
I provided a preliminary response to Heimsath and Whipple on Sept 25. Below is a brief summary of the 
main points of the Heimsath and Whipple review and my revised responses. 

My P_0 estimates are simply the residuals obtained from the regressions of Heimath et al. (2012). Far from 
being “inappropriate” and “unwise” (reviewer 1), “kooky” and “akin to data fabrication” (reviewer 2), or 
any of the other descriptions employed by the reviewers, computing residuals and testing for additional 
controls is a recommended step in regression analysis. Heimsath and Whipple define P_0 as the y intercept 
of regression of soil production rates to soil thickness. This definition excludes the residuals of the 
regression without any basis. I define P_0 (in the first sentence of the abstract and again in the first sentence 
of the introduction) as the maximum soil production rate at each point on Earth’s surface. My definition 
honors the fact that P_0 values may vary continuously in space and that regressions of soil production rates 
to soil thickness yield a set of residuals that can and should be tested for additional controls. Residuals are 
estimates, since the regression used to compute the residuals has uncertainty. However, the fact that there 
is local variability in P values and uncertainty in 10Be measurements does not provide a basis for ignoring 
the residuals of this or any other regression. If local variability and/or data uncertainty dominate a soil 
production rate dataset, then no statistically significant landscape-scale controls will be identified in the 
residuals. For example, if large spatial variations existed in h_0 (the decay length scale of the soil production 
function) in the SGM, P_0 variations would be highly uncertain and controlling factors impossible to detect. 
However, Heimsath et al. (2012) estimated that h_0 values differ by 0.05 m (0.32 m vs. 0.37 m) between 
portions of the SGM with the largest difference in P_0 values. At a soil thickness of 30 cm, this difference 
corresponds to P_0 differences of approximately 10% (i.e., exp(-0.30/0.32) vs. exp(-0.30/0.37)). This 
difference is more than 100 times smaller than the variation in P_0 values. This difference becomes even 
smaller for soils thinner than 0.3 m. 

Heimsath and Whipple question the processes included in my model. I have thought hard about what 
factors, besides variations in fault density and vegetation cover (and its associated wildfire regime), may 
explain the patterns in the data. Near-surface rocks in the SGM are in a highly compressive state (~10 MPa). 
In compressive-stress environments, the development of rugged topography leads to a reduction in 
compressive stress (and even the development of tensile stress in sufficiently steep areas) in the rocks 
beneath hillslopes. This change in stress state can increase the bulk porosity of the rock, allowing 
weathering agents to penetrate more readily into the rock, thus increasing the rate of weathering for a given 
soil thickness. In my proposed revision, I demonstrate that the predictions of the topographically induced 
stress fracture opening hypothesis are more consistent with the data than my previous model. This 
hypothesis has the benefit of a strong theoretical foundation. Once the data are modeled based on this 
hypothesis, temperature clearly emerges as a limiting factor for P_0 values at the highest elevations of the 
range.  

I regret not nailing this problem in the discussion paper and having to make major changes to the revision 
(in part because this entails more work for the reviewers). However, major changes were called for by the 
reviewers and a major overhaul of a manuscript is sometimes a positive outcome of negative reviews (the 
proposed revision to Section 2.1 is provided below and the proposed revision of the entire manuscript is 
provided as a separate document). I believe my revised paper provides a needed process-based 
understanding of the controls on P_0 values documented by Heimsath et al. (2012) and establishes a 
climatic control on P_0 values at the highest elevations of the SGM. These results provide a useful 
foundation for additional targeted 10Be analyses and for the incorporation of new methods that can further 
test the topographically induced stress fracture opening hypothesis (e.g., shallow seismic refraction surveys, 
3D stress modeling, etc.).    



In my opinion, the truth that has emerged from this review and my response is an interesting middle ground 
in which Heimsath et al. (2012) have been vindicated on their fundamental point that P_0 values can 
increase with topographic ruggedness in some (i.e., compressive-stress) settings, but that also supports the 
hypothesis they rejected, i.e., that P_0 values are controlled solely by climate and rock characteristics. The 
evidence remains that it is changes to rock characteristics, i.e., an increase in bedrock or intact regolith 
porosity in areas of more rugged topography, that lead to higher P_0 values, together with a climatic 
limitation on P_0 values at the highest elevations of the range.  

