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Abstract 1	

 This paper generalises the physical dependence of the relationship between 2	

contributing area, local slope, and the surface soil grading using a pedogenesis model and 3	

allows an exploration of soilscape self-organisation. A parametric study was carried out using 4	

different parent materials, erosion, and weathering mechanisms. These simulations confirmed 5	

the generality of the area-slope-d50 relationship. The relationship is also true for other 6	

statistics of soil grading (e.g. d10, d90) and robust for different depths within the profile. For 7	

small area-slope regimes (i.e. hillslopes with small areas and/or slopes) only the smallest 8	

particles can be mobilised by erosion and the area-slope-d50 relationship appears to reflect the 9	

erosion model and its Shield’s Stress threshold. For higher area-slope regimes, total 10	

mobilization of the entire soil grading occurs and self-organisation reflects the relative 11	

entrainment of different size fractions. Occasionally the interaction between the in-profile 12	

weathering and surface erosion draws the bedrock to the surface and forms a bedrock 13	

outcrop. The study also shows the influence on different depth dependent in-profile 14	

weathering functions in the formation of the equilibrium soil profile and the grading 15	

characteristics of the soil within the profile. We outline the potential of this new model and 16	

its ability to numerically explore soil and landscape properties. 17	

  18	
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1. Introduction  1	

	2	

Soil is a product of various physical processes acting on earth’s crust.  Weathering is a 3	

major contributor to soil production, along with transport processes that transport new 4	

material away and bring new material into a point. Weathering is a general term used to 5	

describe all the processes which cause rocks or rock fragments to disintegrate or alter through 6	

physical [Ollier, 1984; Wells et al., 2006; Wells et al., 2008; Yokoyama and Matsukura, 7	

2006], chemical [Green et al., 2006; Ollier, 1984] or biological means [Strahler and Strahler, 8	

2006]. Disintegration of rock material through physical weathering can occur by (1) 9	

unloading, (2) expansion and contraction of rock through heating and cooling cycles, (3) 10	

stress developing in rock fractures due to freezing water, (4) salt crystal growth or tree root 11	

intrusions, and (5) abrasion of rock by harder materials transported by flowing water or 12	

glaciers [Thornbury, 1969]. Physical weathering where larger soil particles are broken down 13	

into smaller particles is dominant in the surface layer of material where it is more exposed. 14	

Weathering also occurs underneath the surface and the weathering rate at these subsurface 15	

layers can be modelled with depth dependent weathering functions. 16	

Spatial redistribution of soil can occur due to different processes such as soil creep 17	

and erosion. Soil creep is the process of downslope movement of soil over a low grade slope 18	

with a substantial soil mantle under the force of gravity and friction [Ollier and Pain, 1996]. 19	

Although soil creep can have significant influence on some soil properties on some land 20	

forms [Braun et al., 2001; Roering et al., 2007; West et al., 2014] on landforms with 21	

interlocking rock fragments, its influence is not significant. On the other hand erosion can 22	

occur in all landforms in one form or another. Erosion is term used for removal of material 23	

from an existing soil profile. Erosion can occur due to a number of processes such as (1) 24	

surface water flow (Fluvial erosion), (2) wind (Aeolian erosion), (3) flow of glaciers (Glacial 25	

erosion) and (4) animal or plant activity (Biological erosion) and others. Fluvial and Aeolian 26	

erosion tend to create an “Armour” on the soil surface. Depending on the energy of the 27	

erosion medium (water or air), transportable fine particles are preferentially entrained and 28	

transported from the surface soil layer. This process coarsens the remaining surface soil layer 29	

enriching it with coarser, less mobile, material. With time, if the energy of the transport 30	

medium remains constant, an armoured layer is formed with all the transportable material 31	

removed. At this time the sediment transport reaches zero. This armour, where all the 32	

materials are larger than the largest grains which the transport medium can entrain, prevents 33	
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erosion of material from the subsurface. If the energy of the transport medium increases, the 1	

existing armour can be disrupted, and a newer stable armour with coarser material can be 2	

formed [Sharmeen and Willgoose, 2006]. Armouring in river beds has been widely 3	

understood and studied extensively for mostly streams and rivers [Gessler, 1970; Gomez, 4	

1983; Lisle and Madej, 1992; Little and Mayer, 1976; Parker and Klingeman, 1982]. 5	

The importance of soil as an agricultural and commercial resource, and as an 6	

influencing factor on environmental processes such as climate regulation, is well established 7	

[Jenny, 1941; Bryan, 2000; Strahler and Strahler, 2006; Lin, 2011]. However spatially 8	

distributed quantification of soil properties is difficult because of the complexity and dynamic 9	

nature of the soil system itself [Hillel, 1982]. The necessity for quantified and spatially 10	

distributed soil functional properties is clear [Behrens and Scholten, 2006; McBratney et al., 11	

2003]. Moreover, explicit soil representation in models of environmental processes and 12	

systems (e.g. landform evolution, and hydrology models) has increased rapidly in the last few 13	

decades. For accurate prediction these physically-based and spatially-explicit models demand 14	

high quality spatially distributed soil attributes such as hydraulic conductivity [McBratney et 15	

al., 2003].  16	

The need for improved soil data arises in two main areas: (1) better mapping of the 17	

description of the soil (e.g. particle size distribution, soils classification), and (2) improved 18	

representation of soil functional properties (e.g. hydraulic conductivity, water holding 19	

capacity). For most environmental models the soil functional properties are of greatest 20	

interest since they determine the pathways and rates of environmental process. Accordingly 21	

this paper is focussed on a soil representation that can underpin the derivation of functional 22	

properties. Pedotransfer functions exist (albeit with large uncertainty bounds) to then relate 23	

these soil descriptions to functional properties. The existence of these pedotransfer functions 24	

intellectually underpins the rationale of the work in this paper. While these techniques are not 25	

the focus of this paper, some discussion of them is pertinent so that the importance of the 26	

scaling relationship discussed in this paper can be fully appreciated. 27	

Traditional soil mapping typically uses field sampling and classifies soils into 28	

different categories based on a mixture of quantitative (e.g. pH) and qualitative features (e.g. 29	

colour). It does not directly provide the functional soil properties required by environmental 30	

models. Several techniques have been introduced to tackle this lack of functional description 31	

such as pedotransfer functions, geostatistical approaches, and state-factor (Clorpt) approaches 32	
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[Behrens and Scholten, 2006]. Pedotransfer functions (PTFs) have been developed to predict 1	

functional soil properties using easily measurable soil properties such as particle size grading, 2	

organic content, and clay content. Although PTF’s are very useful, they are limited because 3	

they need spatially distributed soil descriptions and, in many cases, site specific calibration 4	

[Benites et al., 2007]. Geostatistical approaches interpolate field data to create soil-attribute 5	

maps. Clorpt or Scorpan approaches [McBratney et al., 2003] use regression or fuzzy-set 6	

theory to create soil-attribute or soil-class maps [Behrens and Scholten, 2006].  7	

Geostatistical digital soil mapping using field sampling of soil is possible for a 8	

specific site where the area is small [Scull et al., 2003]. However, it can be prohibitively 9	

expensive and time consuming for larger sites. Soil mapping techniques, such as Clorpt or 10	

Scorpan, use digitization of existing soil maps. They generate soil classes through decision 11	

tree methods and artificial neural networks using easily measurable soil attributes (similar to 12	

PTFs) to generate the digital soil maps [McBratney et al., 2003]. Although much work has 13	

been carried out they also suffer the need for site-specific calibration.  14	

Remote sensing technologies such as gamma ray spectroscopy have introduced novel 15	

methods of characterizing soil properties and developing digital soil maps [Triantafilis et al., 16	

