of equation (4) based on its lower R
2
 value.   

 



4. Discussion and Conclusions 

 The values of c3 and c2 respectively reflect the magnitude of the nonlinear increase in z0 

values as slope increases and the slope value where back-pressure effects begin to limit the rate 

of increase in z0 with increasing slope. The valuevalues of c3 and c6 (2.0) reflects a square 

relationship between roughness length and the maximum slope of microtopographic variations at 

a given scale, which is broadly consistent with the nonlinear relationship between z0 values and 

maximum slope in the model of Jacobs (1989) (note, however, that the Jacobs’Jacobs (1989) 

model only applies only to gentle slopes that do not trigger flow separation). The value of c2 (0.4 

or 24°) is similar to the critical/maximum angle of attack of typical aerofoils (Bertin and 

Cummings, 2013). Critical angles of attack represent the maximum steepness possible before the 

drag effects become greater than lift due to excessive pressure drag and the associated lee-side 

flow separation. Similarly, the value of c2 represents the maximum slope of the microtopography 

in which an increase in slope leads to a nonlinear increase in z0 values. Above this slope value, z0 

values increase more modestly with increasing slope because flow separation already occurs over 

a significant portion over the surface. 

 The approach of this paper is limited in that it applies the superposition principle to a 

problem for which it cannot apply precisely (superposition applies only to linear systems). The 

limited applicability of the superposition principle to this problem may be one reason why the 

value of the value of c4 is larger than c1. If superposition were to apply exactly, we would expect 

equation (5) to be an exact Fourier-based implementation of equation (4) with the same values of 

the coefficients. Instead, we found that the best-fit value of c4 is approximately fifteen times 

larger than c1. The high correlation coefficient between the model and data (obtained with just 

one free parameter) suggests that our approach is reasonable, but the difference between the 



values of c1 (the mono-scale case) and c4 (the multi-scale case) points to the limited applicability 

of the superposition principle in this case. Despite this limitation, we believe that our approach is 

a reasonable first step towards quantifying the multi-scale controls on z0 values until a more 

comprehensive and fully nonlinear approach is found. The CFD model results demonstrate 

that equation (3) works well for a single sinusoid, while equation (4) works well for real-world 

cases that can be represented as a superposition of many (i.e., N >> 1) sinusoids. The fact that the 

value of c4 is larger than c1 indicates that there is no seamless transition between equation (3) and 

equation (4) as the topography changes from the idealized case of a single sinusoid to the case of 

many superposed sinusoids. That is, neither formula works well for the case of a small number of 

superposed sinusoids. The absence of such a seamless transition could be a result of applying the 

superposition principle to a nonlinear problem (boundary layer turbulence) for which it cannot 

apply precisely. In addition, experimental studies demonstrate that flow separation (which 

influences z0) is a function of both the slope and the curvature of the bed (Simpson, 1989; 

Lamballais et al., 2010). Equations (3) and (4) do not utilize curvature, hence neither equation 

can be the basis of a perfect method for predicting z0. It is likely that the only way to precisely 

estimate z0 is to compute the actual flow field over the topography using a CFD model. Any 

other approach will likely involve some type of approximation. We propose that equation (4), 

while imperfect, yields a good approximation for z0 values in real-world terrain (i.e. those with 

many Fourier coefficients contributing to z0), based on the R
2
 value of 0.991 we obtained. 

Equation (5) provides an alternative for users who prefer its simplicity. Equation (5) is not 

accurate for all possible Sav values, since z0 cannot increase without bound as Sav increases. As 

such, equation (5) should only be considered applicable for microtopography with Sav values less 

than approximately 0.15.  



 We developed and tested a new empirical formula for the roughness length, z0, of the 

fully rough form of the law of the wall that uses the amplitude and slope of microtopographic 

variations across multiple scales within a discrete-Fourier-transform-based approach. A 

sigmoidal relationship between z0 and the amplitude and slope of sinusoidal topography 

developed from CFD model results was used to quantify the effects of each scale of 

microtopography on z0. The model was developed and tested using approximately sixty thousand 

z0 values from the southwestern U.S. obtained over 2.5 orders of magnitude in distance above the 

bed. The proposed method is capable of predicting z0 values to 50% accuracy, on average, across 

a four order-of-magnitude range. This approach adds to our understanding of and ability to 

predict the characteristics of turbulent boundary flows over landscapes with multi-scale 

roughness.    