Proposed revision to Section 2.1: 

2.1 Controls on potential soil production rates in the SGM  

  P0 values for the SGM can be estimated using the residuals obtained from the regression of soil production 

rates to soil thicknesses reported by Heimsath et al. (2012) (their Fig. 3). The exponential form of the soil production 

function quantifies the decrease in soil production rates with increasing soil thickness:  

  𝑃𝑃 = 𝑃𝑃0𝑒𝑒−ℎ ℎ0⁄ ,           (1)  

where h is soil thickness and h0 is a length scale quantifying the relative decrease in soil production rates for each unit 

increase in soil thickness. Heimsath et al. (2012) obtained h0 = 0.32 m for locations with an average slope, Sav, of less 

than or equal to 30° and h0 = 0.37 m for locations with Sav > 30°. Sav is defined by Heimsath et al. (2012) as the average 

slope over hillslopes adjacent to each sample location. P0 values (Supplementary Table 1) can be estimated as the 

residuals obtained by dividing P values by the exponential term in equation (1):  

  𝑃𝑃0,resid = 𝑃𝑃𝑒𝑒ℎ 0.32 m⁄   if  𝑆𝑆av ≤ 30°
𝑃𝑃𝑒𝑒ℎ 0.37 m⁄   if  𝑆𝑆av > 30°

.        (2)  

where P0,resid denotes P0 values estimated using the residuals of the regression. Note that equation (2) is equivalent to 

subtracting the logarithms of the exponential term from the logarithms of P values, since division is equivalent to 

subtraction under log transformation. Log transformation is appropriate in this case because P values are positive and 

positively skewed (i.e., there are many P values in the range of 50-200 m/Myr and a smaller number of values in the 

range of 200-600 m/Myr that would be heavily weighted in the analysis if the data were not log-transformed). P0,resid 

values estimated from equation (2) increase, on average, with increasing Sav (Fig. 2A). P0,resid values exhibit an abrupt 

increase at an Sav of approximately 30°.  

Heimsath et al. (2012) did not include data points from locations without soil cover in their regressions 

because these data points appear (especially for areas with Sav > 30°) to fit below the trend of equation (1). This implies 

that a humped production function may be at work in some portions of the SGM. The mean value of P from areas 

with Sav ≤ 30° that lack soil cover is 183 m/Myr, i.e., slightly higher than, but within 2σ uncertainty of, the 170 ± 10 



m/Myr value expected based on the exponential soil production function fit by Heimsath et al. (2012). As such, the 

evidence indicates that for areas with Sav ≤ 30°, data from locations with and without soil cover are both consistent 

with an exponential soil production function. The mean value of P from areas with Sav > 30° that lack soil cover is 

207 m/Myr, i.e., significantly lower than the 370 ± 40 m/Myr expected based on the exponential soil production 

function. This suggests that a hump may exist in the soil production function for steep (Sav > 30°) slopes as they 

transition to a bare (no soil cover) condition. To account for this, I estimated P0 to be equal to 1.78P (i.e., the ratio of 

370 to 207) at locations with Sav > 30° that lack soil cover.     

 The SGM has horizontal compressive stresses of ~10 MPa in an approximately N-S direction at depths of 

less than a few hundred meters (e.g., Sbar et al., 1979; Zoback et al., 1980; Yang and Hauksson, 2013). The 

development of rugged topography can lead to topographically induced fracturing of bedrock and/or opening of pre-

existing fractures in compressive-stress environments (e.g., Miller and Dunne, 1996; Martel, 2006; Slim et al., 2014; 

St. Clair et al., 2015). Given the pervasively fractured nature of bedrock in the SGM (e.g., Dibiase et al., 2015), I 

assume that changes in the stress state of bedrock or intact regolith beneath hillslopes leads to the opening of pre-

existing fractures (i.e., an increase in the bulk porosity of bedrock or intact regolith) rather than the fracturing of intact 

rock. I adopt the analytic solutions of Savage and Swolfs (1986), who solved for the topographic modification of 

regional compressive stresses beneath ridges and valleys oriented perpendicular to the most compressive stress 

direction. Savage and Swolfs (1986) demonstrated that the horizontal stress (σxx) in bedrock or intact regolith becomes 

less compressive under ridges as the slope increases (Fig. 3). In landscapes with a maximum slope larger than 45˚ 

(equivalent to an average slope of approximately 27˚ or atan(0.5) in the mathematical framework of Savage and 

Swolfs, 1986), bedrock or intact regolith that would otherwise be in compression develops tensile stresses close to the 

surface beneath hillslopes (Fig. 3A). An average slope of 27˚ is close to the threshold value of 30˚ that Heimsath et al. 