2013; Wilford, 2012]. The digital soil maps produced by gamma ray spectroscopy are 17	

relatively coarse and their spatial coverage is limited while their links with functional 18	

properties remain uncertain [McBratney et al., 2003]. Developments in geographic 19	

information systems (GIS) have enabled fast and efficient characterization and analysis of 20	

large amounts of spatial and non-spatial data [Scull et al., 2003]. The ease of use of GIS has 21	

revolutionized modelling by making distributed modelling easier to do and interpret [Singh 22	

and Woolhiser, 2002]. This is the rationale for the GlobalSoilMap initiative, which aims to 23	

provide a global 90m map of soil properties for the world [Sanchez et al., 2009].  24	

Many researches have reported strong relationships between terrain attributes and 25	

soil. For example, using field measurements Moore et al. [1993] found significant 26	

correlations between terrain attributes and soil properties such as soil wetness index and soil 27	

organic carbon content. Poesen et al. [1998] reported a strong relationship between the slope 28	

gradient and the rock fragment size on the soil surface. Statistical [Gessler et al., 2000; 29	

Gessler et al., 1995] and process based models [Govers et al., 2006] have been proposed to 30	

predict these relationships. They have been implemented to predict the soil attributes data 31	

using terrain attributes as a proxy. ARMOUR [Sharmeen and Willgoose 2006] is a physically 32	
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based model that simulates (1) rainfall-runoff event overland flow, (2) erosion and the 1	

selective entrainment of fine sediments that creates armouring of the soil surface, and (3) 2	

weathering of the particles on the surface that breaks down the armour. ARMOUR simulates 3	

the evolution of the soil surface on a hillslope. However, the very high computing resources 4	

and long run times (1000s of years at minute time resolution) of the physically based 5	

modelling prevented the coupling of ARMOUR with a hillslope evolution model.  6	

Cohen et al. [2009] developed a state-space matrix soils model, mARM, and 7	

calibrated it to output from ARMOUR. mARM was significantly more computationally 8	

efficient than ARMOUR, and was able to simulate more complex hillslope geometries. It was 9	

sufficiently fast that it could be used to simulate the spatial distribution of the soil profile as 10	

well the surface properties. By incorporating the weathering characteristics of soil profile into 11	

mARM, Cohen et al. [2010] developed mARM3D which was able to explore the evolution of 12	

soil profiles for small catchments.  Cohen et al. [2009]  was the first to identify using 13	

pedogenic processes the relationship between the hillslope soil grading, and the hillslope 14	

gradient that this paper further investigates. However, it was only tested for a small number 15	

of cases, and for one set of climate and pedogenic data.  16	

Cohen et al. [2010] showed the robustness of the relationship with changes in in-17	

profile weathering relationship but did not investigate the full range of parameter values. This 18	

paper generalises the mARM3D formulation and extends its numerics to allow us to test the 19	

relationship for more general conditions. We present the results and insights obtaining by the 20	

new modelling framework, State Space Soilscape Production and Assessment Model 21	

(SSSPAM). The state-space based model we developed using the SSSPAM framework 22	

simulates soil evolution in 2 horizontal dimensions (i.e. x and y), depth down the soil profile, 23	

time, and the soil particle size distribution with depth. 24	

1.1 Modelling approaches 25	

The combined effect of armouring and weathering on the soil evolution on hillslopes 26	

was first explored by Sharmeen and Willgoose [2006]. They investigated interactions 27	

between particle weathering and surface armouring and its effect on erosion using a 28	

physically-based one-dimensional hillslope soil erosion model called ARMOUR. To carry 29	

out their simulations they used surface soil grading data from two mine sites (1) Ranger 30	

Uranium Mine (Northern Territory, Australia), and (2) Northparkes Gold Mine (New South 31	

Wales, Australia). They demonstrated that the influence of weathering was significant in the 32	
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armouring process, sediment flux, and erosion rate. ARMOUR could also modify the armour 1	

properties, and even prevent the development of armour, by rapidly disintigrating the coarse 2	

material. If the amount of sediment generated by weathering is large it can be stored on the 3	

surface during times when the transport capacity is not large enough to entrain all the 4	

material. They called this a “transport-limited” regime. On the other hand for low weathering 5	

rates the armour will build up and prevent the subsurface material from eroding which was 6	

called “weathering-limited” regime. In between these two extremes they identified a 7	

equilibrium region where the erosion and weathering balance each other and where only the 8	

fine fraction generated by weathering is removed form the surface leading to a stable armour 9	

layer. The grading of the armour layer was found to be different to the underlying soil 10	

grading [Sharmeen and Willgoose, 2006]. Using ARMOUR they demonstrated the feasibility 11	

of using a physically-based model to represent soil evolution to study geomorphological 12	

evolution and as a simple model for pedogenesis. The main drawback of the numerical 13	

approximation used in ARMOUR model was its high computational complexity and very 14	

long run times which prevented it from being used for more complex geometries such as 2D 15	

catchments [Cohen et al., 2009], or its coupling with a landform evolution model. 16	

Cohen et al. [2009] simplified ARMOUR by reformulating it as a state-space matrix 17	

model, mARM, where the complex nonlinear physical processes of particle entrainment in 18	

ARMOUR were modelled using transition matrices. By doing so Cohen et al was able to 19	

reduce the numerical complexity of ARMOUR and significantly reduce runtimes. The 20	

computational efficiency of mARM allowed Cohen et al to explore (1) time-and space-21	

varying relationships between erosion and physical weathering rates at the hillslope scale, (2) 22	

more complex planar drainage geometries, and (3) interactions between the soil profile and 23	

the soil surface properties. They found that for erosion-dominated slopes the surface coarsens 24	

over time, while for weathering-dominated slopes the surface fines over time. When both 25	

processes operate simultaneously a slope can be weathering-dominated upslope (where runoff 26	

and therefore erosion is low) and armouring-dominated downslope. In all cases, for a 27	

constant gradient slope the armour coarsens downslope (i.e. as drainage area increases) as a 28	

result of a balance between erosion and weathering. Thus even for weathering-dominated 29	

slopes the surface grading catena is dependent on armouring through the balance between 30	

weathering and armouring [Cohen et al., 2009]. They also observed that for many slopes the 31	

surface initially armours but, after some period of time (space and rate dependent), 32	

weathering begins to dominate and the grading of the soil surface subsequently fines. 33	

Depending on the relative rates of armouring and weathering the final equilibrium grading of 34	
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the slope may be finer or coarser than the initial conditions but in all cases the surface 1	

coarsened with increasing area and slope.  Subsequently mARM3D was developed by Cohen 2	

et al. [2010] to incorporate soil profile evolution by using several soil profile layers and a 3	

semi-infinite bedrock layer into the mARM framework. They used exponential and humped 4	

exponential depth dependent weathering functions (soil production functions) to quantify the 5	

weathering characteristics of the soil profile and the bedrock. They concluded that although 6	

the soil depth and the subsurface soil profiles are dependent on the depth dependent 7	

weathering function, their effect on the spatial organisation of the grading of the soil surface 8	

was minimal. Their simulations showed that the area-slope-d50 relationship was still present 9	

at the soil surface even with different depth dependent weathering functions. 10	

These results were in good agreement with the results of the ARMOUR model used 11	

by Sharmeen and Willgoose [2006]. The work of both Sharmeen and Cohen used process 12	

parameters calibrated to observed field erosion [Willgoose and Riley, 1998] and laboratory 13	

weathering data [Wells et al., 2006; Wells et al., 2008] for a site at Ranger Uranium Mine. 14	