 

Data Availability 

 DEMS of each of the study sites (relative elevation in m) and mean wind velocities (in m 

s
-1

) measured at seven heights above the ground at 12-s intervals are available as Supplementary 

files.  
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Table 1. Study site locations and, attributes., and predictions of equations (4) and (5). 
Name Latitude 

(° N) 

Longitude 

(° W) 

# profiles HRMSE 

(mm) 

Sav mean z0 

(mm) 

pred. z0 

Eqn. (4) 

(mm) 

pred. z0 

Eqn. (5) 

(mm) 

Death V. rough 36.34449 116.86338 8036 34 0.144 23 34 11 

Death V. interm. 36.34466 116.86321 10922 36 0.142 16 26 12 

Death V. smooth 36.34485 116.86307 9457 26 0.122 6.3 10 6.2 

Soda Lake rough 35.15845 116.10413 10838 14 0.159 7.6 4.1 5.7 

Soda Lake smooth 35.15852 116.10352 7134 11 0.154 4.6 2.8 4.2 

Willcox rough 32.16882 109.88889 6404 6.6 0.056 0.26 0.22 0.33 

Willcox smooth 32.14869 109.90317 2403 4.8 0.076 0.16 0.14 0.44 

Lordsburg rough 32.28137 108.88378 1883 1.3 0.032 0.047 0.020 0.021 

Lordsburg interm. 32.28105 108.88400 2569 0.72 0.017 0.002 0.0026 0.0033 

Lordburg smooth 32.28097 108.88459 203 0.55 0.017 0.002 0.0025 0.0025 

 

Figure 1. Plots of synthetic (top) and real (middle and bottom) topographic transects illustrating 

the multi-scale nature of topography using natural playa surfaces as examples.  

 

Figure 2. Aerial images of the study sites. 

 

Figure 3. Photographs of the equipment used for measuring wind profiles. (A) Mast holding 4 

hot-wire anemometers (left) and four cup anemometers (right, note that only the lowest 3 are 

visible) at the Animas intermediate study site. (B) Close-up photograph of the hot-wire sensors at 

the Soda Lake smooth site. For scale, note that the top hot-wire sensor is located 0.16 m above 

the surface in both photographs.    

 

Figure 4. Color maps of TLS-derived DEMs of eight of the ten study sites. (A) Death Valley 

rough, (B) Death Valley smooth, (C) Soda Lake rough, (D) Soda Lake smooth, (E) Willcox 

rough, (F) Willcox smooth, (G) Lordsburg rough, (H) Lordsburg smooth. Note the differing 

color scales between (A)&(B) and (C)&(D).  

 



Figure 5. Plots of the average amplitude spectrum, A, of 1D transects of the microtopography of 

each site as a function of the natural wavenumber, k. The colors red, green, blue, and black are 

used to represent the Death Valley, Soda Lake, Willcox, and Lordsburg sites, respectively. 

Thicker curves represent rougher sites within each playa.  

 

Figure 6. Plots of mean wind velocity (normalized by the velocity measured at the highest 

sensor, located 2.8 m above the ground) (x axis) as a function of the natural logarithm of height 

above the ground (y axis). The colors red, green, blue, and black are used to represent the Death 

Valley, Soda Lake, Willcox, and Lordsburg sites, respectively. Within each playa, thicker lines 

are used to represent the rougher sites. Open circles indicate stations located within the 

roughness sublayer. These sensors were not used to calculate z0.  

 

Figure 7. (A)-(B) Normalized histograms of z0 values measured at each site and (C)-(D) 

probability distributions for each site, assuming z0 values are log-normally distributed.   

 

Figure 8. Plots of mean z0 at each site versus (A) HRMSE and (B) Sav. (C) Plot of HRMSE vs. Sav.  

 

Figure 9. Demonstration of the dependence of z0 values on the multi-scale nature of 

microtopography. (A) Plot of a profile through the Soda Lake smooth site (thin curve). Also 

shown is the same plot with diffusive smoothing (thicker curve). Smoothing maintains the 

amplitude of microtopographic variations at large spatial scales (i.e. the amplitude spectrum is 

unchanged at large scales) but removes some of the small-scale (high-wavenumber) variability. 

(B) Plots of the mean velocity profiles predicted by PHOENICS over the original and filtered 



profile. (C) Amplitude spectra of the two plots in (A). (D) Contributions of each Fourier mode to 

the z0 values for the two plots in (A).     

 

Figure 10. Illustrations of the output of the PHEONICS CFD model for the example case (with 

amplitude a = 0.05 m and maximum slope S = 0.79 m/m) of flow over a sinusoidal bed. (A) 

Color map of turbulent kinetic energy, KE. This map illustrates the growth of the internal 

boundary layer triggered by the effective roughness change as the input velocity profile 

(characterized by a grain-scale roughness z0g) interacts with and adjusts to the microtopography. 

The color vector maps in (B) and (C) illustrate the zones of flow recirculation that occur in the 

lee side of each bedform.   

 

Figure 1011. Plot of the z0 value predicted by the PHOENICS CFD model for flow over 

sinusoidal terrain with two values of the amplitude, a, and a wide range of values of the 

maximum slope values, S. Also shown are predictions of equation (43) for the best-fit parameter 

values.  

 

Figure 1112. Plots of the contribution of each Fourier mode to the effective roughness length, z0n, 

as a function of k. Arrows point to the range of wavenumbers that contribute most to z0.    

 

Figure 1213. Plot of mean measured z0 values versus predicted values (from equation (5using 

Eqn. (4)) for the ten study sites. Error bars denote 1σ variations in the measured z0 values. 

 