(2012) identified as representing the transition from low to high P0 values in the SGM. Therefore, the abrupt increase 

in P0,resid values at approximately 30˚ is consistent with a transition from compression to tension in bedrock or intact 

regolith beneath hillslopes of the SGM. In addition to this sign change in the horizontal stress state in the rocks beneath 

hillslopes of the SGM, the Savage and Swolfs (1986) model predicts a gradual decline in horizontal compressive stress 

as Sav increases between 0 and approximately 27˚ (Fig. 3B): 

  
σ𝑥𝑥𝑥𝑥
𝑁𝑁1

= 2−4𝑆𝑆av
(2+4𝑆𝑆av)(1+4𝑆𝑆av)

         (3)  



where N1 is the regional maximum compressive stress and Sav has units of m/m in equation (3). Equation (3) is simply 

equation (36) of Savage and Swolfs (1986) expressed in terms of the average slope from the drainage divide to the 

location of maximum slope rather than the shape parameter b/a used by Savage and Swolfs (1986). Note that the 

tangent of the slope angle (units of m/m) is averaged to obtain Sav in all cases in this paper. However, after this 

averaging Sav is reported in degrees in some cases to facilitate comparison with the results of Heimsath et al. (2012).   

 Figure 3 illustrates the effects of topography on tectonic stresses only. Gravitational stresses can be included 

in the model by superposing the analytic solutions of Savage and Swolfs (1986) (their equations (34) and (35)) with 

the solutions of Savage et al. (1985) for the effects of topography on gravitational stresses (their equations (39) and 

(40)). The result is a three-dimensional phase space of solutions corresponding to different values of the regional 

tectonic stress N1, the characteristic gravitational stress ρgb (where ρ is the density of rock, g is the acceleration due 

to gravity, and b is the ridge height), and the Poisson ratio μ. The effects of including gravitational stresses are (1) to 

increase the compression at depth via the lithostatic term (at soil depths this corresponds to an addition of ~10 kPa, 

which is negligible compared to the regional compressive stress of ~10 MPa in the SGM), and 2) to increase the 

compressive stresses near the point of inflection on hillslopes (e.g., Fig. 2a of Savage et al., 1985). These modifications 

do not alter the first-order behavior illustrated in Figure 3 for rocks close to the surface that are not close to hollows 

or other points of inflection. Section 3 provides additional discussion of the assumptions and alternative approaches 

to modeling topographically induced stresses.  

The fit of the solid curve in Figure 2A to P0,resid values is based on equation (3), together with an assumption 

that the transition from compressive to tensile stresses triggers an step increase in P0,resid values over a small range of 

Sav values in the vicinity of the transition from compression to tension: 

  𝑃𝑃0,𝑆𝑆 =

𝑃𝑃0,𝑙𝑙 �1 − σ𝑥𝑥𝑥𝑥
𝑁𝑁1
�   if  𝑆𝑆av ≤ 𝑆𝑆𝑙𝑙

𝑃𝑃0,ℎ �1 − σ𝑥𝑥𝑥𝑥
𝑁𝑁1
�   if  𝑆𝑆av > 𝑆𝑆ℎ

 �𝑃𝑃0,𝑙𝑙 + �𝑃𝑃0,ℎ − 𝑃𝑃0,𝑙𝑙�
𝑆𝑆av−𝑆𝑆l
𝑆𝑆h−𝑆𝑆l

� �1 − σ𝑥𝑥𝑥𝑥
𝑁𝑁1
�  if  𝑆𝑆𝑙𝑙 ≤ 𝑆𝑆av < 𝑆𝑆ℎ

    (4)  

where P0,S denotes the model for the dependence of P0 values on Sav, P0,l  and P0,h are coefficients defining the low and 

high values of P0, and Sl and Sh are the average slopes defining the range over which P0 values increase from low to 

high values across the transition from compression to tension. P0,l  and P0,h were determined to be 170 m/Myr and 500 

m/Myr based on least-squares minimization to the data (data from elevations above 2300 m were excluded because 



of the climatic influence described below). Sl and Sh were chosen to be 30˚ and 32˚, respectively, to characterize the 

abrupt increase in P0 values in the vicinity of 30˚.  