Thus their conclusions only apply to the site at Ranger.  15	

The aim of this paper is to present a new model (SSSPAM) that extends this previous 16	

work and generalises the conclusions using a sensitivity analysis of its process parameters. In 17	

this way we test the robustness of the Cohen’s area-slope-d50 relationship under different 18	

conditions (e.g. different climates and soil production functions). Here we present (1) the 19	

extensions in SSSPAM, (2) calibration and validation of SSSPAM, and (3) exploration of the 20	

spatial and temporal patterns of soil grading and weathering and armouring processes. The 21	

model discussed here is the soilscape component of a coupled soil-landscape evolution model 22	

and this paper aims to better understand the behaviour of this soilscape model before 23	

examining the more complex coupled soil-landform system. 24	

 25	

2. The SSSPAM model   26	

 SSSPAM is a state-space matrix model simulating temporal and spatial variation of 27	

the grading of the soil profile through depth over a landscape and extends the approach of the 28	

mARM model [Cohen et al., 2009] and mARM3D [Cohen et al., 2010]. It uses matrix 29	

equations to represent physical processes acting upon the soil grading through the soil profile. 30	

SSSPAM uses the interaction between a number of layers to simulate soil grading evolution 31	
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(Figure 1). These layers are: (1) A water layer flowing over the ground which moves soil 1	

particles laterally, (2) a surface soil layer from which the water entrains soil particles and 2	

which produces an armour over the soil below, (3) several soil layers representing the soil 3	

profile, and (4) a semi-infinite non-weathering bedrock/saprolite layer underlying the soil.  In 4	

SSSPAM two processes are modelled: erosion due to overland flow, and weathering within 5	

the profile. The armouring module consists of 3 components.  6	

The grading of the surface (armour) layer changes over time because of three 7	

competing processes, (1) selective entrainment of finer fractions by erosion, (2) the resupply 8	

of material from the subsurface (that balances the erosion to ensure mass conservation in the 9	

armour layer) and (3) the breakdown of the particles within the armour due to physical 10	

weathering. The erosion rate of the armour layer is calculated from the flow shear stress. The 11	

entrainment of particles into surface flow at each time step from the armour layer is 12	

determined by the erosion transition matrix, which is constructed using Shield’s shear stress 13	

threshold. The Shield’s shear stress threshold determines the maximum particle size that can 14	

be entrained in the surface water flow. For particles smaller than the Shield’s shear stress 15	

threshold a selective entrainment mechanism is used which was found to be a good fit to field 16	

data [Willgoose and Sharmeen, 2006]. Resupply of particles to the armour layer from 17	

underneath is mass conservative. The rate of resupply equals the rate of erosion, so the 18	

armour’s mass is constant. 19	

The weathering module simulates the disintegration of particles in the armour and 20	

underlying soil profile layers. Weathering is also modelled with a transition matrix. It defines 21	

the change in the armour grading as a result of the fracturing of particles through the 22	

weathering mechanism. The “Body Fracture” mechanism (Figure 2) splits the parent particle 23	

into a number of daughter particles. Wells et al. [2008] found that a body fracture model with 24	

2 equal-volume daughter fragments best fitted his laboratory salt weathering experiments. 25	

This does not guarantee that this fragmentation mechanism is appropriate for other rock types 26	

not tested by Wells, and one of the cases studied in this paper is a generalisation of this equal 27	

volume fragmentation geometry. Weathering in this paper is mass conservative so that when 28	

larger particles break into smaller particles the cumulative mass of the soil grading remains 29	

constant. Thus we do not model dissolution. 30	
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The state vector g 	defines the soil grading at any specific time and in every layer. 1	

Entries gi in the state vector g  are the proportion of the material in the grading size range i. 2	

The evolution (of the state vector) from one state to another state during a single time step is 3	

defined using a matrix equation. This matrix (called the transition matrix) describes the 4	

relationship between the states at two times and defines the change in the state during a time 5	

step  6	

( )
12 tt gtg Δ+= RI                                        (1)	 		7	

where and  are state vectors defining the soil grading at time  and , R is the 8	

marginal transition matrix, I is the identity matrix, and Δt  is the timestep [Cohen et al., 9	

2009].  10	

For multiple processes Equation (1) can be applied sequentially for each process, using the R 11	

matrix appropriate for each of the processes. 12	

Within each layer the equation for weathering follows equation (1) 13	

                                        gt2 = I+ WΔt( )B⎡⎣ ⎤⎦gt1                                       (2) 14	

where W is the rate of weathering (which is depth dependent), and B is the non-dimensional 15	

weathering marginal transition matrix. Parameter W determines the rate of weathering while 16	

B determines the grading characteristics of the weathered particles. 17	

 For the armour layer the mass in the layer is kept constant so that as fines are 18	

preferentially removed by erosion, the mass removed is balanced by new material added from 19	

the layer below, and with the grading of the layer below. For each layer in the profile mass 20	

conservation is applied, and any net deficit in mass is (typically) made up from the layer 21	

below (i.e. by removing material in the layer below). The only exception to this rule is the 22	

case of deposition at the surface where material is pushed down. In this latter case the 23	

pushing down results from an excess of mass in the armour layer and this excess propagates 24	

down through the profile. 25	

2.1. Constitutive Relationships for Erosion and Armouring 26	

	27	

1t
g

2t
g 1t 2t
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 The erosion rate (E) of the armour is calculated by a detachment-limited incision 1	

model, 2	

                                                                                           (3) 3	

where e is the erodibility rate, q is discharge per unit width (m3/s/m), S is slope, is the 4	

median diameter of the material in the armour (m), , and  are exponents governing 5	

the erosion process. It is possible to derive exponents  and  from the shear stress 6	

dependent erosion physics [Willgoose et al., 1991b] or they can be calibrated to field data 7	

(e.g. Willgoose and Riley, 1998). In this paper for simplicity we will consider a one-8	

dimensional hillslope with a unit width, constant gradient, and a 2m maximum soil depth.  9	

The discharge was calculated by 10	

 11	

                                                                                      (4) 12	

 13	

where r is the runoff excess generation (m3/s) and x is the distance down the slope (m) from 14	

the slope apex to each node. 15	

 The implementation details of the erosion physics (e.g. how selective entrainment of 16	

fines is incorporated into the marginal transition matrix for erosion) are identical to that of 17	

Cohen et al. [2009] and will not be discussed here. The primary process of relevance here is 18	

that a size selective entrainment of fine fractions of the soil grading by erosion is used and it 19	

follows the approach of Parker and Klingeman [1982] as calibrated by Willgoose and 20	

Sharmeen [2006]. The result is that for surfaces that are being eroded the surface becomes 21	

coarser with time (and thus why we call the top layer the armour layer). 22	

2.2 Constitutive Relationships for Weathering 23	

 The fracturing geometry determines the weathering transition matrix B. Each grading 24	

size class will lose some of its mass to smaller grading size classes as larger parent particles 25	

are transformed into smaller daughter particles. The daughter products can fall in one or more 26	

smaller grading classes depending on the size range of particles produced by the breakdown 27	

of the larger parent particles. The amount of material received by each smaller size class is a 28	

β

αα

a
d
SqeE
50

21

=

a
d50

1α 2α β

1α 2α

rxq =
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function of size distribution of the grading classes, fracture mechanism, and the size 1	

characteristics of the daughter particles.  2	

Wells et al. [2008] found that for his material (a mining waste product from Ranger 3	

Uranium Mine) a simple symmetric fracture model with two equal volume daughter products 4	

best fitted his experimental data. While the formulation of the weathering transition matrix in 5	