 In addition to the average slope control associated with the topographically induced stress fracture opening 

process, a climatic control on P0 values can be identified using cluster analysis. This type of analysis involves 

identifying clusters in the data defined by distinctive values of the independent variables that also have different mean 

values of the dependent variable. The four points colored in blue in Figure 2A are the four highest elevation samples 

in the dataset, with elevations ≥ 2300 m a.s.l. The logarithms (base 10) of this cluster have a mean value of -0.40 after 

subtracting the logarithms of P0,S to account for the average slope control on P0,resid values, compared with a mean of 

0.00 for the logarithms of the remaining data points with Sav > 30° (also with the logarithms of P0,S subtracted). 

Assuming a significance level of 0.05, the null hypothesis that the cluster of blue points has a mean that is 

indistinguishable from that of the remaining points with Sav > 30° can be rejected based on the standard t test with 

unequal variances (t = 0.021).  

Figures 4A-4C illustrate the mean annual temperature (MAT), mean annual precipitation (MAP), and 

existing vegetation height (EVH) for the central portion of the SGM. Above elevations of approximately 1800 m a.s.l., 

vegetation height decreases systematically with increasing elevation (Fig. 4D). This limitation is likely to be primarily 

a result of temperature limitations on vegetation growth because MAP increases with elevation up to and including 

the highest elevations of the range. This result is consistent with the hypothesis that vegetation is a key driver of soil 

production. The decrease in P0 values with elevation is likely to be gradual rather than abrupt, and indeed there is 

evidence of a peak in the climatic control of P0 values. Figure 4E plots the ratio of P0,resid to P0,S as a function of 

elevation. The closed circles are binned averages of the data (each bin equals 100 m in elevation). The ratio of P0,resid 

to P0,S (equivalent to the residuals under log transformation after the effects of average slope are removed) increases, 

on average, and then decreases within the range of elevations between 1500 and 2600 m, broadly similar to the trend 

of EVH (Fig. 4D). 

Local variability in P0 estimates due to variations in soil thickness, mineralogical variations within a given 

lithology, spatial variations in fracture density, etc. can be minimized by averaging P0 values (not including the four 

highest-elevation points because of the climatic control) from locations that have the same average slope (Fig. 2C). 

This process tends to average data from the same local cluster since local clusters often have average slopes that are 

both equal within the cluster and different from other clusters. Figure 2C demonstrates that the predictions of the 



topographically induced stress fracture opening hypothesis are consistent with the observed dependence of P0,resid 

values on Sav values.   

The average slope and climatic controls on P0 values can be combined into a single predictive equation for 

P0 values: 

  𝑃𝑃0,pred = 𝑃𝑃0,𝑠𝑠𝐶𝐶          (5)  

where P0,pred denotes predicted values for P0, C is a climatic index defined as 1 for z < 2300 m and 0.4 (i.e., the ratio 

of the geometric mean of the data for z > 2300 m to the remaining data points with Sav > 30°) for z > 2300 m. A 

regression of P0,pred values to P0,resid values yields an R2 of 0.50 (Fig. 2D). When data with equal Sav values are averaged 

(i.e., the filled circles in Fig. 2D), the resulting R2 value is 0.87.  

The results of this section demonstrate that average slope and climate exert controls on P0 values in the SGM. 

Although I did not find additional controls that were clearly distinct from these, it is worth discussing additional 

controls that I tested for. The data points colored in gray in Figure 2B are from the three rock types most resistant to 

weathering as determined by Spotila et al. (2002): granite, anorthosite, and the Mount Lowe intrusive suite. Spotila et 

al. (2002) also identified gabbro as a relatively resistant rock in the SGM, but no soil production rates are available 

from this rock type. Figure 2B suggests that lithology might exert some control on P0 values. Specifically, 7 samples 

from the more resistant lithologies sit above the least-squares fit of equation (4) to the data, while 13 (including the 7 

lowest P0 values) sit below the least-squares fit. However, the null hypothesis that the residuals of the gray cluster 

after the effects of average slope are removed has a mean that is indistinguishable from the residuals of the remaining 

points (colored black in Figure 2B) cannot be rejected (t = 0.21). 