Cohen et al. [2009] allows a general fragmentation geometry, Cohen only used the symmetric 6	

fragmentation found experimentally by Wells. This paper will generalise these results and 7	

examine a broader range of fracture geometries.  8	

To generalise the fracture geometries we will assume that a parent particle with a 9	

diameter d breaks into a single daughter particle with diameter 1d and 1−n  smaller 10	

daughters with diameter 2d  (the total number of daughters being n ). For simplicity all the 11	

particles considered are assumed to be spherical. Mass conservation implies  12	

                                         ( ) 3
2

3
1

3 1 dndd −+=                                 (5) 13	

If the single larger daughter with diameter 1d accounts for  fraction of the parent then 14	

                                                    dd 3
1

1 α=                                                (6)                       15	

                                                   d
n

d
3
1

2 1
1

⎟
⎠
⎞⎜

⎝
⎛

−
−= α                                        (7) 16	

By changing the fraction value and the number of daughters n  we are able to simulate 17	

various fracture geometries such as symmetric fragmentation, asymmetric fragmentation, and 18	

granular disintegration [Wells et al., 2008]. For instance =0.5, n =2 represents symmetric 19	

fragmentation with 2 daughter particles, =0.99, n=11 represents a fracture mechanism 20	

resembling granular disintegration where a large daughter retains 99% of the parent particle 21	

volume and 10 smaller daughters have 1% of the parent volume collectively.  22	

 The construction of the weathering transition matrix then follows the methodology 23	

outlined in Figure 1 in Cohen et al. [2009]. 24	

2.3 Soil profile development through depth-dependent weathering	25	

α

α

α
α
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 The weathering module of SSSPAM consists of 2 components. They are (1) the 1	

weathering geometry for the grading of the daughter particles discussed above, and (2) the 2	

weathering rate for the different soil layers which determines the rate at which the parent 3	

material is weathered. The weathering rate of each soil layer typically (though not always) 4	

depends on the depth below the soil surface.  5	

To characterize the weathering rate with soil depth, depth-dependent weathering 6	

functions are used. In their mARM3D model Cohen et al. [2010] used 2 depth-dependent 7	

weathering functions (Figure 3), (1) exponential decline (called exponential) [Humphreys and 8	

Wilkinson, 2007] and (2) humped exponential decline (called humped) [Ahnert, 1977; 9	

Minasny and McBratney, 2006]. For the exponential, the weathering rate declines 10	

exponentially with depth. The rationale underpinning the exponential function is that the 11	

surface soil layer is subjected to the high rates of weathering because it is closer the surface 12	

where wetting and drying, and temperature fluctuations are greatest. The humped function 13	

has the maximum weathering rate at a finite depth below the surface instead of being at the 14	

surface itself and then declines exponentially below that depth. The rationale for the humped 15	

function is evidence that the weathering is highest at the water table surface which leads to a 16	

humped function.  17	

We also examined another depth dependent weathering function we call the reversed 18	

exponential function. In this function the highest weathering rate is located at the soil-19	

bedrock/saprolite interface and exponentially decreases upwards toward the surface and 20	

downwards into the underlying bedrock. The soil-bedrock interface is defined as that layer 21	

above which the porosity increases abruptly reflecting the transformation from 22	

bedrock/saprolite to soil (Anderson and Anderson, 2010). Unlike the exponential and humped 23	

functions the depth of the peak weathering rate in the dynamic reversed exponential function 24	

moves up and down with the ups and downs of the soil-bedrock interface. At the soil-bedrock 25	

interface the bedrock material is transformed from bedrock to soil. The bedrock has a higher 26	

potential for chemical weathering than the soil above the soil-bedrock interface that has been 27	

subjected to chemical weathering. The function declines below the soil-bedrock interface 28	

because of the reduced porosity of the bedrock inhibits water flow. Although we do not 29	

model chemical weathering in this paper, we believe that the dynamic reversed exponential 30	

function can be used to conceptualise chemical weathering.  	31	
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 The three depth dependent weathering functions are graphically represented by Figure 1	

3. The exponential function is [Cohen et al., 2010] 2	

                             
( )h

h ew 1δβ −′=                               (8) 3	

where hw is the weathering rate at the soil layer at a depth of h  (m) below the surface and 1δ4	

is the depth scaling factor (here 1δ =1.738). 5	

 The humped function used is [Minasny and McBratney, 2006] 6	

                             
( ) ( )[ ]

M
eePw

hPh

h

a 32
0

δδ −+− −=                  (9) 7	

	8	

where 0P  and aP are the maximum weathering rate and the steady state weathering rate 9	

respectively, 2δ  and 3δ  are constants used to characterise the shape of the function, and M is 10	

the maximum weathering rate at the hump which is used to normalize the function. Values 11	

we used here were 0P = 0.25, aP = 0.02, 2δ = 4, 3δ = 6, and M = 0.04.	12	

 The dynamic reversed exponential function is 	13	

	14	
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where H is the depth (m) to the soil bedrock interface from the surface which is calculated 16	

from the soil grading distribution at each iteration during the simulation,λ is a constant which 17	

determines the function value at the asymptote, 4δ  and 5δ  are constants used to characterise 18	

the rate of decline with depth of the function.  We used λ = 0.98, 4δ =3, 5δ =10. 19	

 The non-zero weathering below the bedrock-soil interface in equation (10) represents 20	

a slower rate of chemical weathering within the bedrock due to its lower porosity and 21	

hydraulic conductivity. In general 5δ  > 4δ .	22	
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 The weathering rate of each layer is determined by modifying the base weathering 1	

rate 0W 	 (Equation 2) and the depth dependent weathering function used, ( )hf . The 2	

weathering rate of a soil layer at a depth of h from surface hW  is given by,    							3	

     ( )hfWWh 0=                             (11). 4	

3. Data used in this study  5	

Four soil particle size distribution datasets were used as input data for SSSPAM 6	

simulations. Two particle size distribution datasets were collected from the Ranger Uranium 7	

Mine (Northern Territory, Australia) spoil site [Willgoose and Riley, 1998; Sharmeen and 8	

Willgoose, 2007; Cohen et al., 2009; Coulthard et al., 2012]. The third and fourth gradings 9	

were created from the previous two gradings to simulate the subsurface bedrock conditions. 10	

The naming convention used here is “a” for the actual grading dataset and “b” for the 11	

synthetic bedrock corresponding to the actual dataset (e.g. Ranger1a is the actual dataset and 12	

Ranger1b is the synthetic bedrock corresponding to Ranger1a actual dataset). Further details 13	

are given below (Table 1).  14	

• Ranger1a: This grading distribution was first used by Willgoose and Riley [1998] for 15	

their landform evolution modelling experiments. This soil grading was subsequently 16	

used by Sharmeen and Willgoose [2007] and Cohen et al. [2009] for their armouring 17	

and weathering simulations. This grading distribution consists of stony metamorphic 18	

rocks of medium to coarse size produced by mechanical weathering breakdown, has a 19	

median diameter about 3.5mm, and has a maximum diameter of 19mm.  20	

• Ranger2a: The second grading distribution was used by Coulthard et al. [2012] in 21	

their soil erosion modelling experiments and has a maximum diameter of 200mm. 22	

The Coulthard dataset includes a coarse fraction not included in Ranger1a, has a 23	

median diameter of 40mm, and has a maximum diameter of 200mm. Nominally 24	

Gradings 1a and 2a are for the same site but the gradings are not identical in the 25	

overlapping part of the grading below 19mm.  26	

• Ranger1b and Ranger2b: These grading datasets were created using the particle 27	

distribution classes of Ranger1a and Ranger2a to represent the underlying bedrock for 28	

each of the grading distributions mentioned above. To represent the bedrock for these 29	

datasets 100% of the material was assumed to be in the largest diameter class for each 30	

grading classes (19mm for the 1b and 200mm for 2b). 31	
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  1	

 We divided our planar hillslope into nodes with 4m spacing downslope and the 2	

armouring and weathering was simulated at these nodes. The soil profile at each node was 3	

represented by 21 layers representing the armour layer and 20 subsurface layers. Initially the 4	

armour layer was set to either Ranger1a or Ranger2a grading dataset (depending on the type 5	

of simulation) and all the subsurface layers were set to the corresponding bedrock layer (for 6	

Ranger1a surface grading Ranger1b was set as the bedrock grading for all other subsurface 7	

layers). For brevity henceforth simulations run with the “Ranger1 dataset” used the Ranger1a 8	

grading for the initial surface layer and Ranger1b as the subsurface grading unless otherwise 9	

stated. Likewise “Ranger2 dataset” means, Ranger2a for the initial surface and Ranger2b for 10	

the subsurface). We have used 30 years of measured pluviograph data [Willgoose and Riley 11	

[1998] to calculate discharge. The 30 years of runoff was repeated to create a 100-year data 12	

set as was done in our earlier work [Sharmeen and Willgoose, 2006; Cohen et al., 2009].  13	

 14	

4. SSSPAM calibration  15	

 To provide a realistic nominal parameter set around which parameters could be varied 16	

in the parametric study SSSPAM was calibrated to mARM3D, which in turn had been 17	

calibrated to ARMOUR1D [Willgoose and Sharmeen, 2006] and we know ARMOUR1D 18	

corresponded well with field data. 19	

Figure 5 shows a comparison between contour plots generated by mARM3D and 20	

SSSPAM using identical initial conditions (Ranger1 dataset) and model parameters. The 21	

figure shows that mARM3D and SSSPAM produce similar d50 values, though SSSPAM is 22	

very slightly coarser. The slight differences between the two contour plots result from the 23	

improved numerics of and an improved implementation of the matrix methodology in 24	

SSSPAM. We are thus confident that SSSPAM and mARM3D are comparable. The 25	

parameter values used for SSSPAM are α1 = 1.0, α2 = 1.2, β = 1.0, m = 4, e = 2.5x10-8 and n = 26	

0.1. 27	
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5. SSSPAM Simulations and results 1	

 Cohen et al. [2009, 2010] found a strong log-log linear relationship between 2	

contributing area, slope and the d50 of the armour soil grading. They quantified the 3	

relationship between soil grading, local topographic gradient and drainage area by 4	

	 	 	 	
AαS
d50

ε = constant           (12) 5	

   	 	 	 	 	 	6	

where A is the contributing area to the point of interest, S is the slope at the point of interest, 7	

d50 is the 50th percentile (i.e. median) of the soil grading,  and α  and ε  are constants. Cohen 8	

used only one parent material grading and one parameter set for his analyses. To explore the 9	

generality of equation (12), we have examined the behaviour of the contour plots with 10	

changes to (1) weathering parameters, (2) grading of the parent material, (3) process and 11	

climate parameters, and (4) armouring mechanisms. We also examined a broader range of 12	

area-slope combinations that would typically occur in nature (since we are interested in man-13	

made landforms which may have far from natural geomorphology), and which Cohen 14	

examined. For the initial conditions, unless otherwise indicated, in each simulation the ‘a’ 15	

grading was used for the initial surface layer and the corresponding ‘b’ bedrock grading for 16	

all the initial subsurface layers (e.g. Ranger1a for the surface and Ranger1b for the 17	

subsurface). To ensure that the hillslopes had reached equilibrium, the model simulated 18	

100,000 years with output every 200 years. Equilibrium was assessed to occur when the 19	

grading of all nodes on the hillslope stopped changing, typically well before 100,000 years. 20	

Figure 4 shows a time series d50 evolution of all the nodes with lowest slope gradient (2.1%).  21	

It shows that equilibrium is reached well before 100,000 years. Hillslopes with higher 22	

gradients reached equilibrium even faster 23	

5.1. Interpretation of the grading contour plots 24	

Before discussing the parametric study and its myriad of contour plots, Figure 5 shows how 25	

the contour plots can be used to estimate soil properties for any hillslope type. Five profiles 26	

are illustrated: 27	

1. This is a hillslope where the slope is increasing down the hillslope so is 28	

concave down in profile and looks like a rounded hilltop. The d50 increases 29	

down the hillslope (i.e. increasing area, moving from left to right in Figure 5). 30	
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All our contour plots increase from left to right and from bottom to top, so in 1	

general concave hillslopes will always coarsen downslope. 2	

2. This hillslope has constant slope downslope and, as for slope 1, will always 3	

coarsen downslope. 4	

3. This hillslope has slopes that are decreasing downslope and is concave up. 5	

Importantly the gradient of the line in Figure 5 is less than the gradient of the 6	

contours so the hillslope coarsens downslope. 7	

4. This hillslope is similar to 3 except that the rate of decrease of slope 8	

downstream is more severe (i.e. concavity is greater) so the gradient of the line 9	

in Figure 5 is steeper than the gradient of the contours. This hillslope fines 10	

downstream. 11	

5. This hillslope is a classic catena profile with a rounded hilltop and a concave 12	

profile downstream of the hilltop. Tracking this hillslope downstream it will 13	

initially coarsen. As it transitions to concave up it will continue to coarsen 14	

until the rate of reduction of the hillslope slope is severe enough that is starts 15	

to fine downstream. Whether this latter region of fining occurs will depend on 16	

the concavity of the hillslope and whether it’s strong enough relative to the 17	

gradient of the soil contours in Figure 5. 18	

Note that the erosion model in SSSPAM is an incision model dependent on upstream area 19	

and slope. With this model the planar shape and slopes of the catchment upstream of the 20	

point are irrelevant, so while we derived Figure 5 for a planar hillslope it is equally valid for a 21	

natural two-dimensional catchment with flow divergence and convergence. Thus it should be 22	

clear that the spatial distribution of soils, and any questions of downslope fining or 23	

coarsening of those soils, must depend on the interaction between the pedogenesis processes 24	

that produce the soils (and thus drive the area-slope dependence of soil grading) and landform 25	

evolution processes that generate those profiles (and the area-slope relations for those slopes). 26	

Ultimately deeper understanding of these links will only come from a coupled landscape-27	

soilscape evolution model, but in this paper we confine ourselves to better understanding of 28	

the soilscape processes and the area-slope dependence of grading. The coupled model will be 29	

discussed in a subsequent paper. 30	

5.2. Parametric Study of SSSPAM 31	
	32	
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 All the nominal parameters used in the parametric study are presented in Table 2. In 1	

order to fully explore the area-slope-d50 relationship a parametric study was carried out using 2	