Many studies have proposed a relationship between fracture density and bedrock weatherability on the basis 

that fractures provide additional surface area for chemical weathering and pathways for physical weathering agents to 

penetrate into the bedrock or intact regolith (e.g., Molnar, 2004; Molnar et al., 2007; Goodfellow et al., 2014; Roy et 

al., 2016a,b). The difference in erosion rates between the SGM and adjacent San Bernadino Mountains, for example, 

has been attributed in part to differences in fracture density between these ranges (Lifton and Chase, 1992; Spotila et 

al., 2002). As such, it is reasonable to hypothesize that differences in P0 values might result from spatial variations in 

fracture density within each range. I computed a bedrock damage index D based on the concept that P0 values increase 

in bedrock that is more pervasively fractured, together with the fact that bedrock fracture densities are correlated with 

local fault density in the SGM (Chester et al., 2005; Savage and Brodsky, 2011). Savage and Brodsky (2011) 



documented that bedrock fracture density decreases as a power-law function of distance from small isolated faults, 

i.e. as r-0.8 where r is the distance from the fault. Fracture densities around larger faults and faults surrounded by 

secondary fault networks can be modeled as a superposition of r-0.8 decays from all fault strands (Savage and Brodsky, 

2011). Chester et al. (2005) documented similar power-law relationships between bedrock fracture density and local 

fault density in the SGM specifically. I define the bedrock damage index D (Fig. 5A) as the sum of the inverse 

distances, raised to an exponent 0.8, from the point where the D value is being computed to every pixel in the study 

area were a fault is located: 

   𝐷𝐷 = ∑ ∆𝑥𝑥 �∆𝑥𝑥/ 'xx − �
0.8

𝐱𝐱′         (6) 

where Δx is the pixel width, x is the map location where bedrock damage is being computed, and x’ is the location of 

each mapped pixel in SGM where a fault exists. D has units of length since it is the sum of all fault lengths in the 

vicinity of a point, weighted by a power function of inverse distance. Equation (6) honors the roles of both the distance 

to and the local density of faults documented by Savage and Brodsky (2011) because longer faults and/or more mature 

fault zones with many secondary faults have more pixels that contribute to the summation. The fact that a relationship 

exists between P0,resid values and D (Fig. 5B, p = 0.035) and between D and Sav (Fig. 5C, p = 0.015) suggests that some 

of the control by average slope that I have attributed to the topographically induced stress fracture opening process 

may reflect differences in the density of pre-existing fractures related to local fault density. However, the much higher 

R2 value of the relationship between P0,resid and P0,pred (R2 = 0.50) compared to that for the relationship between P0,resid 

and D (R2 = 0.08) suggests that the topographically induced stress fracture opening process is the dominant mechanism 

controlling P0 values in the SGM. In addition, this process has a stronger theoretical foundation.  



 
 

Figure 2. Analytic solutions illustrating the perturbation of a regional compressive stress field by topography. (A) Color 
maps of the horizontal normal stress, σxx (normalized to the regional stress, N1), as a function of ridge steepness (defined 
by the shape factor b/a of Savage and Swolfs (1986) and the average slope Sav) using equations (34) and (35) of Savage and 
Swolfs (1986). The hillslopes are plotted with no vertical exaggeration. (B) Plot of σxx directly beneath the ridge as a function 
of Sav using equation (36) of Savage and Swolfs (1986). The plot illustrates the decrease in compressive stress with increasing 
average slope and the transition to tensile stresses at a Sav value of approximately 27˚.  
, 



 
Figure 3. Plots of P0,resid and their relationship to average slope, Sav, and other potential controlling factors. (A) Plot of P0,resid 
values versus Sav. Data points colored blue are from the highest elevations of the range (z > 2300 m). (B) The same plot as 
(A), except that data points are colored according to whether they from rocks that are relatively more resistant (gray) or 
less resistant (black) to weathering. (C) Plot of P0,resid values averaged for each value of Sav. In (A) and (B), error bars 
represent the uncertainty of each data point, while in (C) the error bar represents the standard deviation of the data points 
averaged for each Sav value. (D) Plot of P0,resid versus values predicted from equation (5). Unfilled circles show individual 
data points, while filled circles represent the averaged data plotted in (C).  
 
 



 
Figure 4. Climate and vegetation cover of the central San Gabriel Mountains. Color maps of (A) mean annual temperature 
(MAT) and (B) mean annual precipitation (MAP) from the PRISM dataset (Daly et al., 2001). (C) Color map of mean 
existing vegetation height (EVH) from the U.S. Geological Survey LANDFIRE database (U.S.G.S., 2016). (D) Plot of mean 
EVH versus elevation above sea level, z, using the data illustrated in (C). (E) Plot of the ratio of P0,resid to P0,S as a function 
of elevation. Filled circles are binned averages of the data (each bin equals 100 m in elevation). 
 

 



 
Figure 5.  Map of the bedrock damage index, D, and its correlation with Sav. (A) Color map of spatial variations D. (B) Plot 
of D versus Sav for the 57 sample locations of Heimsath et al. (2012).   
 
 