SSSPAM. The area-slope-diameter relationship was derived by evolving the soil on a number 3	

of one-dimensional, constant width, planar hillslopes, each with a different slope, with 4	

evolution continuing until the soil reached equilibrium. A contour plot was then created 5	

where the soil grading metric (usually the median diameter, d50) was contoured for a range of 6	

slopes and area. Because of the planar slope, only erosion occurs, no deposition. Erosion is a 7	

function of local discharge, slope and soil surface grading as indicated in Equation (3), and is 8	

assumed to be detachment-limited. Detachment-limitation means that the upstream sediment 9	

loads do not impact on erosion rates. Hillslope elevations are not evolved (i.e. no landform 10	

evolution occurs) which is equivalent to assuming that the soil evolves more rapidly than the 11	

hillslope so that the soils equilibrate quickly to any landform changes.  12	

	13	

5.2.1. Changing surface and subsurface gradings and weathering rate  14	
	15	

Figure 6 shows the equilibrium contour plots generated for the two grading datasets 16	

and with different weathering rates. The equilibrium d50 decreases with increasing weathering 17	

rate. Higher weathering rates break down the larger particles more rapidly. The equilibrium 18	

d50 values were the same even if the initial surface grading was changed. For example, using 19	

the Ranger1a or Ranger2b grading data for the surface but with Ranger2b for the bedrock 20	

yielded identical equilibrium d50 results. As weathering broke down the surface layer and it 21	

was eroded it was replaced by the weathered bedrock material, which was identical when the 22	

same subsurface grading and weathering mechanism was used. Finally a coarser subsurface 23	

grading led to a coarser armour. 24	

These trends with weathering rate are consistent with Cohen et al. [2010] where the 25	

log-log linear area-slope-d50 relationship was observed regardless of the weathering rate. 26	

Moreover the contour lines in Figure 6 all have the same slope. This implies that although the 27	

magnitude of the coarseness of the equilibrium armour depends on the underlying soil 28	

grading and weathering mechanism, the slope of the contours is independent of the 29	

subsurface grading and weathering process.  This result demonstrates that the area-slope-d50 30	

relationship is robust against changes in the grading of the source material, and the only 31	

change is in the absolute grading, not the grading trend with area and slope. 32	
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5.2.2. Changing the Runoff Rate 1	
	2	

 Erosion is a function of the discharge, and the discharge depends on the climate and 3	

rainfall. The effect of changing the runoff is shown in Figure 7. To simulate a more arid 4	

climate the runoff generation parameter in Equation (4) was halved. Figure 7 shows that a 5	

reduced discharge produced a finer armour. While not shown, higher discharge rates 6	

produced coarser armour. For lower discharges (1) the Shield’s Stress threshold decreases 7	

thus allowing smaller particles to be retained in the armour layer, and (2) the rate of erosion 8	

decreases while the weathering rate remains constant so that weathering (i.e. fining) becomes 9	

more dominant. Both of these processes work in tandem to produce finer armour. This 10	

conclusion is qualitatively consistent with Cohen et al. [2013], where they applied natural 11	

climate variability over several ice-age cycles and observed switching between fining and 12	

coarsening of the soil surface depending on the relative dominance of erosion and weathering 13	

at different stages in the climate cycle. 14	

5.2.3. Changing the erosion discharge and slope exponents   15	

 The influence of the exponents on area and slope in the erosion equation (Equation 3), 16	

α1 and α2, is shown in Figure 8.  These contour plots used the Ranger1a surface grading for 17	

the surface grading and Ranger1b bedrock grading for the initial subsurface layers. Figure 8 18	

shows that although the d50 values changed with different α1 and α2 values, the slope of the 19	

contours only changed when α1/α2 was changed. To investigate the generality of this 20	

conclusion, contours were then plotted for different α1/α2. The slope of the contours was 21	

strongly correlated with α1/α2. The slope of the contours increased for higher α1/α2 ratios. 22	

Similar results were obtained for the Ranger2 dataset. The α1/α2 ratio not only influences the 23	

slope of the contour lines but also influences the equilibrium d50 values. For low α1/α2, the 24	

equilibrium d50 values at the hillslope nodes were coarser than for high α1/α2.  25	

 These relationships allow us to generalise the area-slope-d50 relationship  26	

                                                                                                  (13)  27	

where , and are exponents on contributing area, slope and d50 respectively, and c is a 28	

constant, and where the ratio δ /γ  is a function of the erosion dependence on area and slope.   29	

( ) εγδ 1

50 ScAd =

δ γ ε
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 Figure 9 show that γδ /  was strongly correlated with the model α1/α2 even though 1	

there was no correlation with the individual parameters (i.e. α1 with , or α2 with ). In the 2	

regression analysis the parameter ε was assumed to be 1 in order to calculate δ and	 γ 	3	

constants.	This assumption does not affect the	 γδ /  ratio.	This result was independent of the 4	

subsurface grading.   5	

5.2.4. Changing the erodibility and selectivity exponent  β and e  6	

 This section examines the effect of changing erosion equation parameters, (1) the  d50 7	

exponent β (Equation 3) which relates the erosion rate to median sediment diameter, and (2) 8	

the erodibility rate e. The slope of the contours was independent of these parameters. The 9	

parameters β and e influence (1) the absolute value of d50, and (2) the spacing of the contours. 10	

These impact on the value of c in Equation 13. For higher β, the equilibrium d50 was coarser  11	

than for low β values. Increasing the erodibility factor e yields similar results. 12	

5.2.5. Different weathering fragmentation geometries  13	

  To study different weathering mechanisms we used	a	fragmentation geometry (Figure 14	

2)  that has two parameters, n and α (Equations 5-7). The simulations in the previous sections 15	

used symmetric fragmentation with n=2 and α=0.5 (i.e. where a parent particle breaks down 16	

to two equal volume daughter particles). Here we examine four other geometries, (1) 17	

symmetric fragmentation with multiple daughter products (n=5, α =0.2; i.e. the parent breaks 18	

into five equal daughters each having 20% of the volume of the parent), (2) moderately 19	

asymmetric (n=2, α=0.75; the parent breaks into two daughters, with 75% and 25% of the 20	

parent volume), (3) granular disintegration (n=11, α=0.9; the parent breaks into 11 daughters, 21	

one with 90% of the parent volume and the other 10 daughters each have 1% of the parent 22	

volume), and (4) as for Geometry 3 but with the large daughter having 99% of the parent 23	

particle volume (n=11, α=0.99). Figure 10 shows results using the Ranger1 dataset. The 24	

corresponding symmetric results are in Figure 6. Symmetric fragmentation with five equal 25	

daughter particles (Geometry 1) leads to the finest equilibrium contour plot but the contours 26	

are otherwise unchanged. The granular disintegration geometries produced coarser results 27	

with the coarsest armour from Geometry 4. We conclude that when fragmentation produces a 28	

number of symmetric daughters the equilibrium grading of a hillslope is finest. Finally the 29	

slope of the contours did not change for different fragmentation geometries.	30	

δ γ
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5.2.6. Effect of initial conditions  1	

 The simulations in the sections above used the same grading for the initial surface and 2	

the subsurface. To explore the initial conditions we changed the initial surface and subsurface 3	

datasets. The equilibrium grading contour plot generated using Ranger2a surface grading and 4	

Ranger1b subsurface gradings was identical to the equilibrium grading contour plot generated 5	

using Ranger1a surface and Ranger1b subsurface grading. Likewise the equilibrium grading 6	

contour plot generated using Ranger1a surface and Ranger2b subsurface gradings was 7	

identical to the equilibrium grading contour plot generated using Ranger2a surface and 8	

Ranger2b for subsurface gradings.  The results were slightly different for different subsurface 9	

gradings. These results also show that, as expected, there was no effect of the initial 10	

conditions on the equilibrium grading. Though not shown the influence of the initial grading 11	

is only felt during the dynamic phase of the simulation before the armour reaches 12	

equilibrium. 13	

5.3. Generalising beyond median grain size 14	

 The results above have focussed on d50 as a measure of soil grading. However, the 15	

model can provide any particle percentile or statistic of interest. Figure 11 shows area-slope 16	

results for d10 (i.e. 10% by mass is smaller than this diameter). It shows that the general 17	

trends observed in the d50 contour plots (Figure 6b2) are also evident in d10. Though not 18	

shown, similar results were found for d90. The slope of the contours is independent of 19	

diameter but as expected the d10 and d90 values are ranked d10 < d50 < d90. We conclude that 20	

the area-slope-diameter relationship we have observed in our simulations is robust across the 21	

grading profile. 22	

5.4. Influence of the depth dependent weathering functions  23	

In this section we consider the three different depth dependent weathering functions 24	

(Figure 3, Equations 8 to 10) for the weathering rate in the subsurface soil layers. All the 25	

simulations in the previous sections used the exponential function (Equation 8). Figures 5 and 26	

12 show that the contour plots for all weathering functions are very similar. However, as 27	

slope and area are increased the humped function produces a more rapidly coarsening 28	

armour. Overall the reversed exponential produces the coarsest armour. For the reversed 29	

exponential after an initially high weathering rate at the surface, the weathering rate reduces 30	

rapidly as the soil-bedrock interface moves deeper into the soil profile. This low near surface 31	

weathering decreases the rate of fining of the armour and dramatically reduces the erosion. 32	

This reduction in erosion rate prevents weathered fine particles from reaching the surface. 33	
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We also analysed the subsurface soil profile. Figure 13 shows the d50 through the soil 1	

profile for our one-dimensional hillslope of length 32m, divided in to 8 nodes at 4 m 2	

intervals, and with 10% slope, and Ranger1 dataset. The bedrock layers are those layers near 3	

the base of the profile with the d50=19mm. The exponential and humped functions produce 4	

similar soil profiles except that the humped function produces a shallower soil and a coarser 5	

armour compared with the exponential. In contrast, the reversed exponential produces a 6	

markedly different soil profile. It produces very coarse armour, a soil thickness beyond the 7	

modelled 2000mm limit, and a more uniform soil grading through the profile. This latter 8	

result is because the weathering is greatest at the bedrock-soil interface so most of the soil 9	

grading change is focussed at the base of the profile and relatively less occurs within the 10	

profile. 11	

A final question is whether the area-slope-grading relationship occurs only in the 12	

armour or exists throughout the profile using the exponential weathering function. We 13	

generated area-slope-d50 contours for four different depths within the profile extending down 14	

to the base of the soil profile (Figure 14). The slope of the contours is the same for all depths 15	

and hence we believe that the area-slope-grading log-log linear relationship is exhibited for 16	

the entire soil profile, with the only change being the coarseness of the soil (which reflects 17	

the maturity of weathering of the soils) at any particular depth.  This result is intriguing 18	

because while the armouring from erosion occurs at the surface it has an impact throughout 19	

the profile, it is not simply a property of the near surface layer directly impacted by erosion. 20	

Thus the act of soil profile generation, which is solely driven by the depth dependent 21	

weathering function, couples the spatial organisation of the surface with the spatial 22	

organisation of the soil profile at depth. Therefore what happens at the surface affects the 23	

entire profile. 24	

6. Discussion 25	

 Here we have used a new pedogenesis model, SSSPAM, to analyse the equilibrium 26	

soil grading and spatial organisation of soil profiles. This model extends the mARM3D 27	

model of Cohen et al. [2010] and improves the numerics. Our results have generalised 28	

previous studies [Cohen et al., 2009, 2010, 2013] that have found a log-log linear relationship 29	

between d50, contributing area and slope. Using a broader range of environmental conditions, 30	

we have found that log-log linear relationship for grading is robust against changes in 31	

environment and underlying geology and for hillslopes where the dominant processes are 32	

surface fluvial erosion and in-profile weathering. The main factors influencing the 33	
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quantitative form of the relationship are the area and slope dependency of the erosion 1	

equation, and the relative rates of the weathering and erosion processes. Coarsening of the 2	

downslope nodes was observed in all the simulations.  3	

Our parametric study has demonstrated the versatility of our model for studying the 4	

influence of different process parameters and the dynamics of hillslope evolution. Our d10 and 5	

d90 contour plots show that the area-slope-diameter relationship is not only true for d50 but is 6	

also true for other aspects of the particle size grading of the soil. This strengthens our 7	

confidence in the generality of the area-slope-diameter relationship. This relationship 8	

provides us with a methodology to predict the characteristics of soil grading on a hillslope as 9	

a function of geomorphology. It also allows us to interpolate between field measurements. 10	

Furthermore, our parametric study showed how parameters of the armouring component 11	

affect the area-slope-diameter relationship. Particularly interesting was that the ratio of the 12	

erosion exponents (α1/α2) changes the slope of the contours. This observation also hints at the 13	

importance of topographic and process characteristics in soil evolution and hillslope catena 14	

and how these topographical units may be used for predictive soil mapping and inference of 15	

erosion process.  16	

Previous work (e.g. Willgoose, et al., 1991b; Tucker and Whipple, 2002) has shown 17	

that topography is also a function of α1/α2 and this suggests a strong underlying process link 18	

between the spatial distribution of topography and the spatial distribution of soil grading that 19	

goes beyond the concept of soil catena. The soil catena concept says that systematic changes 20	

occur in soils as a function of their position on the hillslope. Our results suggest that the same 21	

processes that influence the equilibrium distribution of topography (e.g. the erosion process 22	

that determines α1/α2) also influence the equilibrium distribution of soils. Thus while a soil 23	

catena presumes a causal link from topography, we postulate a causal link for both 24	

topography and soils from erosion processes.  25	

Using our model we were able to explore the soil profile characteristics and how the 26	

soil profile will change depending on the weathering characteristics of the bedrock material. 27	

Another important insight is that the area-slope-d50 relationship is present in all the 28	

subsurface layers as well as the surface armour. 29	

 In this paper SSSPAM did not model transport-limited erosion. The implication is that 30	

the eroded sediment from nodes upslope did not impact the erosion on the downslope nodes. 31	

We also did not model an interaction between grading and the infiltration of water so no 32	
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coupled behaviour with hydrology was modelled. In this paper we have only considered 1	

erosion from overland fluid flow and physical weathering mechanisms to predict the 2	

equilibrium soil distribution of hillslopes. There is a need to explicitly incorporate chemical 3	

and biological weathering [Green et al., 2006; Lin, 2011; Riebe et al., 2004; Roering et al., 4	

2002; Vanwalleghem et al., 2013]. Another important aspect needed is accounting for 5	

deposition of sediments so that we can model alluvial soils which requires a transport-limited 6	

erosion model. A future task is to incorporate a soils model like SSSPAM into a landform 7	

evolution model such as SIBERIA [Willgoose et al., 1991a]. This would allow the modelling 8	

of the interaction between the pedogenesis process in this paper with hillslope transport 9	

processes such as creep and bioturbation. If soils evolve rapidly then it may be possible to use 10	

the equilibrium grading results from this paper as the soilscape model, on the basis that the 11	

soil evolves fast enough to always be at, or near, equilibrium with the evolving landform. If 12	

soils evolve slowly then it may be necessary to fully couple the soils and landform evolution 13	

models. This is a subtle, and not fully resolved, question of relative response times of the 14	

soils and the landforms [Willgoose et al., 2012]. 15	

7. Conclusions 16	

 The most important insight from this paper is that the area-slope-grading relationship 17	

observed from a earlier generation soil profile pedogenesis model by previous authors [Cohen 18	

et al., 2009, 2010] is general and robust across a range of climate and geologic conditions. 19	

Despite the wide range of parameters we used in our simulations, we always observed the 20	

log-log linear area-slope-diameter relationship in our simulations although the soil coarseness 21	

depended on the parameters used. In addition, contour plots of d10 and d90 indicated that the 22	

area-slope-diameter relationship is valid throughout the soil grading range, not just for d50.  It 23	

was also true for depths below the surface. The parametric study conducted on the area-slope-24	

diameter relationship demonstrated how this relationship would change with changes in the 25	

pedogenic processes. We found that the ratio of the erosion exponents on discharge and 26	

slope, α1/α2, changes the angle of the contours in the log-log contour plots (Figures 7). This 27	

has application in the field of digital soil mapping where easily measurable topographical 28	

properties can be used to predict the characteristics of soil properties. Importantly, the 29	

contributing area and the slope data can be easily derived from a digital elevation model, 30	

which can be produced using remote sensing and GIS techniques. Coupling SSSPAM with a 31	

GIS system can potentially improve the field of digital soil mapping by providing a physical 32	

basis to existing empirical methods and potentially streamlining existing resource intensive 33	
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and time-consuming soil mapping techniques as, for example, in the current initiatives in 1	

global digital soil mapping [Sanchez et al., 2009]. 2	

 The simple physical processes currently implemented in SSSPAM also enables it to 3	

model the evolution of hillslope soil grading. A subsequent paper will focus on the dynamics 4	

of the soil profile evolution process. Although we used only armouring and weathering as soil 5	

forming factors in this study, other processes such as chemical weathering or biological 6	

influence on soil formation can also be included in our state-space matrix modelling 7	

framework (e.g. Willgoose, “Models of Soilscape and Landscape Evolution”, in prep). With 8	

its high computational efficiency and ability to incorporate various processes in to its 9	

modelling framework, SSSPAM has the potential to be a powerful tool for understanding and 10	

modelling pedogenesis and its morphological implications.  11	
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Figures 2	
Figure 1 3	

 4	

Figure 1: Schematic diagram of the SSSPAM model (from Cohen et al., 2010). 5	
 6	
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Figure 2 2	

 3	

Figure 2: The fragmentation geometry used in SSSPAM (after Wells, et al., 2008). 4	
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Figure 3 2	

 3	

Figure 3: Graphical representation of all the depth dependent weathering functions used in 4	
SSSPAM 5	
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Figure 4 2	

 3	

Figure 4: d50 Evolution of the nodes with lowest slope gradient (2.1%) 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

 12	

 13	

 14	

 15	

 16	

 17	

 18	



34	
	

 1	

Figure 5 2	

 3	
 4	

Figure 5: Log-log Area-Slope-d50 contour plots generated using the Ranger1 dataset. (a) 5	
mARM3D [Cohen et al., 2009], (b) SSSPAM. The dotted lines in (b) are hypothetical long 6	
profiles down a drainage line showing how the contour figure can be used to generate soil 7	
properties down a drainage line. See the text for more detail. 8	
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Figure 6: Equilibrium contour plots of d50 values (interpolated from 48 data values, the 1	
diamonds) simulated by SSSPAM for different surface and subsurface grading data and 2	
different weathering rates (Top to Bottom: 0.1, 1.0, 10.0). (Left Column) Ranger1 dataset, 3	
(Right Column) Ranger2 dataset. 4	
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Figure 7 1	

 2	

Figure 7: Equilibrium contour plots of d50 generated using the Ranger1 dataset with identical 3	
model parameters as used in Figure 6(a2) except changing the runoff rate, half the nominal 4	
runoff rate  5	
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Figure 8 1	

 2	

Figure 8: Equilibrium contour plots of d50 generated using Ranger1 dataset with identical 3	
model parameters as Figure 6(a2) (i.e. α1=1.0, α2=1.2, α1/α2 =0.833) except changing α1and α2 4	
values generated using (a1, b1) different α1 and constant α2 values, (a2, b2) different α2 and 5	
constant α1 values. 6	
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Figure 9	2	

 3	

Figure 9: Correlation between the model α1/α2 and δ/γ 4	
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Figure 10 1	

 2	

Figure 10: Equilibrium contour plots of d50 generated using Ranger1 dataset with identical 3	
model parameters as Figure 6(a2) (i.e. n=2, α=0.5; symmetric fragmentation with 2 daughter 4	
particles) except changing the weathering geometry, n-number of daughter particles and α - 5	
material fraction retained by largest daughter particle (a) symmetric fragmentation with n=5 6	
and α=0.2 (b) asymmetric fragmentation with n=2 and α=0.75 (c) granular disintegration with 7	
n=11 and α=0.9, (d) granular disintegration with n=11 and α=0.99. 8	
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Figure 11 1	

 2	

Figure 11: Equilibrium contour plots of d10 generated using Ranger1 dataset with identical 3	
model parameters as Figure 6(a2) (where the d50 results are presented). 4	
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Figure 12 1	

	2	

Figure 12: Equilibrium contour plots of d50 generated using Ranger1 dataset with identical 3	
model parameters as Figure 6(a2) except changing the depth dependent weathering function 4	
to (a) Humped, (b) Dynamic reversed exponential. 5	
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Figure 13 1	

	2	

	3	

	4	

Figure 13: Equilibrium soil profile d50 generated using the Ranger1 dataset with a one-5	
dimensional hillslope with 10% slope and 32m length using (a) Exponential,  (b) Humped, (c) 6	
Reversed exponential weathering functions. 7	

	8	
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Figure 14 1	

 2	

Figure 14: Equilibrium contour plots of d50 generated using the Ranger1 dataset with 3	
identical model parameters as used in Figure 6(a2) for different subsurface soil layers (a) 4	
layer 1 (100mm depth), (b) layer 5 (500mm depth), (c) layer 10 (1000mm depth), (b) layer 15 5	
(1500mm depth)	6	
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Tables 1	
Table 1. Size distribution of soil gradings used for SSSPAM4D simulations 2	

 3	

 4	

 5	

 6	

	7	

	8	

	9	

	10	

	11	

 12	

Table 2. Parameters used in the simulations generate Figure 6(a2)	13	

Equation No Parameter Value 

3 

 1.0 

 1.2 

 1.0 

e 0.025 

5,6,7  0.5 
n 2.0 

8 
β ′  1.0 
1δ  1.738 

9 

0P  0.25 

aP  0.02 

2δ  4.0 

3δ  6.0 
M 0.04 

10 
λ  0.98 
4δ  3 

5δ  10 
	14	

1α

2α

β

α

Grading Range 
(mm) Ranger1a Ranger1b Ranger2a Ranger2b 

0 - 0.063 1.40 % 0.0% 8.75 % 0.0% 
0.063 - 0.111 2.25 % 0.0% 2.19 % 0.0% 
0.111 - 0.125 0.75 % 0.0% 1.46 % 0.0% 
0.125 - 0.187 1.15 % 0.0% 1.72 % 0.0% 
0.187 - 0.25 1.15 % 0.0% 0.86 % 0.0% 
0.25 - 0.5 10.20 % 0.0% 0.86 % 0.0% 
0.5 - 1 9.60 % 0.0% 0.86 % 0.0% 

1 - 2 12.50 % 0.0% 0.86 % 0.0% 
2 - 4 16.40 % 0.0% 5.70 % 0.0% 
4 - 9.5 20.00 % 0.0% 6.35 % 0.0% 

9.5 - 19 24.60 % 100.0% 7.65 % 0.0% 
19 - 40 0.00 % 0.0% 8.70 % 0.0% 
40 - 95 0.00 % 0.0% 12.85 % 0.0% 
95 - 200 0.00 % 0.0% 41.20 %  100.0% 


